WO2013128715A1 - 電子機器 - Google Patents

電子機器 Download PDF

Info

Publication number
WO2013128715A1
WO2013128715A1 PCT/JP2012/078501 JP2012078501W WO2013128715A1 WO 2013128715 A1 WO2013128715 A1 WO 2013128715A1 JP 2012078501 W JP2012078501 W JP 2012078501W WO 2013128715 A1 WO2013128715 A1 WO 2013128715A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
user
text
unit
input
Prior art date
Application number
PCT/JP2012/078501
Other languages
English (en)
French (fr)
Inventor
冨井宏美
山本彩恭子
松村光子
鮫島冴映子
中村弥恵
関口政一
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012045847A external-priority patent/JP2013183289A/ja
Priority claimed from JP2012045848A external-priority patent/JP2013182422A/ja
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201280070960.4A priority Critical patent/CN104137096A/zh
Priority to US14/381,030 priority patent/US20150018023A1/en
Publication of WO2013128715A1 publication Critical patent/WO2013128715A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/30Semantic analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/04Real-time or near real-time messaging, e.g. instant messaging [IM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72457User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to geographic location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/52Details of telephonic subscriber devices including functional features of a camera

Definitions

  • the present invention relates to an electronic device.
  • word-of-mouth communication has been used to publish user feedback and evaluations on the Internet for various matters.
  • a word-of-mouth information determination apparatus that determines whether or not a sentence input by a user is word-of-mouth information is disclosed (for example, see Patent Document 1).
  • the conventional word-of-mouth information determination device only determines whether or not the text input by the user is word-of-mouth information, and can also obtain information related to the content of the word-of-mouth information (reliability, credibility, etc. of word-of-mouth information). could not.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide an electronic device that can obtain information related to the contents of word-of-mouth information.
  • An electronic device includes an input unit that receives an input of text from a user, an information acquisition unit that acquires information about the user in association with the input of the text when permitted by the user, and the text And a transmission unit for transmitting information on the user.
  • the information acquisition unit may acquire information used for estimating the user's emotion.
  • the information acquisition unit may include a biological sensor that acquires the user's biological information.
  • the information acquisition unit may include a force sensor that detects a force related to the user input.
  • the information acquisition unit may include an imaging unit that images the user in association with the input of the text.
  • the information acquisition unit may include an environment sensor that acquires information related to the user's environment in association with the input of the text.
  • the transmission unit may transmit image data together with the text and information about the user. Further, the transmission unit may transmit metadata attached to the image data when permitted by the user. In addition, the transmission unit may not transmit metadata attached to the image data when the transmission is not permitted by the user.
  • the electronic device of the present invention may include a detection unit that detects the metadata.
  • the detection unit may perform the detection when detection of the metadata is permitted by the user.
  • a weighting unit that extracts description information corresponding to the information about the user from the text, and performs weighting on the text based on a comparison result between the information about the user and the corresponding description information. May be provided.
  • the electronic device of the present invention includes an input unit that receives an input from a user, and a biometric information acquisition unit that acquires the biometric information of the user in association with the input when permitted by the user. ing.
  • the electronic device relates to the other of the text and the information related to the user from one of the text and the information related to the user, the input unit for inputting the text and the information related to the user who is creating the text. And an extraction unit for extracting the obtained information.
  • the electronic device of the present invention may include a weighting unit that performs weighting on the text based on the information extracted by the extraction unit.
  • the weighting unit may perform weighting on the text based on a comparison result between the information on the user and the text corresponding to the information on the user.
  • you may provide the alerting
  • the said extraction part may extract the information regarding the said user's emotion.
  • the extraction unit may extract information related to the user's environment.
  • the extraction unit may extract information related to at least one of a position and a date.
  • the image input unit for inputting image data and metadata attached to the image data, at least one of the text and the information on the user, and the metadata are compared.
  • a comparison unit for comparing the image data and metadata attached to the image data, at least one of the text and the information on the user, and the metadata are compared.
  • a comparison unit for comparing the text and the information on the user.
  • a weighting unit that performs weighting on the text based on the comparison result of the comparison unit may be provided.
  • an acquisition unit that acquires information about a person who wants to browse the text
  • a detection unit that detects information about the user similar to the information about the person who wants to browse
  • the detection And a providing unit that provides the text based on information on the user detected by the unit.
  • the weighting unit when the electronic device of the present invention includes a weighting unit, the weighting unit includes a difference between the description information about the position and the input location of the text when the text includes description information about the position. The smaller the value, the larger the weight.
  • the weighting unit may increase the weight as the difference between the description information related to the date and the input date and time of the text is smaller when the text includes description information related to the date and time.
  • the weighting unit may increase the weight as the difference between the input date and time of the text and the acquisition date and time of the object is larger when the text includes descriptive information about the evaluation of the object. Moreover, it is good also as the reliability of the content of the said text is so high that the said weighting is large.
  • the electronic device of the present invention has an effect that information related to the contents of the word-of-mouth information can be obtained.
  • FIG. 2A is a diagram showing a state in which the mobile terminal is viewed from the front side ( ⁇ Y side), and FIG. 2B is a diagram illustrating a state in which the mobile terminal is viewed from the back side (+ Y side).
  • It is a block diagram of a portable terminal. It is a figure which shows an example of an image data table. It is a figure which shows an example of a user information table. It is a block diagram of a server. It is a figure which shows an example of a text information table. It is a flowchart which shows the process regarding the review information input by the control part of a portable terminal.
  • FIG. 12A is a diagram showing an example of a time information comparison table-experience type
  • FIG. 12B is a diagram showing an example of a time information comparison table-purchase type.
  • the information processing system of the present embodiment is a system that mainly determines the reliability of word-of-mouth information input by a user.
  • FIG. 1 schematically shows a configuration of an information processing system 200 according to the present embodiment.
  • the information processing system 200 includes a mobile terminal 10 and a server 60.
  • the portable terminal 10 and the server 60 are connected to a network 180 such as the Internet.
  • the mobile terminal 10 is an information device that is used while being carried by a user.
  • a mobile phone, a smart phone, a PHS (Personal Handy-phone System), a PDA (Personal Digital Assistant), or the like can be adopted.
  • the mobile terminal 10 is a smartphone. To do.
  • the mobile terminal 10 has a telephone function, a communication function for connecting to the Internet, etc., a data processing function for executing a program, and the like.
  • FIG. 2A is a diagram illustrating a state in which the mobile terminal 10 is viewed from the front side ( ⁇ Y side), and FIG. 2B is a diagram illustrating a state in which the mobile terminal 10 is viewed from the back side (+ Y side). It is.
  • the mobile terminal 10 has a thin plate shape having a rectangular main surface (the surface on the -Y side), and can be held by the palm of one hand. It has a size.
  • FIG. 3 shows a block diagram of the mobile terminal 10.
  • the mobile terminal 10 includes a display 12, a touch panel 14, a calendar unit 16, a communication unit 18, a sensor unit 20, an image analysis unit 30, a storage unit 40, and a control unit 50.
  • the display 12 is provided on the main surface (the surface on the -Y side) of the main body 11 of the mobile terminal 10 as shown in FIG.
  • the display 12 has a size that occupies most of the area (for example, 90%) of the main surface of the main body 11.
  • the display 12 displays images, various information, and operation input images such as buttons.
  • the display 12 is a device using a liquid crystal display element.
  • the touch panel 14 is an interface through which information corresponding to what the user touches can be input to the control unit 50. As shown in FIG. 2A, the touch panel 14 is incorporated in the surface of the display 12 or in the display 12, so that the user intuitively inputs various information by touching the surface of the display 12. be able to.
  • the calendar unit 16 acquires time information such as year, month, day, and time stored in advance and outputs the time information to the control unit 50. Note that the calendar unit 16 has a timekeeping function. In the present embodiment, the calendar unit 16 detects the time when the user creates the review information using the mobile terminal 10 and the time included in the metadata of the image attached to the review information.
  • the communication unit 18 communicates with the server 60 on the network 180 and other portable terminals.
  • the communication unit 18 includes, as an example, a wireless communication unit that accesses a wide area network such as the Internet, a Bluetooth (registered trademark) unit that realizes communication by Bluetooth (registered trademark), a Felica (registered trademark) chip, and the like. Communicate with servers and other mobile terminals.
  • the sensor unit 20 has various sensors.
  • the sensor unit 20 includes a built-in camera 21, a GPS (Global Positioning System) module 22, a biological sensor 23, a microphone 24, a thermometer 25, and a pressure sensor 26.
  • GPS Global Positioning System
  • the built-in camera 21 has an imaging lens (for example, a wide-angle lens) and an imaging device, captures a still image or a moving image of a subject, and detects a user's facial expression in cooperation with an image analysis unit 30 described later. It is a non-contact sensor.
  • An image pick-up element is a CCD and a CMOS device as an example.
  • the image sensor includes a color filter in which RGB three primary colors are arranged in a Bayer array, and outputs a color signal corresponding to each color.
  • the built-in camera 21 is provided on the surface (main surface (the surface on the ⁇ Y side)) of the main body 11 of the mobile terminal 10 on which the display 12 is provided.
  • the built-in camera 21 can capture the face and clothes of the user who is operating the touch panel 14 of the mobile terminal 10.
  • the control unit 50 creates metadata (EXIF data) related to the image captured by the camera.
  • the metadata related to the captured image includes, for example, an imaging date and time, an imaging location (GPS information), a resolution, a focal length, and the like.
  • the imaging date and time are detected by the calendar unit 16 described above, and the imaging location is detected by the GPS module 22 described later.
  • the user's facial expression while the user is creating the word-of-mouth information is captured using the built-in camera 21.
  • the user uses the built-in camera 21 to capture an image attached to the word-of-mouth information.
  • the GPS module 22 is a sensor that detects the position (for example, latitude and longitude) of the mobile terminal 10. In the present embodiment, the GPS module 22 acquires (detects) information (user information) on the location of the user when the user is creating word-of-mouth information.
  • the biosensor 23 is provided on the back surface of the main body 11 of the mobile terminal 10 as shown in FIG. However, it is not limited to this, You may provide in the front side of the main-body part 11, and you may provide in two places of the side part of a long side.
  • the biometric sensor 23 is a sensor that acquires the state of the user holding the mobile terminal 10.
  • the biosensor 23 acquires, for example, the user's body temperature, blood pressure, pulse and sweat rate, grip strength, and the like as the user's state.
  • the biological sensor 23 includes a sensor that acquires information (for example, grip strength) related to the force with which the user holds the mobile terminal 10.
  • control part 50 may start acquisition of the information by another biological sensor in the stage which detected that the user hold
  • control unit 50 turns on other functions (or returns from the sleep state) when the sensor detects that the user holds the portable terminal 10 while the power is on. Such control may be performed.
  • the biological sensor 23 includes a body temperature sensor that measures body temperature, a blood pressure sensor that detects blood pressure, a pulse sensor that detects a pulse, and a sweat sensor that measures the amount of sweat (none of which are shown).
  • the pulse sensor emits light toward the user by a light emitting diode, and according to the light.
  • a sensor that detects a pulse by receiving light reflected from a user, or a wristwatch-type biosensor as disclosed in Japanese Patent Application Laid-Open No. 2007-215749 (US Publication No. 2007-0191718) can be employed. .
  • the information which shows a user's excitement state and emotion of emotions can be obtained by using the biosensor 23.
  • the microphone 24 is a sensor that inputs sound around the mobile terminal 10.
  • the microphone 24 is provided in the vicinity of the lower ( ⁇ Z) side end portion of the main surface ( ⁇ Y side surface) of the main body 11 of the mobile terminal 10. That is, the microphone 24 is disposed at a position facing the user's mouth when the user uses the telephone function (a position where the user's call voice is easily collected).
  • the microphone 24 collects information (user information) related to words that the user utters when creating (inputting) word-of-mouth information and sounds around the user.
  • the thermometer 25 is a sensor that detects the temperature around the mobile terminal 10.
  • the thermometer 25 may be configured to function as a sensor that detects the user's body temperature by the biosensor 23.
  • the thermometer 25 acquires temperature information (user information) of a place where the user is present while the user is creating word-of-mouth information.
  • the pressure sensor 26 is a sensor that detects the pressure of the user's finger (the strength of the input force) when there is an input by the user using the software keyboard displayed on the display 12.
  • a piezoelectric sensor having a piezoelectric element can be used as an example of the pressure sensor 26 .
  • the piezoelectric sensor electrically detects vibration by converting an externally applied force into a voltage by a piezoelectric effect.
  • the pressure sensor 26 acquires information (user information) of input strength (power strength) when the user inputs review information. Note that it is expected that the user's ability to press a key naturally increases if the user has a strong feeling for the review when creating the review information. Moreover, it can be said that the word-of-mouth information with strong thought has high credibility.
  • the image analysis unit 30 analyzes an image captured by the built-in camera 21 and an image (attached image) attached to the word-of-mouth information by the user.
  • the attached image is not limited to an image captured by the built-in camera 21, and may be an image captured by a camera different from the mobile terminal 10, for example.
  • the attached image may be captured either before or during the creation of the word-of-mouth information.
  • image data captured by a camera different from the mobile terminal 10 is stored in advance in the storage unit 40 when a review is created.
  • the image analysis unit 30 includes a facial expression detection unit 31, a clothing detection unit 32, and a metadata detection unit 33, as shown in FIG.
  • the facial expression detection unit 31 detects the facial expression of the user by comparing the face image data captured by the built-in camera 21 with the data registered in the facial expression DB stored in the storage unit 40.
  • the facial expression DB stores image data such as a smile, a crying face, an angry face, a surprised face, a face with a beard between the eyebrows, a tense face, and a relaxed face. Shall.
  • the facial expression detection unit 31 since the user's facial expression when the user creates the word-of-mouth information is captured by the built-in camera 21, the facial expression detection unit 31 uses the captured image to store data relating to the user's facial expression (user information ) Can be obtained.
  • the clothes detection unit 32 detects what clothes the user's clothes imaged by the built-in camera 21 is.
  • the clothing detection unit 32 detects clothing by pattern matching the clothing image data included in the captured image and the image data stored in the clothing DB stored in the storage unit 40 in advance.
  • the clothes DB stores image data for identifying clothes (suits, jackets, shirts, pants, skirts, dresses, Japanese clothes, ties, pocket chiefs, coats, hairdressers, glasses, hats, etc.). Shall.
  • the control unit 50 stores information on the purchased product (color, shape, pattern, type of clothes, etc.) in the storage unit 40. , Features, etc.) can be stored.
  • the clothing detection unit 32 may detect the clothing by comparing the image data of the clothing with the purchased product information (including the image). In addition, the clothing detection unit 32 may detect whether the user is wearing thick clothes (for example, wearing a coat) or lightly wearing clothes (for example, short sleeves).
  • the metadata detection unit 33 detects metadata (EXIF data) added to the attached image when the user attaches an image to the word-of-mouth information.
