JP3931499B2 - Energy-saving operation method of cooling compressor and energy-saving vending machine - Google Patents

Energy-saving operation method of cooling compressor and energy-saving vending machine Download PDF

Info

Publication number
JP3931499B2
JP3931499B2 JP26344699A JP26344699A JP3931499B2 JP 3931499 B2 JP3931499 B2 JP 3931499B2 JP 26344699 A JP26344699 A JP 26344699A JP 26344699 A JP26344699 A JP 26344699A JP 3931499 B2 JP3931499 B2 JP 3931499B2
Authority
JP
Japan
Prior art keywords
room
temperature
cooling
rooms
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26344699A
Other languages
Japanese (ja)
Other versions
JP2001093040A (en
Inventor
克之 大澤
俊二 森
光則 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP26344699A priority Critical patent/JP3931499B2/en
Publication of JP2001093040A publication Critical patent/JP2001093040A/en
Application granted granted Critical
Publication of JP3931499B2 publication Critical patent/JP3931499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、コンプレッサとエバポレータとを備え、複数の部屋を冷却する冷却用コンプレッサの省エネ運転方法および省エネ型自販機に関する。
【0002】
【従来の技術】
複数の部屋を共通のコンプレッサで冷却する場合、いずれか1室だけでも冷媒を供給するためには、複数の室に冷媒を供給するときと同様にコンプレッサを稼働させなければならない。そこで従来技術では、複数の室を冷却するとき、各部屋の温度差が予め定められた規定温度差にまで開いたとき、低温側の部屋への冷媒に供給を停止し、温度差が無くなったら、再び複数の室の冷却を開始し、複数室への冷媒供給のタイミングを揃えて、コンプレッサが稼働する時間を低減する運転方法が採用されていた。
【0003】
図4は従来技術の運転方法による一例として3室冷却運転時の庫内温度特性図を、図5は従来技術の運転方法による制御フローチャートを、図6は従来技術および本発明に係わる自販機の構成図を示す。
【0004】
図6の(A) において、自販機1は、予め定められた温度範囲Tu〜Tdに制御される複数の部屋、図示例では3室の部屋(1A,1B,1C)を有し、各部屋(1A,1B,1C)は、冷凍機2Aから冷媒24の供給を受け、この冷媒24の導通・遮断制御する遮断弁22と、冷媒24を気化し当該部屋を冷却するエバポレータ21と、を備えて構成される。また、冷凍機2Aは、コンプレッサ25と凝縮器26とドライヤ27とキャピラリチューブまたは膨張弁28と、これらの各機器25〜28と前記各部屋(1A,1B,1C)の遮断弁22とエバポレータ21と直列接続を、さらに並列接続して冷媒24の循環系を構成する配管23と、これらの機器内を循環する冷媒24と、を備えて構成される。
【0005】
図4において、縦軸に温度を横軸に時間をとる。今、時刻t40 で3室(1A,1B,1C)が温度範囲の上限値Tuから3室(1A,1B,1C)が同時に冷却されたとする。3室(1A,1B,1C)の熱時定数(各室内に収納される商品の比熱および収納量に依存する)をT1a,T1b,T1c とし、T1a>T1b>T1c の関係にあり、また、冷凍機2Aの冷却能力は、3室(1A,1B,1C)を同時に冷却したときの到達温度が温度範囲の下限値Tdを下回ることができるものとする。
【0006】
以下、図4を参照しながら図5の制御フローチャートを説明する。図5において、上述の様な条件下では、室1Cの温度Tcが最も早く低下し、室1Aの温度Taが最も遅く低下する。ステップs21 で3室(1A,1B,1C)の庫内温度(Ta,Tb,Tc)を測定し、ステップs22 で3室(1A,1B,1C)の庫内温度(Ta,Tb,Tc)が目標温度下限値Tdより高温か否かを判断し、高温Yes でステップs23 に移行して何れか2室の温度差が規定温度差ΔT 以上有るか否かを判断し、Noのときはステップs21 に戻り、以下ステップs23 で何れか2室の温度差が規定温度差ΔT 以上Yes をチェックする。そして、時刻t41 で室1Aの温度Taと室1Cの温度Tcとの温度差が規定温度差ΔT 以上Yes を検知してステップs24 に移行する。ステップs24 では最低室温Tcの部屋1Cの冷却をOFF し、ステップs25 で冷却OFF した部屋1Cの最低室温Tcが何れかの1室(図示例では1B)の温度に到達したか否かを判断し、Noのときはステップs24 に戻り、以下ステップs25 で何れか1室(1B)の温度に到達Yes をチェックする。そして、時刻t42 でTc=Tbを検知してステップs26 に移行し、3室(1A,1B,1C)とも冷却をONしてステップs21 に戻り、ステップs22 の何れか1室が目標温度下限値Tdに到達したか否かを監視する。
【0007】
時刻t43 で熱時定数の小さい室1Cの温度Tcが目標温度下限値Tdに到達して、ステップs22 でこれを検知するとステップs31 に移行する。ステップs31 では、目標温度下限値Tdに到達した室1Cの冷却をOFF し、目標温度下限値Tdより高温の残りの2室(1A,1B) の冷却をONする。ステップs32 でこの2室(1A,1B) とも目標温度下限値Tdより高温であるか否かを判断し、高温Yes でステップs33 で2室(1A,1B) の庫内温度(Ta,Tb) の温度差が規定温度差ΔT 以上有るか否かを判断し、Noのときはステップs31 に戻り、以下ステップs33 で2室(1A,1B) の温度差が規定温度差ΔT 以上Yes をチェックする。図示例では、ステップs33 で2室(1A,1B) の温度差が規定温度差ΔT 以上Yes が発生しないのでステップs34 からステップs36 のフローは無いが、もし、規定温度差ΔT 以上Yes が発生すれば、ステップs24 からステップs26 で説明したと同様に、ステップs34 で低温側の部屋の冷却をOFF し、ステップs35 で2室(1A,1B) の温度差が0degに到達したか否かを判断し、Noのときはステップs34 に戻り、以下ステップs35 で温度差が0deg Yesをチェックする。そして、ステップs36 に移行し、2室(1A,1B) とも冷却をONして、ステップs31 に戻り、ステップs32 での何れか1室が目標温度下限値Tdに到達したか否かを監視する。
【0008】
時刻t44 で室1Bの温度Tbが目標温度下限値Tdに到達して、ステップs32 でこれを検知するとステップs41 に移行する。ステップs41 では、目標温度下限値Tdに到達した室1Bの冷却をOFF し、目標温度下限値Tdより高温の残りの1室(1A)をONする。ステップs42 でこの室(1A)が目標温度下限値Tdに到達したか否かを判断し、下限値Tdに到達Noでステップs41 に戻り、ステップs42 で室(1A)が下限値Tdに到達したか否かを監視する。
【0009】
時刻t45 で室1Aの温度Taが目標温度下限値Tdに到達して、ステップs42 でこれを検出すると、ステップs44 に移行して3室(1A,1B,1C)とも冷却をOFF し、冷凍機のコンプレッサ25を停止する。そしてステップs48 に移行し、3室(1A,1B,1C)の何れかの室が目標温度上限値Tuに到達したか否かを判断する。目標温度上限値Tuに到達Noではステップs44 に戻り、ステップs48 で3室(1A,1B,1C)の何れかの室が目標温度上限値Tuに到達したか否かを監視する。
【0010】
そして、図示例では、時刻t46 で室1Cが目標温度上限値Tuに到達すると、ステップs49 でこれを検知し、冷凍機のコンプレッサ25を起動し、3室(1A,1B,1C)の全ての冷却を同時ONし、ステップs21 に戻る。
【0011】
以下同様に制御を行い、3室(1A,1B,1C)の庫内温度(Ta,Tb,Tc)が目標温度範囲(Tu〜Td)内に制御・維持することができる。
【0012】
【発明が解決しようとする課題】
この様な従来技術による運転方法では、規定の温度差ΔT にまで各部屋の温度差が開かなければ、複数の室が同時に冷却される。このときの各部屋に供給される冷媒は、各部屋に分配されるため、1室当たりに供給される冷媒の量は低減する。一方、庫内温度が低下すればするほど、冷却速度が遅くなり、冷却に時間がかかる。従って、冷凍機のコンプレッサを起動し、ON状態にしておいても、最も冷却に時間がかかる目標温度範囲下限値付近において複数室を同時に冷却し、僅かな温度を長時間かけて冷却を行う状態となることがある。
【0013】
本発明は上記の点にかんがみてなされたものであり、その目的は前記した課題を解決して、目標温度範囲下限値付近でのコンプレッサON時間を短縮し、省エネルギ運転を行う冷却用コンプレッサの省エネ運転方法及び省エネ型自販機を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明は、冷媒の蒸発と凝縮液化とのサイクルを利用して冷却を行う冷凍機を運転制御して複数の部屋を冷却し、各部屋の温度を予め定められた温度範囲内に維持・制御する冷却用コンプレッサの省エネ運転方法において、複数の部屋の冷却運転制御は、同時運転期間と、1室運転期間と、運転停止期間と、からなる運転期間を1運転サイクルとし、冷却制御される部屋の制御温度パラメータとして規定温度と上限値と下限値とを有し、複数の部屋のうち何れかの部屋の温度が上限値に到達したとき,コンプレッサを起動して複数の部屋を同時に冷却(同時運転)し、この同時運転した結果,何れかの部屋が規定温度値に到達したとき,予め定められた選択基準に従って1室のみ選択してこれを冷却(1室運転)し、この1室運転した結果選択された部屋の温度が下限値に到達したとき,この室の冷却を停止し,選択基準に従って他の1室を順次選択して1室運転を行い、1運転サイクル中に全ての部屋を1室運転した後,最後に選択された部屋の温度が下限値に到達したとき,コンプレッサを停止して全部屋の冷却を停止(運転停止)するものとする。
【0015】
また、規定温度は、複数の部屋を同時に冷却運転したときと、1室のみ選択してこれを冷却運転したときと、で部屋内の温度の冷却速度に差が生じる温度の値を選ぶことができる。
【0016】
かかる構成により、何れかの部屋が規定温度に到達したとき, 予め定められた選択基準に従って1室のみ選択して集中してこれを下限値にまで冷却し, 順次残りの部屋も1室のみ選択して温度範囲の下限値にまで急速に冷却することができるので、目標温度範囲下限値付近でのコンプレッサのON時間を短縮することができる。
【0017】
また、1室のみ選択して冷却する部屋の選択基準は、規定温度あるいは下限値に到達時点での最も高い温度の部屋を選択することができる。
【0018】
また、1室のみ選択して冷却する部屋の選択基準は、下限値に到達した部屋を除き、熱時定数の大きい部屋の順に選択することができる。
【0019】
かかる構成により、下限値に到達した部屋を除き残りの部屋の内、最も高い温度の部屋からあるいは熱時定数の大きい部屋の順に1室冷却運転することにより、(1) 少なくとも複数の部屋数倍以上に冷却速度を上げて急速冷却できる。(2) 温度が高い部屋からあるいは熱時定数の大きい温度の下がり難い部屋の順から先に冷却し、(3) 冷却OFF 時の温度上昇の遅い部屋(熱時定数の大きい部屋)から先に冷却するので、何れかの部屋が上限値に到着し、コンプレッサを起動するときも、大略各部屋の温度は上限値に近い温度に揃えることができる。
【0020】
また、上述の冷却用コンプレッサの省エネ運転方法を用いた省エネ型自販機であって、予め定められた温度範囲に制御される複数の部屋を有し、各部屋は、冷凍機から冷媒の供給を受け、この冷媒の導通・遮断制御する遮断弁と、冷媒を気化し当該部屋を冷却するエバポレータと、を備え、冷凍機は、上述の冷却用コンプレッサを構成するコンプレッサと凝縮器とドライヤとキャピラリチューブまたは膨張弁とこれらの各機器と一の部屋の遮断弁とエバポレータとを直列接続する配管と、該遮断弁とエバポレータとを接続する配管に他の部屋の遮断弁とエバポレータとをさらに並列接続して循環系を構成する配管と、これらの機器内を循環する冷媒と、を備えて構成することができる。
【0021】
また、冷却用コンプレッサの省エネ運転方法を用いた省エネ型自販機であって、予め定められた温度範囲に制御される複数の部屋を有し、各部屋は冷凍機のエバポレータで冷却された冷風の供給を受け、この冷風をON-OFF制御する制御弁を備え、冷凍機は、上述の冷却用コンプレッサを構成するコンプレッサと凝縮器とドライヤとキャピラリチューブまたは膨張弁とエバポレータと、これらの各機器とを接続して循環系を構成する配管と、これらの機器内を循環する冷媒と、エバポレータで冷却された空気を吸引・送風するファンとこの冷風を各部屋の制御弁に接続するダクトとからなる送風系と、を備えて構成することができる。
