WO2021070758A1 - Refrigerator, cooling control method, and program - Google Patents

Refrigerator, cooling control method, and program Download PDF

Info

Publication number
WO2021070758A1
WO2021070758A1 PCT/JP2020/037609 JP2020037609W WO2021070758A1 WO 2021070758 A1 WO2021070758 A1 WO 2021070758A1 JP 2020037609 W JP2020037609 W JP 2020037609W WO 2021070758 A1 WO2021070758 A1 WO 2021070758A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
compressor
air temperature
cooling
chamber
Prior art date
Application number
PCT/JP2020/037609
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 児玉
小林 史典
孝典 諏訪
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202080069861.9A priority Critical patent/CN114502902B/en
Priority to JP2021551500A priority patent/JP7154435B2/en
Publication of WO2021070758A1 publication Critical patent/WO2021070758A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/003Arrangement or mounting of control or safety devices for movable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/122Sensors measuring the inside temperature of freezer compartments

Definitions

  • the present invention relates to a refrigerator, a cooling control method and a program.
  • the cooling capacity that is, the rotation speed of the compressor and fan, is appropriately adjusted according to the magnitude of the heat load in order to maintain the temperature inside the refrigerator after the heat load of food or the like is applied. Is common.
  • the rotation speed of the compressor is changed based on the difference between the temperature inside the refrigerator and the set temperature.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a refrigerator or the like capable of suppressing excessive cooling and operating with low electric power.
  • the refrigerator According to the present invention Cooling means for cooling the storage room for storing goods, A control means for controlling the cooling means and A storage room temperature sensor that measures the air temperature of the storage room, A cooler temperature sensor for measuring the temperature of the cooler included in the cooling means is provided.
  • the control means When the air temperature of the storage chamber is higher than the set temperature, the control means has the reference temperature difference from the direction in which the temperature difference between the air temperature of the storage chamber and the temperature of the cooler is larger than the predetermined reference temperature difference. Each time the temperature is reached, the rotation speed of at least one of the compressor and the blower fan included in the cooling means is increased.
  • FIG. 1 Front view of the refrigerator according to the first embodiment of the present invention Sectional view of line II-II shown in FIG.
  • the figure for demonstrating the cooling control of Embodiment 2 of this invention (the 1)
  • the figure for demonstrating the cooling control of Embodiment 2 of this invention (the 2)
  • FIG. 1 is a perspective view showing the appearance of the refrigerator 1 according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG. In the Cartesian coordinate system XYZ shown in FIGS. Axial.
  • the refrigerator 1 has a refrigerating room 10, an ice making room 11, a switching room 12, a vegetable room 13, a freezing room 14, and the like in order from the top, that is, from the + Z side.
  • the vegetable compartment 13 and the freezing chamber 14 may be interchanged and arranged.
  • the refrigerating room 10, the vegetable room 13, and the freezing room 14 are examples of storage rooms according to the present invention.
  • the refrigerator 1 is a cooler connected to each of the refrigerating room 10, the ice making room 11, the switching room 12 (not shown in FIG. 2), the vegetable room 13 and the freezing room 14 by a cold air passage 15. It has a chamber 16, a cooler chamber 16, and a machine chamber 18 connected by a drain pipe 17. A cooler 20 and a fan 30 are arranged in the cooler chamber 16, and a mechanical member including a compressor 40 is arranged in the machine room 18. The cooler 20 and the compressor 40 constitute a freezing cycle 100 shown in FIG. 3, and the refrigerating chamber 10, the ice making chamber 11, the switching chamber 12, the vegetable chamber 13, and the freezing chamber 14 are cooled to a temperature at which they can be frozen or refrigerated. Lower.
  • FIG. 3 is a block diagram showing the configuration of the refrigeration cycle 100.
  • the refrigeration cycle 100 is an example of the cooling means according to the present invention, in which the compressor 40, the condenser 50, the decompression unit 60, and the cooler 20 are cyclically connected by a refrigerant pipe 70 through which the refrigerant circulates. Has a configuration.
  • the compressor 40 is an example of the compressor according to the present invention.
  • the compressor 40 compresses the refrigerant to raise the temperature and pressure.
  • the compressor 40 includes an inverter circuit capable of changing the rotation speed according to the drive frequency.
  • the condenser 50 is a heat exchanger arranged in the machine room 18 and condenses the refrigerant. Specifically, the condenser 50 dissipates heat from the high-temperature and high-pressure refrigerant sent from the compressor 40 to make the refrigerant in a two-layer state of gas and liquid or in a supercooled (also referred to as subcooling) state below the saturation temperature. ..
  • the pressure reducing unit 60 is composed of an expansion valve 61 and a capillary tube 62.
  • the depressurizing unit 60 decompresses the refrigerant condensed by the condensing unit 50 into a liquid state or a two-phase state of liquid and gas.
  • the cooler 20 is an example of a cooler according to the present invention. The cooler 20 exchanges heat between the low-temperature low-pressure refrigerant sent from the decompression unit 60 and the air around the cooler 20. By heat exchange in the cooler 20, the refrigerant absorbs heat, evaporates, and is sent to the compressor 40. As a result, the air around the cooler 20 is cooled.
  • the fan 30 of FIG. 2 is an example of a blower fan according to the present invention, in which air around the cooler 20 cooled by the refrigeration cycle 100 is passed through a cold air passage 15, a refrigerating chamber 10, an ice making chamber 11, and the like. It is supplied to each room of the refrigerator 1.
  • FIG. 4 is a block diagram showing a control system 200 responsible for cooling control in the refrigerator 1.
  • the control system 200 includes a control device 201, temperature sensors 202 to 204, a fan 30, and a compressor 40.
  • the control device 201 is an example of the control means according to the present invention, and is installed in, for example, the machine room 18 of the refrigerator 1.
  • the control device 201 is a central processing unit (CPU), a ROM (Read Only Memory), a RAM (Random Access Memory), a communication interface, and a readable / writable non-volatile semiconductor. It is provided with a secondary storage device composed of a memory, and controls the control system 200 in an integrated manner.
  • the non-volatile semiconductor memory that can be read and written is, for example, EEPROM (Electrically Erasable Programmable Read-Only Memory), flash memory, or the like.
  • the ROM stores a plurality of firmwares and data used when executing these firmwares.
  • the RAM is used as a work area of the CPU.
  • the secondary storage device stores various programs including programs in which processes related to cooling control are described (hereinafter referred to as cooling control programs) and data used when executing these programs.
  • the temperature sensor 202 is installed in the refrigerating chamber 10 and measures the air temperature of the refrigerating chamber 10 (hereinafter referred to as the refrigerating chamber temperature).
  • the temperature sensor 202 is communicably connected to the control device 201 via a communication line.
  • the temperature sensor 202 transmits the measurement data (that is, the data indicating the measured refrigerating room temperature) to the control device 201.
  • the temperature sensor 203 is installed in the freezing chamber 14 and measures the air temperature of the freezing chamber 14 (hereinafter referred to as the freezing chamber temperature).
  • the temperature sensor 203 is communicably connected to the control device 201 via a communication line.
  • the temperature sensor 203 transmits measurement data (that is, data indicating the measured freezing room temperature) to the control device 201.
  • the temperature sensors 202 and 203 are examples of the storage chamber temperature sensor according to the present invention.
  • the temperature sensor 204 measures the temperature of the cooler 20. Specifically, the temperature sensor 204 is installed in close contact with the cooler 20 and measures the surface temperature of the cooler 20 (hereinafter referred to as the cooler temperature). The temperature sensor 204 is communicably connected to the control device 201 via a communication line, and in response to a request from the control device 201, transmits data indicating the measured cooler temperature to the control device 201.
  • the temperature sensor 204 is an example of the cooler temperature sensor according to the present invention.
  • the fan 30 is arranged in the cooler chamber 16, and the air around the cooler 20 cooled by the refrigerating cycle 100 is passed through the cold air passage 15 to the refrigerator 1 such as the refrigerating chamber 10 and the ice making chamber 11. Supply to each room of.
  • the fan 30 is communicably connected to the control device 201 via a communication line, and changes the rotation speed, that is, the amount of air blown according to an instruction from the control device 201.
  • the compressor 40 is a component of the refrigeration cycle 100 and compresses the refrigerant to raise the temperature and pressure.
  • the compressor 40 is communicably connected to the control device 201 via a communication line, and changes the rotation speed according to a command from the control device 201.
  • control system 200 includes a damper arranged in the cold air passage 15, a heater for melting frost generated in the cooler 20, and the like (none of which are shown), and the control device 201 includes a control device 201. , Control these as appropriate.
  • the refrigerator 1 of the present embodiment starts a cooling operation to maintain the temperature inside the refrigerator at a set temperature when a heat load is generated in the refrigerator due to opening / closing of a door, storage of articles, or the like. To do so. Further, the refrigerator 1 of the present embodiment has a feature that the rotation speeds of the compressor 40 and the fan 30 are adjusted a plurality of times after the start of the cooling operation until the temperature inside the refrigerator reaches the set temperature.
  • the refrigerator 1 of the present embodiment has a feature that the rotation speeds of the compressor 40 and the fan 30 are adjusted a plurality of times after the start of the cooling operation until the temperature inside the refrigerator reaches the set temperature.
  • FIG. 5 is a flowchart showing the procedure of the cooling control process executed by the control device 201.
  • This cooling control process is realized by the CPU of the control device 201 executing a cooling control program stored in the secondary storage device, and is periodic (for example, every 10 seconds) while the power of the refrigerator 1 is ON. Is repeatedly executed.
  • step S101 the control device 201 acquires the temperature inside the refrigerator, that is, the refrigerating chamber temperature and the freezing chamber temperature. Specifically, the control device 201 requests the temperature sensor 202 to transmit the measurement data, and in response to the request, the measurement data sent from the temperature sensor 202 (that is, the measured refrigerating room temperature). The refrigerating room temperature is acquired by receiving the indicated data). Further, the control device 201 requests the temperature sensor 203 to transmit measurement data, and in response to the request, the measurement data sent from the temperature sensor 203 (that is, data indicating the measured freezer temperature). ) Is received to obtain the freezer temperature.
  • step S102 the control device 201 acquires the cooler temperature. Specifically, the control device 201 requests the temperature sensor 204 to transmit the measurement data, and in response to the request, the measurement data sent from the temperature sensor 204 (that is, the measured cooler temperature). The cooler temperature is acquired by receiving the indicated data).
  • step S103 the control device 201 determines whether or not the temperature inside the refrigerator is higher than the set temperature (also referred to as the target temperature). Specifically, the control device 201 determines whether or not the temperature of the refrigerating room is higher than the temperature preset for the refrigerating room 10 (hereinafter referred to as the set temperature of the refrigerating room), and the control device 201 also determines whether or not the temperature of the refrigerating room is higher than the temperature set in advance. , It is determined whether or not the freezing chamber temperature is higher than the temperature preset for the freezing chamber 14 (hereinafter, referred to as the freezing chamber set temperature).
  • step S103 when the refrigerating room temperature is higher than the refrigerating room set temperature or the freezing room temperature is higher than the freezing room set temperature, the control device 201 determines that the internal temperature is higher than the set temperature. In this case (step S103; YES), the process of the control device 201 shifts to step S104.