  • the image data table in FIG. 4 is a table for recording data related to attached images.
  • User information No. Imaging date / time, imaging location, facial expression, and clothing fields.
  • Image data No. In this field a unique value specifying the metadata of the image is input.
  • User information No. In this field a number for specifying user information acquired while review information with an image attached is input.
  • the imaging date / time of the image is input to the imaging date / time field.
  • An imaging location of an image is input in the imaging location field. In the field of imaging location, numerical values (latitude, longitude) of position information may be input, or the position name calculated from the position information based on the map information stored in the storage unit 40 may be input. Good.
  • the latitude / longitude information may have a certain width so that the home is not specified. Further, instead of latitude / longitude information, it may be recorded simply as home, or position information may not be disclosed. In this case, the above display may be performed by letting the user input whether the image was taken at home, or when the image taken with the latitude / longitude information registered in advance as a home is attached. Also good.
  • the facial expression of the person detected by the facial expression detection unit 31 is input to the facial expression field. In the clothes field, the classification of clothes worn by the person detected by the clothes detection unit 32 is input.
  • the storage unit 40 is, for example, a nonvolatile semiconductor memory (flash memory).
  • the storage unit 40 is a program for controlling the mobile terminal 10 executed by the control unit 50, various parameters for controlling the mobile terminal 10, user face information (image data), map information, An image data table, a user information table described later, and the like are stored.
  • the storage unit 40 also includes information (user information) related to the user detected by the sensor unit 20 while inputting the above-described facial expression DB and clothing DB, and the average value calculated from these data and the word-of-mouth information. Or, an attached image taken by the built-in camera 21 or an external camera is stored.
  • the control unit 50 has a CPU and controls the entire processing of the mobile terminal 10 in an integrated manner.
  • the control unit 50 transmits the user-created review information, attached image, and metadata of the attached image to the server 60, or the user information acquired while the user is creating the review information. 60.
  • the control part 50 shall transmit user information with respect to the server 60 in the state stored in the user information table shown in FIG.
  • the user information table in FIG. 5 stores user information acquired by the sensor unit 20 or the like while inputting word-of-mouth information.
  • the period during which the review information is being input may be a part of the time during which the review information is input, may be from the input start to the input end, and includes user information before and after the input. It may be.
  • the user information table of FIG. TextNo. , GPS position information, creation time, temperature, biological information, image data No. , Each field of facial expression.
  • the user information No. And image data No. Thus, the data in the image data table in FIG. 4 and the data in the user information table are associated with each other.
  • the GPS position information field the position information of the user at the time of inputting the review information acquired by the GPS module 22 is input.
  • the data stored in the GPS position information is not limited to the numerical value of the position information as shown in FIG. 5, and the name of the position calculated from the position information based on the map information in the storage unit 40 may be input.
  • the latitude / longitude information may have a certain width so that the home is not specified. Further, instead of the latitude / longitude information, it may be stored simply as home. In this case, it may be stored as described above by allowing the user to input whether or not the image was taken at home, or stored as described above when review information is input using latitude / longitude information registered in advance as a home. May be.
  • the creation time field the time when the word-of-mouth information is input (obtained from the calendar unit 16) is input.
  • the temperature field the temperature at the time of review information input acquired by the thermometer 25 is input.
  • a value obtained by quantifying the user's emotion and excitement when inputting word-of-mouth information (a value quantified by combining the outputs of the biometric sensor 23, the microphone 24, and the pressure sensor 26) is input.
  • the numerical value may be a three-level evaluation (1 (minimum) to 3 (maximum)), or “normal”, “slightly high”, “pretty high”, or the like may be stored.
  • Image data No. In this field, a number for specifying metadata of an image attached to the review information is input. When there is no attached image, the image data No. This field is blank. The image data No.
  • the expression field the expression of the user who is inputting word-of-mouth information is input.
  • the user's moving image may be captured while the word-of-mouth information is input by the built-in camera 21, the facial expression of the user may be detected by the facial expression detection unit 31, and the facial expression when the facial expression changes greatly may be recorded in the facial expression field. .
  • the average facial expression of the user who is inputting the word-of-mouth information may be detected and recorded by the facial expression detection unit 31.
  • FIG. 6 shows a block diagram of the server 60.
  • the server 60 will be described in detail with reference to FIG.
  • the server 60 includes a communication unit 70, an information input unit 80, an information extraction unit 90, a storage unit 100, and a control unit 110, as shown in FIG.
  • the communication unit 70 communicates with the communication units 18 of the plurality of mobile terminals 10.
  • a wireless communication unit that accesses a wide area network such as the Internet, Bluetooth (registered trademark) that realizes communication using Bluetooth (registered trademark). ) Unit, Felica (registered trademark) chip, and the like.
  • the information input unit 80 acquires word-of-mouth information created by the user in the plurality of mobile terminals 10 via the communication unit 70 and inputs the information to the control unit 110 and the information extraction unit 90.
  • the document created by the user accessing the web word-of-mouth input screen operated by the server 60 from the mobile terminal 10 is word-of-mouth information.
  • it is good also as determining individually whether the information produced by the portable terminal 10 is word-of-mouth information.
  • the method described in Japanese Patent Laid-Open No. 2006-244305 can be used as a method for determining whether or not it is word-of-mouth information.
  • the information extraction unit 90 compares specific text included in the word-of-mouth information acquired from the information input unit 80 (for example, text representing position, time, environment, etc.) and user information representing the user's state, and compares the comparison.
  • the review information is weighted based on the result.
  • the information extraction unit 90 includes a text extraction unit 91, a position evaluation unit 92, a time evaluation unit 93, an environment evaluation unit 94, and an emotion evaluation unit 95.
  • the text extraction unit 91 extracts a specific text (for example, text representing a position, time, environment, etc.) included in the word-of-mouth information with reference to the dictionary DB.
  • the dictionary DB is stored in the storage unit 100.
  • the dictionary DB includes place names such as “Mt. Hakodate”, “Tokyo Tower”, “Yokohama Station”, and the like as text representing the position.
  • “morning”, “noon”, “night”, “sunrise”, “sunset”, “noon time”, “spring”, “summer”, “autumn” are used as text representing the time. ”And“ winter ”.
  • the dictionary DB includes text representing the temperature and the degree of sound such as “hot”, “cold”, “quiet”, and “noisy” as text representing the environment.
  • the information input unit 80 has input word-of-mouth information that “the night view from Mount Hakodate is beautiful, but the north wind is cold”.
  • the text extracting unit 91 refers to the dictionary DB and extracts “Hakodateyama” as the text information regarding the position (place name), “night” as the text information regarding the time, and “cold” as the text information regarding the environment.
  • the text extraction unit 91 determines whether the review information is an experience type or a purchase type. In this determination, the text extraction unit 91 refers to a classification dictionary DB (stored in the storage unit 100) for sorting between the experience type and the purchase type.
  • a classification dictionary DB stored in the storage unit 100
  • the text information included in the word-of-mouth information extracted by the text extraction unit 91 is stored in the text information table shown in FIG.
  • the text information table shown in FIG. User ID, type, position information text, time information text, and environment information text fields.
  • TextNo. In the field of, a unique value specifying the review information is input. This TextNo.
  • the data in the text information table in FIG. 7 is associated with the data in the user information table in FIG.
  • the ID of the user who has input the word-of-mouth information is input.
  • the type field the type (experience type or purchase type) of the word-of-mouth information determined by the text extraction unit 91 is input.
  • Text extracted from the word-of-mouth information (text representing position, time, environment, etc.) is input to each field of the position information text, time information text, and environment information text. It is assumed that one or more texts can be input in each field of the position information text, time information text, and environment information text.
  • the position evaluation unit 92 compares the text information “Mt. Hakodate” extracted by the text extraction unit 91 with the output information of the GPS module 22 of the mobile terminal 10 input by the information input unit 80. Performs weighting on information credibility.
  • the position evaluation unit 92 refers to a map DB (stored in the storage unit 100) that associates a place name such as “Mt. Hakodate” and a position (latitude and longitude) during the comparison. .
  • the time evaluation unit 93 compares the text information “night” extracted by the text extraction unit 91 with the output information of the calendar unit 16 of the mobile terminal 10 input by the information input unit 80, and weights the reliability of the review information. Do.
  • the time evaluation unit 93 performs weighting by distinguishing whether the user's review is related to an experience or purchase based on information input in the type field.
  • the environmental evaluation unit 94 compares the text information “cold” extracted by the text extraction unit 91 with the detection result of the thermometer 25 of the mobile terminal 10 input by the information input unit 80, and weights the credit rating of the word-of-mouth information. Do. Note that the environment evaluation unit 94 acquires clothes information detected by the clothes detection unit 32 of the mobile terminal 10 (for example, information on whether the user is wearing thick clothes or light clothes) via the communication unit 70, It is good also as weighting regarding the reliability of review information based on. Moreover, the environment evaluation part 94 is good also as weighting regarding the reliability of a review information based on the presence or absence of an attached image.
  • the emotion evaluation unit 95 evaluates the user's emotion (feeling emotional) based on the output of the image analysis unit 30, the biological sensor 23, the microphone 24, and the pressure sensor 26 of the mobile terminal 10 input by the information input unit 80, Performs weighting on the credit quality of word-of-mouth information.
  • the position evaluation unit 92, the time evaluation unit 93, the environment evaluation unit 94, and the emotion evaluation unit 95 give the weighting result on the reliability of the word-of-mouth information to the control unit 110. Output.
  • the storage unit 100 is a non-volatile memory (flash memory) or the like, and has a map DB, a dictionary DB, and a classification dictionary DB for classifying whether the user's review information is a trial type or a purchase type. Further, the storage unit 100 stores the word-of-mouth information input by the information input unit 80 in association with the weighting information related to the reliability of the word-of-mouth information determined by the information extraction unit 90.
  • the control unit 110 includes a CPU and controls the entire server 60 in an integrated manner.
  • the control unit 110 stores the word-of-mouth information and the weighting information input by the information input unit 80 in the storage unit 100 and uses a browsing requester (a portable terminal or a personal computer connected to the network 180). Review information is provided when a review request for review information is received from the user.
  • the control unit 110 may provide the weighting information related to the credit rating together with the word-of-mouth information for all browsing requests, or provide the weighting information related to the credit rating together with the word-of-mouth information only for the browsing request from the paying member. You may make it do.
  • FIG. 8 is a flowchart showing processing related to word-of-mouth information input by the control unit 50 of the mobile terminal 10. The process of FIG. 8 is started from the stage when the user accesses the web review input screen operated by the server 60.
  • step S10 the control unit 50 displays on the display 12 a screen requesting the user to select metadata and user information that may be transmitted to the server 60 when posting word-of-mouth information.
  • step S12 the control unit 50 waits until the user selects an item that may be transmitted to the server 60 from the items displayed on the display 12. In this case, when the selection by the user is performed, the process proceeds to step S14. In the following description, it is assumed that all items of metadata and user information are selected by the user (may be transmitted to the server 60).
  • step S14 the control unit 50 waits until the user starts inputting word-of-mouth information. In this case, when the input of word-of-mouth information is started by the user, the process proceeds to step S16.
  • step S16 the control unit 50 acquires user information using the sensor unit 20.
  • the control unit 50 acquires the user information selected in step S12. That is, the control unit 50 captures an image of the situation of the user and the user's surroundings, the user's position, the user's biological information, the user's voice and surrounding sounds, the temperature of the user's location, and the force with which the user presses the touch panel 14. Of these, the one selected by the user is acquired.
  • the control unit 50 does not acquire information regarding the item.
  • step S18 the control unit 50 determines whether or not the input of word-of-mouth information by the user has been completed. In this case, for example, when the transmission button for transmitting the review information to the server 60 is pressed by the user, the determination in step S18 is affirmed. If the determination in step S18 is affirmed, the process proceeds to step S20. If the determination is negative, the processes and determinations in steps S16 and S18 are repeated.
  • step S18 determines whether an image is attached together with the word-of-mouth information. If the determination here is affirmative, that is, if an image is attached, the process proceeds to step S22. If the determination is negative, the process proceeds to step S24. In step S12, if the user does not wish to transmit the metadata related to the attached image to the server 60, the control unit 50 proceeds to step S24. At this time, the metadata of the attached image (imaging date and time and information on the imaging location) is deleted or the masking is temporarily performed so that the transmission of the metadata that is not desired to be transmitted to the server 60 is not performed. Good.
  • step S22 the control unit 50 acquires the metadata of the attached image. Thereafter, the process proceeds to step S24.
  • the control unit 50 When the process proceeds to step S24, the control unit 50 generates a user information table (FIG. 5) and an image data table (FIG. 4) using the user information and metadata acquired in steps S14 and S22. In this case, the control unit 50 inputs the acquired user information itself into the table.
  • the control unit 50 also analyzes the state when the user is creating word-of-mouth information based on the facial expression detection result by the facial expression detection unit 31, the input result to the biological sensor 23 and the microphone 24, and the output of the pressure sensor 26. The result is input to each table. If there is an attached image and the user's face is recognized by the image analysis unit 30, the facial expression detection unit 31 may detect the user's facial expression and estimate the user's emotion. .
  • control unit 50 may estimate the user's emotion in consideration of the biometric information of the user in the metadata of the attached image. It should be noted that if the user's state when the user is creating the word-of-mouth information and the user's state based on the analysis of the attached image are substantially the same, any data may be used.
  • step S26 the control unit 50 transmits the word-of-mouth information, the user information table, and the image data table to the server 60 via the communication unit 18.
  • step S28 the control unit 50 determines whether or not the user creates further word-of-mouth information. If the determination here is affirmed, the process returns to step S14, and the processing after step S14 is executed in the same manner as described above. However, if the determination in step S28 is negative, the entire processing of FIG. To do.
  • the user information table including the review information input by the user and the user information while inputting the review information can be transmitted to the server 60.
  • the image and an image data table including the metadata of the image can be transmitted to the server 60.
  • items that the user has permitted to transmit are transmitted to the server 60, but items that the user does not permit to transmit can be prevented from being transmitted to the server 60. .
  • user information that may be transmitted to the server is selected in step S10, but necessary user information may be acquired based on the text information extracted by the text extraction unit 91. .
  • the user information during the input of the review information may be stored in the storage unit 40, and the user information during the input of the review may be acquired from the storage unit 40.