【0022】
かかる構成により、1室運転したとき、冷凍機が有する全冷凍能力を選択された1室の冷却に注入することができ、冷媒が部屋内のエバポレータ周辺から熱を吸収して蒸発するこの気化熱として吸収する熱量を増加する、あるいは1室を冷却する冷風の供給量を増加することができるので、全室同時運転したときの冷却最終温度がより、1室運転したときの方が冷却最終温度をより低温側に設定でき、温度範囲の下限値に向けてほぼ直線的に近い特性で冷却することができるので、冷却速度を向上させてコンプレッサのON時間を低減することができる。
【0023】
また、冷却用コンプレッサの省エネ運転方法において、下限値に到達した部屋を除き熱時定数の大きい部屋の順に1室のみ選択して冷却する部屋の選択基準は、1室運転し下限値に到達後冷却を停止し当該室の温度上昇特性により選択の順位付けを行うことができる。
【0024】
かかる構成により、自販機の各部屋の熱時定数に影響を与える商品の収納量を自動的に、目標温度範囲の下限値に到達後, 冷却を停止し, 当該室の温度上昇特性により等価的に求め, 選択の順位付けを行うことにより、商品の売り上げ高に応じて選択の順位付けを自動的に変更することができる。
【0025】
【発明の実施の形態】
図1は本発明の一実施例としての冷却用コンプレッサの省エネ運転方法を説明する3室冷却運転時の庫内温度特性図、図2は冷凍機の冷却能力がやや不足しているときの3室冷却運転時の庫内温度特性図、図3は本発明の運転方法による制御フローチャートであり、図4〜図6に対応する同一部材には同じ符号が付してある。尚本発明の適用例として図6の自販機の符号を適宜引用する。
【0026】
図1、図6において、冷媒24の蒸発と凝縮液化とのサイクルを利用して冷却を行う冷凍機2Aを運転制御して複数の部屋(1A,1B,1C,・) を冷却し、各部屋の温度を予め定められた温度範囲(Tu〜Td)内に維持・制御する冷却用コンプレッサの省エネ運転方法において、複数の部屋(1A,1B,1C,・) の冷却運転制御は、同時運転期間と、1室運転期間と、運転停止期間と、からなる運転期間を1運転サイクルとし、冷却制御される部屋の制御温度パラメータとして、規定温度Tsと、上限値Tuと、下限値Tdと、を有し、
複数の部屋(1A,1B,1C,・) のうち何れかの部屋の温度が上限値Tuに到達したとき,複数の部屋(1A,1B,1C,・) の部屋を同時に冷却し(同時運転)、この同時運転した結果,何れかの部屋(例えば1C)が規定温度値Tsに到達したとき,予め定められた選択基準に従って1室(例えば1A)のみ選択してこれを冷却し(1室運転)、この1室運転した結果選択された部屋(1A)の温度が下限値Tdに到達したとき,この室(1A)の冷却を停止し,選択基準に従って他の1室(例えば1B)を順次選択して1室運転を行い、1運転サイクル中に全ての部屋を1室運転した後,最後に選択された部屋(例えば1C)の温度が下限値に到達したとき,コンプレッサ25を停止して全部屋(1A,1B,1C,・) の冷却を停止し(運転停止)、
全部屋(1A,1B,1C,・) のうちいずれかの部屋の温度が予め定められた上限値Tuに到達したとき、コンプレッサ25を起動して全部屋(1A,1B,1C,・) を同時に冷却し、以下この制御サイクルを繰り返すことにより、複数の部屋(1A,1B,1C,・) を冷却し、各部屋の温度を予め定められた温度範囲(Tu〜Td)内に維持・制御するすることができる。
【0027】
また、規定温度Tsは、複数の部屋(1A,1B,1C,・) を同時に冷却運転したときと、1室のみ選択してこれを冷却運転したときと、で部屋内の冷却速度に差が生じる温度の値を選ぶことができる。
【0028】
かかる構成により、何れかの部屋(例えば1C)が規定温度Tsに到達したとき, 予め定められた選択基準に従って1室(例えば1A)のみ選択してこれを下限値Tdにまで冷却し, 順次残りの部屋も1室のみ選択して温度範囲の下限値Tsにまで急速に冷却することができるので、従来技術で目標温度範囲下限値付近での温度低下に多くの時間を要していた時間を短縮することができ、コンプレッサ25のON時間を短縮することができる。
【0029】
【実施例】
先に、冷凍機2Aの構成と冷却原理を説明する。図6において、冷凍機2Aは、上述した様に、コンプレッサ25と, 凝縮器26と, ドライヤ27と、キャピラリチューブまたは膨張弁28と, エバポレータ21と, これらの機器21、25〜28を接続し循環系を構成する配管23と, を備えてなる冷却装置と、この冷却装置に充填されこれらの機器21、25〜28内を循環しエバポレータ21で蒸発して冷却を行う冷媒24(24g,24L) と、を備えて構成される。
【0030】
かかる構成により、冷凍機2Aは、冷媒24の蒸発と、凝縮液化と、のサイクルを利用して冷却が行われる。冷媒液24L はエバポレータ21中でその圧力に対応した温度で蒸発する。この際、そのエバポレータ21の温度が周囲温度より低ければ、周囲より熱を吸収して蒸発が続き、エバポレータ21の圧力を一定に保ならば、この圧力に対応する定温度に保つことができる。冷媒液24L を膨張弁28で減圧して低圧のエバポレータ21に送り、ここで周囲の熱を吸収して蒸発させ、発生する蒸気24g をコンプレッサ25に吸入し、コンプレッサ25に加えられる動力によって圧縮し、高圧・高温のガス24g となし、このガス24g を凝縮器26に導き、水・大気などに放熱することにより液化させ、液溜めに受け、これを上述の膨張弁28に導き、冷却サイクルが形成される。
【0031】
冷媒24(24g,24L) は、熱を移動させるための媒質であり、この場合冷媒24の状態をガス状(24g),液状(24L) に変化するのみである。このサイクルを繰り返すことによりエバポレータ21の周辺の限られた部分内の物体の温度を降下させ、冷凍(冷却)を生成することができる。即ち、冷凍サイクルは、仕事を費やして、低温度の箇所(エバポレータ21)にて熱を吸収して、これを高温度の箇所(凝縮器26)にて費やされた仕事に相当する熱と共に放熱を行う。コンプレッサ25は加えられた動力により熱を汲み上げる熱のポンプの働きを行う。
【0032】
この様に、エバポレータ21では、液状の冷媒24L はその圧力を低く保つと、低い温度で蒸発し、このとき液冷媒24L が蒸発するために多量の熱が必要であり、液体はその周辺からこの熱を奪って蒸発するため、周辺のものを冷却することができる。本発明では、1室運転のとき、全冷媒24をこの部屋のエバポレータ21で吸熱・蒸発させるので、急速に室温を低下させることができる。液冷媒24L が蒸発し気化している間はその圧力に対する蒸発温度は一定であり、奪った熱は状態変化(液体から気体)のために費やされる。
【0033】
また、コンプレッサ25は、エバポレータ21でどんどん蒸発する冷媒24g の蒸気をシリンダに吸い込み、常にエバポレータ21を低圧に維持し、冷媒24g の蒸発温度を低く保つことができる。熱の運搬役である気体冷媒24g から多量の熱を吐き出させるためには、圧力を高くして凝縮温度を上げ、外気より高くすることにより放熱を容易にすることができる。
【0034】
凝縮器26は、コンプレッサ25で高温高圧になった気体冷媒24g を常温の外気あるいは水で冷却して液化させることができる。気体冷媒24g は凝縮して液体冷媒24L に戻る際、凝縮の潜熱を外気あるいは水に放出する。従って、凝縮器26での液体冷媒24L そのものの温度はあまり変化しない。
【0035】
ドライヤ27は、液体冷媒24L にに含まれる水分やゴミなどを除去し、冷媒24g,24L の質的低下を防止し、冷媒24g,24L のリサイクルを可能とさせる。
【0036】
キャピラリチューブまたは膨張弁28は、凝縮器26で液化した冷媒24L のままでは圧力が高すぎるので、エバポレータ21での蒸発がし易い圧力まで減圧させるものである。キャピラリチューブまたは膨張弁28のいずれの手段も、狭い通路を通して抵抗をつけ、絞り変化のため、冷媒24L の圧力は急に下がる。絞り効果によって、冷媒24L の一部が蒸発し気泡33を発生するが、このときの蒸発は外部からの熱ではなく冷媒液24L 自身の熱を奪って行われる。
(実施例1)
図6は本発明の一実施例による自販機の構成図を示す。図6の(A) において、自販機1は、予め定められた温度範囲Tu〜Tdに制御される複数の部屋、図示例では3室の部屋(1A,1B,1C)を有し、各部屋(1A,1B,1C)は、冷凍機2Aから冷媒24の供給を受け、この冷媒24の導通・遮断制御する遮断弁22と、冷媒24を気化し当該部屋を冷却するエバポレータ21と、を備えて構成される。また、冷凍機2Aは、コンプレッサ25と凝縮器26とドライヤ27とキャピラリチューブまたは膨張弁28と、これらの各機器25〜28と前記各部屋(1A,1B,1C)の遮断弁22とエバポレータ21との直列接続をさらに並列接続して冷媒24の循環系を構成する配管23と、これらの機器内を循環する冷媒24と、を備えて構成される。尚、以下の一実施例として図1〜図3で説明する自販機1の部屋数は3室の部屋(1A,1B,1C)の場合で説明する。
【0037】
図1において、縦軸に温度を横軸に時間をとり、太線で各室温(Ta,Tb,Tc)の経時変化特性を示し、この太線の後、点線で図示する特性は冷却ONあるいはOFF したままの状態を示す。今、時刻t10 で3室(1A,1B,1C)が温度範囲の上限値Tuから3室(1A,1B,1C)が同時に冷却されたとする。3室(1A,1B,1C)の熱時定数(各室内に収納される商品に比熱および収納量に依存する)をT1a,T1b,T1c とし、T1a>T1b>T1c の関係にあり、また、冷凍機2Aの冷却能力は、3室(1A,1B,1C)を同時に冷却したときの到達温度が温度範囲の下限値Tdに近いあるいはこの下限値Tdを下回ることができるものとする。また、以下の説明では、1室のみ選択して冷却する部屋の選択基準は、規定温度Tsあるいは下限値Tdに到達した時点での最も高い温度の部屋を選択して1室運転し、残りの部屋は遮断弁22で冷媒24を遮断して冷却を停止するものとする。
【0038】
上述の様な条件下では、時刻t10 で3室(1A,1B,1C)を同時に冷却すると、室1Cの温度Tcが最も早く低下し、室1Aの温度Taが最も遅く低下する。3室(1A,1B,1C)の庫内温度(Ta,Tb,Tc)を測定し、時刻t11 で3室(1A,1B,1C)の内、何れかの1室(図示例では1C)の庫内温度(Tc)が規定温度Tsに到達すると、この時点t11 での最高室温の部屋1Aを1室運転とし、他の部屋1B,1C の冷媒24の供給を止める。最高室温の部屋1Aには全ての冷媒24が供給されるため、複数の部屋の同時冷却よりも庫内温度低下速度が速くなり、また、1室(1A)の温度(Ta)が温度下限値Tdに近づいても、複数部屋の同時冷却時よりも庫内温度低下速度を高く維持できる。
【0039】
部屋1Aを1室運転し、時刻t12 で庫内温度Taが下限値Tdに到達すると、この時点t12 での最高室温の部屋1Bを1室運転し、他の部屋1A,1C の冷媒24の供給を止める。上述した1室1Aの場合と同様に、冷媒24が集中した時刻t11 で中間の室温Tbを示した部屋1Bは、庫内温度低下速度が速くなり、その速度があまり低下することなく時刻t13 で下限値Tdに到達する。この時刻t13 での最高室温の部屋1C、即ち、図示例では3室の冷却であるので最後に残った部屋1C、を1室運転し、他の部屋1A,1B の冷媒24の供給を止め、時刻t14 で庫内温度Tcを下限値Tdに到達させる。この様に、1室運転では、次に冷却すべき部屋の選択をその時点での最も庫内温度が高い部屋から1室冷却運転することにより、1室運転していない残りの部屋の温度をできるだけ低温にし、次に1室冷却運転するときにできるだけ冷却時間を短くさせることができる。
【0040】
この様に3室(1A,1B,1C)全てが下限冷却温度値Tdに到達し終わると、コンプレッサ25を停止して全部屋(1A,1B,1C,・) の冷却を停止し、冷却運転を停止する。以上の全部屋(1A,1B,1C,・) の冷却(同時運転)が開始してから(1室運転)が終了するまでの期間ton が、コンプレッサ25は恒に運転ONの状態である。
【0041】
上述の様に、各部屋への冷媒24の供給が止まるタイミングはt12,t13,t14 とズレているので、コンプレッサ25を停止後の庫内温度上昇に差が生じている。しかし、庫内温度上昇時は、この庫内温度上昇の要因が庫外からの熱の侵入にのみ依存しており、且つ、庫内温度が高くなる程、庫内温度が遅くなるので、先に冷媒24の供給を止めた部屋(1A)と後から冷媒24の供給を止めた部屋(1C)との温度差は縮まってくる。
【0042】
そして、3室(1A,1B,1C)のうちいずれかの部屋(図示例では室1C)の温度が予め定められた上限値Tuに到達したとき、コンプレッサ25を起動して全部屋(1A,1B,1C,・) を同時に冷却し(同時運転)、以下この制御サイクルを繰り返すことにより、複数の部屋(1A,1B,1C)を冷却し、各部屋(1A,1B,1C)の温度を予め定められた温度範囲(Tu〜Td)内に維持・制御することができる。
【0043】
尚、3室(1A,1B,1C)のうちいずれかの部屋の温度が上限値Tuに到達したとき、コンプレッサ25を起動して全部屋(1A,1B,1C,・) を同時運転する理由は、
(1) いずれかの1室(1C)に冷媒24を供給するためには必ずコンプレッサ25を起動しなければならない。
【0044】
(2) また、もし1室(1C)に冷媒24を供給したとき、庫内温度の上限値Tuに到達していない室(1A,1B) が上限値Tuに到達するまで冷媒24を供給しなでいると、3室(1A,1B,1C)の温度差が広がり、その結果、1室運転の時間が長くなり、逆にコンプレッサ25をONしている時間ton が長くなる。