  • step S103; NO when the refrigerating room temperature is not higher than the refrigerating room set temperature and the freezing room temperature is not higher than the freezing room set temperature, the control device 201 determines that the internal temperature is not higher than the set temperature. In this case (step S103; NO), the process of the control device 201 shifts to step S108.
  • step S104 the control device 201 determines whether or not the compressor 40 is in operation.
  • step S104; YES the process of the control device 201 shifts to step S105.
  • step S104; NO the process of the control device 201 shifts to step S107.
  • step S105 the control device 201 determines whether or not the temperature difference between the freezing room temperature and the cooler temperature (hereinafter referred to as the freezing room / cooler temperature difference) has reached a predetermined reference temperature difference. Specifically, when the previous freezer / cooler temperature difference (that is, in the cooling control process before the previous cycle) is larger than the reference temperature difference, and the current freezer / cooler temperature difference is less than or equal to the reference temperature difference. , The control device 201 determines that the temperature difference between the freezer compartment and the cooler has reached the reference temperature difference.
  • the previous freezer / cooler temperature difference that is, in the cooling control process before the previous cycle
  • the current freezer / cooler temperature difference is less than or equal to the reference temperature difference.
  • the control device 201 is based on the freezer / cooler temperature difference. It is determined that the temperature difference has not been reached.
  • the above reference temperature difference is an initial value (for example, 5K (Kelvin)) in the determination in step S105 for the first time.
  • the reference temperature difference is changed to be equal to or less than the previous value.
  • the second reference temperature difference is changed to 5K or less.
  • step S105 When it is determined that the temperature difference between the freezer chamber and the cooler has not reached the reference temperature difference (step S105; NO), the control device 201 ends the cooling control process in this cycle. On the other hand, when it is determined that the temperature difference between the freezer chamber and the cooler has reached the reference temperature difference (step S105; YES), the control device 201 controls to increase the rotation speeds of the compressor 40 and the fan 30 (step S106). .. After the process of step S106, the control device 201 ends the cooling control process in this cycle.
  • step S107 the control device 201 activates the compressor 40 and the fan 30.
  • the rotation speed of the compressor 40 at this time is set to a value at which the cooler temperature becomes higher than the freezing chamber set temperature. Further, the rotation speed of the fan 30 at this time is set to a value smaller than the maximum rotation speed.
  • step S108 the control device 201 determines whether or not the compressor 40 is in operation. When the compressor 40 is not in operation, that is, when it is stopped (step S108; NO), the control device 201 ends the cooling control process in this cycle. On the other hand, when the compressor 40 is in operation (step S108; YES), the control device 201 stops the operation of the compressor 40 and the fan 30 (step S109). After the process of step S109, the control device 201 ends the cooling control process in this cycle.
  • FIG. 6 shows changes in the freezing room temperature, the cooler temperature, and the rotation speed of the compressor 40 when the above cooling control process is executed.
  • the refrigerator 1 of the first embodiment when the inside of the refrigerator is cooled, the cooling capacity is increased every time the temperature difference between the freezer room temperature and the cooler temperature reaches a predetermined reference temperature difference. That is, the number of revolutions of the compressor 40 and the number of revolutions of the fan 30 are increased. Therefore, it is possible to suppress excessive cooling and operate the refrigerator 1 with low electric power.
  • the rotation speeds of the compressor 40 and the fan 30 were increased in step S106 each time the temperature difference between the freezer temperature and the cooler temperature reached the reference temperature difference.
  • the rotation speed of one or both of the compressor 40 and the fan 30 may be increased depending on the conditions. For example, when the refrigerating chamber temperature is higher than the refrigerating chamber set temperature and the freezing chamber temperature is equal to or lower than the refrigerating chamber set temperature, the temperature difference between the refrigerating chamber 10 and the cooler 20 is large, so the fan should not lower the cooler temperature.
  • the refrigerating chamber temperature is equal to or lower than the refrigerating chamber set temperature and the freezing chamber temperature is higher than the freezing chamber set temperature, the temperature difference between the freezer chamber 14 and the cooler 20 is small, so that the refrigerator is frozen. Only the number of revolutions of the compressor 40 is increased in order to increase the capacity, and when the refrigerating chamber temperature is higher than the refrigerating chamber set temperature and the freezing chamber temperature is higher than the freezing chamber set temperature, the refrigerating chamber 14 and the refrigerating chamber 10 are cooled. Therefore, the rotation speeds of the compressor 40 and the fan 30 may be increased.
  • the control device 201 sequentially holds the freezing room temperature periodically acquired from the temperature sensor 203 (specifically, stores the temperature in the secondary storage device in chronological order), and determines in step S105. Each time the value is YES, the cooling rate of the freezer chamber during the period in which the compressor 40 is operated at the current rotation speed (that is, the amount of decrease in the freezer chamber temperature per period) may be calculated. Then, the control device 201 may determine the new rotation speed of the compressor 40 in step S106 based on the calculated cooling rate.
  • the control device 201 uses the fan 30 regardless of the determination result in step S105.
  • the rotation speed may be increased (for example, the fan 30 is rotated at the maximum rotation speed).
  • the configuration of the refrigerator 1 of the present embodiment is the same as that of the first embodiment (see FIGS. 1 to 4). Further, the control device 201 of the refrigerator 1 of the present embodiment executes the same cooling control process (see FIG. 5) as that of the first embodiment.
  • the control device 201 when the cooling rate (that is, the temperature gradient at the time of cooling), which is the amount of decrease in the temperature inside the refrigerator per unit time, is larger than the predetermined upper limit value, the control device 201 is used. Reduces cooling capacity. Specifically, when the cooling rate of the refrigerating room temperature, which is the air temperature of the refrigerating room 10, is larger than the upper limit value, or when the cooling rate of the freezing room temperature, which is the air temperature of the freezing room 14, is larger than the upper limit value, the current The number of revolutions of the compressor 40 is lowered (see FIG. 7), and the number of revolutions of the fan 30 is lowered.
  • the upper limit is, for example, 5 K / min.
  • the control device 201 increases the cooling capacity when the internal temperature is higher than the set temperature and the cooling rate is smaller than the predetermined lower limit value. Specifically, when the refrigerating chamber temperature is higher than the refrigerating chamber set temperature which is the set temperature of the refrigerating chamber 10 and the cooling rate of the refrigerating chamber temperature is lower than the lower limit value, or when the freezing chamber temperature is the freezing chamber 14 If the temperature is higher than the set temperature of the freezer and the cooling rate of the freezer temperature is less than the lower limit, the current number of revolutions of the compressor 40 is increased (see FIG. 8), and the number of revolutions of the fan 30 is increased. increase.
  • the lower limit is, for example, 0.2 K / min.
  • the cooling capacity that is, based on the cooling rate of the temperature inside the refrigerator, that is, The rotation speed of the compressor 40 and the rotation speed of the fan 30 are adjusted. Therefore, more appropriate cooling becomes possible.
  • the control device 201 reduces only the rotation speed of the fan 30 and the cooling rate of the refrigerating room temperature is increased. If it is below the upper limit and the cooling rate of the freezer room temperature is higher than the upper limit value, only the rotation speed of the compressor 40 is reduced, and both the cooling rate of the refrigerating room temperature and the cooling rate of the freezing room temperature are higher than the upper limit value. If it is large, the rotation speed of the compressor 40 and the rotation speed of the fan 30 may be reduced.
  • the control device 201 when the cooling rate of the refrigerating room temperature is lower than the lower limit value and the cooling rate of the freezing room temperature is equal to or higher than the lower limit value, only the rotation speed of the fan 30 is increased, and the cooling rate of the refrigerating room temperature is increased. If it is above the lower limit and the cooling rate of the freezer room temperature is lower than the lower limit value, only the rotation speed of the compressor 40 is increased, and both the cooling rate of the refrigerating room temperature and the cooling rate of the freezer room temperature are higher than the lower limit value. If it is small, the rotation speed of the compressor 40 and the rotation speed of the fan 30 may be increased.
  • a plurality of the above upper limit values and lower limit values may be prepared for each comparison target (cooling rate of refrigerating room temperature, cooling rate of freezing room temperature). Further, the upper limit value and the lower limit value may be fixed values, or may be appropriately updated by machine learning during operation of the refrigerator 1.
  • the condition that the temperature difference between the freezing room temperature and the cooler temperature reaches the reference temperature difference is a condition for increasing the cooling capacity (the number of revolutions of the compressor 40 and / or the fan 30).
  • the room for which the temperature difference from the cooler temperature is to be obtained is not limited to the freezing room.
  • the cooling capacity is increased each time the temperature difference between the refrigerating room temperature and the cooler temperature reaches the reference temperature difference. If the refrigerating room temperature is lower than the refrigerating room set temperature and the freezing room temperature is higher than the freezing room set temperature, every time the temperature difference between the freezing room temperature and the cooler temperature reaches the reference temperature difference, The cooling capacity may be increased.
  • the fan 30 is used every time the temperature difference between the refrigerating room temperature and the cooler temperature reaches the reference temperature difference.
  • the rotation speed may be increased, and the rotation speed of the compressor 40 may be increased each time the temperature difference between the freezer temperature and the cooler temperature reaches the reference temperature difference.
  • An appropriate value can be set for the reference temperature difference depending on the room (refrigerator room, freezer room) for which the temperature difference from the cooler temperature is to be obtained.
  • a plurality of fans 30 may be arranged. Further, in addition to the fan 30, one or a plurality of fans for sending air to the condenser 50 may be installed, and the rotation speed control similar to that of the fan 30 may be performed by the control device 201.
  • condenser constituting the refrigerating cycle 100 instead of the condenser 50 arranged in the machine room 18, pipes arranged on the side surface of the refrigerator 1 or the partition or the periphery of the room of the refrigerator 1 as shown in FIG. A housing heat dissipation type condenser that exchanges heat via the sheet metal of the housing may be adopted.
  • cooling control in the first and second embodiments may be executed for the purpose of removing the heat load in the refrigerator generated after the defrosting operation is performed.
  • each room of the refrigerator 1 may be a freezing room if the set temperature of the room is less than 0 ° C., and a refrigerating room if the set temperature of the room is 0 ° C. or higher.
  • the cooling control program executed by the CPU of the control device 201 included in the refrigerator 1 is a CD-ROM (Compact Disc Read Only Memory), a DVD (Digital Versatile Disc), a magneto-optical disc (Magneto-Optical Disc), and a USB (Universal). Serial Bus) It is also possible to store and distribute in a computer-readable recording medium such as a memory, memory card, or HDD.
  • a computer-readable recording medium such as a memory, memory card, or HDD.
  • the cooling control program may be stored in a storage device owned by another server on the Internet so that the cooling control program can be downloaded from the server to the refrigerator 1.
  • Refrigerator 10 Refrigerator room, 11 Ice making room, 12 Switching room, 13 Vegetable room, 14 Freezer room, 15 Cold air passage, 16 Cooler room, 17 Drain pipe, 18 Machine room, 20 Cooler, 30 Fan, 40 Compressor Machine, 50 condenser, 60 pressure reducing part, 61 expansion valve, 62 capillary tube, 70 refrigerant piping, 100 refrigeration cycle, 200 control system, 201 control device, 202-204 temperature sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