  • the user after the input of the review information (within several minutes) Information may be acquired. For this reason, the transmission of the word-of-mouth information, the user information, and the image data to the server 60 in step S26 may not be performed at the same time, and may be appropriately transmitted at different times.
  • step S30 the control unit 110 instructs the text extraction unit 91 to generate a text information table (FIG. 7) from the word-of-mouth information acquired from the mobile terminal 10.
  • the text extraction unit 91 extracts position information text, time information text, environment information text, and the like from the review information, inputs them into the text information table, and determines the type of review information. More specifically, the text extraction unit 91 determines whether the word-of-mouth information is an experience type or a purchase type using a classification dictionary stored in the storage unit 100.
  • the type of word-of-mouth information is determined in this way in terms of time weighting, the experience type needs to increase the weight of the word-of-mouth information immediately after the experience, whereas the purchase type has the word-of-mouth information immediately after purchase. This is because it is necessary to reduce the weight of.
  • the text extraction unit 91 refers to the classification dictionary DB and purchases information such as place names of tourist spots, “saw”, “eating”, “going” in the input word-of-mouth information (text). Determines that it is an experiential type if it contains words that represent different experiences.
  • the text extraction unit 91 refers to the classification dictionary DB and determines that it is a purchase type when word-of-mouth information includes a product name, a manufacturer name, a design, and a phrase related to the amount of money. Examples of the phrase related to the amount of money include phrases such as “expensive”, “cheap”, and “bargain” in addition to a numerical value indicating a specific price. If the user can input which type of word-of-mouth information on the Web word-of-mouth input screen operated by the server 60, the text information table may be generated according to the input.
  • step S32 the control unit 110 issues an instruction to the information extraction unit 90, and performs weighting on the reliability of the review information based on the review information (text information table).
  • the review information text information table
  • the control unit 110 instructs the information extraction unit 90 to determine the weighting coefficient for each item of the position information text, time information text, and environment information text in the text information table.
  • the position evaluation unit 92 extracts the position information text “Mt. Hakodate” from the text information table. Further, the position evaluation unit 92 extracts GPS position information from the user information table. Then, the position evaluation unit 92 refers to the map DB, extracts the position (latitude, longitude) indicated by the position information text “Mt. Hakodate”, and compares it with GPS position information. In this comparison, the position evaluation unit 92 calculates the distance between two points.
  • the position evaluation unit 92 determines the weighting coefficient of the position information text using the distance between the two points calculated as described above and the position information comparison table shown in FIG. Specifically, the position evaluation unit 92 sets the weighting factor to 3 when the user is at Mt. Hakodate (when the distance between the two points is less than 1 km), and when the user is near Mt. Hakodate (between the two points). The weighting coefficient is set to 2 when the distance is 1 km to 10 km), and the weighting coefficient is set to 1 otherwise (when the distance between the two points is greater than 10 km).
  • the data for which the weighting coefficient is determined is stored in the weighting coefficient storage table shown in FIG. In the table of FIG. 11, TextNo. Of the word-of-mouth information for which the weighting coefficient is calculated.
  • the comparison information and the weighting coefficient are stored.
  • the weighting result of the position information text “Hakodateyama” described above is stored in the first line of FIG.
  • the wording immediately after the experience is more realistic than the word-of-mouth communication after the experience, so that the weighting coefficient is increased as soon as the experience is experienced. Is set.
  • the time information comparison table-purchase type shown in FIG. 12B tends to have a higher evaluation due to the joy of being able to obtain it immediately after purchase. The coefficient is set to be small.
  • the time evaluation unit 93 extracts the text information creation time from the creation time item in the user information table. In addition, the time evaluation unit 93 determines an approximate time from the time information text, and acquires a difference (time difference) from the creation time of the review information. The time evaluation unit 93 may determine an approximate time from the time information text with reference to the dictionary DB related to time information. In the dictionary DB, for example, the text “night” is associated with a time such as a range from 18:00 to 3 o'clock on the next day and a representative value (for example, 22:00). To do.
  • the time evaluation unit 93 refers to FIG. 12A and sets the weighting coefficient to 3 when the review is real time (within 1 hour).
  • the weighting factor is 2 if it is within half a day, and the weighting factor is 1 otherwise.
  • the time determined from the time information text has a range such as the text “Night” and the creation time of the review is included in this time range, it is determined that the review was created in real time. May be.
  • the weighting coefficient determined in this way is stored in the weighting information table in FIG. 11 (see the second line in FIG. 11).
  • the time evaluation unit 93 refers to FIG. 12B and sets the weighting coefficient to 1 within two weeks immediately after the purchase.
  • the weighting coefficient is 2 for two weeks, and the weighting coefficient is 3 for 20 weeks (about 5 months).
  • the weighting coefficient determined in this way is stored in the weighting information table in FIG. 11 (the sixth line in FIG. 11).
  • the time evaluation unit 93 performs weighting when the time information text “Akiguchi of last year” is included in the review information.
  • the present invention is not limited to this.
  • the weighting coefficient may be determined from the difference between the purchase history and the creation date and time of the review information.
  • highly accurate reviews can be evaluated by changing the method of determining the weighting coefficient of the time information text (time information comparison table to be used) according to the type of review (experience type or purchase type). Can do.
  • the environment evaluation unit 94 extracts the environment information text “cold” from the text information table. In this case, for example, the environment evaluation unit 94 sets the weighting coefficient to 3 when the temperature of the user information table is 5 degrees or less, sets the weighting coefficient to 2 when the temperature is 10 degrees or less, and otherwise. Assumes a weighting factor of 1. The weighting coefficient determined in this way is stored in the weighting information table in FIG. 11 (third line in FIG. 11). When the environment evaluation unit 94 determines the weighting coefficient, the weighting coefficient can be determined in consideration of the presence when the user is creating the word-of-mouth information.
  • the environment evaluation unit 94 may set the weighting coefficient to 2 when there is an attached image and set the weighting coefficient to 1 when there is no attached image. Further, when the environment evaluation unit 94 extracts the environmental information text “hot”, the weighting coefficient is 3 when the temperature exceeds 35 degrees, and the weighting coefficient is 2 when the temperature is 30 degrees to less than 35 degrees. In other cases, the weighting coefficient may be set to 1. That is, a criterion for determining the weighting coefficient may be determined in advance according to whether the text means cold or warm. Moreover, the environment evaluation part 94 is good also as determining a weighting coefficient in consideration of the detection result of the clothing detection part 32. FIG. That is, when environmental information text “cold” or “cold” is extracted, if the user is thick, the weighting coefficient is increased, or when the environmental information text “hot” is extracted, the user For light wear, the weighting coefficient may be increased.
  • weighting can be performed based on the user's facial expression, biometric information, clothes, etc. at the time of text creation.
  • the emotion evaluation unit 95 may determine the weighting coefficient according to the facial expression of the user analyzed by the image analysis unit 30 based on the image captured by the built-in camera 21 at the time of text creation (four lines in FIG. 11). See eye). In this case, the emotion evaluation unit 95 can increase the weighting coefficient when the user's facial expression expresses emotions such as a smile or an angry face clearly.
  • the emotion evaluation unit 95 may determine a weighting coefficient based on, for example, the user's emotion and excitement state derived from the user's biological information at the time of text creation (see the fifth line in FIG. 11).
  • the emotion evaluation unit 95 for example, when three outputs among the four components of the image analysis unit 30, the biological sensor 23, the microphone 24, and the pressure sensor 26 are different from the normal state (for example, the image
  • the facial expression detection unit 31 of the analysis unit 30 detects the user's smile
  • the biological sensor 23 detects the user's excitement state
  • the microphone 24 inputs the user's voice (single speech)
  • the weighting coefficient is set to 3.
  • the weighting coefficient can be set to 2, otherwise, the weighting coefficient can be set to 1.
  • the value of the biometric information field in the user information table may be used as a weighting coefficient as it is.
  • the information extraction unit 90 may determine the weighting coefficient based on the user's clothes detected by the image analysis unit 30 from the image acquired by the built-in camera 21 at the time of text creation (see the seventh line in FIG. 11). For example, the information extraction unit 90 can increase the weighting coefficient when a user who has input word-of-mouth information regarding purchase of clothes is wearing the clothes.
  • FIGS. 10, 12A, and 12B are examples. That is, the table can be modified or added as necessary.
  • step S32 is performed as described above, and when the process proceeds to step S34, the control unit 110 associates the word-of-mouth information and the weighting information and stores them in the storage unit 100.
  • the control unit 110 includes TextNo.
  • the weighting information of the word-of-mouth information a value obtained by adding up the weighting coefficients of the records having the same number or an average value is used. If there is a weighting coefficient to be emphasized among the weighting coefficients, the ratio (weight) of the weighting coefficient to be emphasized may be increased and averaged.
  • step S36 the control unit 110 determines whether there is word-of-mouth information for further weighting. If the determination here is affirmed, the process returns to step S30. If the determination is negative, all the processes in FIG. 9 are terminated.
  • the review information is linked to the review information.
  • the weighting information itself or the result of performing a predetermined calculation using the weighting information can be provided to the viewer together with the word-of-mouth information.
  • the credit rating may be displayed in the form of how many points out of a perfect score. In this case, for example, it may be displayed that “the night view from Mt. Hakodate is beautiful, but the north wind is cold” (8 out of 10). Note that only the word-of-mouth information having a certain degree of reliability or higher may be provided to the viewer.
  • the mobile terminal 10 receives the input of word-of-mouth information from the user, and the user information related to the input of word-of-mouth information when permitted by the user. Since the communication unit 18 for transmitting the review information and the user information is provided, the user while inputting the review information while protecting the privacy (personal information) of the user. Information can be sent to the server 60. Thereby, since the index for judging the creditworthiness of the review information can be transmitted to the server 60, the trustworthiness of the review information is determined by the server 60, and the creditworthiness information is provided together with the review information to other users. It becomes possible to do.
  • the sensor part 20 acquires the information (an image, biometric information, the force which presses the touch panel 14, etc.) used for estimation of a user's emotion
  • a word of mouth is used by using this information. It is possible to estimate the feeling of inputting information and thus the reliability of the word-of-mouth information. Thereby, it becomes possible to improve the reliability of the reliability of the review information.
  • the biometric information detected by the biometric sensor 23 emotions such as the excitement level and the emotion of the user can be reflected in the reliability of the word-of-mouth information, and the detection value of the pressure sensor 26 is used. In this way, it is possible to reflect the increase in emotion in the credit rating of the word-of-mouth information.
  • the user's facial expression in the image captured by the built-in camera 21 the user's emotion can be reflected in the reliability of the word-of-mouth information.
  • the comparison result between the clothes and the word-of-mouth information can be reflected in the reliability of the word-of-mouth information.
  • the reliability of word-of-mouth information can be further improved by using the user's voice, ambient sound, and temperature.
  • the server 60 includes the information input unit 80 for inputting the review information and the user information for which the review information is being created, and one of the review information and the user information, and the other of the review information and the user information. And an information extraction unit 90 for extracting information related to the information. Thereby, the server 60 can appropriately determine the reliability of the review information by extracting the mutually related information from the review information and the user information.
  • the information extraction unit 90 determines a weighting coefficient related to the text included in the word-of-mouth information based on the extracted information.
  • the reliability of the review information by determining the weighting coefficient for the text included in the review information and weighting the review information based on the weighting coefficient.
  • reports with respect to the user who wants to browse the reliability of review information, the browsing user can judge whether review information is trusted based on reliability.
  • the position evaluation unit 92 extracts a position as user information and compares it with the position information text in the word-of-mouth information to determine a weighting coefficient. That is, the position evaluation unit 92 increases the weighting as the difference between the position information text and the input location of the review information is smaller. As a result, the weighting coefficient can be determined in consideration of the presence of the user creating the word-of-mouth information.
  • the metadata of the image is compared with at least one of the review information and the user information, and the review information is weighted based on the comparison result.
  • the control unit 50 when the control unit 50 receives input of word-of-mouth information from the user and the biometric sensor 23 is permitted by the user, the biometric information of the user is related to the input. get. Thereby, it is possible to acquire information for judging the user's feelings and the like during the input of the word-of-mouth information while protecting the user's privacy (personal information).
  • the viewer may be able to transmit information (such as height, weight, and number of clothes) related to sex, age, and size to the server 60.
  • the control unit 110 of the server 60 can preferentially provide review information created by a user similar to the viewer to the viewer.
  • the control unit 110 stores word-of-mouth information including information related to clothes size (height, weight, number of clothes, etc.) in the storage unit 100 together with a weighting factor in advance, Based on age, clothing size, etc., providing word-of-mouth information that includes similar information on gender, age, clothing size, etc. (height, weight, number of clothes, etc.) along with creditworthiness do it.
  • the browsing applicant can preferentially acquire the word-of-mouth information created by the user similar to his / her information.
  • control unit 110 determines the reliability of the word-of-mouth information based on the weighting coefficients determined by the position evaluation unit 92, the time evaluation unit 93, the environment evaluation unit 94, and the emotion evaluation unit 95 is described.
  • the reliability of the word-of-mouth information may be determined using the weighting coefficients determined by the units 92 to 95 in the information extraction unit 90 and output to the control unit 110.
  • a table such as an information comparison table may be prepared.
  • the image data table (FIG. 4), the user information table (FIG. 5), and the text information table (FIG. 7) used in the above embodiment are examples.
  • all the tables may be combined into one table, or the image data table (FIG. 4) and the user information table (FIG. 5) may be combined into one table.
  • some of the fields of each table may be omitted or another field may be added.
  • the image analysis unit 30 is provided in the mobile terminal 10 .
  • the present invention is not limited to this, and the image analysis unit 30 may be provided on the server 60 side.
  • the server 60 facial expression detection, clothing detection, and metadata (EXIF data) detection of an image acquired by the built-in camera 21 are performed.
  • the facial expression DB and the clothing DB can be stored in the storage unit 100 of the server 60, it is not necessary to record them in the storage unit 40 of the mobile terminal 10.
  • the storage area of the storage unit 40 can be used effectively, and the management of updating the facial expression DB and the clothing DB is facilitated.
  • the server 60 performs the processing related to weighting.
  • the present invention is not limited to this, and the mobile terminal 10 may perform the processing.
  • the terminal which produces review information was a smart phone
  • the present invention can be applied to creation of word-of-mouth information using a personal computer.
  • a user imaging camera for example, a USB camera
  • the pressure sensor 26 may be provided on the keyboard of the personal computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