【0045】
以上の結果、コンプレッサ25をONしている時間ton とOFF している時間toffの合計である周期に対して、コンプレッサ25をONしている時間ton を短縮することができ冷却用コンプレッサの省エネ運転を行うことができる。
(実施例2)
本発明の効果を説明する他の実施例として図2を説明する。図2と、図1あるいは図4との差異は、
(1) 全室同時運転したときの冷却運転能力は、図1および図4では下限値Tdを下回ることができる冷却能力を冷凍機2Aが有している場合を図示している。他方、図2は冷凍機2Aの冷却能力は、同時運転したとき規定温度Tsまで冷却することができるが下限値Tdまでは冷却できず、1室運転のときのみ下限値Tdを越えて冷却することができる場合を示す。
【0046】
(2) 従って、横軸の時間軸のみ2倍縮めて書き、他は同一条件としている。
【0047】
図2において、図1と同様に時刻t20 で上限値Tuから同時に冷却運転されたものとする。冷却速度は、室1C,1B,1Aの順に庫内温度(Tc,Tb,Ta)が下がり、時刻t21 で室1Cの庫内温度Tcが規定温度Tsに到着する。この時点t21 での最高室温の部屋1Aを1室運転とし、他の部屋1B,1C の冷媒24の供給を止める。最高室温の部屋1Aには全ての冷媒24が供給されるため、複数の部屋の同時冷却よりも庫内温度低下速度が速くなり、また、1室(1A)の温度(Ta)が温度下限値Tdに近づいても、複数部屋の同時冷却では下限値Tdまで冷却できないものが、庫内温度低下速度を維持しながら冷却することができる。
【0048】
部屋1Aを1室運転し、時刻t22 で庫内温度Taが下限値Tdに到達すると、この時点t22 での最高室温の部屋1Cを1室運転し、他の部屋1A,1B の冷媒24の供給を止める。図示例では図1と1室運転の部屋に順番が異なるが、上述した1室1Aの場合と同様に、冷媒24が集中した部屋1C(図1では部屋1B)は、庫内温度低下速度が速くなり、その速度があまり低下することなく時刻t23 で下限値Tdに到達する。この時刻t23 での最高室温の部屋1B、即ち、図示例では3室の冷却であるので最後に残った部屋1B、を1室運転し、他の部屋1A,1C の冷媒24の供給を止め、時刻t24 で庫内温度Tcを下限値Tdに到達させる。
【0049】
この様に時刻t24 で3室(1A,1B,1C)全てが下限冷却温度値Tdに到達し終わると、コンプレッサ25を停止して全部屋(1A,1B,1C,・) の冷却を停止し、冷却運転を停止する。そしてコンプレッサ25は、何れかの部屋の温度が上限値Tuに到達するまで続き、時刻t25 で、再びコンプレッサ25を起動して同時運転に入る。
【0050】
図示例では、各部屋(1A,1B,1C)への冷媒24の供給が止まるタイミングがt22,t23,t24 とズレているので、コンプレッサ25を停止後の庫内温度上昇に差が生じている。特に、中間の熱時定数T1b を有する室1Bの庫内温度Tbが他の2室1A,1C と較べて低い。図示例では時刻t25 で、同時運転に入り、時刻t26 でやはり熱時定数T1c が小さい部屋1Cが規定温度Tsに到達し、室1Aの1室運転に入り、以下順に室1B, 室1Cの1室運転に入り、時刻t29dで3室(1A,1B,1C)全てが下限冷却温度値Tdに到達し、コンプレッサ25を停止して全部屋(1A,1B,1C)の冷却を停止し、冷却運転を停止する。以下、この様に、同時運転、1室運転、運転停止のサイクルを取りながら、予め定められた目標温度範囲内に全部屋(1A,1B,1C,・) の庫内温度を制御・維持することができる。
【0051】
図2で図示する条件では、従来技術では冷凍機2Aは、自販機1の各庫内温度を下限値Tdまでさげることができないので、運転停止することなく連続運転しているが、本発明では、規定温度Tsを設け、1室運転を行うことにより、冷凍機2Aの運転停止を行うことが可能となり、冷却用コンプレッサの省エネ運転を行うことができる。
(実施例3)
次に、本発明による運転方法の制御フローチャートを図1を参照しながら説明する。上述した様な3室(1A,1B,1C)が外部より受ける熱侵入の影響量は等しく、各室の熱時定数がT1a>T1b>T1C の条件にあるものとして説明する。この状態では、室1Cの温度Tcが最も早く低下し、室1Aの温度Taが最も遅く低下する。図3において、ステップs1で3室(1A,1B,1C)の庫内温度(Ta,Tb,Tc)を測定し、ステップs2で3室(1A,1B,1C)の内、何れか1室でも庫内温度が規定温度Tsに到達したか否かを判断し、到達Noでステップs1に戻る。ステップs2で、何れか1室の庫内温度が規定温度Tsに到達するのを検知するまでこのフローを循環・待機する。時刻t11 のステップs2で何れかの1室(図示例では1C)の庫内温度(Tc)が規定温度Tsに到達Yes を検知すると、ステップs3に移行する。
【0052】
ステップs3では、この時点での最高室温の部屋1Aを1室運転とし、他の部屋1B,1C への冷媒24の供給を遮断弁22で遮断し、ステップs4に移行する。ステップs4では、時刻t11 で最高室温を示し1室運転している部屋1Aが目標温度下限値Tdに到達したか否かを判断し、Noのときはステップs3に戻り、以下同ステップs4でこの1室運転している部屋1Aが目標温度下限値Tdに到達を検知するまでこのフローを循環・待機する。
【0053】
そして、時刻t12 のステップs4で部屋1Aの温度Taが下限値Tdに到達し、到達Yes を検知するとステップs5に移行する。ステップs5ではこの時点t12 での最高室温を示している部屋1B(即ち、時刻t1で中間室温を示した部屋)を1室運転し、他の部屋1A,1C への冷媒24の供給を遮断弁22で遮断し、ステップs6に移行する。ステップs6では、時刻t12 で最高室温を示し1室運転している部屋1Bが下限値Tdに到達したか否かを判断し、Noのときはステップs5に戻り、以下ステップs6でこの1室運転している部屋1Bが下限値Tdに到達Yes をチェックするまで監視する。
【0054】
時刻t13 で部屋1Bの温度Tbが下限値Tdに到達し、到達Yes を検知するとステップs7に移行する。ステップs7ではこの時点t13 での最高室温を示している部屋1Cを1室運転し、他の部屋1A,1B への冷媒24の供給を遮断弁22で遮断し、ステップs8に移行する。ステップs8では、時刻t13 で最高室温を示し1室運転している部屋1Cが下限値Tdに到達したか否かを判断し、Noのときはステップs7に戻り、以下ステップs8でこの1室運転している部屋1Cが下限値Tdに到達Yes をチェックするまで監視する。
【0055】
時刻t14 で部屋1Cの温度Tcが下限値Tdに到達し、到達Yes を検知するとステップs9に移行し、ここで、コンプレッサ25の運転を停止し、冷却運転を停止して、ステップs10 に移行する。ステップs10 では、何れかの部屋の庫内温度が上限値Tuに到達したか否かを判断し、Noのときはステップs9に戻り、以下ステップs10 で何れかの部屋の庫内温度が上限値Tuに到達Yes をチェックするまで監視を継続し、時刻t15 で何れかの部屋の庫内温度が上限値Tuに到達Yes を検知すると、ステップs11 に移行し、コンプレッサ25を起動し、全室1A,1B,1Cを同時運転して、ステップs1に移行して、制御を継続して行うことができる。
(実施例4)
以上の説明では、本発明による「1室のみ選択して冷却する部屋の選択基準は、規定温度Tsあるいは下限値Tdに到達時点での最も高い温度の部屋を選択する」、で説明したが、「1室のみ選択して冷却する部屋の選択基準は、下限値に到達した部屋を除き、熱時定数の大きい部屋の順に選択する」と言う選択基準をとることができる。この様な選択基準を採用すると、図2の時刻t22dで生じた1室運転の順番が変化する問題を解決し、冷却をOFF する部屋の順番が熱時定数の大きい部屋の順に冷却OFF にすることができるので、コンプレッサ25の運転停止後の目標温度の上限値Tuに全室(1A,1B,1C,・) をより近づけることができる。
【0056】
例えば、自販機1の場合では、商品の売れ行き状況により、自販機1の各庫内にある商品の数量が時々刻々と変化するので、各庫内の熱時定数は変化する。従って、この熱時定数は自販機1の運転販売中も測定して、選択基準を調整することが好ましい。
【0057】
この様な熱時定数を測定して熱時定数の大きい部屋の順に選択する方法として、各部屋(1A,1B,1C,・) 毎に庫内温度(Ta,Tb,Tc,・) が下限値Tdに到着後、冷却をOFF したときの、温度上昇率、予め定められた時間の温度上昇値、または、予め定められた温度範囲(例えば、Td〜(Tu-ΔT))の温度上昇するに要する時間を測定し、前2者では温度上昇率または温度上昇値の小さい順に、また、後者では必要とする時間の大きい順に選択の順番を選ぶことで実施することができる。
(実施例5)
図6の(B) において、本発明による冷却用コンプレッサの省エネ運転方法を用いた他の省エネ型自販機3は、予め定められた温度範囲(Tu〜Td)に制御される複数の部屋(1A,1B,1C,・) を有し、各部屋(1A,1B,1C,・) は、冷凍機2Bのエバポレータ21B で冷却された空気をファン29で冷風24A の供給を受け、この冷風24A をダクト23B を介してON-OFF制御する制御弁22A を備えて構成され、冷凍機2Bは、コンプレッサ25と凝縮器26とドライヤ27とキャピラリチューブまたは膨張弁28とエバポレータ21B と、これらの各機器21B,25〜28とを接続して循環系および送風系を構成する配管23と、これらの機器25〜28内を循環する冷媒24と、を備えて構成することができる。
【0058】
かかる構成により、1室冷却運転を行うとき、冷凍機2Bが有する全冷凍能力、即ち、冷媒24がエバポレータ21B の周辺から熱を吸収して蒸発するこの気化熱として吸収する熱量で冷却された全空気を選択された1室を冷却する冷風24A として利用することができるので、全室同時運転したときの冷却最終温度より、1室運転したときの方が冷却最終温度をより低温側にすることができるので、温度範囲の下限値Tdに向けてほぼ直線的に近い特性で冷却することができる。即ち、冷却速度を向上させてコンプレッサ25のON時間を低減することができる。
【0059】
【発明の効果】
以上述べたように本発明によれば、以下の様な効果が期待できる。
【0060】
(1) 温度の低下に比較的長い時間がかかってしまう目標温度下限値付近において、最も温度の高い部屋から1室(冷却)運転することにより、冷媒あるいは冷風を集中させて効率良く冷却を行い、総合の冷却用コンプレッサの運転時間を短縮することができる。この結果、冷却用コンプレッサの省エネ運転方法および省エネ型自販機を提供することができる。
【0061】
(2) また、目標温度上限付近で、複数の部屋の冷却するタイミングを揃え、同時運転することにより、1室運転開始時の複数の部屋の温度差を縮小し、複数の部屋全てが目標温度下限値に到達して冷却用コンプレッサをOFF するまでの時間を短縮することができる。この結果、冷却用コンプレッサの省エネ運転方法および省エネ型自販機を提供することができる。
【0062】
(3) また、何らかの事情により、例えば、夏期の異常気温上昇で、複数の部屋の同時冷却では目標温度下限値まで冷却することができず、冷却用コンプレッサが連続運転する状態でも、1室運転で冷媒あるいは冷風を集中させて効率良く冷却を行うことができるので、冷却用コンプレッサをOFF できる期間を得ることができ、この結果、冷却用コンプレッサの省エネ運転方法および省エネ型自販機を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例としての冷却用コンプレッサの省エネ運転方法を説明する冷却運転時の庫内温度特性図
【図2】冷凍機の冷却能力がやや不足しているときの冷却運転時の庫内温度特性図
【図3】本発明の運転方法による制御フローチャート
【図4】従来技術による冷却用コンプレッサの省エネ運転方法を説明する冷却運転時の庫内温度特性図
【図5】従来技術の運転方法による制御フローチャート
【図6】従来技術および本発明による自販機の要部構成図であり、(A) は各部屋毎にエバポレータを備えて冷媒の供給を受ける構成図、(B) は各部屋毎に冷風の供給を受ける構成図
【符号の説明】
1、3 自販機
1A,1B,1C 部屋
2A,2B 冷凍機
21,21B エバポレータ
22 遮断弁
23 配管
23B ダクト
24,24g,24L 冷媒
24A 冷風
25 コンプレッサ
26 凝縮器
27 ドライヤ
28 膨張弁
29 ファン
Ts 規定温度
Tu 上限値
Td 下限値
ΔT 温度差
t10 〜, t20 〜, t40 〜,ton、toff 時間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an energy-saving operation method and an energy-saving vending machine for a cooling compressor that includes a compressor and an evaporator and cools a plurality of rooms.
[0002]
[Prior art]