This refrigerator comprises: a refrigeration cycle which cools a storage room for storing goods; a control device (201) which controls the refrigeration cycle; temperature sensors (202, 203) which measure the air temperature in the storage room; and a temperature sensor (204) which measures the air temperature of a cooler included in the refrigeration cycle. When the air temperature in the storage room is higher than a set temperature, each time a temperature difference between the air temperature in the storage room and the temperature of the cooler reaches a reference temperature difference from a direction in which it is larger than a predetermined reference temperature difference, the control device (201) increases the number of revolutions of at least one among a compressor (40) and a fan (30) included in the refrigeration cycle.

Description

冷蔵庫、冷却制御方法及びプログラムRefrigerator, cooling control method and program
 本発明は、冷蔵庫、冷却制御方法及びプログラムに関する。 The present invention relates to a refrigerator, a cooling control method and a program.
 家庭用の冷蔵庫においては、食品等の熱負荷を投入後、庫内温度を保つために、熱負荷の大きさに応じて、冷却能力、即ち、圧縮機、ファンの回転数を適宜調整するのが一般的である。 In a household refrigerator, the cooling capacity, that is, the rotation speed of the compressor and fan, is appropriately adjusted according to the magnitude of the heat load in order to maintain the temperature inside the refrigerator after the heat load of food or the like is applied. Is common.
 例えば、特許文献1に記載の冷蔵庫は、庫内温度と設定温度との差に基づいて、圧縮機の回転数を変更する。 For example, in the refrigerator described in Patent Document 1, the rotation speed of the compressor is changed based on the difference between the temperature inside the refrigerator and the set temperature.
特開昭60-71874号公報Japanese Unexamined Patent Publication No. 60-71874
 しかしながら、従来の冷蔵庫のように庫内温度のみに依拠して冷却能力を調整する手法では、COP(Coefficient Of Performance)が悪く、過剰な冷却、即ち、圧縮機、ファンの回転数の過剰な増大を招き、必要以上に電力を消費してしまうという問題がある。 However, in the method of adjusting the cooling capacity based only on the temperature inside the refrigerator as in the conventional refrigerator, the COP (Coefficient Of Performance) is poor, and excessive cooling, that is, excessive increase in the number of revolutions of the compressor and fan. There is a problem that it consumes more power than necessary.
 本発明は、上記問題を解決するためになされたものであり、過剰な冷却を抑制し、低電力にて運転することが可能となる冷蔵庫等を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a refrigerator or the like capable of suppressing excessive cooling and operating with low electric power.
 上記目的を達成するため、本発明に係る冷蔵庫は、
 物品を収納する収納室の冷却を行う冷却手段と、
 前記冷却手段を制御する制御手段と、
 前記収納室の空気温度を計測する収納室温度センサと、
 前記冷却手段に含まれる冷却器の温度を計測する冷却器温度センサと、を備え、
 前記制御手段は、前記収納室の空気温度が設定温度より高い場合、前記収納室の空気温度と前記冷却器の温度との温度差が、予め定めた基準温度差より大きい方向から前記基準温度差に到達する度に、前記冷却手段に含まれる、圧縮機と送風ファンの少なくとも何れかの回転数を上げる。
In order to achieve the above object, the refrigerator according to the present invention
Cooling means for cooling the storage room for storing goods,
A control means for controlling the cooling means and
A storage room temperature sensor that measures the air temperature of the storage room,
A cooler temperature sensor for measuring the temperature of the cooler included in the cooling means is provided.
When the air temperature of the storage chamber is higher than the set temperature, the control means has the reference temperature difference from the direction in which the temperature difference between the air temperature of the storage chamber and the temperature of the cooler is larger than the predetermined reference temperature difference. Each time the temperature is reached, the rotation speed of at least one of the compressor and the blower fan included in the cooling means is increased.
 本発明によれば、過剰な冷却を抑制し、低電力にて冷蔵庫を運転することが可能となる。 According to the present invention, it is possible to suppress excessive cooling and operate the refrigerator with low electric power.
本発明の実施の形態1に係る冷蔵庫の正面図Front view of the refrigerator according to the first embodiment of the present invention 図1に示すII-II線の断面図Sectional view of line II-II shown in FIG. 実施の形態1に係る冷蔵庫における冷凍サイクルの構成を示す図The figure which shows the structure of the refrigerating cycle in the refrigerator which concerns on Embodiment 1. 実施の形態1に係る冷蔵庫の制御システムの構成を示すブロック図A block diagram showing a configuration of a refrigerator control system according to the first embodiment. 実施の形態1に係る冷蔵庫が備える制御装置が実行する冷却制御処理の手順を示すフローチャートA flowchart showing a procedure of cooling control processing executed by a control device included in the refrigerator according to the first embodiment. 実施の形態1の冷却制御処理を実行した際の冷凍室温度、冷却器温度及び圧縮機の回転数の推移を示す図The figure which shows the transition of the freezing room temperature, the cooler temperature, and the rotation speed of a compressor when the cooling control process of Embodiment 1 is executed. 本発明の実施の形態2の冷却制御について説明するための図(その1)The figure for demonstrating the cooling control of Embodiment 2 of this invention (the 1) 本発明の実施の形態2の冷却制御について説明するための図(その2)The figure for demonstrating the cooling control of Embodiment 2 of this invention (the 2) 本発明の他の実施の形態の凝縮器について説明するための図The figure for demonstrating the condenser of another embodiment of this invention.
 以下、本発明の実施の形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(実施の形態1)
 図1は、本発明の実施の形態1に係る冷蔵庫1の外観を示す斜視図である。図2は図1に示すII-II線の断面図である。図1,2に示す直交座標系XYZにおいて、冷蔵庫1のドアを正面側とした場合の、左右方向がX軸方向、上下方向がZ軸方向、X軸とZ軸とに直交する方向がY軸方向である。
(Embodiment 1)
FIG. 1 is a perspective view showing the appearance of the refrigerator 1 according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG. In the Cartesian coordinate system XYZ shown in FIGS. Axial.
 図1に示すように、冷蔵庫1は、上から順に、すなわち+Z側から順に、冷蔵室10、製氷室11、切換室12、野菜室13、冷凍室14等を有する。なお、野菜室13と冷凍室14とを入れ替えて配置してもよい。冷蔵室10、野菜室13及び冷凍室14は、本発明に係る収納室の一例である。 As shown in FIG. 1, the refrigerator 1 has a refrigerating room 10, an ice making room 11, a switching room 12, a vegetable room 13, a freezing room 14, and the like in order from the top, that is, from the + Z side. The vegetable compartment 13 and the freezing chamber 14 may be interchanged and arranged. The refrigerating room 10, the vegetable room 13, and the freezing room 14 are examples of storage rooms according to the present invention.
 図2に示すように、冷蔵庫1は、冷蔵室10、製氷室11、切換室12(図2に図示せず)、野菜室13及び冷凍室14それぞれと冷気風路15によって接続される冷却器室16と、冷却器室16と排水管17によって接続される機械室18とを有する。冷却器室16には、冷却器20及びファン30が配置され、機械室18には、圧縮機40を含む機械部材が配置される。冷却器20及び圧縮機40は、図3に示す冷凍サイクル100を構成し、冷蔵室10、製氷室11、切換室12、野菜室13、冷凍室14の各室内を冷凍又は冷蔵可能な温度まで下げる。 As shown in FIG. 2, the refrigerator 1 is a cooler connected to each of the refrigerating room 10, the ice making room 11, the switching room 12 (not shown in FIG. 2), the vegetable room 13 and the freezing room 14 by a cold air passage 15. It has a chamber 16, a cooler chamber 16, and a machine chamber 18 connected by a drain pipe 17. A cooler 20 and a fan 30 are arranged in the cooler chamber 16, and a mechanical member including a compressor 40 is arranged in the machine room 18. The cooler 20 and the compressor 40 constitute a freezing cycle 100 shown in FIG. 3, and the refrigerating chamber 10, the ice making chamber 11, the switching chamber 12, the vegetable chamber 13, and the freezing chamber 14 are cooled to a temperature at which they can be frozen or refrigerated. Lower.
 図3は、冷凍サイクル100の構成を示すブロック図である。冷凍サイクル100は、本発明に係る冷却手段の一例であり、圧縮機40と、凝縮器50と、減圧部60と、冷却器20とが、冷媒が循環する冷媒配管70により環状に接続された構成を有する。 FIG. 3 is a block diagram showing the configuration of the refrigeration cycle 100. The refrigeration cycle 100 is an example of the cooling means according to the present invention, in which the compressor 40, the condenser 50, the decompression unit 60, and the cooler 20 are cyclically connected by a refrigerant pipe 70 through which the refrigerant circulates. Has a configuration.
 圧縮機40は、本発明に係る圧縮機の一例である。圧縮機40は、冷媒を圧縮して温度及び圧力を上昇させる。圧縮機40は、駆動周波数に応じて回転数を変化させることができるインバータ回路を備える。凝縮器50は、機械室18に配置された熱交換器であり、冷媒を凝縮する。詳細には、凝縮器50は、圧縮機40から送られてきた高温高圧の冷媒を放熱し、気体と液体の二層状態又は飽和温度以下の過冷却(サブクールともいう。)状態の冷媒にする。 The compressor 40 is an example of the compressor according to the present invention. The compressor 40 compresses the refrigerant to raise the temperature and pressure. The compressor 40 includes an inverter circuit capable of changing the rotation speed according to the drive frequency. The condenser 50 is a heat exchanger arranged in the machine room 18 and condenses the refrigerant. Specifically, the condenser 50 dissipates heat from the high-temperature and high-pressure refrigerant sent from the compressor 40 to make the refrigerant in a two-layer state of gas and liquid or in a supercooled (also referred to as subcooling) state below the saturation temperature. ..
 減圧部60は、膨張弁61と、キャピラリーチューブ62とで構成される。減圧部60は、凝縮部50で凝縮された冷媒を減圧して液体の状態又は液体と気体の二相の状態にする。冷却器20は、本発明に係る冷却器の一例である。冷却器20は、減圧部60から送られてきた低温低圧の冷媒と冷却器20周辺の空気との間で熱交換を行う。冷却器20における熱交換により冷媒は吸熱して蒸発し、圧縮機40に送られる。これにより、冷却器20周辺の空気が冷却される。 The pressure reducing unit 60 is composed of an expansion valve 61 and a capillary tube 62. The depressurizing unit 60 decompresses the refrigerant condensed by the condensing unit 50 into a liquid state or a two-phase state of liquid and gas. The cooler 20 is an example of a cooler according to the present invention. The cooler 20 exchanges heat between the low-temperature low-pressure refrigerant sent from the decompression unit 60 and the air around the cooler 20. By heat exchange in the cooler 20, the refrigerant absorbs heat, evaporates, and is sent to the compressor 40. As a result, the air around the cooler 20 is cooled.
 図2のファン30は、本発明に係る送風ファンの一例であり、上記の冷凍サイクル100によって冷却された冷却器20周辺の空気を冷気風路15を介して、冷蔵室10、製氷室11等の冷蔵庫1の各室へ供給する。 The fan 30 of FIG. 2 is an example of a blower fan according to the present invention, in which air around the cooler 20 cooled by the refrigeration cycle 100 is passed through a cold air passage 15, a refrigerating chamber 10, an ice making chamber 11, and the like. It is supplied to each room of the refrigerator 1.
 続いて、冷蔵庫1における冷却制御について説明する。図4は、冷蔵庫1における冷却制御を担う制御システム200を示すブロック図である。制御システム200は、制御装置201と、温度センサ202~204と、ファン30と、圧縮機40とで構成される。 Next, the cooling control in the refrigerator 1 will be described. FIG. 4 is a block diagram showing a control system 200 responsible for cooling control in the refrigerator 1. The control system 200 includes a control device 201, temperature sensors 202 to 204, a fan 30, and a compressor 40.