 クチコミ情報の内容に関連する情報を得るため、電子機器(10)は、ユーザからテキストの入力を受け付ける入力部(50)と、前記ユーザにより許可された場合に、前記テキストの入力に関連して前記ユーザに関する情報を取得する情報取得部(20)と、前記テキストと、前記ユーザに関する情報とを送信する送信部(18)と、を備えている。

Description

電子機器
 本発明は、電子機器に関する。
 従来より、様々な事柄についてインターネット上でユーザの声や評価を公開するクチコミが利用されている。また、ユーザが入力した文章がクチコミ情報かどうかを判定するクチコミ情報判定装置が公開されている(例えば、特許文献1参照)。
特開2006-244305号公報
 しかしながら、従来のクチコミ情報判定装置は、ユーザが入力した文章がクチコミ情報かどうかを判定するに過ぎず、そのクチコミ情報の内容に関連する情報(クチコミ情報の信用度、信憑性など)まで得ることができなかった。
 そこで、本発明は上記の課題に鑑みてなされたものであり、クチコミ情報の内容に関連する情報を得ることが可能な電子機器を提供することを目的とする。
 本発明の電子機器は、ユーザからテキストの入力を受け付ける入力部と、前記ユーザにより許可された場合に、前記テキストの入力に関連して前記ユーザに関する情報を取得する情報取得部と、前記テキストと、前記ユーザに関する情報とを送信する送信部と、を備えている。
 この場合において、前記情報取得部は、前記ユーザの感情の推定に用いる情報を取得することとしてもよい。また、前記情報取得部は、前記ユーザの生体情報を取得する生体センサを備えていてもよい。また、前記情報取得部は、前記ユーザの入力に関する力量を検出する力量センサを備えていてもよい。また、前記情報取得部は、前記テキストの入力に関連して前記ユーザを撮像する撮像部を備えていてもよい。また、前記情報取得部は、前記テキストの入力に関連して前記ユーザの環境に関する情報を取得する環境センサを備えていてもよい。
 さらに、本発明の電子機器では、前記送信部は、前記テキスト及び前記ユーザに関する情報とともに、画像データを送信することとしてもよい。また、前記送信部は、前記ユーザにより許可された場合に、前記画像データに付随するメタデータを送信することとしてもよい。また、前記送信部は、前記ユーザにより許可されない場合に、前記画像データに付随するメタデータを送信しないこととしてもよい。
 また、本発明の電子機器では、前記メタデータを検出する検出部を備えていてもよい。この場合、前記検出部は、前記ユーザにより前記メタデータの検出が許可された場合に前記検出を行うこととしてもよい。また、本発明の電子機器では、前記テキストから前記ユーザに関する情報に対応する記述情報を抽出し、前記ユーザに関する情報と前記対応する記述情報との比較結果に基づき、前記テキストに関する重み付けを行う重み付け部を備えていてもよい。
 また、本発明の電子機器は、ユーザからの入力を受け付ける入力部と、前記ユーザにより許可された場合に、前記入力に関連して前記ユーザの生体情報を取得する生体情報取得部と、を備えている。
 本発明の電子機器は、テキストと、前記テキスト作成中のユーザに関する情報とを入力する入力部と、前記テキストと前記ユーザに関する情報との一方から、前記テキストと前記ユーザに関する情報との他方に関連した情報を抽出する抽出部と、を備えている。
 この場合において、本発明の電子機器は、前記抽出部が抽出した情報に基づいて、前記テキストに関する重み付けを行う重み付け部を備えていてもよい。この場合、前記重み付け部は、前記ユーザに関する情報と、当該ユーザに関する情報に対応するテキストとの比較結果に基づいて、前記テキストに関する重み付けを行うこととしてもよい。また、前記重み付け結果に基づいて、前記テキストに関連した報知を行う報知部を備えていてもよい。また、前記抽出部は、前記ユーザの感情に関する情報を抽出してもよい。また、前記抽出部は、前記ユーザの環境に関する情報を抽出してもよい。また、前記抽出部は、位置と日時の少なくとも一方に関する情報を抽出してもよい。
 また、本発明の電子機器では、画像データと、該画像データに付随したメタデータとを入力する画像入力部と、前記テキストと前記ユーザに関する情報との少なくとも一方と、前記メタデータとを比較する比較部と、を備えていてもよい。この場合、前記比較部の比較結果に基づいて、前記テキストに関する重み付けを行う重み付け部を備えていてもよい。
 また、本発明の電子機器では、前記テキストの閲覧を希望する閲覧希望者に関する情報を取得する取得部と、前記閲覧希望者に関する情報に類似する前記ユーザに関する情報を検出する検出部と、前記検出部が検出した前記ユーザに関する情報に基づいて、前記テキストを提供する提供部と、を備えていてもよい。
 また、本発明の電子機器が重み付け部を備える場合には、前記重み付け部は、前記テキストに位置に関する記述情報が含まれている場合、前記位置に関する記述情報と、前記テキストの入力場所との差分が小さいほど重み付けを大きくしてもよい。また、前記重み付け部は、前記テキストに日時に関する記述情報が含まれている場合、前記日時に関する記述情報と、前記テキストの入力日時との差分が小さいほど重み付けを大きくしてもよい。また、前記重み付け部は、前記テキストに物の評価に関する記述情報が含まれている場合、前記テキストの入力日時と前記物の入手日時との差分が大きいほど重み付けを大きくしてもよい。また、前記重み付けが大きいほど、前記テキストの内容の信頼性が高いこととしてもよい。
 本発明の電子機器は、クチコミ情報の内容に関連する情報を得ることができるという効果を奏する。
一実施形態に係る情報処理システムの構成を概略的に示す図である。 図2(a)は、携帯端末を表側(-Y側)から見た状態を示す図であり、図2(b)は、携帯端末を裏側(+Y側)から見た状態を示す図である。 携帯端末のブロック図である。 画像データテーブルの一例を示す図である。 ユーザ情報テーブルの一例を示す図である。 サーバのブロック図である。 テキスト情報テーブルの一例を示す図である。 携帯端末の制御部によるクチコミ情報入力に関する処理を示すフローチャートである。 サーバによるクチコミ情報の信用度に関する重み付け処理を示すフローチャートである。 位置情報比較テーブルの一例を示す図である。 重み付け情報テーブルの一例を示す図である。 図12(a)は、時刻情報比較テーブル-体験型の一例を示す図であり、図12(b)は、時刻情報比較テーブル-購入型の一例を示す図である。
 以下、一実施形態に係る情報処理システムについて、図1~図12に基づいて詳細に説明する。本実施形態の情報処理システムは、主に、ユーザにより入力されたクチコミ情報の信用度を判定するシステムである。
 図1には、本実施形態の情報処理システム200の構成が概略的に示されている。情報処理システム200は、携帯端末10と、サーバ60とを備えている。携帯端末10とサーバ60は、インターネット等のネットワーク180に接続されている。
 携帯端末10は、ユーザにより携帯された状態で利用される情報機器である。携帯端末10としては、携帯電話、スマートフォン、PHS(Personal Handy-phone System)、PDA(Personal Digital Assistant)等を採用することができるが、本実施形態では、携帯端末10は、スマートフォンであるものとする。携帯端末10は、電話機能やインターネット等に接続するための通信機能、および、プログラムを実行するためのデータ処理機能等を有する。
 図2(a)は、携帯端末10を表側(-Y側)から見た状態を示す図であり、図2(b)は、携帯端末10を裏側(+Y側)から見た状態を示す図である。これらの図に示すように、携帯端末10は、一例として、長方形の主面(-Y側の面)を有する薄板状の形状を有しており、片手の手のひらで把持することができる程度の大きさを有している。
 図3には、携帯端末10のブロック図が示されている。図3に示すように、携帯端末10は、ディスプレイ12、タッチパネル14、カレンダー部16、通信部18、センサ部20、画像分析部30、記憶部40、及び制御部50を有している。
 ディスプレイ12は、図2(a)に示すように、携帯端末10の本体部11の主面(-Y側の面)側に設けられている。ディスプレイ12は、例えば、本体部11の主面の大半の領域(例えば90%)を占める大きさを有する。ディスプレイ12は、画像、各種情報およびボタン等の操作入力用画像を表示する。ディスプレイ12は、一例として、例えば液晶表示素子を用いたデバイスであるものとする。
 タッチパネル14は、ユーザが触れたことに応じた情報を制御部50に対して入力することが可能なインタフェースである。タッチパネル14は、図2(a)に示すように、ディスプレイ12表面またはディスプレイ12内に組み込まれているため、ユーザは、ディスプレイ12の表面をタッチすることにより、種々の情報を直感的に入力することができる。
 カレンダー部16は、予め記憶されている年、月、日、時刻といった時間情報を取得して、制御部50に対して出力する。なお、カレンダー部16は、計時機能を有しているものとする。本実施形態においては、カレンダー部16は、ユーザが携帯端末10を用いてクチコミ情報を作成した時刻や、クチコミ情報に添付される画像のメタデータに含まれる時刻を検出する。
 通信部18は、ネットワーク180上のサーバ60や、他の携帯端末と通信する。通信部18は、一例として、インターネット等の広域ネットワークにアクセスする無線通信ユニット、Bluetooth(登録商標)による通信を実現するBluetooth(登録商標)ユニット、及び、Felica(登録商標)チップ等を有し、サーバおよび他の携帯端末と通信する。
 センサ部20は、各種センサを有している。本実施形態において、センサ部20は、内蔵カメラ21、GPS(Global Positioning System)モジュール22、生体センサ23、マイク24、温度計25、圧力センサ26を有しているものとする。
 内蔵カメラ21は、撮像レンズ(例えば広角用レンズ)および撮像素子を有し、被写体の静止画や動画を撮像し、後述の画像分析部30と協働してユーザの表情を非接触で検出する非接触センサである。撮像素子は、一例として、CCDおよびCMOSデバイスである。また、撮像素子は、一例として、RGB3原色がベイヤ配列されたカラーフィルタを含み、各色のそれぞれに対応した色信号を出力する。内蔵カメラ21は、携帯端末10の本体部11におけるディスプレイ12が設けられた面(主面(-Y側の面))に設けられている。したがって、内蔵カメラ21は、携帯端末10のタッチパネル14を操作しているユーザの顔及び服装を撮像することができる。また、カメラで被写体を撮像すると同時に、制御部50によりカメラで撮像した画像に関するメタデータ(EXIFデータ)が作成される。撮像した画像に関するメタデータには、例えば、撮像日時、撮像場所(GPS情報)、解像度、焦点距離などが含まれる。なお、撮像日時は、前述したカレンダー部16が検出するものとし、撮像場所は、後述するGPSモジュール22が検出するものとする。本実施形態においては、ユーザがクチコミ情報を作成している間のユーザの表情を、内蔵カメラ21を用いて撮像する。また、ユーザは、内蔵カメラ21を用いて、クチコミ情報に添付する画像を撮像する。
 GPSモジュール22は、携帯端末10の位置(例えば緯度および経度)を検出するセンサである。本実施形態においては、GPSモジュール22は、ユーザがクチコミ情報を作成しているときに、ユーザのいる場所の情報(ユーザ情報)を取得(検出)する。
 生体センサ23は、一例として、図2(b)に示すように、携帯端末10の本体部11裏面に設けられている。ただし、これに限定されるものではなく本体部11の表側に設けてもよいし、長辺側の側部の2箇所に設けてもよい。生体センサ23は、携帯端末10を保持するユーザの状態を取得するセンサである。生体センサ23は、ユーザの状態として、例えば、ユーザの体温、血圧、脈拍および発汗量、握力等を取得する。例えば、生体センサ23は、ユーザが携帯端末10を保持している力に関する情報(例えば握力)を取得するセンサを有しているものとする。このセンサによれば、ユーザが携帯端末10を保持したことや、携帯端末10を保持する力の大きさを検出することができる。なお、後述する制御部50は、このセンサによりユーザが携帯端末10を保持したことを検出した段階で、他の生体センサによる情報の取得を開始するようにしてもよい。また、制御部50は、電源がオンとなっている状態において、当該センサによりユーザが携帯端末10を保持したことを検出した段階で、その他の機能をオンにする(あるいはスリープ状態から復帰する)ような制御を行うこととしてもよい。
 また、生体センサ23は、この他に、体温を測る体温センサ、血圧を検出する血圧センサ、脈拍を検出する脈拍センサ、発汗量を測る発汗センサ(いずれも図示しない)を有しているものとする。脈拍センサは、一例として、特開2001-276012号公報(米国特許第6,526,315号)に開示されているように、発光ダイオードによりユーザに向けて光を照射し、この光に応じてユーザから反射した光を受光することにより脈拍を検出するセンサや、特開2007-215749号公報(米国公開2007-0191718号)に開示されているような腕時計型の生体センサを採用することができる。
 一般に、ユーザが興奮したり、怒ったり、悲しんだりすると、ユーザが携帯端末10を把持する力やユーザの体温、血圧、脈拍数に変化が見られる。このため、生体センサ23を用いることで、ユーザの興奮状態や喜怒哀楽の感情を示す情報(ユーザ情報)を得ることができる。
 マイク24は、携帯端末10の周囲の音声を入力するセンサである。マイク24は、一例として、携帯端末10の本体部11の主面(-Y側の面)の下方(-Z)側の端部近傍に設けられている。すなわち、マイク24は、ユーザが電話機能を利用するときにユーザの口と対向する位置(ユーザの通話音声を集音しやすい位置)に配置されている。なお、本実施形態においては、マイク24は、ユーザがクチコミ情報を作成(入力)する際に発した言葉や、ユーザの周囲の音に関する情報(ユーザ情報)を収集する。