When cooling a plurality of rooms with a common compressor, in order to supply the refrigerant in only one of the chambers, the compressor must be operated in the same manner as when the refrigerant is supplied to the plurality of chambers. Therefore, in the prior art, when cooling a plurality of chambers, when the temperature difference between the rooms opens to a predetermined specified temperature difference, the supply of the refrigerant to the low temperature room is stopped, and the temperature difference disappears. In addition, an operation method has been adopted in which the cooling of the plurality of chambers is started again, the timing of supplying the refrigerant to the plurality of chambers is aligned, and the time during which the compressor operates is reduced.
[0003]
FIG. 4 shows an internal temperature characteristic diagram during a three-chamber cooling operation as an example according to the conventional operation method, FIG. 5 shows a control flowchart according to the conventional operation method, and FIG. 6 shows the configuration of the vending machine according to the conventional technology and the present invention. The figure is shown.
[0004]
6A, the vending machine 1 has a plurality of rooms controlled in a predetermined temperature range Tu to Td, in the illustrated example, three rooms (1A, 1B, 1C). 1A, 1B, 1C) includes a shutoff valve 22 that receives supply of the refrigerant 24 from the refrigerator 2A and controls conduction / cutoff of the refrigerant 24, and an evaporator 21 that vaporizes the refrigerant 24 and cools the room. Composed. Further, the refrigerator 2A includes a compressor 25, a condenser 26, a dryer 27, a capillary tube or an expansion valve 28, each of these devices 25 to 28, a shutoff valve 22 and an evaporator 21 in each of the rooms (1A, 1B, 1C). Are connected in series with each other and connected in parallel to form a circulation line 23 for the refrigerant 24, and the refrigerant 24 circulates in these devices.
[0005]
In FIG. 4, temperature is plotted on the vertical axis and time is plotted on the horizontal axis. Assume that at the time t40, the three rooms (1A, 1B, 1C) are simultaneously cooled from the upper limit value Tu of the temperature range. The thermal time constants of the three rooms (1A, 1B, 1C) (depending on the specific heat and storage capacity of the products stored in each room) are T1a, T1b, T1c, and T1a>T1b> T1c. The cooling capacity of the refrigerator 2A is such that the ultimate temperature when the three chambers (1A, 1B, 1C) are simultaneously cooled can fall below the lower limit value Td of the temperature range.
[0006]
The control flowchart of FIG. 5 will be described below with reference to FIG. In FIG. 5, under the conditions as described above, the temperature Tc of the chamber 1C decreases most quickly, and the temperature Ta of the chamber 1A decreases most slowly. In step s21, the chamber temperatures (Ta, Tb, Tc) of the three chambers (1A, 1B, 1C) are measured. In step s22, the chamber temperatures (Ta, Tb, Tc) of the three chambers (1A, 1B, 1C) are measured. Determines whether the temperature is higher than the target temperature lower limit value Td. If the temperature is Yes, the process proceeds to step s23 to determine whether the temperature difference between any two chambers is equal to or greater than the specified temperature difference ΔT. Returning to s21, in step s23, the temperature difference between any two chambers is checked for Yes over the specified temperature difference ΔT. At time t41, the temperature difference between the temperature Ta of the chamber 1A and the temperature Tc of the chamber 1C is detected to be Yes over the specified temperature difference ΔT, and the process proceeds to step s24. In step s24, the cooling of the room 1C having the lowest room temperature Tc is turned off, and it is determined whether or not the lowest room temperature Tc of the room 1C in which the cooling is turned off in step s25 has reached the temperature of any one room (1B in the illustrated example). If No, the process returns to step s24, and in step s25, the temperature of one chamber (1B) is reached and Yes is checked. At time t42, Tc = Tb is detected and the process proceeds to step s26, and cooling is turned on for all three chambers (1A, 1B, 1C) and the process returns to step s21. Monitor whether Td has been reached.
[0007]
When the temperature Tc of the chamber 1C having a small thermal time constant reaches the target temperature lower limit value Td at time t43 and this is detected in step s22, the process proceeds to step s31. In step s31, the cooling of the chamber 1C that has reached the target temperature lower limit value Td is turned off, and the cooling of the remaining two chambers (1A, 1B) having a temperature higher than the target temperature lower limit value Td is turned on. In step s32, it is determined whether or not these two chambers (1A, 1B) are both higher than the target temperature lower limit value Td. If the temperature is Yes, the chamber internal temperature (Ta, Tb) of the two chambers (1A, 1B) is determined in step s33. It is determined whether or not the temperature difference between the two chambers (1A, 1B) is greater than the specified temperature difference ΔT and Yes is checked in step s33. . In the illustrated example, since the temperature difference between the two chambers (1A, 1B) does not occur more than the specified temperature difference ΔT in step s33, there is no flow from step s34 to step s36, but if the specified temperature difference ΔT is exceeded, Yes is generated. For example, in the same manner as described in steps s24 to s26, the cooling of the low temperature side room is turned off in step s34, and it is determined in step s35 whether the temperature difference between the two rooms (1A, 1B) has reached 0 deg. If No, the process returns to step s34, and in step s35, the temperature difference is checked for 0 deg Yes. Then, the process proceeds to step s36, the cooling is turned on in both the chambers (1A, 1B), the process returns to step s31, and it is monitored whether any one of the chambers in step s32 has reached the target temperature lower limit value Td. .