 制御装置201は、本発明に係る制御手段の一例であり、例えば、冷蔵庫1の機械室18に設置される。制御装置201は、何れも図示しないが、中枢部であるCPU(Central Processing Unit)と、ROM(Read Only Memory)と、RAM(Random Access Memory)と、通信インタフェースと、読み書き可能な不揮発性の半導体メモリで構成される二次記憶装置とを備え、制御システム200を統括的に制御する。読み書き可能な不揮発性の半導体メモリは、例えば、EEPROM(Electrically Erasable Programmable Read-Only Memory)、フラッシュメモリ等である。 The control device 201 is an example of the control means according to the present invention, and is installed in, for example, the machine room 18 of the refrigerator 1. Although not shown, the control device 201 is a central processing unit (CPU), a ROM (Read Only Memory), a RAM (Random Access Memory), a communication interface, and a readable / writable non-volatile semiconductor. It is provided with a secondary storage device composed of a memory, and controls the control system 200 in an integrated manner. The non-volatile semiconductor memory that can be read and written is, for example, EEPROM (Electrically Erasable Programmable Read-Only Memory), flash memory, or the like.
 上記において、ROMは、複数のファームウェア及びこれらのファームウェアの実行時に使用されるデータを記憶する。RAMは、CPUの作業領域として使用される。二次記憶装置は、冷却制御に係る処理が記述されたプログラム(以下、冷却制御プログラムという。)を含む各種のプログラムと、これらのプログラムの実行時に使用されるデータとを記憶する。 In the above, the ROM stores a plurality of firmwares and data used when executing these firmwares. The RAM is used as a work area of the CPU. The secondary storage device stores various programs including programs in which processes related to cooling control are described (hereinafter referred to as cooling control programs) and data used when executing these programs.
 温度センサ202は、冷蔵室10に設置され、冷蔵室10の空気温度(以下、冷蔵室温度という。)を計測する。温度センサ202は、通信線を介して制御装置201と通信可能に接続される。温度センサ202は、制御装置201からの要求に応答して、計測データ(即ち、計測した冷蔵室温度を示すデータ)を制御装置201に送信する。 The temperature sensor 202 is installed in the refrigerating chamber 10 and measures the air temperature of the refrigerating chamber 10 (hereinafter referred to as the refrigerating chamber temperature). The temperature sensor 202 is communicably connected to the control device 201 via a communication line. In response to the request from the control device 201, the temperature sensor 202 transmits the measurement data (that is, the data indicating the measured refrigerating room temperature) to the control device 201.
 温度センサ203は、冷凍室14に設置され、冷凍室14の空気温度(以下、冷凍室温度という。)を計測する。温度センサ203は、通信線を介して制御装置201と通信可能に接続される。温度センサ203は、制御装置201からの要求に応答して、計測データ(即ち、計測した冷凍室温度を示すデータ)を制御装置201に送信する。温度センサ202,203は、本発明に係る収納室温度センサの一例である。 The temperature sensor 203 is installed in the freezing chamber 14 and measures the air temperature of the freezing chamber 14 (hereinafter referred to as the freezing chamber temperature). The temperature sensor 203 is communicably connected to the control device 201 via a communication line. In response to the request from the control device 201, the temperature sensor 203 transmits measurement data (that is, data indicating the measured freezing room temperature) to the control device 201. The temperature sensors 202 and 203 are examples of the storage chamber temperature sensor according to the present invention.
 温度センサ204は、冷却器20の温度を計測する。詳細には、温度センサ204は、冷却器20に密接して設置され、冷却器20の表面の温度(以下、冷却器温度という。)を計測する。温度センサ204は、通信線を介して制御装置201と通信可能に接続され、制御装置201からの要求に応答して、計測した冷却器温度を示すデータを制御装置201に送信する。温度センサ204は、本発明に係る冷却器温度センサの一例である。 The temperature sensor 204 measures the temperature of the cooler 20. Specifically, the temperature sensor 204 is installed in close contact with the cooler 20 and measures the surface temperature of the cooler 20 (hereinafter referred to as the cooler temperature). The temperature sensor 204 is communicably connected to the control device 201 via a communication line, and in response to a request from the control device 201, transmits data indicating the measured cooler temperature to the control device 201. The temperature sensor 204 is an example of the cooler temperature sensor according to the present invention.
 ファン30は、上述したように、冷却器室16に配置され、冷凍サイクル100によって冷却された冷却器20周辺の空気を冷気風路15を介して、冷蔵室10、製氷室11等の冷蔵庫1の各室へ供給する。ファン30は、通信線を介して制御装置201と通信可能に接続され、制御装置201からの指示に従って回転数、即ち、送風量を変更する。 As described above, the fan 30 is arranged in the cooler chamber 16, and the air around the cooler 20 cooled by the refrigerating cycle 100 is passed through the cold air passage 15 to the refrigerator 1 such as the refrigerating chamber 10 and the ice making chamber 11. Supply to each room of. The fan 30 is communicably connected to the control device 201 via a communication line, and changes the rotation speed, that is, the amount of air blown according to an instruction from the control device 201.
 圧縮機40は、上述したように、冷凍サイクル100の構成部であり、冷媒を圧縮して温度及び圧力を上昇させる。圧縮機40は、通信線を介して制御装置201と通信可能に接続され、制御装置201からの指令に従って回転数を変更する。 As described above, the compressor 40 is a component of the refrigeration cycle 100 and compresses the refrigerant to raise the temperature and pressure. The compressor 40 is communicably connected to the control device 201 via a communication line, and changes the rotation speed according to a command from the control device 201.
 なお、制御システム200には、上記のほか、冷気風路15に配置されるダンパ、冷却器20に発生した霜を溶かすためのヒータ等(何れも図示せず)が含まれ、制御装置201は、適宜、これらを制御する。 In addition to the above, the control system 200 includes a damper arranged in the cold air passage 15, a heater for melting frost generated in the cooler 20, and the like (none of which are shown), and the control device 201 includes a control device 201. , Control these as appropriate.
 本実施の形態の冷蔵庫1は、一般的な冷蔵庫と同様、扉の開閉、物品の収納等によって庫内に熱負荷が生じると、冷却運転を開始して庫内温度が設定温度に保たれるようにする。さらに、本実施の形態の冷蔵庫1は、冷却運転開始後、庫内温度が設定温度に到達するまでに、圧縮機40とファン30の回転数を複数回調整するという特徴を有する。以下、かかる特徴について詳細に説明する。 Similar to a general refrigerator, the refrigerator 1 of the present embodiment starts a cooling operation to maintain the temperature inside the refrigerator at a set temperature when a heat load is generated in the refrigerator due to opening / closing of a door, storage of articles, or the like. To do so. Further, the refrigerator 1 of the present embodiment has a feature that the rotation speeds of the compressor 40 and the fan 30 are adjusted a plurality of times after the start of the cooling operation until the temperature inside the refrigerator reaches the set temperature. Hereinafter, such features will be described in detail.
 図5は、制御装置201が実行する冷却制御処理の手順を示すフローチャートである。この冷却制御処理は、制御装置201のCPUが、二次記憶装置に記憶される冷却制御プログラムを実行することで実現され、冷蔵庫1の電源がONの間、周期的(例えば、10秒毎)に繰り返し実行される。 FIG. 5 is a flowchart showing the procedure of the cooling control process executed by the control device 201. This cooling control process is realized by the CPU of the control device 201 executing a cooling control program stored in the secondary storage device, and is periodic (for example, every 10 seconds) while the power of the refrigerator 1 is ON. Is repeatedly executed.
 ステップS101では、制御装置201は、庫内温度、即ち、冷蔵室温度と冷凍室温度とを取得する。詳細には、制御装置201は、温度センサ202に対して、計測データの送信を要求し、かかる要求に応答して温度センサ202から送られてきた計測データ(即ち、計測された冷蔵室温度を示すデータ)を受信することで冷蔵室温度を取得する。また、制御装置201は、温度センサ203に対して、計測データの送信を要求し、かかる要求に応答して温度センサ203から送られてきた計測データ(即ち、計測された冷凍室温度を示すデータ)を受信することで冷凍室温度を取得する。 In step S101, the control device 201 acquires the temperature inside the refrigerator, that is, the refrigerating chamber temperature and the freezing chamber temperature. Specifically, the control device 201 requests the temperature sensor 202 to transmit the measurement data, and in response to the request, the measurement data sent from the temperature sensor 202 (that is, the measured refrigerating room temperature). The refrigerating room temperature is acquired by receiving the indicated data). Further, the control device 201 requests the temperature sensor 203 to transmit measurement data, and in response to the request, the measurement data sent from the temperature sensor 203 (that is, data indicating the measured freezer temperature). ) Is received to obtain the freezer temperature.
 ステップS102では、制御装置201は、冷却器温度を取得する。詳細には、制御装置201は、温度センサ204に対して、計測データの送信を要求し、かかる要求に応答して温度センサ204から送られてきた計測データ(即ち、計測された冷却器温度を示すデータ)を受信することで冷却器温度を取得する。 In step S102, the control device 201 acquires the cooler temperature. Specifically, the control device 201 requests the temperature sensor 204 to transmit the measurement data, and in response to the request, the measurement data sent from the temperature sensor 204 (that is, the measured cooler temperature). The cooler temperature is acquired by receiving the indicated data).
 ステップS103では、制御装置201は、庫内温度が設定温度(目標温度ともいう。)より高いか否かを判定する。詳細には、制御装置201は、冷蔵室温度が、冷蔵室10に対して予め設定された温度(以下、冷蔵室設定温度という。)より高いか否かを判定し、また、制御装置201は、冷凍室温度が、冷凍室14に対して予め設定された温度(以下、冷凍室設定温度という。)より高いか否かを判定する。 In step S103, the control device 201 determines whether or not the temperature inside the refrigerator is higher than the set temperature (also referred to as the target temperature). Specifically, the control device 201 determines whether or not the temperature of the refrigerating room is higher than the temperature preset for the refrigerating room 10 (hereinafter referred to as the set temperature of the refrigerating room), and the control device 201 also determines whether or not the temperature of the refrigerating room is higher than the temperature set in advance. , It is determined whether or not the freezing chamber temperature is higher than the temperature preset for the freezing chamber 14 (hereinafter, referred to as the freezing chamber set temperature).
 上記の結果、冷蔵室温度が冷蔵室設定温度より高い、又は、冷凍室温度が冷凍室設定温度より高い場合、制御装置201は、庫内温度が設定温度より高いと判定する。この場合(ステップS103;YES)、制御装置201の処理は、ステップS104に移行する。一方、冷蔵室温度が冷蔵室設定温度より高くなく、且つ、冷凍室温度が冷凍室設定温度より高くない場合、制御装置201は、庫内温度が設定温度より高くないと判定する。この場合(ステップS103;NO)、制御装置201の処理は、ステップS108に移行する。 As a result of the above, when the refrigerating room temperature is higher than the refrigerating room set temperature or the freezing room temperature is higher than the freezing room set temperature, the control device 201 determines that the internal temperature is higher than the set temperature. In this case (step S103; YES), the process of the control device 201 shifts to step S104. On the other hand, when the refrigerating room temperature is not higher than the refrigerating room set temperature and the freezing room temperature is not higher than the freezing room set temperature, the control device 201 determines that the internal temperature is not higher than the set temperature. In this case (step S103; NO), the process of the control device 201 shifts to step S108.