 温度計25は、携帯端末10の周囲の温度を検出するセンサである。なお、温度計25は、生体センサ23によるユーザの体温を検出するセンサと機能を兼用する構成であってもよい。本実施形態においては、温度計25は、ユーザがクチコミ情報を作成している間における、ユーザのいる場所の温度情報(ユーザ情報)を取得する。
 圧力センサ26は、ディスプレイ12に表示されるソフトウエアキーボードを用いたユーザによる入力があった場合に、ユーザの指の圧力(入力時の力の強さ)を検出するセンサである。圧力センサ26は、一例としてピエゾ素子を有する圧電センサを用いることができる。なお、圧電センサは、外部から与えられた力を圧電効果により電圧に変換することで、振動を電気的に検出する。圧力センサ26は、ユーザがクチコミ情報を入力する際の入力の強さ(力の強さ)の情報(ユーザ情報)を取得する。なお、ユーザがクチコミ情報を作成する際にクチコミに対する思い入れが強いと、自然にキーを押す力が強くなることが予想される。また、思い入れの強いクチコミ情報は信用度が高いといえる。
 画像分析部30は、内蔵カメラ21が撮像した画像や、ユーザがクチコミ情報に添付する画像(添付画像)の分析を行う。なお、添付画像は、内蔵カメラ21により撮像された画像に限らず、例えば、携帯端末10とは異なるカメラにより撮像された画像であってもよい。なお、携帯端末10の内蔵カメラ21で撮像された画像を添付画像とする場合、当該添付画像は、クチコミ情報の作成前、作成中のいずれにおいて撮像されたものであってもよい。一方、携帯端末10とは異なるカメラにより撮像された撮像データは、クチコミを作成する時点で、予め記憶部40に記憶されているものとする。
 画像分析部30は、図3に示すように、表情検出部31、服装検出部32、及びメタデータ検出部33を有する。
 表情検出部31は、内蔵カメラ21により撮像された顔の画像データと、記憶部40に記憶されている顔表情DBに登録されているデータとを比較して、ユーザの表情を検出する。ここで、顔表情DBには、笑顔、泣き顔、怒り顔、驚き顔、眉間に皺を寄せている顔、緊張している顔、および、リラックスしている顔等の画像データが格納されているものとする。本実施形態においては、ユーザがクチコミ情報を作成する際のユーザの表情が内蔵カメラ21で撮像されるので、表情検出部31は、撮像された画像を用いて、ユーザの表情に関するデータ(ユーザ情報)を取得することができる。
 なお、笑顔検出の方法は、一例として、米国公開特許2008-037841号に開示されている。また、眉間の皺の検出の方法は、一例として、米国公開特許2008-292148号に開示されている。
 服装検出部32は、内蔵カメラ21により撮像されたユーザの服装が、どのような服装であるかを検出する。服装検出部32は、撮像された画像に含まれている服装の画像データと、記憶部40に予め記憶されている服装DBに格納された画像データとをパターンマッチングして服装を検出する。なお、服装DBには、服装(スーツ、ジャケット、シャツ、パンツ、スカート、ワンピース、和服、ネクタイ、ポケットチーフ、コート、髪留め、メガネ、帽子等)を識別するための画像データが格納されているものとする。なお、制御部50は、ユーザが通信部18を用いて商品を購入した場合(インターネットショッピングなどを行った場合)に、記憶部40に購入商品の情報(衣服等の色、形状、模様、種類、特徴等)を記憶することができる。この場合、服装検出部32は、服装の画像データと、購入商品情報(画像を含む)とを比較することで、服装を検出することとしてもよい。また、服装検出部32は、ユーザが厚着(例えばコートを着ている)か、薄着(例えば半袖)かを検出してもよい。
 メタデータ検出部33は、ユーザがクチコミ情報に画像を添付する場合に、添付画像に付加されているメタデータ(EXIFデータ)を検出する。
 なお、表情検出部31、服装検出部32、メタデータ検出部33のそれぞれで検出された情報は、図4に示す画像データテーブルに格納される。
 図4の画像データテーブルは、添付画像に関するデータを記録するテーブルであり、画像データNo.、ユーザ情報No.、撮像日時、撮像場所、表情、服装の各フィールドを有している。画像データNo.のフィールドには、画像のメタデータを特定する一意の値が入力される。ユーザ情報No.のフィールドには、画像を添付したクチコミ情報が入力されている間に取得されたユーザ情報を特定する番号が入力される。撮像日時のフィールドには画像の撮像日時が入力される。撮像場所のフィールドには、画像の撮像場所が入力される。撮像場所のフィールドには、位置情報の数値(緯度、経度)が入力されてもよいし、記憶部40に記憶されている地図情報に基づいて位置情報から割り出した位置の名称が入力されてもよい。なお、添付画像が自宅で撮影された場合には、自宅が特定されないように緯度・経度情報にある程度の幅を持たせてもよい。また、緯度・経度情報に代えて単に自宅と記録するようにしてもよいし、位置情報を開示しないようにしてもよい。この場合、自宅で撮影されたかどうかをユーザに入力させて上記表示にしてもよいし、予め自宅として登録した緯度・経度情報で撮影された画像が添付された場合に、上記表示にすることとしてもよい。表情のフィールドには、表情検出部31が検出した人物の表情が入力される。服装のフィールドには、服装検出部32が検出した人物が着用している服装の分類が入力される。
 図3に戻り、記憶部40は、例えば、不揮発性の半導体メモリ(フラッシュメモリ)である。記憶部40は、制御部50によって実行される携帯端末10を制御するためのプログラム、および、携帯端末10を制御するための各種パラメータや、ユーザの顔情報(画像データ)、地図情報、前述の画像データテーブル、後述のユーザ情報テーブル等を記憶する。
 また、記憶部40は、前述した顔表情DBや服装DB、およびこれらのデータから算出された平均値や、クチコミ情報を入力している間にセンサ部20が検出したユーザに関する情報(ユーザ情報)や、内蔵カメラ21や外部のカメラ等により撮像した添付画像等を記憶する。
 制御部50は、CPUを有し、携帯端末10の処理全体を統括的に制御する。また、制御部50は、ユーザが作成したクチコミ情報や添付画像、添付画像のメタデータをサーバ60に対して送信したり、ユーザがクチコミ情報を作成している間に取得されたユーザ情報をサーバ60に送信したりする。ここで、制御部50は、ユーザ情報を、図5に示すユーザ情報テーブルに格納した状態で、サーバ60に対して送信するものとする。
 図5のユーザ情報テーブルは、クチコミ情報を入力している間にセンサ部20等により取得されたユーザ情報を格納する。なお、クチコミ情報を入力している間とは、クチコミ情報を入力している一部の時間であってもよく、入力開始から入力終了まででもよい、更に、入力の前後のユーザ情報が含まれていてもよい。図5のユーザ情報テーブルは、具体的には、ユーザ情報No.、TextNo.、GPS位置情報、作成時刻、温度、生体情報、画像データNo.、表情の各フィールドを有する。
 ユーザ情報No.のフィールドには、ユーザ情報を特定する一意の値が入力される。なお、このユーザ情報No.や画像データNo.により、図4の画像データテーブルのデータとユーザ情報テーブルのデータとが関連づけられる。TextNo.のフィールドには、ユーザ情報の取得時に入力されたクチコミ情報を特定する番号が入力される。GPS位置情報のフィールドには、GPSモジュール22により取得されたクチコミ情報入力時のユーザの位置情報が入力される。なお、GPS位置情報に格納するデータとしては、図5に示すような位置情報の数値に限らず、記憶部40の地図情報に基づいて位置情報から割り出した位置の名称が入力されてもよい。なお、ユーザが自宅でクチコミ情報を入力している場合には、自宅が特定されないように緯度・経度情報にある程度の幅を持たせてもよい。また、緯度・経度情報に代えて単に自宅と格納するようにしてもよい。この場合、自宅で撮影されたかどうかをユーザに入力させて上記のように格納してもよいし、予め自宅として登録した緯度・経度情報でクチコミ情報が入力された場合に、上記のように格納してもよい。作成時刻のフィールドには、クチコミ情報入力時の時刻(カレンダー部16から得られる)が入力される。温度のフィールドには、温度計25で取得されたクチコミ情報入力時の気温が入力される。生体情報のフィールドには、クチコミ情報入力時のユーザの感情や興奮を数値化した値(生体センサ23、マイク24、圧力センサ26の出力を総合して、数値化した値)が入力される。数値は、図5に示すように3段階評価(1(最小)~3(最大))としてもよいし、「普通」、「やや高い」、「かなり高い」などを格納してもよい。画像データNo.のフィールドには、クチコミ情報に添付された画像のメタデータを特定する番号が入力される。なお、添付画像が無い場合には、画像データNo.のフィールドは空白となる。なお、画像データNo.により、図5のユーザ情報テーブルのデータと図4の画像データテーブルのデータとが関連づけられる。表情のフィールドには、クチコミ情報入力中のユーザの表情が入力される。また、内蔵カメラ21によりクチコミ情報入力中にユーザの動画を撮像して、表情検出部31によりユーザの表情を検出し、表情の変化が大きかった場合の表情を表情のフィールドに記録してもよい。また、表情検出部31によりクチコミ情報入力中のユーザの平均的な表情を検出し、記録してもよい。
 図6には、サーバ60のブロック図が示されている。以下、図6に基づいてサーバ60について詳細に説明する。
 サーバ60は、図6に示すように、通信部70、情報入力部80、情報抽出部90、記憶部100、及び制御部110を有する。
 通信部70は、複数の携帯端末10の通信部18と通信するものであり、一例として、インターネット等の広域ネットワークにアクセスする無線通信ユニット、Bluetooth(登録商標)による通信を実現するBluetooth(登録商標)ユニット、及び、Felica(登録商標)チップ等を有している。
 情報入力部80は、通信部70を介して複数の携帯端末10においてユーザにより作成されたクチコミ情報を取得し、制御部110や情報抽出部90に対して入力するものである。なお、ユーザが携帯端末10からサーバ60の運営するWebのクチコミ入力画面にアクセスして、作成した文書は、クチコミ情報である。なお、携帯端末10により作成された情報がクチコミ情報であるか否かを個別に判断することとしてもよい。クチコミ情報か否かを判断する方法としては、特開2006-244305号公報に記載された方法を用いることができる。
 情報抽出部90は、情報入力部80から取得したクチコミ情報に含まれる特定のテキスト(例えば、位置、時刻、環境などを表すテキスト)と、ユーザの状態を表すユーザ情報とを比較し、当該比較結果に基づいてクチコミ情報の重み付けを行うものである。情報抽出部90は、具体的には、テキスト抽出部91、位置評価部92、時刻評価部93、環境評価部94、及び感情評価部95を有する。
 テキスト抽出部91は、クチコミ情報に含まれる特定のテキスト(例えば、位置、時刻、環境などを表すテキスト)を、辞書DBを参照して抽出する。なお、辞書DBは記憶部100に記憶されているものとする。例えば、辞書DBには、位置を表すテキストとして「函館山」、「東京タワー」、「横浜駅」などの地名や建物名などを含む。また、辞書DBには、時刻を表すテキストとして、「朝」、「昼」、「夜」、「日の出」、「日没」、「午の刻」や「春」、「夏」、「秋」、「冬」などを含む。また、辞書DBには、環境を表すテキストとして「暑い」、「寒い」、「静か」、「うるさい」など温度や音の程度を表すテキストを含む。例えば、情報入力部80が「函館山からの夜景は美しいが、北風が冷たい」というクチコミ情報を入力したものとする。この場合、テキスト抽出部91は、辞書DBを参照して、位置(地名)に関するテキスト情報として「函館山」、時刻に関するテキスト情報として「夜」、環境に関するテキスト情報として「冷たい」を抽出する。
 また、テキスト抽出部91は、クチコミ情報が体験型か購入型かを判断する。なお、当該判断においては、テキスト抽出部91は、体験型か購入型かを分別するための分別辞書DB(記憶部100に格納されている)を参照するものとする。
 なお、テキスト抽出部91で抽出されたクチコミ情報に含まれるテキスト情報は、図7に示すテキスト情報テーブルに格納される。図7に示すテキスト情報テーブルは、TextNo.、ユーザID、種別、位置情報テキスト、時刻情報テキスト、環境情報テキストの各フィールドを有する。
 TextNo.のフィールドには、クチコミ情報を特定する一意の値が入力される。このTextNo.により、図7のテキスト情報テーブルのデータと図5のユーザ情報テーブルのデータとが関連づけられる。ユーザIDのフィールドには、クチコミ情報を入力したユーザのIDが入力される。種別のフィールドには、テキスト抽出部91において判断されたクチコミ情報の種別(体験型又は購入型)が入力される。位置情報テキスト、時刻情報テキスト、環境情報テキストの各フィールドには、クチコミ情報から抽出されたテキスト(位置、時刻、環境などを表すテキスト)が入力される。なお、位置情報テキスト、時刻情報テキスト、環境情報テキストの各フィールドには、テキストを1又は複数入力できるものとする。
 図6に戻り、位置評価部92は、テキスト抽出部91が抽出した「函館山」というテキスト情報と、情報入力部80が入力した携帯端末10のGPSモジュール22の出力情報とを比較し、クチコミ情報の信用度に関する重み付けを行う。なお、位置評価部92は、上記比較の際に、「函館山」などの地名と位置(緯度や経度)とを関連付けた地図DB(記憶部100に格納されている)を参照するものとする。
 時刻評価部93は、テキスト抽出部91が抽出した「夜」というテキスト情報と、情報入力部80が入力した携帯端末10のカレンダー部16の出力情報とを比較し、クチコミ情報の信用度に関する重み付けを行う。なお、時刻評価部93は、種別のフィールドに入力された情報に基づき、ユーザのクチコミが体験に関するものか、購入に関するものかを区別して重み付けを行う。
 環境評価部94は、テキスト抽出部91が抽出した「冷たい」というテキスト情報と、情報入力部80が入力した携帯端末10の温度計25による検出結果とを比較し、クチコミ情報の信用度の重み付けを行う。なお、環境評価部94は、携帯端末10の服装検出部32が検出した服装の情報(例えば、ユーザが厚着であるか薄着であるかの情報)を、通信部70を介して取得し、これに基づいてクチコミ情報の信用度に関する重み付けを行うこととしてもよい。また、環境評価部94は、添付画像の有無に基づいて、クチコミ情報の信用度に関する重み付けを行うこととしてもよい。