[0008]
When the temperature Tb of the chamber 1B reaches the target temperature lower limit value Td at time t44 and is detected in step s32, the process proceeds to step s41. In step s41, the cooling of the chamber 1B that has reached the target temperature lower limit value Td is turned off, and the remaining one chamber (1A) having a temperature higher than the target temperature lower limit value Td is turned on. In step s42, it is determined whether or not this chamber (1A) has reached the target temperature lower limit value Td.When the lower limit value Td has been reached, the process returns to step s41, and in step s42, the chamber (1A) has reached the lower limit value Td. Monitor whether or not.
[0009]
At time t45, the temperature Ta of the room 1A reaches the target temperature lower limit value Td, and when this is detected in step s42, the process proceeds to step s44 and cooling is turned off for all three rooms (1A, 1B, 1C). Stop the compressor 25. Then, the process proceeds to step s48 to determine whether any of the three rooms (1A, 1B, 1C) has reached the target temperature upper limit Tu. If the target temperature upper limit Tu is reached No, the process returns to step s44, and in step s48, it is monitored whether any of the three rooms (1A, 1B, 1C) has reached the target temperature upper limit Tu.
[0010]
In the illustrated example, when the room 1C reaches the target temperature upper limit Tu at the time t46, this is detected in step s49, the compressor 25 of the refrigerator is started, and all the three rooms (1A, 1B, 1C) are activated. Cooling is turned ON at the same time, and the process returns to step s21.
[0011]
Thereafter, the same control is performed, and the internal temperature (Ta, Tb, Tc) of the three chambers (1A, 1B, 1C) can be controlled and maintained within the target temperature range (Tu to Td).
[0012]
[Problems to be solved by the invention]
In such an operation method according to the prior art, a plurality of chambers are cooled at the same time unless the temperature difference between the rooms reaches a specified temperature difference ΔT. Since the refrigerant supplied to each room at this time is distributed to each room, the amount of refrigerant supplied per room is reduced. On the other hand, the lower the internal temperature, the slower the cooling rate and the longer it takes to cool down. Therefore, even if the compressor of the refrigerator is turned on and turned on, multiple chambers are simultaneously cooled near the lower limit of the target temperature range, which takes the longest to cool, and cooling is performed over a short temperature for a long time. It may become.
[0013]
The present invention has been made in view of the above points. The object of the present invention is to solve the above-described problems, shorten the compressor ON time near the lower limit of the target temperature range, and provide a cooling compressor that performs energy saving operation. It is to provide an energy saving operation method and an energy saving type vending machine.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present invention controls the operation of a refrigerator that performs cooling using a cycle of refrigerant evaporation and condensate liquefaction to cool a plurality of rooms, and the temperature of each room is determined in advance. In the energy saving operation method of the cooling compressor that is maintained and controlled within the specified temperature range, the cooling operation control for a plurality of rooms is performed for one operation period consisting of a simultaneous operation period, a one-room operation period, and an operation stop period. The control temperature parameter of the room to be controlled by cooling has a specified temperature, an upper limit value, and a lower limit value. When the temperature of any one of a plurality of rooms reaches the upper limit value, the compressor is started. Multiple rooms are cooled at the same time (simultaneous operation), and as a result of the simultaneous operation, when any room reaches a specified temperature value, only one room is selected according to a predetermined selection criterion, and this is cooled (one room) operation) When the temperature of the selected room reaches the lower limit as a result of the operation of this one room, the cooling of this room is stopped, the other one room is sequentially selected according to the selection criteria, and the one room operation is performed. After all the rooms have been operated in one room, when the temperature of the last selected room reaches the lower limit, the compressor is stopped and the cooling of all the rooms is stopped (stopped).
[0015]
In addition, the specified temperature can be selected as a temperature value that causes a difference in the cooling rate of the temperature in the room when a plurality of rooms are simultaneously cooled and when only one room is selected and cooled. it can.
[0016]
With this configuration, when one of the rooms reaches the specified temperature, only one room is selected and concentrated according to a predetermined selection criterion, and this is cooled to the lower limit value. Thus, the compressor can be rapidly cooled to the lower limit value of the temperature range, so that the ON time of the compressor near the lower limit value of the target temperature range can be shortened.
[0017]
As a selection criterion for a room to be cooled by selecting only one room, it is possible to select a room having the highest temperature when reaching a specified temperature or a lower limit value.
[0018]
The selection criteria for the room to be selected and cooled can be selected in the order of the room having the largest thermal time constant except for the room that has reached the lower limit.
[0019]
With this configuration, except for the room that has reached the lower limit, by cooling one room in the order from the room with the highest temperature or the room with the largest thermal time constant, (1) at least several times the number of rooms Rapid cooling can be achieved by increasing the cooling rate. (2) Cool first from a room with a high temperature or a room with a large thermal time constant that is difficult to decrease. (3) Start with a room that has a slow temperature rise when cooling is turned off (a room with a large thermal time constant). Since cooling is performed, when one of the rooms reaches the upper limit value and the compressor is started, the temperature of each room can be roughly adjusted to a temperature close to the upper limit value.
[0020]
In addition, energy-saving vending machines using the above-mentioned cooling compressor energy-saving operation method Because Each room has a plurality of rooms controlled to a predetermined temperature range. Each room is supplied with a refrigerant from a refrigerator, and a shutoff valve that controls conduction / cutoff of the refrigerant, vaporizes the refrigerant, and cools the room. An evaporator, and a refrigerator Configure the above cooling compressor With compressor , With a condenser , With dryer , With capillary tube or expansion valve , With each of these devices A pipe that connects the shut-off valve and the evaporator in one room in series, a pipe that connects the shut-off valve and the evaporator in parallel to the pipe that connects the shut-off valve and the evaporator, and configures a circulation system; And a refrigerant circulating in these devices.
[0021]
Energy-saving vending machines that use energy-saving operation methods for cooling compressors Because Each room has a plurality of rooms controlled to a predetermined temperature range, each room is supplied with cold air cooled by an evaporator of the refrigerator, and includes a control valve for ON-OFF control of the cold air. , Constituting the above cooling compressor With compressor , With a condenser , With dryer , Capillary tube or expansion valve and evaporator, piping connecting these devices, constituting a circulation system, refrigerant circulating in these devices, fan for sucking and blowing air cooled by the evaporator, and this It can comprise and comprise a ventilation system which consists of a duct which connects cold air to a control valve of each room.
[0022]
With this configuration, when one room is operated, the total refrigerating capacity of the refrigerator can be injected into the cooling of the selected one room, and the heat of vaporization that evaporates by absorbing the heat from the periphery of the evaporator in the room. As the amount of heat absorbed can be increased, or the amount of cold air supplied to cool one room can be increased, the final cooling temperature when operating all rooms simultaneously is more than the final cooling temperature when operating one room. Can be set to a lower temperature side, and cooling can be performed with characteristics almost linearly toward the lower limit value of the temperature range, so that the cooling time can be improved and the ON time of the compressor can be reduced.
[0023]
In addition, the cooling compressor In energy saving operation method, The room selection criteria for selecting and cooling only one room in the order of the room with the largest thermal time constant except for the room that has reached the lower limit value is one room operation, and after reaching the lower limit value, the cooling is stopped and the temperature rise characteristics of the room Selection can be ranked.
[0024]
With this configuration, the storage capacity of products that affect the thermal time constant in each room of the vending machine is automatically stopped after reaching the lower limit of the target temperature range, and the temperature rise characteristics of the room are equivalent. By obtaining and ranking the selection, the ranking of the selection can be automatically changed according to the sales amount of the product.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an internal temperature characteristic diagram during a three-chamber cooling operation for explaining an energy saving operation method of a cooling compressor as one embodiment of the present invention, and FIG. 2 is a graph showing a case where the cooling capacity of the refrigerator is slightly insufficient. FIG. 3 is a control flow chart according to the operation method of the present invention, and the same members corresponding to FIGS. 4 to 6 are denoted by the same reference numerals. In addition, the code | symbol of the vending machine of FIG.
[0026]
In FIG. 1 and FIG. 6, a plurality of rooms (1A, 1B, 1C,...) Are cooled by operating and controlling a refrigerator 2A that performs cooling using a cycle of evaporation and condensing of refrigerant 24. In the energy-saving operation method of the cooling compressor that maintains and controls the temperature within a predetermined temperature range (Tu to Td), the cooling operation control of multiple rooms (1A, 1B, 1C,. An operation period consisting of a one-room operation period and an operation stop period is defined as one operation cycle, and a specified temperature Ts, an upper limit value Tu, and a lower limit value Td are set as control temperature parameters of the room to be cooled. Have
When the temperature of any of the multiple rooms (1A, 1B, 1C,...) Reaches the upper limit Tu, the multiple rooms (1A, 1B, 1C,...) Are simultaneously cooled (simultaneous operation) ) As a result of this simultaneous operation, when any room (for example, 1C) reaches the specified temperature value Ts, only one room (for example, 1A) is selected and cooled according to a predetermined selection criterion (one room). Operation), when the temperature of the selected room (1A) reaches the lower limit Td as a result of operating this one room, the cooling of this room (1A) is stopped and the other room (for example, 1B) is stopped according to the selection criteria. Select one after another and operate one room. After operating all the rooms in one room, the compressor 25 is stopped when the temperature of the last selected room (for example, 1C) reaches the lower limit. Stop cooling all rooms (1A, 1B, 1C, ...)
When the temperature of any of the rooms (1A, 1B, 1C, ...) reaches a predetermined upper limit Tu, the compressor 25 is activated and all the rooms (1A, 1B, 1C, ...) By cooling at the same time and repeating this control cycle, multiple rooms (1A, 1B, 1C,...) Are cooled, and the temperature of each room is maintained and controlled within a predetermined temperature range (Tu to Td). Can be
[0027]
The specified temperature Ts differs between the cooling rate in the room when multiple rooms (1A, 1B, 1C, ...) are cooled at the same time and when only one room is selected and cooled. The resulting temperature value can be selected.
[0028]
With this configuration, when any room (for example, 1C) reaches the specified temperature Ts, only one room (for example, 1A) is selected and cooled to the lower limit value Td according to a predetermined selection criterion, and the remaining ones are sequentially left. Since only one room can be selected and the temperature can be rapidly cooled to the lower limit value Ts of the temperature range, the time required for the temperature to drop in the vicinity of the lower limit value of the target temperature range in the prior art can be reduced. The ON time of the compressor 25 can be shortened.
[0029]
【Example】
First, the configuration of the refrigerator 2A and the cooling principle will be described. In FIG. 6, the refrigerator 2A connects the compressor 25, the condenser 26, the dryer 27, the capillary tube or expansion valve 28, the evaporator 21, and these devices 21, 25 to 28 as described above. A cooling device comprising a piping 23 constituting a circulation system, and a refrigerant 24 (24 g, 24 L) that is charged in the cooling device and circulates in the devices 21, 25 to 28 and evaporates and cools in the evaporator 21. ).