 ステップS104では、制御装置201は、圧縮機40が動作中であるか否かを判定する。圧縮機40が動作中の場合(ステップS104;YES)、制御装置201の処理は、ステップS105に移行する。一方、圧縮機40が動作中でない場合(ステップS104;NO)、制御装置201の処理は、ステップS107に移行する。 In step S104, the control device 201 determines whether or not the compressor 40 is in operation. When the compressor 40 is in operation (step S104; YES), the process of the control device 201 shifts to step S105. On the other hand, when the compressor 40 is not in operation (step S104; NO), the process of the control device 201 shifts to step S107.
 ステップS105では、制御装置201は、冷凍室温度と冷却器温度との温度差(以下、冷凍室・冷却器温度差という。)が予め定めた基準温度差に到達したか否かを判定する。詳細には、従前の(即ち、前回の周期以前の冷却制御処理における)冷凍室・冷却器温度差が基準温度差より大きく、今回の冷凍室・冷却器温度差が基準温度差以下である場合、制御装置201は、冷凍室・冷却器温度差が基準温度差に到達したと判定する。一方、従前の冷凍室・冷却器温度差が基準温度差以下、又は、今回の冷凍室・冷却器温度差が基準温度差より大きい場合、制御装置201は、冷凍室・冷却器温度差が基準温度差に到達していないと判定する。 In step S105, the control device 201 determines whether or not the temperature difference between the freezing room temperature and the cooler temperature (hereinafter referred to as the freezing room / cooler temperature difference) has reached a predetermined reference temperature difference. Specifically, when the previous freezer / cooler temperature difference (that is, in the cooling control process before the previous cycle) is larger than the reference temperature difference, and the current freezer / cooler temperature difference is less than or equal to the reference temperature difference. , The control device 201 determines that the temperature difference between the freezer compartment and the cooler has reached the reference temperature difference. On the other hand, when the conventional freezer / cooler temperature difference is less than or equal to the reference temperature difference, or the current freezer / cooler temperature difference is larger than the reference temperature difference, the control device 201 is based on the freezer / cooler temperature difference. It is determined that the temperature difference has not been reached.
 上記の基準温度差は、初回のステップS105の判定では、初期値(例えば5K(ケルビン))である。圧縮機40が継続して動作している場合、即ち、冷却運転が継続している場合において、ステップS105の判定がYESになる度に、基準温度差は、前回値以下となるように変更される。例えば、2回目の基準温度差は5K以下に変更される。圧縮機40の動作が停止すると、基準温度差は初期値にリセットされる。 The above reference temperature difference is an initial value (for example, 5K (Kelvin)) in the determination in step S105 for the first time. When the compressor 40 is continuously operating, that is, when the cooling operation is continuing, each time the determination in step S105 becomes YES, the reference temperature difference is changed to be equal to or less than the previous value. To. For example, the second reference temperature difference is changed to 5K or less. When the operation of the compressor 40 is stopped, the reference temperature difference is reset to the initial value.
 冷凍室・冷却器温度差が基準温度差に到達していないと判定した場合(ステップS105;NO)、制御装置201は、本周期での冷却制御処理を終了する。一方、冷凍室・冷却器温度差が基準温度差に到達したと判定した場合(ステップS105;YES)、制御装置201は、圧縮機40及びファン30の回転数を上げる制御を行う(ステップS106)。ステップS106の処理後、制御装置201は、本周期での冷却制御処理を終了する。 When it is determined that the temperature difference between the freezer chamber and the cooler has not reached the reference temperature difference (step S105; NO), the control device 201 ends the cooling control process in this cycle. On the other hand, when it is determined that the temperature difference between the freezer chamber and the cooler has reached the reference temperature difference (step S105; YES), the control device 201 controls to increase the rotation speeds of the compressor 40 and the fan 30 (step S106). .. After the process of step S106, the control device 201 ends the cooling control process in this cycle.
 ステップS107では、制御装置201は、圧縮機40及びファン30を起動させる。このときの圧縮機40の回転数は、冷却器温度が冷凍室設定温度より高くなる値に定められる。また、このときのファン30の回転数は、最大回転数より小さい値に定められる。 In step S107, the control device 201 activates the compressor 40 and the fan 30. The rotation speed of the compressor 40 at this time is set to a value at which the cooler temperature becomes higher than the freezing chamber set temperature. Further, the rotation speed of the fan 30 at this time is set to a value smaller than the maximum rotation speed.
 ステップS108では、制御装置201は、圧縮機40が動作中であるか否かを判定する。圧縮機40が動作中でない、即ち、停止している場合(ステップS108;NO)、制御装置201は、本周期での冷却制御処理を終了する。一方、圧縮機40が動作中の場合(ステップS108;YES)、制御装置201は、圧縮機40及びファン30の動作を停止させる(ステップS109)。ステップS109の処理後、制御装置201は、本周期での冷却制御処理を終了する。 In step S108, the control device 201 determines whether or not the compressor 40 is in operation. When the compressor 40 is not in operation, that is, when it is stopped (step S108; NO), the control device 201 ends the cooling control process in this cycle. On the other hand, when the compressor 40 is in operation (step S108; YES), the control device 201 stops the operation of the compressor 40 and the fan 30 (step S109). After the process of step S109, the control device 201 ends the cooling control process in this cycle.
 上記の冷却制御処理を実行した際の冷凍室温度、冷却器温度及び圧縮機40の回転数の推移を図6に示す。 FIG. 6 shows changes in the freezing room temperature, the cooler temperature, and the rotation speed of the compressor 40 when the above cooling control process is executed.
 以上説明したように、実施の形態1の冷蔵庫1によれば、庫内の冷却時において、冷凍室温度と冷却器温度との温度差が予め定めた基準温度差に到達する度に、冷却能力、即ち、圧縮機40の回転数及びファン30の回転数を上げる。このため、過剰な冷却を抑制し、低電力にて冷蔵庫1を運転することが可能となる。 As described above, according to the refrigerator 1 of the first embodiment, when the inside of the refrigerator is cooled, the cooling capacity is increased every time the temperature difference between the freezer room temperature and the cooler temperature reaches a predetermined reference temperature difference. That is, the number of revolutions of the compressor 40 and the number of revolutions of the fan 30 are increased. Therefore, it is possible to suppress excessive cooling and operate the refrigerator 1 with low electric power.
 なお、上記の冷却制御処理では、冷凍室温度と冷却器温度との温度差が基準温度差に到達する度に、ステップS106において、圧縮機40及びファン30の回転数を上げていた。しかし、条件に応じて圧縮機40及びファン30の一方又は双方の回転数を上げるようにしてもよい。例えば、冷蔵室温度が冷蔵室設定温度より高く、冷凍室温度が冷凍室設定温度以下の場合は、冷蔵室10と冷却器20との温度差が大きいため、冷却器温度を下げないようにファン30の回転数のみ上げるようにし、冷蔵室温度が冷蔵室設定温度以下であり、冷凍室温度が冷凍室設定温度より高い場合は、冷凍室14と冷却器20との温度差が小さいので、冷凍能力を上昇させるために圧縮機40の回転数のみ上げるようにし、冷蔵室温度が冷蔵室設定温度より高く、冷凍室温度が冷凍室設定温度より高い場合は、冷凍室14及び冷蔵室10を冷却するために圧縮機40及びファン30の回転数を上げるようにしてもよい。 In the above cooling control process, the rotation speeds of the compressor 40 and the fan 30 were increased in step S106 each time the temperature difference between the freezer temperature and the cooler temperature reached the reference temperature difference. However, the rotation speed of one or both of the compressor 40 and the fan 30 may be increased depending on the conditions. For example, when the refrigerating chamber temperature is higher than the refrigerating chamber set temperature and the freezing chamber temperature is equal to or lower than the refrigerating chamber set temperature, the temperature difference between the refrigerating chamber 10 and the cooler 20 is large, so the fan should not lower the cooler temperature. If the refrigerating chamber temperature is equal to or lower than the refrigerating chamber set temperature and the freezing chamber temperature is higher than the freezing chamber set temperature, the temperature difference between the freezer chamber 14 and the cooler 20 is small, so that the refrigerator is frozen. Only the number of revolutions of the compressor 40 is increased in order to increase the capacity, and when the refrigerating chamber temperature is higher than the refrigerating chamber set temperature and the freezing chamber temperature is higher than the freezing chamber set temperature, the refrigerating chamber 14 and the refrigerating chamber 10 are cooled. Therefore, the rotation speeds of the compressor 40 and the fan 30 may be increased.
 また、制御装置201は、冷却運転の開始後、温度センサ203から周期的に取得した冷凍室温度を逐次保持(詳細には、二次記憶装置に時系列的に保存)し、ステップS105の判定でYESになる度に、圧縮機40を現在の回転数で動作させた期間における冷凍室の冷却速度(即ち、当該期間当たりの冷凍室温度の下降量)を算出してもよい。そして、制御装置201は、ステップS106における圧縮機40の新たな回転数を、算出した冷却速度に基づいて決定してもよい。 Further, after the start of the cooling operation, the control device 201 sequentially holds the freezing room temperature periodically acquired from the temperature sensor 203 (specifically, stores the temperature in the secondary storage device in chronological order), and determines in step S105. Each time the value is YES, the cooling rate of the freezer chamber during the period in which the compressor 40 is operated at the current rotation speed (that is, the amount of decrease in the freezer chamber temperature per period) may be calculated. Then, the control device 201 may determine the new rotation speed of the compressor 40 in step S106 based on the calculated cooling rate.
 また、制御装置201は、庫内温度(冷凍室温度又は冷蔵室温度)と冷却器温度との温度差が極端に大きい場合(例えば20K以上)、ステップS105の判定結果にかかわらず、ファン30の回転数を上げてもよい(例えば最大回転数でファン30を回転させる。)。 Further, when the temperature difference between the temperature inside the refrigerator (freezing room temperature or refrigerating room temperature) and the cooler temperature is extremely large (for example, 20 K or more), the control device 201 uses the fan 30 regardless of the determination result in step S105. The rotation speed may be increased (for example, the fan 30 is rotated at the maximum rotation speed).
(実施の形態2)
 続いて、本発明の実施の形態2について説明する。なお、以下の説明において、実施の形態1と共通する構成要素等については、同一の符号を付し、その説明を省略する。
(Embodiment 2)
Subsequently, a second embodiment of the present invention will be described. In the following description, components and the like common to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 本実施の形態の冷蔵庫1の構成は、実施の形態1と同様(図1~4参照)である。また、本実施の形態の冷蔵庫1の制御装置201は、実施の形態1と同様の冷却制御処理(図5参照)を実行する。 The configuration of the refrigerator 1 of the present embodiment is the same as that of the first embodiment (see FIGS. 1 to 4). Further, the control device 201 of the refrigerator 1 of the present embodiment executes the same cooling control process (see FIG. 5) as that of the first embodiment.
 但し、本実施の形態の冷蔵庫1では、制御装置201は、庫内温度の単位時間当たりの下降量である冷却速度(即ち、冷却時の温度勾配)が、予め定めた上限値より大きい場合、冷却能力を低下させる。詳細には、冷蔵室10の空気温度である冷蔵室温度の冷却速度が上限値より大きい場合、又は、冷凍室14の空気温度である冷凍室温度の冷却速度が上限値より大きい場合、現在の圧縮機40の回転数を下げ(図7参照)、また、ファン30の回転数を下げる。上限値は、例えば5K/minである。 However, in the refrigerator 1 of the present embodiment, when the cooling rate (that is, the temperature gradient at the time of cooling), which is the amount of decrease in the temperature inside the refrigerator per unit time, is larger than the predetermined upper limit value, the control device 201 is used. Reduces cooling capacity. Specifically, when the cooling rate of the refrigerating room temperature, which is the air temperature of the refrigerating room 10, is larger than the upper limit value, or when the cooling rate of the freezing room temperature, which is the air temperature of the freezing room 14, is larger than the upper limit value, the current The number of revolutions of the compressor 40 is lowered (see FIG. 7), and the number of revolutions of the fan 30 is lowered. The upper limit is, for example, 5 K / min.