 感情評価部95は、情報入力部80が入力した携帯端末10の画像分析部30、生体センサ23、マイク24、圧力センサ26の出力に基づいて、ユーザの感情(喜怒哀楽)を評価し、クチコミ情報の信用度に関する重み付けを行う。
 なお、位置評価部92、時刻評価部93、環境評価部94、及び感情評価部95による、クチコミ情報の信用度に関する重み付けの具体的方法については後述する。
 上記のように構成される情報抽出部90では、位置評価部92、時刻評価部93、環境評価部94、及び感情評価部95による、クチコミ情報の信用度に関する重み付けの結果を制御部110に対して出力する。
 記憶部100は、不揮発性のメモリ(フラッシュメモリ)などであり、地図DBや、辞書DB、ユーザのクチコミ情報が体験型か購入型かを分別するための分別辞書DBを有している。また、記憶部100は、情報入力部80が入力したクチコミ情報を情報抽出部90が決定したクチコミ情報の信用度に関する重み付け情報と紐付けて記憶する。
 制御部110は、CPUを備え、サーバ60全体を統括的に制御するものである。本実施形態において、制御部110は、情報入力部80が入力したクチコミ情報と重み付け情報とを記憶部100に記憶するとともに、閲覧希望者(ネットワーク180に接続されている携帯端末やパーソナルコンピュータを利用するユーザ)からクチコミ情報の閲覧要求があった場合に、クチコミ情報を提供する。この場合、制御部110は、全ての閲覧要求に対してクチコミ情報とともに信用度に関する重み付け情報を提供してもよいし、有料会員からの閲覧要求に対してのみ、クチコミ情報とともに信用度に関する重み付け情報を提供するようにしてもよい。
 以下、上記のように構成される情報処理システム200の処理について、詳細に説明する。
 図8は、携帯端末10の制御部50によるクチコミ情報入力に関する処理を示すフローチャートである。図8の処理は、ユーザがサーバ60の運営するWebのクチコミ入力画面にアクセスした段階から開始される。
 図8の処理では、ステップS10において、制御部50が、クチコミ情報を投稿するときにサーバ60に送信してもよいメタデータ及びユーザ情報の選択をユーザに要求する画面をディスプレイ12に表示する。
 次いで、ステップS12では、制御部50は、ユーザが、ディスプレイ12上に表示された項目からサーバ60に送信してもよい項目を選択するまで待機する。この場合、ユーザによる選択が行われた段階で、ステップS14に移行する。なお、ここでは、ユーザによって、メタデータ及びユーザ情報の全ての項目が選択された(サーバ60に送信してもよいとされた)ものとして、以下説明する。
 ステップS14に移行すると、制御部50は、ユーザによってクチコミ情報の入力が開始されるまで待機する。この場合、ユーザによってクチコミ情報の入力が開始された段階で、ステップS16に移行する。
 ステップS16に移行すると、制御部50は、センサ部20を用いてユーザ情報を取得する。この場合、制御部50は、ステップS12で選択されたユーザ情報を取得する。すなわち、制御部50は、ユーザやユーザの周囲の状況を撮像した画像、ユーザの位置、ユーザの生体情報、ユーザの声や周囲の音、ユーザのいる場所の温度、ユーザがタッチパネル14を押す力などのうち、ユーザに選択されたものを取得する。なお、ユーザ情報のうち、サーバ60への送信が許可されていない項目がある場合には、制御部50は、その項目に関する情報を取得しないものとする。
 次いで、ステップS18では、制御部50は、ユーザによるクチコミ情報の入力が終了したか否かを判断する。この場合、例えば、クチコミ情報をサーバ60に対して送信するための送信ボタンがユーザによって押された場合に、ステップS18の判断が肯定される。なお、ステップS18の判断が肯定された場合には、ステップS20に移行するが、否定された場合には、ステップS16、S18の処理・判断を繰り返す。
 ステップS18の判断が肯定されて、ステップS20に移行すると、制御部50は、クチコミ情報とともに画像が添付されているか否かを判断する。ここでの判断が肯定された場合、すなわち画像が添付されている場合には、ステップS22に移行するが、否定された場合には、ステップS24に移行する。なお、ステップS12において、ユーザが添付画像に関するメタデータのサーバ60への送信を希望していなかった場合には、制御部50は、ステップS24に移行する。このとき、添付画像のメタデータ(撮像日時や、撮像場所に関する情報)を削除するか、一時的にマスキングをしてサーバ60へ送信を希望していないメタデータの送信を行わないようにしてもよい。
 ステップS22に移行した場合、制御部50は、添付画像のメタデータを取得する。その後は、ステップS24に移行する。
 ステップS24に移行した場合、制御部50は、ステップS14、S22で取得したユーザ情報及びメタデータを用いて、ユーザ情報テーブル(図5)と画像データテーブル(図4)を生成する。この場合、制御部50は、取得したユーザ情報そのものをテーブルに入力する。また、制御部50は、表情検出部31による表情検出結果や、生体センサ23、マイク24への入力結果、圧力センサ26の出力に基づいてユーザがクチコミ情報を作成しているときの状態を分析した結果を、各テーブルに入力する。なお、添付画像があり、画像分析部30によりユーザの顔が認識された場合には、表情検出部31により添付画像のユーザの表情を検出して、ユーザの感情を推定するようにしてもよい。また、添付画像のメタデータにユーザの生体情報がある場合には、制御部50は、添付画像のメタデータにあるユーザの生体情報も加味してユーザの感情を推定するようにしてもよい。なお、ユーザがクチコミ情報を作成しているときのユーザの状態と、添付画像の分析に基づいたユーザの状態とがほぼ一致している場合には、いずれかのデータを用いればよい。
 次いで、ステップS26では、制御部50は、クチコミ情報と、ユーザ情報テーブルと、画像データテーブルとを通信部18を介してサーバ60に対して送信する。
 次いで、ステップS28では、制御部50は、ユーザが更なるクチコミ情報を作成するか否かを判断する。ここでの判断が肯定された場合には、ステップS14に戻り、上記と同様にステップS14以降の処理を実行するが、ステップS28の判断が否定された場合には、図8の全処理を終了する。
 以上のように、図8の処理を実行することで、ユーザが入力したクチコミ情報と、クチコミ情報を入力している間のユーザ情報を含むユーザ情報テーブルをサーバ60に対して送信することができる。また、クチコミ情報に画像が添付されている場合には、当該画像と、画像のメタデータを含む画像データテーブルをサーバ60に対して送信することができる。また、ユーザ情報やメタデータのうち、ユーザが送信を許可した項目については、サーバ60に送信するが、ユーザが送信を許可していない項目については、サーバ60に送信しないようにすることができる。
 なお、図8のフローチャートでは、ステップS10にてサーバに送信してもよいユーザ情報を選択したが、テキスト抽出部91が抽出したテキスト情報に基づいて必要なユーザ情報を取得するようにしてもよい。この場合、クチコミ情報入力中のユーザ情報を記憶部40に記憶しておき、記憶部40からクチコミ入力中のユーザ情報を取得するようにしてもよく、クチコミ情報入力後(数分以内)のユーザ情報を取得するようにしてもよい。このため、ステップS26のクチコミ情報、ユーザ情報、および画像データのサーバ60への送信は同時でなくてもよく、時間をずらして適宜送信するようにしてもよい。
 次に、サーバ60によるクチコミ情報の信用度に関する重み付け処理について、図9のフローチャートに沿って詳細に説明する。図9の処理は、通信部70を介して情報入力部80がクチコミ情報を情報抽出部90及び制御部110に入力した段階で開始される。
 図9の処理では、ステップS30において、制御部110が、テキスト抽出部91に指示を出し、携帯端末10から取得したクチコミ情報からテキスト情報テーブル(図7)を生成する。この場合、テキスト抽出部91は、クチコミ情報から位置情報テキストや時刻情報テキスト、環境情報テキストなどを抽出して、テキスト情報テーブルに入力するとともに、クチコミ情報の種別を判別する。より具体的には、テキスト抽出部91は、クチコミ情報が体験型か購入型かを、記憶部100に格納されている分別辞書を用いて判別する。このようにクチコミ情報の種別を判別することとしているのは、時刻に関する重み付けにおいては、体験型は体験直後のクチコミ情報の重み付けを大きくする必要があるのに対し、購入型は購入直後のクチコミ情報の重み付けを小さくする必要があるためである。
 なお、テキスト抽出部91は、分別辞書DBを参照して、入力したクチコミ情報(テキスト)の中に観光地の地名や、「見た」、「食べた」、「行った」などの購入とは異なる体験を表す語句が含まれていた場合に体験型と判断する。また、テキスト抽出部91は、分別辞書DBを参照して、クチコミ情報の中に製品名、メーカ名、デザイン、金額に関する語句が含まれていた場合に購入型と判断する。金額に関する語句とは、例えば、具体的な価格を示す数値以外に、「高価」、「安い」、「お買い得」などの語句が挙げられる。なお、サーバ60の運営するWebのクチコミ入力画面において、いずれの種別のクチコミ情報であるかをユーザが入力できるような場合には、当該入力に従ってテキスト情報テーブルを生成するようにすればよい。
 次いで、ステップS32では、制御部110が、情報抽出部90に指示を出し、クチコミ情報(テキスト情報テーブル)に基づいて、クチコミ情報の信用度に関する重み付けを行う。以下、クチコミ情報の信用度に関する重み付けの具体的方法について、詳細に説明する。
 なお、以下においては、図7のTextNo.=tx001のクチコミ情報「函館山からの夜景は美しいが、北風が冷たい」がユーザによって入力された場合と、TextNo.=tx002のクチコミ情報「去年の秋口に購入した赤いVネックのセーターはお買い得だった」がユーザによって入力された場合を比較しつつ説明する。
 図7に示すように、TextNo.=tx001のクチコミ情報においては、位置情報テキストとして「函館山」、時刻情報テキストとして「夜」、環境情報テキストとして「冷たい」の語句が抽出されている。また、このクチコミ情報は、種別が体験型である。一方、TextNo.=tx002のクチコミ情報においては、時刻情報として「去年の秋口」の語句が抽出されている。また、このクチコミ情報は、種別が購入型である。なお、図7では、「去年の秋口」に代えて、「去年」と「秋口」の2つのテキストが時刻情報テキストに入力されてもよい。
 制御部110は、情報抽出部90に指示を出し、テキスト情報テーブルの位置情報テキスト、時刻情報テキスト、環境情報テキストの各項目の重み付け係数を決定する。
(位置情報テキストの重み付け)
 TextNo.=tx001のクチコミ情報の場合、位置評価部92は、テキスト情報テーブルの位置情報テキスト「函館山」を抽出する。また、位置評価部92は、ユーザ情報テーブルのGPS位置情報を抽出する。そして、位置評価部92は、地図DBを参照して、位置情報テキスト「函館山」が示す位置(緯度、経度)を抽出し、GPS位置情報と比較する。この比較においては、位置評価部92は、2点間の距離を算出するものとする。
 位置評価部92は、上記のようにして算出された2点間の距離と、図10に示す位置情報比較テーブルと、を用いて、位置情報テキストの重み付け係数を決定する。具体的には、位置評価部92は、ユーザが函館山にいるようなとき(2点間の距離が1km未満の場合)には重み付け係数を3とし、函館山近傍にいるとき(2点間の距離が1kmから10kmの場合)には重み付け係数を2とし、それ以外(2点間の距離が10kmよりも大きい場合)には重み付け係数を1とする。
 重み付け係数が決定されたデータは、図11に示す重み付け係数格納テーブルに格納される。なお、図11のテーブルには、重み付け係数を算出したクチコミ情報のTextNo.、比較情報、重み付け係数が格納される。なお、上述した位置情報テキスト「函館山」の重み付け結果は、図11の1行目に格納されている。
(時刻情報テキストの重み付け)
 TextNo.=tx001のクチコミ情報の場合、時刻評価部93は、テキスト情報テーブルの時刻情報テキスト「夜」を抽出する。一方、TextNo.=tx002のクチコミ情報の場合、時刻評価部93は、テキスト情報テーブルの時刻情報テキスト「去年の秋口」を抽出する。ここで、TextNo.=tx001のクチコミ情報は、種別が体験型であるので、時刻評価部93は、重み付けにおいて、図12(a)に示す時刻情報比較テーブル-体験型を参照するものとする。一方、TextNo.=tx002のクチコミ情報は、種別が購入型であるので、時刻評価部93は、重み付けにおいて、図12(b)に示す時刻情報比較テーブル-購入型を参照するものとする。なお、図12(a)に示す時刻情報比較テーブル-体験型は、体験直後のクチコミのほうが、体験から時間が経過したクチコミよりも臨場感があるため、体験直後ほど重み付け係数が大きくなるように設定されている。一方、図12(b)に示す時刻情報比較テーブル-購入型は、購入直後の場合、手に入れることができたことのうれしさなどから、評価が高くなる傾向にあるため、購入直後ほど重み付け係数が小さくなるように設定されている。
 時刻評価部93は、ユーザ情報テーブルの作成時刻の項目からクチコミ情報のテキストの作成時刻を抽出する。また、時刻評価部93は、時刻情報テキストからおおよその時刻を決定し、クチコミ情報の作成時刻との差分(時間差)を取得する。なお、時刻評価部93は、時刻情報に関する辞書DBを参照して、時刻情報テキストからおおよその時刻を決定することとすればよい。なお、辞書DBでは、例えば、テキスト「夜」に対し、18時から翌日の3時までのように幅を持たせた時間や、代表値(例えば22時など)が紐付けられているものとする。
 TextNo.=tx001のクチコミ情報のように、種別が体験型の場合には、時刻評価部93は、図12(a)を参照して、クチコミがリアルタイム(1時間以内)の場合には重み付け係数を3とし、半日以内の場合には重み付け係数を2とし、それ以外は重み付け係数を1とする。