[0030]
With this configuration, the refrigerator 2A is cooled using a cycle of evaporation of the refrigerant 24 and condensation. The refrigerant liquid 24L evaporates in the evaporator 21 at a temperature corresponding to the pressure. At this time, if the temperature of the evaporator 21 is lower than the ambient temperature, the heat continues to be absorbed from the surroundings to evaporate. If the pressure of the evaporator 21 is kept constant, it can be kept at a constant temperature corresponding to this pressure. The refrigerant liquid 24L is depressurized by the expansion valve 28 and sent to the low-pressure evaporator 21, where the surrounding heat is absorbed and evaporated, and the generated steam 24g is sucked into the compressor 25 and compressed by the power applied to the compressor 25. 24g of high-pressure and high-temperature gas is led to the condenser 26, liquefied by dissipating heat to water / atmosphere, etc., received in the reservoir, and this is led to the expansion valve 28 described above, and the cooling cycle is It is formed.
[0031]
The refrigerant 24 (24g, 24L) is a medium for transferring heat, and in this case, the state of the refrigerant 24 only changes to gaseous (24g) or liquid (24L). By repeating this cycle, the temperature of the object in a limited portion around the evaporator 21 can be lowered to generate refrigeration (cooling). That is, the refrigeration cycle spends work, absorbs heat at a low temperature location (evaporator 21), and combines it with heat corresponding to the work spent at a high temperature location (condenser 26). Dissipate heat. The compressor 25 functions as a heat pump that pumps heat by the applied power.
[0032]
In this way, in the evaporator 21, when the pressure of the liquid refrigerant 24L is kept low, the liquid refrigerant 24L evaporates at a low temperature.At this time, the liquid refrigerant 24L evaporates, and a large amount of heat is required. Because it takes away heat and evaporates, the surroundings can be cooled. In the present invention, during one room operation, all the refrigerant 24 is absorbed and evaporated by the evaporator 21 in this room, so that the room temperature can be rapidly lowered. While the liquid refrigerant 24L is evaporated and vaporized, the evaporation temperature with respect to the pressure is constant, and the deprived heat is consumed for the state change (liquid to gas).
[0033]
Further, the compressor 25 sucks into the cylinder the vapor of the refrigerant 24g that evaporates more and more in the evaporator 21, so that the evaporator 21 can always be kept at a low pressure and the evaporation temperature of the refrigerant 24g can be kept low. In order to discharge a large amount of heat from the gaseous refrigerant 24g, which is a heat carrier, heat can be easily released by increasing the pressure to increase the condensation temperature and higher than the outside air.
[0034]
The condenser 26 can cool and liquefy 24 g of the gaseous refrigerant that has been heated to high temperature and pressure by the compressor 25 with ambient air or water at room temperature. When the gaseous refrigerant 24g condenses and returns to the liquid refrigerant 24L, the latent heat of condensation is released to the outside air or water. Accordingly, the temperature of the liquid refrigerant 24L itself in the condenser 26 does not change much.
[0035]
The dryer 27 removes moisture, dust, and the like contained in the liquid refrigerant 24L, prevents a deterioration in the quality of the refrigerants 24g and 24L, and enables the refrigerants 24g and 24L to be recycled.
[0036]
Since the pressure of the capillary tube or the expansion valve 28 is too high if the refrigerant 24L liquefied by the condenser 26 is used as it is, the pressure is reduced to a pressure at which the evaporator 21 can easily evaporate. Either the capillary tube or the expansion valve 28 resists through a narrow passage, and the pressure of the refrigerant 24L suddenly drops due to a change in throttle. Due to the squeezing effect, a part of the refrigerant 24L evaporates to generate bubbles 33. At this time, the evaporation is performed by taking away the heat of the refrigerant liquid 24L itself, not the heat from the outside.
Example 1
FIG. 6 is a block diagram of a vending machine according to an embodiment of the present invention. 6A, the vending machine 1 has a plurality of rooms controlled in a predetermined temperature range Tu to Td, in the illustrated example, three rooms (1A, 1B, 1C). 1A, 1B, 1C) includes a shutoff valve 22 that receives supply of the refrigerant 24 from the refrigerator 2A and controls conduction / cutoff of the refrigerant 24, and an evaporator 21 that vaporizes the refrigerant 24 and cools the room. Composed. Further, the refrigerator 2A includes a compressor 25, a condenser 26, a dryer 27, a capillary tube or an expansion valve 28, each of these devices 25 to 28, a shutoff valve 22 and an evaporator 21 in each of the rooms (1A, 1B, 1C). Are connected in parallel to each other to form a circulation system for the refrigerant 24, and the refrigerant 24 circulates in these devices. In the following example, the number of rooms of the vending machine 1 described in FIGS. 1 to 3 will be described in the case of three rooms (1A, 1B, 1C).
[0037]
In FIG. 1, temperature is plotted on the vertical axis and time is plotted on the horizontal axis, and the time-varying characteristics of each room temperature (Ta, Tb, Tc) are shown by thick lines, and the characteristics shown by the dotted lines are turned on or off for cooling. Indicates the state as it is. Assume that at the time t10, the three chambers (1A, 1B, 1C) are simultaneously cooled from the upper limit Tu of the temperature range. The thermal time constants of the three rooms (1A, 1B, 1C) (depending on the specific heat and storage capacity of the products stored in each room) are T1a, T1b, T1c, and T1a>T1b> T1c, The cooling capacity of the refrigerator 2A is such that the ultimate temperature when the three chambers (1A, 1B, 1C) are simultaneously cooled can be close to or lower than the lower limit value Td of the temperature range. In the following description, the selection criteria for the room to be cooled by selecting only one room are selected as the room having the highest temperature when the specified temperature Ts or the lower limit Td is reached, and one room is operated, and the remaining room is selected. It is assumed that the room shuts off the cooling by shutting off the refrigerant 24 with the shut-off valve 22.
[0038]
Under the conditions as described above, when the three chambers (1A, 1B, 1C) are simultaneously cooled at time t10, the temperature Tc of the chamber 1C is decreased most quickly, and the temperature Ta of the chamber 1A is decreased most slowly. The chamber temperature (Ta, Tb, Tc) of the three rooms (1A, 1B, 1C) is measured, and one of the three rooms (1A, 1B, 1C) at the time t11 (1C in the example shown) When the inside temperature (Tc) reaches the specified temperature Ts, the room 1A having the highest room temperature at the time t11 is operated as one room, and the supply of the refrigerant 24 in the other rooms 1B and 1C is stopped. Since all the refrigerant 24 is supplied to the room 1A having the highest room temperature, the rate of temperature drop in the chamber is faster than the simultaneous cooling of multiple rooms, and the temperature (Ta) of one room (1A) is the lower temperature limit. Even when approaching Td, the internal temperature drop rate can be maintained higher than when cooling multiple rooms simultaneously.
[0039]
When one room 1A is operated and the internal temperature Ta reaches the lower limit Td at time t12, one room 1B having the highest room temperature at this time t12 is operated, and the refrigerant 24 of the other rooms 1A and 1C is supplied. Stop. As in the case of the one room 1A described above, the room 1B that showed the intermediate room temperature Tb at the time t11 when the refrigerant 24 was concentrated has a high internal temperature decrease rate, and the speed does not decrease so much at the time t13. The lower limit value Td is reached. At this time t13, the room 1C having the highest room temperature, that is, in the example shown in the figure, is the cooling of the three rooms, so the last remaining room 1C is operated, and the supply of the refrigerant 24 in the other rooms 1A, 1B is stopped. At time t14, the internal temperature Tc reaches the lower limit value Td. In this way, in the one-room operation, the room to be cooled next is selected from the room having the highest internal temperature at that time, so that the temperature of the remaining room not operating in the one-room is reduced. The cooling time can be made as short as possible when the temperature is lowered as much as possible and the next one-chamber cooling operation is performed.
[0040]
In this way, when all three rooms (1A, 1B, 1C) have reached the lower limit cooling temperature value Td, the compressor 25 is stopped and the cooling of all rooms (1A, 1B, 1C,. To stop. The compressor 25 is constantly in the ON state during a period ton from the start of cooling (simultaneous operation) of all the rooms (1A, 1B, 1C,...) Until the end of (single-room operation).
[0041]
As described above, the timing at which the supply of the refrigerant 24 to each room stops is shifted from t12, t13, and t14, so that there is a difference in the internal temperature rise after the compressor 25 is stopped. However, when the inside temperature rises, the cause of this rise in the inside temperature depends only on the intrusion of heat from outside the warehouse, and the higher the inside temperature, the slower the inside temperature. The temperature difference between the room (1A) where the supply of the refrigerant 24 was stopped and the room (1C) where the supply of the refrigerant 24 was stopped later is reduced.
[0042]
When the temperature of any one of the three rooms (1A, 1B, 1C) (the room 1C in the illustrated example) reaches a predetermined upper limit Tu, the compressor 25 is activated and all the rooms (1A, 1C, 1B, 1C, ・) are cooled at the same time (simultaneous operation), and this control cycle is repeated to cool multiple rooms (1A, 1B, 1C), and the temperature of each room (1A, 1B, 1C) It can be maintained and controlled within a predetermined temperature range (Tu to Td).
[0043]
The reason for starting the compressor 25 and operating all rooms (1A, 1B, 1C, ..) simultaneously when the temperature of any of the three rooms (1A, 1B, 1C) reaches the upper limit Tu Is
(1) In order to supply the refrigerant 24 to any one chamber (1C), the compressor 25 must be started.
[0044]
(2) Also, if the refrigerant 24 is supplied to one chamber (1C), the refrigerant 24 is supplied until the chamber (1A, 1B) that has not reached the upper limit Tu of the internal temperature reaches the upper limit Tu. Na No In this case, the temperature difference between the three chambers (1A, 1B, 1C) widens, and as a result, the time for one-room operation becomes longer, and conversely, the time ton during which the compressor 25 is turned on becomes longer.
[0045]
As a result of the above, it is possible to reduce the time ton when the compressor 25 is turned on with respect to the cycle that is the sum of the time ton when the compressor 25 is turned on and the time toff when it is turned off. It can be performed.
(Example 2)
FIG. 2 will be described as another embodiment for explaining the effect of the present invention. The difference between FIG. 2 and FIG. 1 or FIG.
(1) The cooling operation capacity when all the rooms are operated simultaneously is shown in FIGS. 1 and 4 when the refrigerator 2A has a cooling capacity that can be lower than the lower limit value Td. On the other hand, FIG. 2 shows that the cooling capacity of the refrigerator 2A can be cooled to the specified temperature Ts when operated at the same time, but cannot be cooled to the lower limit value Td, and is cooled beyond the lower limit value Td only during one-chamber operation. Indicate when you can.
[0046]
(2) Therefore, only the horizontal time axis is scaled down, and the other conditions are the same.
[0047]
In FIG. 2, it is assumed that the cooling operation is performed simultaneously from the upper limit value Tu at time t20 as in FIG. As for the cooling rate, the chamber temperature (Tc, Tb, Ta) decreases in the order of the chambers 1C, 1B, and 1A, and the chamber temperature Tc of the chamber 1C reaches the specified temperature Ts at time t21. At this time t21, the room 1A having the highest room temperature is operated in one room, and the supply of the refrigerant 24 in the other rooms 1B and 1C is stopped. Since all the refrigerant 24 is supplied to the room 1A having the highest room temperature, the rate of temperature drop in the chamber is faster than the simultaneous cooling of multiple rooms, and the temperature (Ta) of one room (1A) is the lower temperature limit. Even if the temperature approaches Td, those that cannot be cooled to the lower limit Td by simultaneous cooling of a plurality of rooms can be cooled while maintaining the internal temperature drop rate.