 一方、制御装置201は、庫内温度が設定温度より高く、且つ、冷却速度が、予め定めた下限値より小さい場合、冷却能力を上昇させる。詳細には、冷蔵室温度が、冷蔵室10の設定温度である冷蔵室設定温度より高く、且つ、冷蔵室温度の冷却速度が下限値より小さい場合、又は、冷凍室温度が、冷凍室14の設定温度である冷凍室設定温度より高く、且つ、冷凍室温度の冷却速度が下限値より小さい場合、現在の圧縮機40の回転数を上げ(図8参照)、また、ファン30の回転数を上げる。下限値は、例えば0.2K/minである。 On the other hand, the control device 201 increases the cooling capacity when the internal temperature is higher than the set temperature and the cooling rate is smaller than the predetermined lower limit value. Specifically, when the refrigerating chamber temperature is higher than the refrigerating chamber set temperature which is the set temperature of the refrigerating chamber 10 and the cooling rate of the refrigerating chamber temperature is lower than the lower limit value, or when the freezing chamber temperature is the freezing chamber 14 If the temperature is higher than the set temperature of the freezer and the cooling rate of the freezer temperature is less than the lower limit, the current number of revolutions of the compressor 40 is increased (see FIG. 8), and the number of revolutions of the fan 30 is increased. increase. The lower limit is, for example, 0.2 K / min.
 以上説明したように、実施の形態2の冷蔵庫1によれば、実施の形態1の冷蔵庫1と同様の冷却制御を行うことに加え、庫内温度の冷却速度に基づいて、冷却能力、即ち、圧縮機40の回転数及びファン30の回転数を調整する。このため、より適正な冷却が可能になる。 As described above, according to the refrigerator 1 of the second embodiment, in addition to performing the same cooling control as the refrigerator 1 of the first embodiment, the cooling capacity, that is, based on the cooling rate of the temperature inside the refrigerator, that is, The rotation speed of the compressor 40 and the rotation speed of the fan 30 are adjusted. Therefore, more appropriate cooling becomes possible.
 なお、制御装置201は、冷蔵室温度の冷却速度が上限値より大きく、冷凍室温度の冷却速度が上限値以下の場合は、ファン30の回転数のみを低下させ、冷蔵室温度の冷却速度が上限値以下であり、冷凍室温度の冷却速度が上限値より大きい場合は、圧縮機40の回転数のみを低下させ、冷蔵室温度の冷却速度と冷凍室温度の冷却速度の何れも上限値より大きい場合は、圧縮機40の回転数及びファン30の回転数を低下させるようにしてもよい。 When the cooling rate of the refrigerating room temperature is higher than the upper limit value and the cooling rate of the freezing room temperature is equal to or lower than the upper limit value, the control device 201 reduces only the rotation speed of the fan 30 and the cooling rate of the refrigerating room temperature is increased. If it is below the upper limit and the cooling rate of the freezer room temperature is higher than the upper limit value, only the rotation speed of the compressor 40 is reduced, and both the cooling rate of the refrigerating room temperature and the cooling rate of the freezing room temperature are higher than the upper limit value. If it is large, the rotation speed of the compressor 40 and the rotation speed of the fan 30 may be reduced.
 また、制御装置201は、冷蔵室温度の冷却速度が下限値より小さく、冷凍室温度の冷却速度が下限値以上の場合は、ファン30の回転数のみを上昇させ、冷蔵室温度の冷却速度が下限値以上であり、冷凍室温度の冷却速度が下限値より小さい場合は、圧縮機40の回転数のみを上昇させ、冷蔵室温度の冷却速度と冷凍室温度の冷却速度の何れも下限値より小さい場合は、圧縮機40の回転数及びファン30の回転数を上昇させるようにしてもよい。 Further, in the control device 201, when the cooling rate of the refrigerating room temperature is lower than the lower limit value and the cooling rate of the freezing room temperature is equal to or higher than the lower limit value, only the rotation speed of the fan 30 is increased, and the cooling rate of the refrigerating room temperature is increased. If it is above the lower limit and the cooling rate of the freezer room temperature is lower than the lower limit value, only the rotation speed of the compressor 40 is increased, and both the cooling rate of the refrigerating room temperature and the cooling rate of the freezer room temperature are higher than the lower limit value. If it is small, the rotation speed of the compressor 40 and the rotation speed of the fan 30 may be increased.
 また、上記の上限値、下限値は、比較対象(冷蔵室温度の冷却速度、冷凍室温度の冷却速度)毎に複数用意されていてもよい。また、上限値、下限値は、固定値であってもよいし、冷蔵庫1の運転時における機械学習によって適宜更新されるようにしてもよい。 Further, a plurality of the above upper limit values and lower limit values may be prepared for each comparison target (cooling rate of refrigerating room temperature, cooling rate of freezing room temperature). Further, the upper limit value and the lower limit value may be fixed values, or may be appropriately updated by machine learning during operation of the refrigerator 1.
 本発明は、上記の各実施の形態に限定されず、本発明の要旨を逸脱しない範囲での種々の変更は勿論可能である。 The present invention is not limited to each of the above embodiments, and various modifications can be made without departing from the gist of the present invention.
 上記の各実施の形態では、冷凍室温度と冷却器温度との温度差が基準温度差に到達することを冷却能力(圧縮機40及び/又はファン30の回転数)を上げる条件としていた。しかし、冷却器温度との温度差を求める対象となる部屋は冷凍室に限定されない。例えば、冷蔵室温度が冷蔵室設定温度より高く、冷凍室温度が冷凍室設定温度以下の場合では、冷蔵室温度と冷却器温度との温度差が基準温度差に到達する度に、冷却能力を上げるようにし、冷蔵室温度が冷蔵室設定温度以下であり、冷凍室温度が冷凍室設定温度より高い場合では、冷凍室温度と冷却器温度との温度差が基準温度差に到達する度に、冷却能力を上げるようにしてもよい。 In each of the above embodiments, the condition that the temperature difference between the freezing room temperature and the cooler temperature reaches the reference temperature difference is a condition for increasing the cooling capacity (the number of revolutions of the compressor 40 and / or the fan 30). However, the room for which the temperature difference from the cooler temperature is to be obtained is not limited to the freezing room. For example, when the refrigerating room temperature is higher than the refrigerating room set temperature and the freezing room temperature is lower than the freezing room set temperature, the cooling capacity is increased each time the temperature difference between the refrigerating room temperature and the cooler temperature reaches the reference temperature difference. If the refrigerating room temperature is lower than the refrigerating room set temperature and the freezing room temperature is higher than the freezing room set temperature, every time the temperature difference between the freezing room temperature and the cooler temperature reaches the reference temperature difference, The cooling capacity may be increased.
 また、冷蔵室温度が冷蔵室設定温度より高く、冷凍室温度が冷凍室設定温度より高い場合では、冷蔵室温度と冷却器温度との温度差が基準温度差に到達する度に、ファン30の回転数を上げるようにし、冷凍室温度と冷却器温度との温度差が基準温度差に到達する度に、圧縮機40の回転数を上げるようにしてもよい。基準温度差は、冷却器温度との温度差を求める対象となる部屋(冷蔵室、冷凍室)に応じて適切な値が設定され得る。 When the refrigerating room temperature is higher than the refrigerating room set temperature and the freezing room temperature is higher than the freezing room set temperature, the fan 30 is used every time the temperature difference between the refrigerating room temperature and the cooler temperature reaches the reference temperature difference. The rotation speed may be increased, and the rotation speed of the compressor 40 may be increased each time the temperature difference between the freezer temperature and the cooler temperature reaches the reference temperature difference. An appropriate value can be set for the reference temperature difference depending on the room (refrigerator room, freezer room) for which the temperature difference from the cooler temperature is to be obtained.
 また、ファン30が複数配置されていてもよい。また、ファン30のほか、凝縮器50へ空気を送る1又は複数のファンが設置され、制御装置201によって、ファン30と同様の回転数制御が行われるようにしてもよい。 Also, a plurality of fans 30 may be arranged. Further, in addition to the fan 30, one or a plurality of fans for sending air to the condenser 50 may be installed, and the rotation speed control similar to that of the fan 30 may be performed by the control device 201.
 また、冷凍サイクル100を構成する凝縮器として、機械室18に配置される凝縮器50に替えて、図9に示すように冷蔵庫1の側面又は冷蔵庫1の部屋の仕切り若しくは周囲に配置されたパイプによって筐体の板金を介して熱交換を行う筐体放熱型の凝縮器を採用してもよい。 Further, as the condenser constituting the refrigerating cycle 100, instead of the condenser 50 arranged in the machine room 18, pipes arranged on the side surface of the refrigerator 1 or the partition or the periphery of the room of the refrigerator 1 as shown in FIG. A housing heat dissipation type condenser that exchanges heat via the sheet metal of the housing may be adopted.
 また、実施の形態1,2における冷却制御が、霜取運転の実施後に生じた庫内の熱負荷を除去する目的で実行されてもよい。 Further, the cooling control in the first and second embodiments may be executed for the purpose of removing the heat load in the refrigerator generated after the defrosting operation is performed.
 また、冷蔵庫1の各部屋を、当該部屋の設定温度が0℃未満ならば冷凍室とし、0℃以上ならば冷蔵室としてもよい。 Further, each room of the refrigerator 1 may be a freezing room if the set temperature of the room is less than 0 ° C., and a refrigerating room if the set temperature of the room is 0 ° C. or higher.
 また、冷蔵庫1が備える制御装置201のCPUが実行する冷却制御プログラムは、CD-ROM(Compact Disc Read Only Memory)、DVD(Digital Versatile Disc)、光磁気ディスク(Magneto-Optical Disc)、USB(Universal Serial Bus)メモリ、メモリカード、HDD等のコンピュータ読み取り可能な記録媒体に格納して配布することも可能である。 The cooling control program executed by the CPU of the control device 201 included in the refrigerator 1 is a CD-ROM (Compact Disc Read Only Memory), a DVD (Digital Versatile Disc), a magneto-optical disc (Magneto-Optical Disc), and a USB (Universal). Serial Bus) It is also possible to store and distribute in a computer-readable recording medium such as a memory, memory card, or HDD.
 また、冷却制御プログラムをインターネット上の他のサーバが有する記憶装置に格納しておき、当該サーバから冷蔵庫1に冷却制御プログラムがダウンロードされるようにしてもよい。 Alternatively, the cooling control program may be stored in a storage device owned by another server on the Internet so that the cooling control program can be downloaded from the server to the refrigerator 1.
 本出願は、2019年10月8日に出願された日本国特許出願2019-184916号に基づく。本明細書中に、その明細書、特許請求の範囲及び図面全体を参照して取り込むものとする。 This application is based on Japanese Patent Application No. 2019-184916 filed on October 8, 2019. The specification, claims and the entire drawing shall be incorporated herein by reference.
 1 冷蔵庫、10 冷蔵室、11 製氷室、12 切換室、13 野菜室、14 冷凍室、15 冷気風路、16 冷却器室、17 排水管、18 機械室、20 冷却器、30 ファン、40 圧縮機、50 凝縮器、60 減圧部、61 膨張弁、62 キャピラリーチューブ、70 冷媒配管、100 冷凍サイクル、200 制御システム、201 制御装置、202~204 温度センサ 1 Refrigerator, 10 Refrigerator room, 11 Ice making room, 12 Switching room, 13 Vegetable room, 14 Freezer room, 15 Cold air passage, 16 Cooler room, 17 Drain pipe, 18 Machine room, 20 Cooler, 30 Fan, 40 Compressor Machine, 50 condenser, 60 pressure reducing part, 61 expansion valve, 62 capillary tube, 70 refrigerant piping, 100 refrigeration cycle, 200 control system, 201 control device, 202-204 temperature sensor

Claims (12)

  1.  物品を収納する収納室の冷却を行う冷却手段と、
     前記冷却手段を制御する制御手段と、
     前記収納室の空気温度を計測する収納室温度センサと、
     前記冷却手段に含まれる冷却器の温度を計測する冷却器温度センサと、を備え、
     前記制御手段は、前記収納室の空気温度が設定温度より高い場合、前記収納室の空気温度と前記冷却器の温度との温度差が、予め定めた基準温度差より大きい方向から前記基準温度差に到達する度に、前記冷却手段に含まれる、圧縮機と送風ファンの少なくとも何れかの回転数を上げる、冷蔵庫。
    Cooling means for cooling the storage room for storing goods,
    A control means for controlling the cooling means and
    A storage room temperature sensor that measures the air temperature of the storage room,
    A cooler temperature sensor for measuring the temperature of the cooler included in the cooling means is provided.
    When the air temperature of the storage chamber is higher than the set temperature, the control means has the reference temperature difference from the direction in which the temperature difference between the air temperature of the storage chamber and the temperature of the cooler is larger than the predetermined reference temperature difference. A refrigerator that increases the number of revolutions of at least one of the compressor and the blower fan included in the cooling means each time the temperature is reached.
  2.  前記制御手段は、前記圧縮機の回転数を上げる際、前記収納室の空気温度の単位時間当たりの下降量である冷却速度に基づいて前記圧縮機の回転数を決定する、請求項1に記載の冷蔵庫。 The control means according to claim 1, wherein when the rotation speed of the compressor is increased, the rotation speed of the compressor is determined based on a cooling rate which is a decrease in the air temperature of the storage chamber per unit time. Refrigerator.
  3.  前記制御手段は、前記収納室の空気温度の単位時間当たりの下降量である冷却速度が、予め定めた上限値より大きい場合、前記圧縮機と前記送風ファンの少なくとも何れかの回転数を下げる、請求項1又は2に記載の冷蔵庫。 The control means lowers the rotation speed of at least one of the compressor and the blower fan when the cooling rate, which is the amount of decrease in the air temperature of the storage chamber per unit time, is larger than a predetermined upper limit value. The refrigerator according to claim 1 or 2.
  4.  前記制御手段は、冷蔵室の空気温度が前記冷蔵室の設定温度より高く、冷凍室の空気温度が前記冷凍室の設定温度以下の場合は、前記送風ファンの回転数のみ上げ、前記冷蔵室の空気温度が前記冷蔵室の設定温度以下であり、前記冷凍室の空気温度が前記冷凍室の設定温度より高い場合は、前記圧縮機の回転数のみ上げ、前記冷蔵室の空気温度が前記冷蔵室の設定温度より高く、前記冷凍室の空気温度が前記冷凍室の設定温度より高い場合は、前記圧縮機及び前記送風ファンの回転数を上げる、請求項1から3の何れか1項に記載の冷蔵庫。 When the air temperature of the refrigerating chamber is higher than the set temperature of the refrigerating chamber and the air temperature of the freezing chamber is equal to or lower than the set temperature of the freezing chamber, the control means raises only the rotation speed of the blower fan of the refrigerating chamber. When the air temperature is equal to or lower than the set temperature of the refrigerating chamber and the air temperature of the freezing chamber is higher than the set temperature of the freezing chamber, only the number of revolutions of the compressor is increased and the air temperature of the refrigerating chamber becomes the refrigerating chamber. The one according to any one of claims 1 to 3, wherein when the temperature is higher than the set temperature of the freezer and the air temperature of the freezer is higher than the set temperature of the freezer, the rotation speeds of the compressor and the blower fan are increased. refrigerator.
  5.  冷蔵庫が備える冷却手段による冷却を制御する冷却制御方法であって、
     物品を収納する収納室の空気温度が設定温度より高い場合、前記収納室の空気温度と、前記冷却手段に含まれる冷却器の温度との温度差が、予め定めた基準温度差より大きい方向から前記基準温度差に到達する度に、前記冷却手段に含まれる、圧縮機と送風ファンの少なくとも何れかの回転数を上げる、冷却制御方法。
    It is a cooling control method that controls cooling by the cooling means provided in the refrigerator.
    When the air temperature of the storage chamber for storing articles is higher than the set temperature, the temperature difference between the air temperature of the storage chamber and the temperature of the cooler included in the cooling means is larger than the predetermined reference temperature difference. A cooling control method for increasing the rotation speed of at least one of a compressor and a blower fan included in the cooling means each time the reference temperature difference is reached.
  6.  前記圧縮機の回転数を上げる際、前記収納室の空気温度の単位時間当たりの下降量である冷却速度に基づいて前記圧縮機の回転数を決定する、請求項5に記載の冷却制御方法。 The cooling control method according to claim 5, wherein when increasing the rotation speed of the compressor, the rotation speed of the compressor is determined based on the cooling rate, which is the amount of decrease in the air temperature of the storage chamber per unit time.
  7.  前記収納室の空気温度の単位時間当たりの下降量である冷却速度が、予め定めた上限値より大きい場合、前記圧縮機と前記送風ファンの少なくとも何れかの回転数を下げる、請求項5又は6に記載の冷却制御方法。 Claim 5 or 6 that lowers the rotation speed of at least one of the compressor and the blower fan when the cooling rate, which is the amount of decrease in the air temperature of the storage chamber per unit time, is larger than a predetermined upper limit value. The cooling control method described in.
  8.  冷蔵室の空気温度が前記冷蔵室の設定温度より高く、冷凍室の空気温度が前記冷凍室の設定温度以下の場合は、前記送風ファンの回転数のみ上げ、前記冷蔵室の空気温度が前記冷蔵室の設定温度以下であり、前記冷凍室の空気温度が前記冷凍室の設定温度より高い場合は、前記圧縮機の回転数のみ上げ、前記冷蔵室の空気温度が前記冷蔵室の設定温度より高く、前記冷凍室の空気温度が前記冷凍室の設定温度より高い場合は、前記圧縮機及び前記送風ファンの回転数を上げる、請求項5から7の何れか1項に記載の冷却制御方法。 If the air temperature in the refrigerator is higher than the set temperature in the refrigerator and the air temperature in the freezer is equal to or less than the set temperature in the freezer, only the number of rotations of the blower fan is increased and the air temperature in the refrigerator is changed to the refrigerator. When the temperature is equal to or lower than the set temperature of the chamber and the air temperature of the freezer chamber is higher than the set temperature of the freezer compartment, only the number of revolutions of the compressor is increased, and the air temperature of the refrigerator compartment is higher than the set temperature of the refrigerator compartment. The cooling control method according to any one of claims 5 to 7, wherein when the air temperature of the freezer chamber is higher than the set temperature of the freezer compartment, the number of rotations of the compressor and the blower fan is increased.
  9.  冷蔵庫が備えるコンピュータを、
     物品を収納する収納室の空気温度が設定温度より高い場合、前記収納室の空気温度と、前記収納室を冷却する冷却手段に含まれる冷却器の温度との温度差が、予め定めた基準温度差より大きい方向から前記基準温度差に到達する度に、前記冷却手段に含まれる、圧縮機と送風ファンの少なくとも何れかの回転数を上げる制御手段、として機能させる、プログラム。
    The computer that the refrigerator has
    When the air temperature of the storage chamber for storing articles is higher than the set temperature, the temperature difference between the air temperature of the storage chamber and the temperature of the cooler included in the cooling means for cooling the storage chamber is a predetermined reference temperature. A program that functions as a control means for increasing the rotation speed of at least one of a compressor and a blower fan included in the cooling means each time the reference temperature difference is reached from a direction larger than the difference.
  10.  前記制御手段は、前記圧縮機の回転数を上げる際、前記収納室の空気温度の単位時間当たりの下降量である冷却速度に基づいて前記圧縮機の回転数を決定する、請求項9に記載のプログラム。 The ninth aspect of the present invention, wherein the control means determines the rotation speed of the compressor based on the cooling rate, which is the amount of decrease in the air temperature of the storage chamber per unit time, when the rotation speed of the compressor is increased. Program.
  11.  前記制御手段は、前記収納室の空気温度の単位時間当たりの下降量である冷却速度が、予め定めた上限値より大きい場合、前記圧縮機と前記送風ファンの少なくとも何れかの回転数を下げる、請求項9又は10に記載のプログラム。 When the cooling rate, which is the amount of decrease in the air temperature of the storage chamber per unit time, is larger than a predetermined upper limit value, the control means lowers the rotation speed of at least one of the compressor and the blower fan. The program according to claim 9 or 10.
  12.  前記制御手段は、冷蔵室の空気温度が前記冷蔵室の設定温度より高く、冷凍室の空気温度が前記冷凍室の設定温度以下の場合は、前記送風ファンの回転数のみ上げ、前記冷蔵室の空気温度が前記冷蔵室の設定温度以下であり、前記冷凍室の空気温度が前記冷凍室の設定温度より高い場合は、前記圧縮機の回転数のみ上げ、前記冷蔵室の空気温度が前記冷蔵室の設定温度より高く、前記冷凍室の空気温度が前記冷凍室の設定温度より高い場合は、前記圧縮機及び前記送風ファンの回転数を上げる、請求項9から11の何れか1項に記載のプログラム。 When the air temperature of the refrigerating chamber is higher than the set temperature of the refrigerating chamber and the air temperature of the freezing chamber is equal to or lower than the set temperature of the refrigerating chamber, the control means raises only the rotation speed of the blower fan of the refrigerating chamber. When the air temperature is equal to or lower than the set temperature of the refrigerating chamber and the air temperature of the freezing chamber is higher than the set temperature of the refrigerating chamber, only the number of revolutions of the compressor is increased and the air temperature of the refrigerating chamber becomes the refrigerating chamber. The method according to any one of claims 9 to 11, wherein when the temperature is higher than the set temperature of the freezer and the air temperature of the freezer is higher than the set temperature of the freezer, the rotation speeds of the compressor and the blower fan are increased. program.
PCT/JP2020/037609 2019-10-08 2020-10-02 Refrigerator, cooling control method, and program WO2021070758A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080069861.9A CN114502902B (en) 2019-10-08 2020-10-02 Refrigerator, refrigeration control method, and recording medium
JP2021551500A JP7154435B2 (en) 2019-10-08 2020-10-02 Refrigerator, cooling control method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019184916 2019-10-08
JP2019-184916 2019-10-08