 なお、テキスト「夜」のように時刻情報テキストから決定される時刻が幅を持つ場合であって、この時刻の幅の中にクチコミの作成時刻が含まれるときには、クチコミがリアルタイムに作成されたと判断してもよい。このようにして決定される重み付け係数は、図11の重み付け情報テーブル(図11の2行目参照)に格納される。
 一方、TextNo.=tx002のクチコミ情報のように、種別が購入型の場合には、時刻評価部93は、図12(b)を参照して、購入直後の2週間以内の場合には重み付け係数を1とし、2週間経過したものは重み付け係数を2とし、20週間(約5ヶ月)よりも経過したものは重み付け係数を3とする。このようにして決定される重み付け係数は、図11の重み付け情報テーブル(図11の6行目)に格納される。なお、上記においては、クチコミ情報の中に時刻情報テキスト「去年の秋口」が含まれている場合に、時刻評価部93が重み付けを行う場合について説明したが、これに限られるものではない。例えば、インターネットショッピングなどで購入した履歴が、記憶部40に残っている場合には、当該購入履歴と、クチコミ情報の作成日時との差から、重み付け係数を決定することとしてもよい。
 上記のように、クチコミの種別(体験型又は購入型)に応じて、時刻情報テキストの重み付け係数の決定方法(用いる時刻情報比較テーブル)を変更することにより、精度の高いクチコミの評価を行うことができる。
(環境情報テキストの重み付け)
 TextNo.=tx001のクチコミ情報の場合、環境評価部94は、テキスト情報テーブルの環境情報テキスト「冷たい」を抽出する。この場合、環境評価部94は、例えば、ユーザ情報テーブルの温度が5度以下の場合に、重み付け係数を3とし、温度が10度以下の場合に、重み付け係数を2とし、それ以外の場合には重み付け係数を1とする。このようにして決定される重み付け係数は、図11の重み付け情報テーブル(図11の3行目)に格納される。環境評価部94が重み付け係数を決定することで、ユーザがクチコミ情報を作成しているときの臨場感を考慮して、重み付け係数を決定することができる。
 なお、環境評価部94は、添付画像がある場合には重み付け係数を2とし、添付画像がない場合には重み付け係数を1としてもよい。また、環境評価部94が環境情報テキスト「暑い」を抽出した場合には、温度が35度を超える場合は重み付け係数を3とし、温度が30度から35度未満の場合は重み付け係数を2とし、それ以外の場合には重み付け係数を1とするなどすればよい。すなわち、テキストが寒暖のいずれを意味するかに応じて、重み付け係数を決定するための基準を予め定めておけばよい。また、環境評価部94は、服装検出部32の検出結果を加味して重み付け係数を決定することとしてもよい。すなわち、環境情報テキスト「冷たい」や「寒い」などが抽出された場合に、ユーザが厚着であれば、重み付け係数を高くしたり、環境情報テキスト「暑い」などが抽出された場合に、ユーザが薄着であれば、重み付け係数を高くしたりすればよい。
(その他の重み付け)
 また、上記の他にもテキスト作成時のユーザの表情、生体情報、服装などから重み付けを行うことができる。
 例えば、テキスト作成時に内蔵カメラ21が撮像した画像に基づいて画像分析部30が分析したユーザの表情に応じて、感情評価部95が、重み付け係数を決定することとしてもよい(図11の4行目参照)。この場合、感情評価部95は、ユーザの表情が笑顔や怒り顔などの感情が明確に表現されている場合に、重み付け係数を大きくするなどすることができる。
 また、感情評価部95は、例えば、テキスト作成時のユーザの生体情報から導き出される、ユーザの感情や興奮状態に基づいて、重み付け係数を決定してもよい(図11の5行目参照)。この場合、感情評価部95は、一例として、画像分析部30、生体センサ23、マイク24、圧力センサ26の4つの構成要素のうちの3つの出力が通常の状態とは異なる場合(例えば、画像分析部30の表情検出部31がユーザの笑顔を検出し、生体センサ23がユーザの興奮状態を検出し、マイク24がユーザの声(独り言)を入力した場合)は、重み付け係数を3とし、4つの構成要素のうちの2つの出力が通常の状態とは異なると示した場合は、重み付け係数を2とし、それ以外は重み付け係数を1とするなどすることができる。なお、生体情報のようなユーザ特有の情報は、携帯端末10側で判断する方が適しているので、ユーザ情報テーブルの生体情報のフィールドの値をそのまま重み付け係数としてもよい。また、情報抽出部90は、テキスト作成時に内蔵カメラ21が取得した画像から画像分析部30が検出したユーザの服装に基づき重み付け係数を決定してもよい(図11の7行目参照)。例えば、情報抽出部90は、衣服の購入に関するクチコミ情報を入力しているユーザが当該衣服を着用している場合には、重み付け係数を大きくするなどすることができる。
 なお、図10及び図12(a),図12(b)のテーブルは一例である。すなわち、必要に応じてテーブルを改変したり、追加したりすることができる。
 図9に戻り、上述したようにステップS32が行われ、ステップS34に移行すると、制御部110は、クチコミ情報と、重み付け情報とを紐付けて記憶部100に記憶する。この場合、例えば、制御部110は、図11のうち、TextNo.が同一のレコードの重み付け係数を集計した値や、平均した値などをクチコミ情報の重み付け情報とする。なお、重み付け係数のうちで重視すべき重み付け係数がある場合には、当該重視すべき重み付け係数の比率(重み)を増やして平均するようにしてもよい。
 次いで、ステップS36では、制御部110は、さらに重み付けを行うクチコミ情報があるかどうかを判断する。ここでの判断が肯定された場合には、ステップS30に戻るが、否定された場合には、図9の全処理を終了する。
 なお、図9の処理が行われた後において、他のユーザが利用する携帯端末やパーソナルコンピュータから、クチコミ情報の閲覧請求があった場合には、クチコミの信用度として、クチコミ情報に紐付けられた重み付け情報そのもの、または重み付け情報を用いた所定の演算を行った結果を、クチコミ情報とともに閲覧者に対して提供することができる。なお、信用度は満点中の何点という形で表示してもよい。この場合、例えば、「函館山からの夜景は美しいが、北風が冷たい」(信用度10点満点中8点)という表示を行えばよい。なお、ある一定以上の信用度のクチコミ情報のみを、閲覧者に対して提供するようにしてもよい。
 以上詳細に説明したように、本実施形態によると、携帯端末10が、ユーザからクチコミ情報の入力を受け付ける制御部50と、ユーザにより許可された場合に、クチコミ情報の入力に関連してユーザ情報を取得するセンサ部20と、クチコミ情報とユーザ情報とを送信する通信部18と、を備えているので、ユーザのプライバシー(個人情報)を保護しつつ、クチコミ情報を入力している間のユーザ情報をサーバ60に送信することができる。これにより、クチコミ情報の信用度を判断する指標をサーバ60に対して送信することができるので、サーバ60にてクチコミ情報の信用度を決定し、他のユーザに対してクチコミ情報とともに信用度の情報を提供することが可能となる。
 また、本実施形態の携帯端末10では、センサ部20が、ユーザの感情の推定に用いる情報(画像、生体情報、タッチパネル14を押す力など)を取得するので、この情報を用いることで、クチコミ情報を入力している際の感情、ひいてはクチコミ情報の信用度を推定することができる。これにより、クチコミ情報の信用度の信頼性を向上することが可能となる。具体的には、生体センサ23により検出される生体情報を用いることで、ユーザの興奮度や喜怒哀楽などの感情をクチコミ情報の信用度に反映させることができ、圧力センサ26の検出値を用いることで、感情の高まりをクチコミ情報の信用度に反映させることができる。また、内蔵カメラ21によって撮像された画像におけるユーザの表情を用いることで、ユーザの感情をクチコミ情報の信用度に反映させることができる。さらには、内蔵カメラ21によって撮像された画像におけるユーザの服装を用いることで、服装とクチコミ情報の比較結果をクチコミ情報の信用度に反映させることができる。また、ユーザの声や周囲の音、温度を用いることで、クチコミ情報の信用度の信頼性をより高めることが可能となる。
 また、本実施形態では、ユーザにより許可された場合に、画像データに付随するメタデータを検出したり、サーバ60に対して送信したりするので、ユーザの居た場所の情報など、プライバシー(個人情報)を保護しつつ、メタデータの検出、送信を行うことができる。
 また、本実施形態では、サーバ60は、クチコミ情報と、クチコミ情報作成中のユーザ情報とを入力する情報入力部80と、クチコミ情報とユーザ情報との一方から、クチコミ情報とユーザ情報との他方に関連した情報を抽出する情報抽出部90とを備えている。これにより、サーバ60は、クチコミ情報とユーザ情報とから互いに関連する情報を抽出することにより、クチコミ情報の信用度を適切に判断することが可能となる。
 また、本実施形態では、情報抽出部90は、抽出した情報に基づいて、クチコミ情報に含まれるテキストに関する重み付け係数を決定する。このようにクチコミ情報に含まれるテキストについて重み付け係数を決定し、これに基づいてクチコミ情報の重み付けをすることで、クチコミ情報の信用度について適切に評価することが可能である。また、制御部110は、クチコミ情報の信用度を閲覧したいユーザに対して報知するので、閲覧するユーザは、信用度に基づいてクチコミ情報を信用するか否かを判断することができる。
 また、本実施形態では、位置評価部92は、ユーザ情報として位置を抽出し、クチコミ情報のうちの位置情報テキストと比較して、重み付け係数を決定する。すなわち、位置評価部92は、位置情報テキストと、クチコミ情報の入力場所との差分が小さいほど重み付けを大きくするなどする。これにより、クチコミ情報を作成しているユーザの臨場感を考慮して、重み付け係数を決定することができる。
 また、本実施形態では、クチコミ情報に画像が添付されている場合に、画像のメタデータと、クチコミ情報及びユーザ情報の少なくとも一方とを比較し、比較結果に基づいて、クチコミ情報の重み付けを行う。これにより、画像とクチコミ情報、ユーザ情報との一貫性を考慮した重み付けができ、信用度を適切に判断することが可能となる。
 また、本実施形態では、携帯端末10は、制御部50が、ユーザからのクチコミ情報の入力を受け付け、生体センサ23が、ユーザにより許可された場合に、入力に関連してユーザの生体情報を取得する。これにより、ユーザのプライバシー(個人情報)を保護しつつ、クチコミ情報の入力の間におけるユーザの感情等を判断するための情報を取得することができる。
 なお、上記実施形態においては、閲覧者が、性別、年齢、サイズに関する情報(身長、体重、洋服の号数など)をサーバ60に対して送信できるようにしてもよい。この場合、サーバ60の制御部110は、閲覧者と類似したユーザが作成したクチコミ情報を閲覧者に対して優先的に提供するようにすることができる。例えば、制御部110は、衣服のサイズなどに関する情報(身長、体重、洋服の号数など)が含まれているクチコミ情報を重み付け係数とともに記憶部100に予め記憶しておき、閲覧者の性別、年齢、衣服のサイズなどに基づいて、これに類似する性別、年齢、衣服のサイズなどに関する情報(身長、体重、洋服の号数など)が含まれているクチコミ情報を、信用度とともに提供することとすればよい。このようにすることで、閲覧希望者は、自身の情報と類似するユーザが作成したクチコミ情報を優先的に取得することができるようになる。
 なお、上記実施形態では、位置評価部92、時刻評価部93、環境評価部94、及び感情評価部95が決定した重み付け係数に基づいて、制御部110がクチコミ情報の信用度を決定する場合について説明したがこれに限られるものではない。例えば、情報抽出部90内において、各部92~95が決定した重み付け係数を用いてクチコミ情報の信用度を決定し、制御部110に対して出力することとしてもよい。
 なお、上記実施形態では、クチコミ情報の種別が、体験型と購入型の2種類である場合について説明したが、これに限らず、その他の種別を採用し、種別ごとに位置情報比較テーブルや時刻情報比較テーブルなどのテーブルを用意するようにしてもよい。
 なお、上記実施形態で用いた画像データテーブル(図4)、ユーザ情報テーブル(図5)、及びテキスト情報テーブル(図7)は、一例である。例えば、全てのテーブルを1つのテーブルに纏めてもよいし、画像データテーブル(図4)とユーザ情報テーブル(図5)とを1つのテーブルに纏めてもよい。また、各テーブルのフィールドの一部を省略したり別のフィールドを追加することとしてもよい。
 なお、上記実施形態では、携帯端末10に画像分析部30を設ける場合について説明したが、これに限らず、画像分析部30は、サーバ60側に設けることとしてもよい。この場合、サーバ60内において、内蔵カメラ21で取得された画像の顔の表情の検出、服装の検出、メタデータ(EXIFデータ)の検出が行われる。この場合、顔表情DBや服装DBは、サーバ60の記憶部100に記憶させておくことができるので、携帯端末10の記憶部40に記録しておく必要がない。この結果、記憶部40の記憶領域を有効に使用することが可能となり、また、顔表情DBや服装DBのアップデートなどの管理が容易になる。
 また、上記実施形態では、重み付けに関する処理をサーバ60が行うこととしたが、これに限らず、携帯端末10において行うこととしてもよい。
 なお、上記実施形態において、クチコミ情報を作成する端末が、スマートフォンである場合について説明したが、これに限られるものではない。例えば、パーソナルコンピュータを用いたクチコミ情報の作成にも、本発明を適用することができる。この場合、内蔵カメラ21に代えて、パーソナルコンピュータのディスプレイ近傍に設けられたユーザ撮像用のカメラ(例えばUSBカメラ)を用いることとしてもよい。さらに、パーソナルコンピュータを用いる場合には、圧力センサ26を、パーソナルコンピュータのキーボードに設けることとすればよい。
 上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。なお、これまでの説明で引用した公報の開示を援用して本明細書の記載の一部とする。