[0048]
When one room 1A is operated and the internal temperature Ta reaches the lower limit Td at time t22, one room 1C having the highest room temperature at this time t22 is operated and the refrigerant 24 is supplied to the other rooms 1A and 1B. Stop. In the illustrated example, the order of the room is different from that of FIG. 1 and the room of single room operation, but the room 1C (room 1B in FIG. 1) in which the refrigerant 24 is concentrated has a lower rate of temperature in the cabinet, as in the case of the room 1A described above. It becomes faster and reaches the lower limit value Td at time t23 without much decrease in speed. At this time t23, the room 1B having the highest room temperature, that is, in the example shown in the figure, is the cooling of the three rooms, so the last remaining room 1B is operated, and the supply of the refrigerant 24 in the other rooms 1A and 1C is stopped. At time t24, the internal temperature Tc is made to reach the lower limit value Td.
[0049]
In this way, when all three rooms (1A, 1B, 1C) have reached the lower limit cooling temperature value Td at time t24, the compressor 25 is stopped and the cooling of all the rooms (1A, 1B, 1C,...) Is stopped. Stop the cooling operation. The compressor 25 continues until the temperature of any room reaches the upper limit Tu, and at time t25, the compressor 25 is started again to start simultaneous operation.
[0050]
In the illustrated example, the timing at which the supply of the refrigerant 24 to each room (1A, 1B, 1C) stops is shifted from t22, t23, t24, so there is a difference in the rise in the internal temperature after the compressor 25 is stopped. . In particular, the internal temperature Tb of the chamber 1B having an intermediate thermal time constant T1b is lower than that of the other two chambers 1A and 1C. In the illustrated example, simultaneous operation starts at time t25, and room 1C having a small thermal time constant T1c reaches the specified temperature Ts at time t26, enters single room operation of room 1A, and in the order of room 1B and room 1C 1 After entering the room operation, all three rooms (1A, 1B, 1C) reach the lower limit cooling temperature value Td at time t29d, the compressor 25 is stopped, and the cooling of all the rooms (1A, 1B, 1C) is stopped. Stop operation. In the following, while taking the cycle of simultaneous operation, one-room operation, and operation stop, the internal temperature of all the rooms (1A, 1B, 1C,...) Is controlled and maintained within a predetermined target temperature range. be able to.
[0051]
Under the conditions shown in FIG. 2, the refrigerator 2A cannot continuously reduce the internal temperature of the vending machine 1 to the lower limit value Td under the conditions shown in FIG. By providing the specified temperature Ts and performing the one-chamber operation, it is possible to stop the operation of the refrigerator 2A, and the energy-saving operation of the cooling compressor can be performed.
(Example 3)
Next, a control flowchart of the operation method according to the present invention will be described with reference to FIG. The description will be made assuming that the three chambers (1A, 1B, 1C) as described above have the same amount of influence of heat penetration from the outside, and that the thermal time constant of each chamber is in the condition of T1a>T1b> T1C. In this state, the temperature Tc of the chamber 1C decreases most quickly, and the temperature Ta of the chamber 1A decreases most slowly. In FIG. 3, the chamber temperature (Ta, Tb, Tc) of the three chambers (1A, 1B, 1C) is measured in step s1, and one of the three chambers (1A, 1B, 1C) is measured in step s2. However, it is determined whether or not the internal temperature has reached the specified temperature Ts, and the process returns to step s1 with the arrival No. In step s2, this flow is circulated and waited until it is detected that the inside temperature of any one of the rooms reaches the specified temperature Ts. When the internal temperature (Tc) of any one of the rooms (1C in the illustrated example) reaches the specified temperature Ts at step t2 at time t11 and detects Yes, the process proceeds to step s3.
[0052]
In step s3, the room 1A having the highest room temperature at this time is operated as one room, the supply of the refrigerant 24 to the other rooms 1B and 1C is shut off by the shutoff valve 22, and the process proceeds to step s4. In step s4, it is determined whether or not the room 1A, which shows the maximum room temperature at time t11 and is operating in one room, has reached the target temperature lower limit Td. If no, the process returns to step s3. This flow is circulated and waited until it is detected that the room 1A operating in one room reaches the target temperature lower limit Td.
[0053]
Then, when the temperature Ta of the room 1A reaches the lower limit value Td in step s4 at time t12, and the arrival Yes is detected, the process proceeds to step s5. In step s5, one room 1B showing the maximum room temperature at time t12 (that is, the room showing the intermediate room temperature at time t1) is operated, and the supply of the refrigerant 24 to the other rooms 1A and 1C is shut off. Shut off at 22 and proceed to step s6. In step s6, it is determined whether or not the room 1B, which exhibits the maximum room temperature at time t12 and is operating in one room, has reached the lower limit Td. If no, the process returns to step s5, and in step s6, this one-room operation is performed. Monitoring is performed until the room 1B that has been reached the lower limit Td and checked Yes.
[0054]
When the temperature Tb of the room 1B reaches the lower limit value Td at time t13 and the arrival Yes is detected, the process proceeds to step s7. In step s7, one room 1C showing the maximum room temperature at time t13 is operated, the supply of the refrigerant 24 to the other rooms 1A and 1B is shut off by the shut-off valve 22, and the process proceeds to step s8. In step s8, it is determined whether or not the room 1C, which exhibits the maximum room temperature at time t13 and is operating in one room, has reached the lower limit Td. If no, the process returns to step s7, and in step s8, this one-room operation is performed. The room 1C is monitored until reaching the lower limit Td and checking Yes.
[0055]
When the temperature Tc of the room 1C reaches the lower limit value Td at time t14 and the arrival Yes is detected, the process proceeds to step s9, where the operation of the compressor 25 is stopped, the cooling operation is stopped, and the process proceeds to step s10. . In step s10, it is determined whether the room temperature in any room has reached the upper limit value Tu. If no, the process returns to step s9, and in step s10, the room temperature in any room is the upper limit value. Monitoring is continued until Yes at Tu is checked, and when the temperature inside the room reaches the upper limit Tu at time t15 and detects Yes, the process proceeds to step s11, the compressor 25 is started, and all rooms 1A , 1B, 1C can be operated simultaneously, the process proceeds to step s1, and control can be continued.
Example 4
In the above description, according to the present invention, “the selection criterion for the room to be selected and cooled is to select the room having the highest temperature at the time of reaching the specified temperature Ts or the lower limit value Td”. The selection criterion of “selecting a room for cooling by selecting only one room is selected in the order of the room having the largest thermal time constant except for the room that has reached the lower limit value” can be adopted. If such a selection criterion is adopted, the problem of changing the order of the one-room operation that occurred at time t22d in FIG. 2 is solved, and the cooling is turned off in the order of the room with the larger thermal time constant. Therefore, all the rooms (1A, 1B, 1C,...) Can be made closer to the upper limit value Tu of the target temperature after the operation of the compressor 25 is stopped.
[0056]
For example, in the case of the vending machine 1, the quantity of products in each store of the vending machine 1 changes from time to time depending on the sales situation of the product, so the thermal time constant in each store changes. Therefore, it is preferable to measure this thermal time constant during the operation and sale of the vending machine 1 and adjust the selection criteria.
[0057]
As a method of measuring the thermal time constant and selecting the room in order of increasing thermal time constant, the chamber temperature (Ta, Tb, Tc, ...) is the lower limit for each room (1A, 1B, 1C, ...). After reaching the value Td, the temperature rise rate when the cooling is turned off, the temperature rise value for a predetermined time, or a temperature rise within a predetermined temperature range (for example, Td to (Tu-ΔT)) In the former two, the selection time is selected in ascending order of the temperature increase rate or temperature increase value, and in the latter, the selection order is selected in ascending order of the required time.
(Example 5)
In FIG. 6B, another energy-saving vending machine 3 using the energy-saving operation method of the cooling compressor according to the present invention has a plurality of rooms (1A, 1D, 2) controlled to a predetermined temperature range (Tu to Td). 1B, 1C, ・), and each room (1A, 1B, 1C, ・) is supplied with cold air 24A by the fan 29 and cooled by the evaporator 21B of the refrigerator 2B. The refrigerator 2B includes a compressor 25, a condenser 26, a dryer 27, a capillary tube or an expansion valve 28, an evaporator 21B, and each of these devices 21B, The piping 23 which connects 25-28 and comprises a circulation system and a ventilation system, and the refrigerant | coolant 24 which circulates in these apparatuses 25-28 can be provided and comprised.
[0058]
With this configuration, when the one-chamber cooling operation is performed, the total refrigeration capacity of the refrigerator 2B, that is, the entire amount cooled by the amount of heat absorbed by the refrigerant 24 as heat of vaporization that is absorbed and evaporated from the periphery of the evaporator 21B. Since the air can be used as cold air 24A to cool a selected room, the final cooling temperature is lower when operating in one room than in the final cooling temperature when operating all rooms simultaneously. Therefore, it is possible to cool with characteristics almost linearly toward the lower limit value Td of the temperature range. That is, the cooling rate can be improved and the ON time of the compressor 25 can be reduced.
[0059]
【The invention's effect】
As described above, according to the present invention, the following effects can be expected.
[0060]
(1) In the vicinity of the lower limit of the target temperature where it takes a relatively long time to lower the temperature, one room (cooling) is operated from the room with the highest temperature, thereby cooling efficiently by concentrating refrigerant or cold air. The operation time of the overall cooling compressor can be shortened. As a result, an energy saving operation method and an energy saving type vending machine for the cooling compressor can be provided.
[0061]
(2) In addition, by aligning the cooling timing of multiple rooms near the upper limit of the target temperature and operating them simultaneously, the temperature difference between the multiple rooms at the start of one-room operation is reduced, and all the multiple rooms are at the target temperature. The time from reaching the lower limit to turning off the cooling compressor can be shortened. As a result, an energy saving operation method and an energy saving type vending machine for the cooling compressor can be provided.
[0062]
(3) In addition, due to some circumstances, for example, due to abnormal temperature rise in summer, simultaneous cooling of multiple rooms cannot cool to the target temperature lower limit value, and even when the cooling compressor is in continuous operation, single room operation As a result, it is possible to efficiently cool by concentrating refrigerant or cold air, so that a period during which the cooling compressor can be turned off can be obtained. As a result, an energy-saving operation method for the cooling compressor and an energy-saving vending machine can be provided. it can.
[Brief description of the drawings]
FIG. 1 is an internal temperature characteristic diagram during cooling operation for explaining an energy saving operation method of a cooling compressor as one embodiment of the present invention.
[Fig. 2] Temperature characteristics of the chamber during cooling operation when the cooling capacity of the refrigerator is slightly insufficient
FIG. 3 is a control flowchart according to the operation method of the present invention.
FIG. 4 is a temperature characteristic diagram in the refrigerator during the cooling operation for explaining the energy saving operation method of the cooling compressor according to the prior art.
FIG. 5 is a control flowchart according to a conventional driving method.