Publications (1)

Publication Number Publication Date
WO2021070758A1 true WO2021070758A1 (en) 2021-04-15

Family

ID=75437933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037609 WO2021070758A1 (en) 2019-10-08 2020-10-02 Refrigerator, cooling control method, and program

Country Status (3)

Country Link
JP (1) JP7154435B2 (en)
CN (1) CN114502902B (en)
WO (1) WO2021070758A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113932557A (en) * 2021-03-26 2022-01-14 海信(山东)冰箱有限公司 Refrigerator control method and device and refrigerator
CN114279162A (en) * 2021-12-28 2022-04-05 珠海格力电器股份有限公司 Control method and device of air-cooled refrigerator and refrigerator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169353A (en) * 2009-01-26 2010-08-05 Panasonic Corp Refrigerator
WO2013128845A1 (en) * 2012-02-29 2013-09-06 パナソニック株式会社 Refrigerator
JP2015102315A (en) * 2013-11-27 2015-06-04 株式会社東芝 Refrigerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634346A (en) * 1995-10-03 1997-06-03 U.S. Natural Resources, Inc. Apparatus and method for controlling a room air conditioner
JP2008286474A (en) * 2007-05-17 2008-11-27 Hoshizaki Electric Co Ltd Cooling storage and its operation method
JP2012042143A (en) * 2010-08-20 2012-03-01 Hitachi Appliances Inc Refrigerator
CN104075415B (en) * 2014-07-04 2016-08-24 珠海格力电器股份有限公司 Lack of fluorine of air-conditioners guard method and device
CN104729019A (en) * 2015-03-18 2015-06-24 广东美的制冷设备有限公司 Control method of air-conditioner, control system of air-conditioner and air-conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169353A (en) * 2009-01-26 2010-08-05 Panasonic Corp Refrigerator
WO2013128845A1 (en) * 2012-02-29 2013-09-06 パナソニック株式会社 Refrigerator
JP2015102315A (en) * 2013-11-27 2015-06-04 株式会社東芝 Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113932557A (en) * 2021-03-26 2022-01-14 海信(山东)冰箱有限公司 Refrigerator control method and device and refrigerator
CN114279162A (en) * 2021-12-28 2022-04-05 珠海格力电器股份有限公司 Control method and device of air-cooled refrigerator and refrigerator

Also Published As

Publication number Publication date
CN114502902A (en) 2022-05-13
JPWO2021070758A1 (en) 2021-04-15
JP7154435B2 (en) 2022-10-17
CN114502902B (en) 2023-04-14

Similar Documents

Publication Publication Date Title
JP5575192B2 (en) Dual refrigeration equipment
US20070113567A1 (en) Refrigerator and control method thereof
KR20070019815A (en) Operation control method of refrigerator
JP4760974B2 (en) Refrigeration equipment
WO2021070758A1 (en) Refrigerator, cooling control method, and program
US10145608B2 (en) Refrigerator and method of controlling the same
JP2011085317A (en) Defrosting device, refrigerating cycle device, and defrosting method
JP2013228130A (en) Freezer
KR101314621B1 (en) Controlling method for the refrigerator
US10473388B2 (en) Refrigerator and method for controlling constant temperature thereof
JP2013092291A (en) Refrigerator and freezer device
JP2007093112A (en) Cooling storage
JP2006023028A (en) Refrigerant cooling circuit
JP4021209B2 (en) refrigerator
JP2012255601A (en) Refrigerator-freezer
US20140284024A1 (en) Method for controlling refrigerator
JP2005156108A (en) Refrigerator
JP2007333298A (en) Refrigerant flow control device
JP2012007781A (en) Refrigerator/freezer and cooling device
JP7412608B2 (en) refrigeration system
JP2012087952A (en) Refrigerator freezer
JP7130067B2 (en) refrigeration equipment
KR100459173B1 (en) Methode for controlling working of refrigerator
JP3931499B2 (en) Energy-saving operation method of cooling compressor and energy-saving vending machine
KR100370094B1 (en) Methode for controlling working of refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874383

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551500

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20874383

Country of ref document: EP

Kind code of ref document: A1