Claims (27)

  1.  ユーザからテキストの入力を受け付ける入力部と、
     前記ユーザにより許可された場合に、前記テキストの入力に関連して前記ユーザに関する情報を取得する情報取得部と、
     前記テキストと、前記ユーザに関する情報とを送信する送信部と、を備えたことを特徴とする電子機器。
  2.  前記情報取得部は、前記ユーザの感情の推定に用いる情報を取得することを特徴とする請求項1記載の電子機器。
  3.  前記情報取得部は、前記ユーザの生体情報を取得する生体センサを備えていることを特徴とする請求項1または2記載の電子機器。
  4.  前記情報取得部は、前記ユーザの入力に関する力量を検出する力量センサを備えていることを特徴とする請求項1から3のいずれか一項に記載の電子機器。
  5.  前記情報取得部は、前記テキストの入力に関連して前記ユーザを撮像する撮像部を備えていることを特徴とする請求項1から4のいずれか一項に記載の電子機器。
  6.  前記情報取得部は、前記テキストの入力に関連して前記ユーザの環境に関する情報を取得する環境センサを備えていることを特徴とする請求項1から5のいずれか一項に記載の電子機器。
  7.  前記送信部は、前記テキスト及び前記ユーザに関する情報とともに、画像データを送信することを特徴とする請求項1から6のいずれか一項に記載の電子機器。
  8.  前記送信部は、前記ユーザにより許可された場合に、前記画像データに付随するメタデータを送信することを特徴とする請求項7記載の電子機器。
  9.  前記送信部は、前記ユーザにより許可されない場合に、前記画像データに付随するメタデータを送信しないことを特徴とする請求項7記載の電子機器。
  10.  前記メタデータを検出する検出部を備えたことを特徴とする請求項8または9記載の電子機器。
  11.  前記検出部は、前記ユーザにより前記メタデータの検出が許可された場合に前記検出を行うことを特徴とする請求項10記載の電子機器。
  12.  前記テキストから前記ユーザに関する情報に対応する記述情報を抽出し、前記ユーザに関する情報と前記対応する記述情報との比較結果に基づき、前記テキストに関する重み付けを行う重み付け部を備えたことを特徴とする請求項1から11のいずれか一項に記載の電子機器。
  13.  ユーザからの入力を受け付ける入力部と、
     前記ユーザにより許可された場合に、前記入力に関連して前記ユーザの生体情報を取得する生体情報取得部と、を備えたことを特徴とする電子機器。
  14.  テキストと、前記テキスト作成中のユーザに関する情報とを入力する入力部と、
     前記テキストと前記ユーザに関する情報との一方から、前記テキストと前記ユーザに関する情報との他方に関連した情報を抽出する抽出部と、を備えたことを特徴とする電子機器。
  15.  前記抽出部が抽出した情報に基づいて、前記テキストに関する重み付けを行う重み付け部を備えたことを特徴とする請求項14記載の電子機器。
  16.  前記重み付け部は、前記ユーザに関する情報と、当該ユーザに関する情報に対応するテキストとの比較結果に基づいて、前記テキストに関する重み付けを行うことを特徴とする請求項15記載の電子機器。
  17.  前記重み付け結果に基づいて、前記テキストに関連した報知を行う報知部を備えたことを特徴とする請求項15又は16記載の電子機器。
  18.  前記抽出部は、前記ユーザの感情に関する情報を抽出することを特徴とする請求項14から17のいずれか一項に記載の電子機器。
  19.  前記抽出部は、前記ユーザの環境に関する情報を抽出することを特徴とする請求項14から18のいずれか一項に記載の電子機器。
  20.  前記抽出部は、位置と日時の少なくとも一方に関する情報を抽出することを特徴とする請求項14から19のいずれか一項に記載の電子機器。
  21.  画像データと、該画像データに付随したメタデータとを入力する画像入力部と、
     前記テキストと前記ユーザに関する情報との少なくとも一方と、前記メタデータとを比較する比較部と、を備えたことを特徴とする請求項14記載の電子機器。
  22.  前記比較部の比較結果に基づいて、前記テキストに関する重み付けを行う重み付け部を備えたことを特徴とする請求項21記載の電子機器。
  23.  前記テキストの閲覧を希望する閲覧希望者に関する情報を取得する取得部と、
     前記閲覧希望者に関する情報に類似する前記ユーザに関する情報を検出する検出部と、
     前記検出部が検出した前記ユーザに関する情報に基づいて、前記テキストを提供する提供部と、を備えたことを特徴とする請求項14から22のいずれか一項に記載の電子機器。
  24.  前記重み付け部は、前記テキストに位置に関する記述情報が含まれている場合、前記位置に関する記述情報と、前記テキストの入力場所との差分が小さいほど重み付けを大きくすることを特徴とする請求項15記載の電子機器。
  25.  前記重み付け部は、前記テキストに日時に関する記述情報が含まれている場合、前記日時に関する記述情報と、前記テキストの入力日時との差分が小さいほど重み付けを大きくすることを特徴とする請求項15又は24記載の電子機器。
  26.  前記重み付け部は、前記テキストに物の評価に関する記述情報が含まれている場合、前記テキストの入力日時と前記物の入手日時との差分が大きいほど重み付けを大きくすることを特徴とする請求項15記載の電子機器。
  27.  前記重み付けが大きいほど、前記テキストの内容の信頼性が高いことを特徴とする請求項24~26のいずれか一項に記載の電子機器。
     
PCT/JP2012/078501 2012-03-01 2012-11-02 電子機器 WO2013128715A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280070960.4A CN104137096A (zh) 2012-03-01 2012-11-02 电子设备
US14/381,030 US20150018023A1 (en) 2012-03-01 2012-11-02 Electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-045847 2012-03-01
JP2012-045848 2012-03-01
JP2012045847A JP2013183289A (ja) 2012-03-01 2012-03-01 電子機器
JP2012045848A JP2013182422A (ja) 2012-03-01 2012-03-01 電子機器

Publications (1)

Publication Number Publication Date
WO2013128715A1 true WO2013128715A1 (ja) 2013-09-06

Family

ID=49081939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078501 WO2013128715A1 (ja) 2012-03-01 2012-11-02 電子機器

Country Status (3)

Country Link
US (1) US20150018023A1 (ja)
CN (1) CN104137096A (ja)
WO (1) WO2013128715A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104252330B (zh) * 2013-06-28 2019-12-24 联想(北京)有限公司 一种信息处理方法及电子设备
USD753640S1 (en) * 2013-07-04 2016-04-12 Lg Electronics Inc. Mobile phone
WO2015107681A1 (ja) 2014-01-17 2015-07-23 任天堂株式会社 情報処理システム、情報処理サーバ、情報処理プログラム、および情報提供方法
US11974847B2 (en) 2014-08-07 2024-05-07 Nintendo Co., Ltd. Information processing system, information processing device, storage medium storing information processing program, and information processing method
US10594638B2 (en) * 2015-02-13 2020-03-17 International Business Machines Corporation Point in time expression of emotion data gathered from a chat session
US10754976B2 (en) * 2017-02-24 2020-08-25 Microsoft Technology Licensing, Llc Configuring image as private within storage container
US11086516B2 (en) * 2018-10-31 2021-08-10 Christie Scott Wall Mobile, versatile, transparent, double-sided data input or control device
US11157549B2 (en) * 2019-03-06 2021-10-26 International Business Machines Corporation Emotional experience metadata on recorded images
CN113842637B (zh) * 2021-09-29 2024-01-23 联想(北京)有限公司 一种信息处理方法、设备、装置和计算机可读存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067078A (ja) * 1998-08-26 2000-03-03 Canon Inc データ処理方法及び装置
JP2001282417A (ja) * 2000-03-30 2001-10-12 Rokumasa Fu 圧力センサーないしは速度センサー、またはその双方付きキーボードおよび圧力センサーないしは速度センサー、またはその双方付きキーボードを用いてキー入力時の感情に応じて文字や図形等を変換する方法
JP2002288166A (ja) * 2001-03-26 2002-10-04 Ricoh Co Ltd 関係情報抽出方法及び意味情報抽出方法
JP2002288208A (ja) * 2001-03-28 2002-10-04 Just Syst Corp 情報提供者抽出装置、情報提供装置、情報提供者抽出処理プログラム、及び情報提供処理プログラム
JP2004015478A (ja) * 2002-06-07 2004-01-15 Nec Corp 音声通信端末装置
JP2005346416A (ja) * 2004-06-03 2005-12-15 Matsushita Electric Ind Co Ltd 日時情報変換装置、日時情報変換方法、日時情報変換プログラムおよび日時情報変換装置の集積回路
JP2007166161A (ja) * 2005-12-13 2007-06-28 Yafoo Japan Corp 地図情報更新装置、地図情報更新システムおよび地図情報更新方法
JP2008017224A (ja) * 2006-07-06 2008-01-24 Casio Comput Co Ltd 撮像装置、撮像装置の出力制御方法及びプログラム
JP2008234431A (ja) * 2007-03-22 2008-10-02 Toshiba Corp コメント蓄積装置、コメント作成閲覧装置、コメント閲覧システムおよびプログラム
JP2012113589A (ja) * 2010-11-26 2012-06-14 Nec Corp 行動促進装置、行動促進方法およびプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233684B2 (en) * 2002-11-25 2007-06-19 Eastman Kodak Company Imaging method and system using affective information
JP3953024B2 (ja) * 2003-11-20 2007-08-01 ソニー株式会社 感情算出装置及び感情算出方法、並びに携帯型通信装置
US8503991B2 (en) * 2008-04-03 2013-08-06 The Nielsen Company (Us), Llc Methods and apparatus to monitor mobile devices
US20110093272A1 (en) * 2008-04-08 2011-04-21 Ntt Docomo, Inc Media process server apparatus and media process method therefor
US8712774B2 (en) * 2009-03-30 2014-04-29 Nuance Communications, Inc. Systems and methods for generating a hybrid text string from two or more text strings generated by multiple automated speech recognition systems
EP2619967B1 (en) * 2010-09-21 2018-06-20 Sony Mobile Communications Inc. System and method of enhancing messages
US9064243B2 (en) * 2012-02-16 2015-06-23 Blackberry Limited System and method for communicating presence status

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067078A (ja) * 1998-08-26 2000-03-03 Canon Inc データ処理方法及び装置
JP2001282417A (ja) * 2000-03-30 2001-10-12 Rokumasa Fu 圧力センサーないしは速度センサー、またはその双方付きキーボードおよび圧力センサーないしは速度センサー、またはその双方付きキーボードを用いてキー入力時の感情に応じて文字や図形等を変換する方法
JP2002288166A (ja) * 2001-03-26 2002-10-04 Ricoh Co Ltd 関係情報抽出方法及び意味情報抽出方法
JP2002288208A (ja) * 2001-03-28 2002-10-04 Just Syst Corp 情報提供者抽出装置、情報提供装置、情報提供者抽出処理プログラム、及び情報提供処理プログラム
JP2004015478A (ja) * 2002-06-07 2004-01-15 Nec Corp 音声通信端末装置
JP2005346416A (ja) * 2004-06-03 2005-12-15 Matsushita Electric Ind Co Ltd 日時情報変換装置、日時情報変換方法、日時情報変換プログラムおよび日時情報変換装置の集積回路
JP2007166161A (ja) * 2005-12-13 2007-06-28 Yafoo Japan Corp 地図情報更新装置、地図情報更新システムおよび地図情報更新方法
JP2008017224A (ja) * 2006-07-06 2008-01-24 Casio Comput Co Ltd 撮像装置、撮像装置の出力制御方法及びプログラム
JP2008234431A (ja) * 2007-03-22 2008-10-02 Toshiba Corp コメント蓄積装置、コメント作成閲覧装置、コメント閲覧システムおよびプログラム
JP2012113589A (ja) * 2010-11-26 2012-06-14 Nec Corp 行動促進装置、行動促進方法およびプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SATOMI FUJINO ET AL.: "Field Archiving System Utilizing Handheld Terminal with GPS and Sensor", IPSJ SIG NOTES, vol. 2007, no. 14, 23 February 2007 (2007-02-23), pages 45 - 51 *
TETSURO TAKAHASHI ET AL.: "Can Twitter be an alternative of Real-World Sensors?", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. 110, no. 400, 20 January 2011 (2011-01-20), pages 43 - 48 *

Also Published As

Publication number Publication date
US20150018023A1 (en) 2015-01-15
CN104137096A (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
WO2013128715A1 (ja) 電子機器
KR102354428B1 (ko) 이미지를 분석하기 위한 웨어러블기기 및 방법
US11818286B2 (en) Avatar recommendation and reply
JP5929145B2 (ja) 電子機器、情報処理方法およびプログラム
CN108604237B (zh) 个性化交互式智能搜索方法和系统
US10841476B2 (en) Wearable unit for selectively withholding actions based on recognized gestures
JP6490023B2 (ja) 生体情報通信装置、サーバ、生体情報通信方法及び生体情報通信プログラム
CN105573573B (zh) 基于图像管理用户信息的设备和方法
WO2013084395A1 (ja) 電子機器、情報処理方法およびプログラム
US10019625B2 (en) Wearable camera for reporting the time based on wrist-related trigger
US20220301002A1 (en) Information processing system, communication device, control method, and storage medium
KR20160037074A (ko) 전환 거울을 구비한 장치의 이미지 디스플레이 방법 및 그 장치
US20180268453A1 (en) Composite image generation
KR20190141348A (ko) 전자 장치에서 생체 정보 제공 방법 및 장치
US20230353639A1 (en) Analyzing augmented reality content usage data
US11934643B2 (en) Analyzing augmented reality content item usage data
EP4214901A1 (en) Context triggered augmented reality
WO2022006138A1 (en) Generating and accessing video content for products
KR20160051536A (ko) 이미지 기반으로 사용자 정보를 관리하는 디바이스 및 그 방법
WO2013187138A1 (ja) 電子機器
US11599739B2 (en) Image suggestion apparatus, image suggestion method, and image suggestion program
JP2013182422A (ja) 電子機器
JP2013183289A (ja) 電子機器
JP2013120473A (ja) 電子機器、情報処理方法およびプログラム
JP2013140574A (ja) 電子機器、情報処理方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870256

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14381030

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870256

Country of ref document: EP

Kind code of ref document: A1