6A and 6B are main part configuration diagrams of a vending machine according to the prior art and the present invention, wherein FIG. 6A is a configuration diagram in which an evaporator is provided for each room and refrigerant is supplied, and FIG. 6B is a supply of cold air for each room. Configuration diagram
[Explanation of symbols]
1, 3 Vending machine
1A, 1B, 1C room
2A, 2B refrigerator
21,21B evaporator
22 Shut-off valve
23 Piping
23B duct
24,24g, 24L refrigerant
24A cold air
25 Compressor
26 Condenser
27 Dryer
28 Expansion valve
29 fans
Ts Specified temperature
Tu upper limit
Td lower limit
ΔT temperature difference
t10 ~, t20 ~, t40 ~, ton, toff time

Claims (7)

冷媒の蒸発と凝縮液化とのサイクルを利用して冷却を行う冷凍機を運転制御して複数の部屋を冷却し、各部屋の温度を予め定められた温度範囲内に維持・制御する冷却用コンプレッサの省エネ運転方法において、
複数の部屋の冷却運転制御は、同時運転期間と、1室運転期間と、運転停止期間と、からなる運転期間を1運転サイクルとし、冷却制御される部屋の制御温度パラメータとして規定温度と上限値と下限値とを有し、複数の部屋のうち何れかの部屋の温度が上限値に到達したとき,コンプレッサを起動して複数の部屋を同時に冷却、この同時運転した結果,何れかの部屋が規定温度値に到達したとき,予め定められた選択基準に従って1室のみ選択してこれを冷却、この1室運転した結果選択された部屋の温度が下限値に到達したとき,この室の冷却を停止し,選択基準に従って他の1室を順次選択して1室運転を行い、1運転サイクル中に全ての部屋を1室運転した後,最後に選択された部屋の温度が下限値に到達したとき,コンプレッサを停止して全部屋の冷却を停止する、ことを特徴とする冷却用コンプレッサの省エネ運転方法。
Cooling compressor that operates and controls a refrigerator that performs cooling using a cycle of refrigerant evaporation and condensate liquefaction to cool a plurality of rooms, and maintains and controls the temperature of each room within a predetermined temperature range In the energy saving operation method of
In the cooling operation control for a plurality of rooms, an operation period composed of a simultaneous operation period, a one-room operation period, and an operation stop period is defined as one operation cycle, and a specified temperature and an upper limit value are set as control temperature parameters for the room to be controlled by cooling. and a lower limit value, when the temperature of any room of the plurality of chambers has reached the upper limit value, to start the compressor to cool a plurality of rooms at the same time, as a result of this simultaneous operation, one of the room when There reaching the specified temperature value, which was cooled to select only one room in accordance with the selection criteria established in advance, when the temperature of the first chamber operation result selected room reaches the lower limit, the chamber Cooling is stopped, one other room is sequentially selected according to the selection criteria, and one room operation is performed. After all the rooms are operated in one operation cycle, the temperature of the last selected room becomes the lower limit value. When it reaches The stop to stop cooling the entire room, energy-saving method of operating a cooling compressor, characterized in that.
請求項1に記載の冷却用コンプレッサの省エネ運転方法において、
規定温度は、複数の部屋を同時に冷却運転したときと、1室のみ選択してこれを冷却運転したときと、で部屋内の温度の冷却速度に差が生じる温度の値を選ぶ、ことを特徴とする冷却用コンプレッサの省エネ運転方法。
In the energy saving operation method of the cooling compressor according to claim 1,
The specified temperature is selected when a plurality of rooms are cooled at the same time, or when only one room is selected and cooled, and a temperature value that causes a difference in the cooling rate of the temperature in the room is selected. Energy-saving operation method for cooling compressors.
請求項1または請求項2に記載の冷却用コンプレッサの省エネ運転方法において、
1室のみ選択して冷却する部屋の選択基準は、規定温度あるいは下限値に到達時点での最も高い温度の部屋を選択する、ことを特徴とする冷却用コンプレッサの省エネ運転方法。
In the energy saving operation method of the cooling compressor according to claim 1 or 2,
A method for energy saving operation of a cooling compressor, wherein the selection criterion for a room to be cooled by selecting only one room is to select a room having the highest temperature when reaching a specified temperature or a lower limit value.
請求項1または請求項2に記載の冷却用コンプレッサの省エネ運転方法において、
1室のみ選択して冷却する部屋の選択基準は、下限値に到達した部屋を除き、熱時定数の大きい部屋の順に選択する、ことを特徴とする冷却用コンプレッサの省エネ運転方法。
In the energy saving operation method of the cooling compressor according to claim 1 or 2,
A method for selecting a room for cooling by selecting only one room is selected in order of a room having a large thermal time constant, except for a room that has reached a lower limit value.
請求項4に記載の冷却用コンプレッサの省エネ運転方法において、
下限値に到達した部屋を除き熱時定数の大きい部屋の順に1室のみ選択して冷却する部屋の選択基準は、1室運転し下限値に到達後冷却を停止し当該室の温度上昇特性により選択の順位付けを行う、ことを特徴とする省エネ運転方法。
In the energy saving operation method of the cooling compressor according to claim 4,
The room selection criteria for selecting and cooling only one room in the order of the room with the largest thermal time constant except for the room that has reached the lower limit value is one room operation, and after reaching the lower limit value, the cooling is stopped and the temperature rise characteristics of the room An energy-saving operation method characterized by ranking the selection.
請求項1ないし請求項5のいずれかの項に記載の冷却用コンプレッサの省エネ運転方法を用いた省エネ型自販機であって、An energy-saving vending machine using the energy-saving operation method of the cooling compressor according to any one of claims 1 to 5,
予め定められた温度範囲に制御される複数の部屋を有し、各部屋は、冷凍機から冷媒の供給を受け、この冷媒の導通・遮断制御する遮断弁と、冷媒を気化し当該部屋を冷却するエバポレータと、を備え、Each room has a plurality of rooms controlled to a predetermined temperature range. Each room is supplied with a refrigerant from a refrigerator, and a shutoff valve that controls conduction / cutoff of the refrigerant, vaporizes the refrigerant, and cools the room. And an evaporator,
冷凍機は、請求項1ないし請求項5のいずれかの項に記載の冷却用コンプレッサを構成するコンプレッサと、凝縮器と、ドライヤと、キャピラリチューブまたは膨張弁と、これらの各機器と一の部屋の遮断弁とエバポレータとを直列接続する配管と、該遮断弁とエバポレータとを接続する配管に他の部屋の遮断弁とエバポレータとをさらに並列接続して循環系を構成する配管と、これらの機器内を循環する冷媒と、を備える、ことを特徴とする省エネ型自販機。A refrigerator includes a compressor, a condenser, a dryer, a capillary tube or an expansion valve, and each of these devices constituting the cooling compressor according to any one of claims 1 to 5. A pipe that connects the shut-off valve and the evaporator in series, a pipe that connects the shut-off valve and the evaporator, and a pipe that constitutes a circulation system by further connecting the shut-off valve and the evaporator in another room in parallel, and these devices An energy-saving vending machine comprising a refrigerant circulating in the interior.
請求項1ないし請求項5のいずれかの項に記載の冷却用コンプレッサの省エネ運転方法を用いた省エネ型自販機であって、An energy-saving vending machine using the energy-saving operation method of the cooling compressor according to any one of claims 1 to 5,
予め定められた温度範囲に制御される複数の部屋を有し、各部屋は、冷凍機のエバポレータで冷却された冷風の供給を受け、この冷風をEach room has a plurality of rooms controlled to a predetermined temperature range, and each room receives supply of cold air cooled by an evaporator of the refrigerator, ON-OFFON-OFF 制御する制御弁を備え、With a control valve to control,
冷凍機は、請求項1ないし請求項5のいずれかの項に記載の冷却用コンプレッサを構成するコンプレッサと、凝縮器と、ドライヤと、キャピラリチューブまたは膨張弁と、エバポレータと、これらの各機器とを接続して循環系を構成する配管と、これらの機器内を循環する冷媒と、エバポレータで冷却された空気を吸引・送風するファンとこの冷風を各部屋の制御弁に接続するダクトとからなる送風系と、を備える、ことを特徴とする省エネ型自A refrigerator includes a compressor, a condenser, a dryer, a capillary tube or an expansion valve, an evaporator, and each of these devices that constitute the cooling compressor according to any one of claims 1 to 5. Are connected to each other to form a circulation system, a refrigerant circulating in these devices, a fan that sucks and blows air cooled by an evaporator, and a duct that connects this cold air to a control valve in each room. An air-saving system characterized by comprising an air blowing system 販機。Vending machine.
JP26344699A 1999-09-17 1999-09-17 Energy-saving operation method of cooling compressor and energy-saving vending machine Expired - Fee Related JP3931499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26344699A JP3931499B2 (en) 1999-09-17 1999-09-17 Energy-saving operation method of cooling compressor and energy-saving vending machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26344699A JP3931499B2 (en) 1999-09-17 1999-09-17 Energy-saving operation method of cooling compressor and energy-saving vending machine

Publications (2)

Publication Number Publication Date
JP2001093040A JP2001093040A (en) 2001-04-06
JP3931499B2 true JP3931499B2 (en) 2007-06-13

Family

ID=17389633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26344699A Expired - Fee Related JP3931499B2 (en) 1999-09-17 1999-09-17 Energy-saving operation method of cooling compressor and energy-saving vending machine

Country Status (1)

Country Link
JP (1) JP3931499B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1650510A1 (en) 2004-10-22 2006-04-26 Whirlpool Corporation Method for controlling a refrigerator
JP6767838B2 (en) * 2016-10-13 2020-10-14 東芝ライフスタイル株式会社 refrigerator

Also Published As

Publication number Publication date
JP2001093040A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
US6935127B2 (en) Refrigerator
CN100472155C (en) Refrigerator and control method thereof
EP1243880B1 (en) Refrigerator with a plurality of parallel refrigerant passages
US20110041525A1 (en) Control method of refrigerator
KR100870540B1 (en) Controlling process for Refrigerator
KR20070019815A (en) Operation control method of refrigerator
JP3816872B2 (en) Operation control method of refrigeration system with two evaporators
KR101620430B1 (en) Refrigerator and control method of the same
KR100850954B1 (en) Refrigerator and control method of the same
JP4178646B2 (en) refrigerator
WO2021070758A1 (en) Refrigerator, cooling control method, and program
JP3931499B2 (en) Energy-saving operation method of cooling compressor and energy-saving vending machine
KR100703128B1 (en) An automatic defroster of a cold storage room
KR20190095804A (en) Refrigerator and Control method of the same
JPH0791753A (en) Air conditioner
KR20060000943A (en) Refrigeration system in the refrigerator and refrigeration control method implementing it
CN115111871A (en) Refrigerating and freezing device and defrosting control method thereof
KR20030065970A (en) Method for driving control of low temperature of electronic refrigerator
JP3721968B2 (en) refrigerator
KR102519153B1 (en) Method for driving defrost of refrigerator
KR102150285B1 (en) A multi-device capable of drying, cold confinement, and refrigerated refrigeration using a dual refrigerant cycle
KR100249195B1 (en) Refrigerator
JP4286106B2 (en) Freezer refrigerator
JP5380221B2 (en) refrigerator
KR20160009312A (en) Regrigerator and method for controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R150 Certificate of patent or registration of utility model

Ref document number: 3931499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees