WO2013128711A1 - 凝集剤および凝集方法、水処理装置 - Google Patents

凝集剤および凝集方法、水処理装置 Download PDF

Info

Publication number
WO2013128711A1
WO2013128711A1 PCT/JP2012/077904 JP2012077904W WO2013128711A1 WO 2013128711 A1 WO2013128711 A1 WO 2013128711A1 JP 2012077904 W JP2012077904 W JP 2012077904W WO 2013128711 A1 WO2013128711 A1 WO 2013128711A1
Authority
WO
WIPO (PCT)
Prior art keywords
sewage
acid
polymer
magnetic powder
acidic group
Prior art date
Application number
PCT/JP2012/077904
Other languages
English (en)
French (fr)
Inventor
佐々木 洋
望月 明
磯上 尚志
Original Assignee
株式会社日立プラントテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立プラントテクノロジー filed Critical 株式会社日立プラントテクノロジー
Priority to US14/369,723 priority Critical patent/US20140367341A1/en
Priority to CA2861733A priority patent/CA2861733A1/en
Priority to MX2014007722A priority patent/MX2014007722A/es
Priority to RU2014126342A priority patent/RU2014126342A/ru
Publication of WO2013128711A1 publication Critical patent/WO2013128711A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/286Magnetic plugs and dipsticks disposed at the inner circumference of a recipient, e.g. magnetic drain bolt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities

Definitions

  • the present invention relates to a flocculant, a coagulation method, and a water treatment apparatus for purifying sewage.
  • sewage called accompanying water is generated along with crude oil, or sewage is generated from oil sand. Since crude oil and oil sand contain a large amount of organic acids (acetic acid, valeric acid, naphthenic acid, etc.), sewage also contains a large amount of organic acids. When sewage is discharged into the sea or river, it has a great impact on the ecosystem, so it is necessary to remove these organic acids from the sewage.
  • Patent Document 1 polyaluminum chloride (commonly called PAC) or iron sulfate and polyacrylamide are added to form a large aggregate, and the aggregate is magnetically separated by adding magnetic powder during the formation of the aggregate.
  • a method is disclosed. However, although this method can remove contaminating fine particles, it is difficult to remove organic acids such as acetic acid, valeric acid and naphthenic acid dissolved in the sewage. This is because the organic acid is not free from a carboxyl group and has an ammonium salt structure, a sodium salt structure, or the like, and is thus more easily dissolved in water.
  • Patent Document 2 discloses a method for agglomerating and removing organic acids or organic acid salts. First, by adding a polymer having an amino group to wastewater, the carboxyl group of the organic acid in the wastewater and the amino group of the polymer having an amino group form an ionic bond. In this state, when a polymer having an acidic group is added, the acidic group of the polymer having an acidic group and the amino group of the polymer having an amino group are ion-bonded at a plurality of positions between the molecules, thereby aggregating insoluble in water. Form things. Thus, the organic acid dissolved in water can be removed.
  • An object of the present invention is to improve the performance of magnetic separation of organic acids.
  • the present invention is characterized in that, in a flocculant that forms an agglomerate with an organic acid in wastewater, the surface includes iron oxide having an inorganic salt and an aqueous solution of a polymer having an acidic group. .
  • a step of adding iron oxide having an inorganic salt on the surface to the sewage, and an aqueous solution of a polymer having acidic groups A step of adding, and a step of magnetically separating the precipitated aggregates.
  • a mechanism for stirring the sewage a mechanism for adding iron oxide having an inorganic salt on the surface to the sewage, and an aqueous solution of a polymer having an acidic group
  • a mechanism for magnetically separating the generated aggregate in a water treatment apparatus for purifying sewage, a mechanism for stirring the sewage, a mechanism for adding iron oxide having an inorganic salt on the surface to the sewage, and an aqueous solution of a polymer having an acidic group.
  • the performance of magnetic separation of organic acids can be improved.
  • an agglomerate incorporating an organic acid and magnetic powder in wastewater is formed by the following processes (a) to (c).
  • strong acid such as hydrochloric acid, sulfuric acid and nitric acid with water.
  • Examples of the magnetic powder 4 include iron oxide.
  • the magnetic powder 5 having a modified surface is formed.
  • an inorganic salt such as sodium chloride is added, surface modification is likely to proceed.
  • a polymer having an acidic group is added.
  • a polymer 8 having a carboxyl group is added.
  • the carboxyl group is ion-bonded with the previously added iron ion 7 or the surface-modified magnetic powder 5 to form intermolecular crosslinks, so that it becomes an insoluble aggregate in water.
  • an aggregate 9 including the organic acid and the magnetic powder is formed.
  • the organic acid having a substituent for forming an ionic bond is an object to be removed, and the organic acid and the flocculant form an aggregate by ionic bonding. That is, the sewage of the present invention includes an organic acid, and is intended for seawater, river water, oily water, sewage, drainage, and the like.
  • Trivalent metal salts other than iron salts and aluminum salts for example, rare earth metal salts such as neodymium and dysprosium, specifically neodymium chloride, dysprosium chloride and the like can also be used as the aggregating agent.
  • rare earth metal salts such as neodymium and dysprosium, specifically neodymium chloride, dysprosium chloride and the like can also be used as the aggregating agent.
  • the metal ions of the trivalent metal salts such as iron and aluminum to be added are ion-bonded with the carboxyl groups of the organic acid and the acid groups of the water-soluble polymer having an acid group, so almost all the metal ions and acid groups are ions. It is desirable to add an amount sufficient to bind.
  • M the number of moles of metal ions of the metal salt
  • PA the number of moles of acidic groups of the water-soluble polymer having an acidic group
  • MA the number of moles of organic acid in the wastewater
  • the ion exchange resin most commonly used for conventional organic acid removal traps an organic acid on an amino group on the surface of a resin particle having a particle diameter of about 0.1 to 2 mm.
  • the smaller the particle size the larger the surface area of the particles, so that more organic acids can be trapped.
  • the flocculant to be added is water-soluble, the organic acid can be trapped with high efficiency as if an ion exchange resin having a particle size of several angstroms was used. Therefore, the amount of the organic acid trap when the same amount is added as compared with the case of using the conventional ion exchange resin is remarkably increased.
  • the magnetic powder is used by modifying the surface with a strong acid. Specifically, the modification is to ionize iron atoms on the surface of the magnetic powder.
  • the surface is iron chloride.
  • iron chloride is dissolved in water in the case of divalent and trivalent, it is estimated that it is in a monovalent form on average.
  • the number of atoms on the surface is enormous, it is difficult to confirm the valence, but when the surface is analyzed with SEM-EDX etc., it is estimated that the surface is thin and changed to iron chloride because chlorine exists. Is done.
  • an ionic bond can be formed with an organic acid or a polymer having an acidic group.
  • magnetic powder becomes easy to be contained in the aggregate.
  • most of the aggregates after aggregation are incorporated with magnetic powder, and most of the aggregates can be recovered magnetically during the subsequent magnetic separation.
  • the magnetic powder is immersed in strong acid. Thereafter, it is taken out from the strong acid, washed with water and dried. In this way, a magnetic powder having a modified surface is obtained. In the present invention, this magnetic powder is used to purify sewage.
  • Fe As the magnetic powder, Fe, or iron oxide such as Fe 3 O 4 and Fe 2 O 3 that can be collected by magnetism is used.
  • the surface modification method is as follows. First, an inorganic strong acid such as hydrochloric acid, sulfuric acid or nitric acid is added to a container containing these magnetic powders and stirred for about 1 hour. In the case of a monovalent acid such as hydrochloric acid or nitric acid, the amount added is about three times the number of moles of iron atoms in iron or iron oxide. In the case of divalent sulfuric acid, it is about 1.5 times.
  • hydrochloric acid is used at about 3 to 11% by weight. Unless the concentration is 3% by weight or more, the surface hardly dissolves. If it exceeds 11% by weight, about half of the magnetic powder is dissolved. Therefore, the concentration of added hydrochloric acid is controlled appropriately. For the same reason, it is preferable to use an aqueous solution having a concentration of 5 to 16% by weight for sulfuric acid and 6 to 18% by weight for nitric acid.
  • a neutral salt such as sodium chloride is added in advance.
  • the amount to be added is preferably 5% by weight or more after adding the strong acid.
  • Examples of the neutral salt to be added include sodium chloride, sodium sulfate, sodium nitrate, potassium chloride, potassium sulfate, potassium nitrate, magnesium chloride, magnesium sulfate, magnesium nitrate, calcium chloride, calcium sulfate, and calcium nitrate.
  • a strong acid containing an organic substance such as trichloroacetic acid or trifluoroacetic acid
  • it may remain in the magnetic powder even after surface modification and dissolve in wastewater.
  • a strong acid made of an inorganic material is used here.
  • a polymer having an acidic group may be a carboxyl group or a sulfonic acid group as an acidic group.
  • polyacrylic acid is most preferable as a polymer having a carboxyl group because it is inexpensive and easily binds to a trivalent metal ion.
  • polyaspartic acid derived from amino acids, polyglutamic acid, and the like are also characterized by low toxicity.
  • Alginic acid is a kind of main component of seaweeds such as kombu, and has a feature of low environmental impact in that the raw material is derived from organisms.
  • polysulfonic acid group examples include polyvinyl sulfonic acid and polystyrene sulfonic acid. Since these sulfonic acid groups have a higher acidity than carboxyl groups, the ratio of forming ionic bonds with metal ions is high, which is preferable in terms of obtaining stable aggregates.
  • polymers having a carboxyl group are more frequently used in the world such as diapers and sanitary products, and are more preferable than polymers having a sulfonic acid group in that they are easily available and inexpensive.
  • the solubility in water can be improved by making the acidic group into an ammonium salt structure, a sodium salt structure, or a potassium salt structure. After forming an ammonium salt structure, or a sodium salt structure or a potassium salt structure, an ionic bond can be efficiently formed with a trivalent metal ion by adding it to sewage.
  • the average molecular weight of the polymer having an acidic group is desirably 2,000 or more.
  • the aggregates become sticky when the average molecular weight is 2,000.
  • the temperature may increase to about 60 ° C.
  • the aggregate can be solidified even at a high temperature by further increasing the average molecular weight.
  • the average molecular weight of the polymer having an acidic group is more preferably 5,000 or more.
  • the average molecular weight of the polymer having an acidic group is more preferably 10,000 or more.
  • the average molecular weight of the polymer having an acidic group is desirably 1,000,000 or less.
  • the average molecular weight of the polymer indicates a number average molecular weight, and this value is measured by Gel Permeation Chromatography.
  • Metal salts of the metal salt include trivalent metals such as iron, aluminum, neodymium, and dysprosium. Among these, iron and aluminum are preferable because they are abundant on the earth, inexpensive and easily available. Also, iron is desirable because it is cheaper.
  • iron salt in order not to increase the COD (Chemical Oxygen Demand) concentration of sewage, a structure in which the salt itself does not contain carbon is desirable. Therefore, salts of inorganic acids such as iron chloride, iron sulfate, and iron nitrate are desirable rather than salt structures of organic acids such as iron acetate and iron propionate.
  • the metal salt is an ionic compound
  • the aggregate is more easily formed by including not only the magnetic powder whose surface is modified but also the metal salt in the flocculant.
  • Examples of the aluminum salt include polyaluminum chloride.
  • Polyaluminum chloride is synthesized by adding hydrochloric acid to aluminum hydroxide.
  • the structure is [Al 2 (OH) n Cl 6-n ] m , where 1 ⁇ n ⁇ 5 and m ⁇ 10.
  • salts include aluminum sulfate.
  • hydrochloride, sulfate, or nitrate is preferable because of its high solubility in water.
  • Inorganic salts to be added are alkali metals such as sodium chloride, potassium chloride, magnesium chloride and calcium chloride, and alkaline earth metal hydrochlorides, alkali metals such as sodium sulfate, potassium sulfate, magnesium sulfate and calcium sulfate, and alkaline earths Examples thereof include metal sulfates, alkali metals such as sodium nitrate, potassium nitrate, magnesium nitrate, and calcium nitrate, and alkaline earth metal nitrates.
  • the flocculant of the present invention has a high ability to agglomerate and remove organic acids when the liquidity of sewage is weakly acidic to neutral. In terms of pH, 5 to 7 is optimal.
  • the flocculant of the present invention forms an aggregate by an ionic bond with an organic acid. Since the stable pH of the aggregates at this time is 5 to 7, this pH region is optimal for aggregating and removing the organic acid. Although the organic acid can be removed even if the liquidity of the sewage does not fall within this range, it is necessary to reduce the removal rate or increase the proportion of the metal salt to be added.
  • the liquidity tends to be acidic.
  • the pH of sewage tends to be acidic.
  • the aggregate is stable as an insoluble substance in water at a pH of 2 to 5. When the aggregate is out of this range, the aggregate is easily dissolved in water. Therefore, the pH of sewage before adding a water-soluble polymer or metal salt having an acidic group is optimally 5-7.
  • the polymer having an acidic group is a polymer 8 having a carboxyl group.
  • D The iron ions 7, the surface of the magnetic powder 5, the carboxyl group of the organic acid 6, and the carboxyl group of the water-soluble polymer 8 having a carboxyl group are ionically bonded.
  • E Aggregate 9 insoluble in water is formed.
  • a method for increasing the removal rate of organic acid includes a method in which an inorganic salt is added to sewage before adding a polymer to be added later. As described above, it is estimated that the removal rate is increased by an effect similar to salting out.
  • the inorganic salt to be added sodium chloride which is abundant in nature is suitable. Particularly in the case of sewage treatment in a subsea oil field, the average sodium chloride concentration in seawater is about 3%.
  • the organic acid removal rate can be improved by controlling the pH of the sewage before adding the water-soluble polymer or metal salt having an acidic group to 5-7.
  • the flocculant of the present invention is intended to remove organic acids in sewage, but it has become clear that suspended substances can be removed together as described above. Therefore, it is not necessary to perform aggregation using polyaluminum chloride and polyacrylamide, which are generally used for removing suspended substances, and there is a merit that leads to a reduction in water purification process load (cost and processing time).
  • Sewage is introduced into the first mixing tank 53 by the pump 51 through the pipe 52.
  • the liquid in this is stirred by the overhead stirrer 54.
  • the liquidity of the sewage is confirmed.
  • a pH sensor for confirming liquidity is provided in the first mixing tank 53.
  • a plurality of first mixing tanks 53 may be provided.
  • the hydrochloric acid aqueous solution is introduced into the first mixing tank 53 through the pipe 57 from the hydrochloric acid aqueous solution tank 55 by the pump 56.
  • the iron oxide, trivalent metal salt, alkali metal salt or alkaline earth metal salt dissolved in water is stored in the tank 58, and the pump 59 is used to pass the iron oxide through the pipe 60 from the tank 58.
  • an aqueous solution of a trivalent metal salt, an alkali metal salt or an alkaline earth metal salt is put into the first mixing tank 53 and mixed with sewage.
  • the liquid in the first mixing tank 53 is introduced into the second mixing tank 63 through the pipe 62 using the pump 61.
  • the liquid therein is stirred by an overhead stirrer 64.
  • an agitating mechanism such as an overhead stirrer for mixing an aqueous solution of a trivalent metal salt, alkali metal salt or alkaline earth metal salt and magnetic powder is provided in the metal salt aqueous solution tank 58.
  • an agitating mechanism such as an overhead stirrer for mixing an aqueous solution of a trivalent metal salt, alkali metal salt or alkaline earth metal salt and magnetic powder is provided in the metal salt aqueous solution tank 58.
  • an agitating mechanism such as an overhead stirrer for mixing an aqueous solution of a trivalent metal salt, alkali metal salt or alkaline earth metal salt and magnetic powder is provided in the metal salt aqueous solution tank 58.
  • the aqueous solution of metal salt and the magnetic powder can be separately put into the second mixing tank 63 described later, the density per unit volume of the magnetic powder contained in the aggregate tends to be biased.
  • a method of feeding the mixture into the second mixing tank 63 after mixing in advance as in this apparatus is desirable.
  • the produced aggregate is in a state where magnetic powder is mixed.
  • the agglomerates adhere to the drum 68 having a mesh-like surface and magnetism.
  • the drum 68 rotates clockwise in this figure, and the agglomerates adhering to the surface are peeled off from the mesh of the drum 68 by the scraper 69.
  • the peeled agglomerate 70 is collected in an agglomerate collection device 71 having a meshed bottom surface. Since the aggregate 70 just collected contains a considerable amount of water, it is drained from the mesh on the lower surface of the aggregate recovery device 71.
  • the rotation direction of the drum 68 may be counterclockwise in order to increase the adhesion of the aggregate 70.
  • the scraper 69 and the agglomerate collection device 71 are on the opposite side of the drum 68.
  • the water that has passed through the mesh of the drum 68 is in a state where aggregates are removed by the mesh. This water comes out through the pipe 72 in the center of the drum 68 as water from which aggregates have been removed.
  • the tip 73 of the pipe 67 where the liquid is poured into the second mixing tank 63 is not straight, but is spread out like a fan or a shower mouth so that the liquid is poured into the second mixing tank 63 as widely as possible. It is preferable to do so. This is because agglomeration starts instantaneously with the addition, and when the solution is introduced into a small area, the introduced liquid is included in the agglomerates and cannot be utilized for further agglomerate generation.
  • the inlet of the liquid is provided on the liquid surface so that the tip 73 of the pipe 62 and the portion of the pipe 67 where the liquid is charged into the second mixing tank 63 does not come into contact with the liquid level of the second mixing tank 63. This is because aggregates generated in the second mixing tank 63 may adhere to the tip of the pipe 73 and block the hole at the tip.
  • a drum for magnetic separation may not be provided, and a mechanism may be provided for filtering the aggregate after settling. Since the aggregate contains the magnetic powder, the specific gravity increases and it tends to sink. Therefore, most of the agglomerates are submerged under the second mixing tank 63, and the supernatant is filtered, whereby water can be purified without magnetic separation.
  • This apparatus collects agglomerates on a drum 68 having a mesh surface, and then blows out a small amount of water from the inside of the drum 68, whereby the agglomerates are peeled off from the mesh of the drum 68, and a drum provided adjacent to the drum 68. It is made to fly to 74 and adhere to the surface of the drum 74.
  • the surface of the drum 74 is not a mesh but a metal plate.
  • the mesh surface of the drum 68 is conventionally rubbed with a scraper. At this time, the scraper may be caught on the mesh and the mesh may be damaged.
  • the metal plate on the surface of the drum 74 which is stronger than the mesh is in contact with the scraper, so that it is preferable that the scraper is not easily damaged.
  • the amount of treated water put into the aggregate removal tank 75 is controlled by a valve 76.
  • the oil extraction plant 81 steam is blown into the oil sand to separate the oil from the sand.
  • steam is blown, the oil is heated, the viscosity is lowered, and the oil is separated from sand as oily water mixed with hot water derived from steam. Since the oily water is allowed to stand and is separated into oil and moisture due to the difference in specific gravity, the oil extraction is completed by collecting the upper oil (commonly called bitumen).
  • bitumen commonly called bitumen
  • the sewage mixed with the oil discharged from the oil extraction plant is sent to the water treatment device 83 through the pipe 82.
  • the treated water purified by removing oil, organic acid, and the like here is sent to the steam generator 85 through the pipe 84.
  • the treated water is heated by this apparatus to become steam, and is sent to the oil extraction plant 81 through the pipe 86. This water vapor is used again in the process of extracting oil from the oil sand.
  • the aggregate In the process of heating the treated water in order to produce steam with the steam generator 85, the aggregate is transported from the water processor 83 by the belt conveyor 87.
  • the aggregate contains an oil, an organic acid, and a water-soluble polymer having an acidic group, and has an effect of reducing waste by burning it as part of the fuel in the process of heating the treated water.
  • Magnetic powder modification magnetic powder is modified.
  • the reforming method is as follows. First, 5 wt% hydrochloric acid (65.7 g, 0.09 mmol as HCl) is added to a container containing magnetic powder (element composition is Fe 3 O 4 , 2.4 g, 0.01 mmol), and stirred for 1 hour. Since the solution became light yellow and transparent, it is considered that Fe on the surface of the magnetic powder was changed to FeCl 2 or FeCl 3 and dissolved. It is also presumed that Fe on the surface is also slightly ionized and chlorine ions are present or attached in the vicinity. Next, the magnetic powder is recovered by filtration, washed with water, and then dried under reduced pressure to obtain a surface-modified magnetic powder.
  • naphthenic acid is a general term for carboxylic acids of cyclic hydrocarbons, and the molecular weight varies depending on the size of the ring and the presence or absence of branched alkyl chains. In the experiment of the present invention, these mixtures were obtained and used after measuring the average molecular weight. According to the measurement, the average molecular weight was 220. Further, in order to dissolve naphthenic acid in water, naphthenic acid was added in advance in an ammonium salt structure.
  • aggregates could be recovered in the same manner using magnetic powder modified with sulfuric acid having a concentration of 10% by weight or nitric acid having a concentration of 10% by weight instead of hydrochloric acid, and the naphthenic acid concentration was reduced to 10 ppm. .
  • the magnetic powder can be modified not only with hydrochloric acid but also with an inorganic acid.
  • the surface is judged to have a salt structure of sulfuric acid and iron or nitric acid and iron.
  • the magnetic powder was modified with hydrochloric acid having a concentration of 12% by weight, the solution after stirring for 1 hour was visually yellow and transparent. Thereafter, the weight of the magnetic powder obtained by filtration, washing with water and drying process was reduced to about half of that before the modification.
  • the weight of the magnetic powder was 90% or more before the modification.
  • the hydrochloric acid concentration is desirably 11% by weight or less.
  • the recovery rate of magnetic powder was 50% or less when treated at 17% by weight or more.
  • the recovery rate of the magnetic powder was 90% or more.
  • the magnetic powder recovery rate was 50% or less when treated with 19% by weight or more.
  • the recovery rate of the magnetic powder was 90% or more.
  • the appropriate concentration of acid when modifying magnetic powder with acid alone is 3 to 11% by weight for hydrochloric acid, 5 to 16% by weight for sulfuric acid, and 6 to 18% by weight for nitric acid. It was shown that there is.
  • the magnetic powder modification can be performed even with a low concentration of acid by adding sodium chloride to the acid during the magnetic powder modification.
  • the aggregate When the aggregate was recovered with a bar magnet, the aggregate could be recovered in the same manner as in Example 1, and the naphthenic acid concentration in the simulated sewage after the aggregate recovery was 10 ppm.
  • the removal rate of naphthenic acid was improved by increasing the amount of sodium chloride added, that is, the concentration of sodium chloride in the wastewater.
  • naphthenic acid was easily included in the aggregate by adding a salt of chloride.
  • Example 2 The same experiment as in Example 1 was performed except that 1.72 g of a 5 wt% aqueous solution of polymethacrylic acid (1 mmol as the number of carboxyl groups which are acidic groups) was used instead of 1.44 g of a 5 wt% aqueous solution of polyacrylic acid. Attempts were made to reduce the naphthenic acid concentration in the filtrate to 10 ppm.
  • Example 2 The same test as in Example 1 was attempted except that 1.84 g of a 10 wt% aqueous solution of polystyrene sulfonic acid (1 mmol as the number of sulfonic acid groups) was used instead of 1.44 g of a 5 wt% aqueous solution of polyacrylic acid.
  • the benzoic acid concentration in the filtrate decreased to 10 ppm.
  • Water-soluble polymer 9 having carboxyl group Aggregates 51, 56, 59, 61, 66 including organic acid and magnetic powder Pump 52, 57, 60, 62, 67, 72, 82, 84, 86 Pipe 53 First mixing tank 54, 64 Overhead stirrer 55 Hydrochloric acid aqueous solution tank 58 Metal salt aqueous solution tank 63 Second mixing tank 65 Acidic group Water-soluble polymer aqueous solution tanks 68, 74 Drum 69 Scraper 70 Aggregate 71 Aggregate recovery device 73 Tip 75, 77 of the part where the liquid is poured into the second mixing tank, agglomerate removal tank 76, valve 81, oil extraction plant 83 Water treatment device 85 Water vapor generation device 87 Belt conveyor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

 汚水中に溶解している有機酸を高速で除去する。そのため、汚水中に含まれる有機酸との間で凝集物を形成する凝集剤を、表面に無機塩を有する酸化鉄と、酸性基を有する高分子の水溶液とを含むよう構成する。この凝集剤を用いて汚水中の有機酸を凝集物にして除去する場合には、表面に無機塩を有する酸化鉄を汚水に加え、酸性基を有する高分子の水溶液を加え、析出する凝集物を磁気分離する。また、汚水中からの有機物除去を実現する水処理装置は、汚水を撹拌する機構と、表面に無機塩を有する酸化鉄を汚水に加える機構と、酸性基を有する高分子の水溶液を加える機構と、生成する凝集物を磁気分離する機構とを備える。

Description

凝集剤および凝集方法、水処理装置
 本発明は汚水を浄化するための凝集剤および凝集方法、水処理装置に関する。
 油田等の採掘等では、原油とともに随伴水と呼ばれる汚水が発生したり、オイルサンドから汚水が発生する。原油やオイルサンドには大量の有機酸(酢酸、吉草酸、ナフテン酸等)が含まれるため、汚水にも大量の有機酸が含まれる。汚水を海や河川に放流する場合、生態系に与える影響が大きいので、汚水からこれら有機酸を除去する必要がある。
 特許文献1には、ポリ塩化アルミニウム(通称PAC)或いは硫酸鉄と、ポリアクリルアミドを添加して大きな凝集物を形成し、凝集物の形成時に磁性粉を入れておくことで凝集物を磁気分離する方法が開示されている。しかし、この方法は汚濁微粒子を除去できるが、汚水に溶解している酢酸、吉草酸、ナフテン酸等の有機酸は除去が困難である。有機酸はカルボキシル基がフリーではなく、アンモニウム塩構造、或いはナトリウム塩構造等になっているため、より水に溶解しやすくなっているためである。
 特許文献2には、有機酸、或いは有機酸塩を凝集除去する方法が開示されている。まず汚水にアミノ基を有する高分子を添加することで、汚水中の有機酸のカルボキシル基とアミノ基を有する高分子のアミノ基がイオン結合を形成する。この状態で、酸性基を有する高分子を添加すると、酸性基を有する高分子の酸性基とアミノ基を有する高分子のアミノ基が分子間で複数箇所イオン結合することにより、水に不溶の凝集物を形成する。こうして水に溶解している有機酸も除去可能となる。
特開2003-144805号公報 特開2010-172814号公報
 しかし、上記特許文献では凝集の進行が早すぎるため、磁性粉を加えても、凝集物が磁性粉を取り込みにくい。そのため、凝集物が部分的にしか磁気分離できないという課題がある。
 本発明の目的は、有機酸の磁気分離の性能を向上させることにある。
 上記課題を解決するために、本発明の特徴は、汚水中の有機酸と凝集物を形成する凝集剤において、表面に無機塩を有する酸化鉄と、酸性基を有する高分子の水溶液とを含む。
 本発明の別の特徴として、汚水中の有機酸を凝集物にして除去する汚水浄化方法において、表面に無機塩を有する酸化鉄を前記汚水に加える工程と、酸性基を有する高分子の水溶液を加える工程と、析出する凝集物を磁気分離する工程とを備える。
 また本発明の別の特徴として、汚水を浄化する水処理装置において、前記汚水を撹拌する機構と、表面に無機塩を有する酸化鉄を前記汚水に加える機構と、酸性基を有する高分子の水溶液を加える機構と、生成する凝集物を磁気分離する機構とを備える。
 本発明によれば、有機酸の磁気分離の性能を向上させることができる。
本発明の磁性粉の表面改質のスキームである。 本発明のフロック(凝集物)形成のスキームである。 本発明の水処理装置の模式図である。 本発明の水処理装置の模式図である。 本発明の水処理装置の模式図である。 本発明の水処理装置の模式図である。 本発明の油分抽出、浄水システムの模式図である。
 本発明は、下記(a)~(c)のプロセスにより、汚水中の有機酸、及び磁性粉を取り込んだ凝集物を形成する。
(a):磁性粉の表面改質
 図1に示すように、磁性粉4を塩酸、硫酸、硝酸等の強酸を水で希釈した水溶液に分散し攪拌することにより磁性粉4表面を僅かにイオン化する。磁性粉4としては酸化鉄が挙げられる。
 こうして表面を改質した磁性粉5が形成される。この際塩化ナトリウム等の無機塩を加えると、表面改質が進みやすい。
(b):有機酸捕捉
 図2に示すように、有機酸6が溶解している汚水中に磁性粉5を加えると、有機酸6は磁性粉5表面のイオンとイオン結合する。磁性粉5だけでなく三価の金属塩を更に加えてもよい。ここでは鉄イオン7を有する金属塩を添加している。三価の金属塩として具体的には塩化鉄、硫酸鉄、ポリ塩化アルミニウム等を汚水に添加する。
(c):凝集物形成
 次に酸性基を有する高分子を添加する。図2ではカルボキシル基を有する高分子8を添加する。このときカルボキシル基は先に加えた鉄イオン7、或いは表面改質した磁性粉5とイオン結合し、分子間架橋を形成するため、水に不溶の凝集物となる。こうして有機酸と磁性粉を包接した凝集物9が形成する。本発明は、イオン結合を形成するための置換基を有する有機酸が除去対象物であり、有機酸と凝集剤とがイオン結合することで凝集物を形成する。つまり、本発明の汚水とは有機酸を含むものであり、海水、河川水、油濁水、下水、排水等を対象とする。
 鉄塩、アルミニウム塩以外の三価の金属の塩、例えばネオジム、ディスプロシウムのような希土類金属の塩、具体的には塩化ネオジム、塩化ディスプロシウム等も凝集剤として用いることができる。
 また、これら三価の金属塩と酸性基を有する水溶性高分子を加える際はバルクでも効果はあるが、汚水全体に広がるには時間がかかるので、水溶液の形で加えることが好ましい。特に三価の金属塩が十分溶解しないうちに酸性基を有する水溶性高分子を加えると、凝集が汚水中でも部分的にしか起こらず、有機酸を除去しにくくなるので、この点からも水溶液で加えることが好ましい。
 加える鉄、アルミニウム等の三価の金属塩の金属イオンは、有機酸のカルボキシル基、及び酸性基を有する水溶性高分子の酸性基とイオン結合するので、金属イオンと酸性基とがほぼすべてイオン結合するだけの量を加えることが望ましい。金属塩の金属イオンのモル数をM、酸性基を有する水溶性高分子の酸性基のモル数をPA、汚水中の有機酸のモル数をMAとする時、下記不等式を満たすことが望ましい。
  3×M>MA+PA
 従来の有機酸除去で最も一般的に用いられるイオン交換樹脂は粒子径が0.1~2mm程度の樹脂粒子表面のアミノ基に有機酸をトラップさせる。粒子径が小さいほど粒子の表面積が大きくなるので多くの有機酸をトラップできる。しかし本発明の場合、加える凝集剤が水溶性のため、粒子径があたかも数オングストロームのイオン交換樹脂を用いたのと同じように高効率で有機酸をトラップできる。そのため従来のイオン交換樹脂を用いた場合に比べて同じ量だけ添加した場合の有機酸トラップ量は格段に大きくなる。
 本発明の実施形態について以下に説明する。
[1]凝集剤
(1)磁性粉
 本発明で磁性粉は、強酸で表面を改質して用いる。
 改質とは、具体的には磁性粉表面の鉄原子をイオン化するものである。例えば強酸として塩酸を用いる場合は、表面が塩化鉄となっている。ただし、塩化鉄は二価、及び三価の場合は水に溶解してしまうので、平均的には一価の形になっていると推定される。ただ、表面の原子の数は膨大なので、価数を確認しにくいが、表面をSEM-EDX等で分析すると、塩素が存在していることから表面が薄く塩化鉄に変化しているものと推定される。
 磁性粉自身の表面が陽イオンの鉄イオンになっているので、有機酸、或いは酸性基を有する高分子とイオン結合を形成できる。これにより、凝集物中に磁性粉が含まれやすくなる。実際、凝集後の凝集物のほとんどに磁性粉が取り込まれており、この後の磁気分離の際、ほとんどの凝集物が磁気により回収できる。
 なお、強酸で表面改質の際は、まず磁性粉は強酸に浸す。その後、強酸から取り出し、水洗後乾燥する。こうして表面が改質された磁性粉を得る。本発明ではこの磁性粉を用いて汚水を浄化する。
 上記改質を行わない通常の磁性粉を用いると、凝集物の一部は磁性粉を取り込まないため、凝集物の一部を磁気分離では回収できないが、本発明により、有機酸除去に磁気分離を使うことが可能となった。
 磁性粉としては磁性で集めることが可能な、Fe、或いはFe34、Fe23といった酸化鉄を用いる。
 表面改質の方法は以下の通りである。まずこれら磁性粉を入れた容器に塩酸、硫酸、硝酸等の無機の強酸を加え約1時間撹拌する。加える量は、塩酸、硝酸のような一価の酸の場合、鉄、或いは酸化鉄中の鉄原子のモル数の3倍程度とする。また二価の硫酸の場合は1.5倍程度とする。
 次にろ過して磁性粉を回収する。これを水洗後、減圧乾燥することで表面改質された磁性粉を得る。無機の酸単独の場合は塩酸の場合、約3~11重量%で行う。3重量%以上の濃度でないと表面がほとんど溶解しない。また11重量%を超えると、磁性粉の半分程度が溶解してしまう。よって加える塩酸の濃度は適正に制御する。同様の理由で硫酸の場合は5~16重量%、硝酸の場合は6~18重量%の濃度の水溶液を用いるのが好ましい。
 ところで、この濃度の強酸を用いた場合、配管等の腐食が進みやすくなる場合も考えられる。そこ場合、塩化ナトリウム等の中性塩をあらかじめ加える。加える量は強酸を加えた後に5重量%以上になるよう加えることが望ましい。これにより、塩酸、硫酸、硝酸とも約1重量%でも表面が改質する。
 加える中性塩は、塩化ナトリウム、硫酸ナトリウム、硝酸ナトリウム、塩化カリウム、硫酸カリウム、硝酸カリウム、塩化マグネシウム、硫酸マグネシウム、硝酸マグネシウム、塩化カルシウム、硫酸カルシウム、硝酸カルシウム等が挙げられる。
 なお、ここで無機の強酸の代わりにトリクロル酢酸、トリフルオロ酢酸等の有機物を含んだ強酸を用いた場合、表面改質後も磁性粉に残留しそれが汚水中にも溶解する可能性があり、その場合は汚水中の有機酸を除く作業をしているつもりでも有機酸濃度が上昇し、逆効果となってしまう。そこで、ここでは無機物からなる強酸を用いる。
(2)酸性基を有する高分子
 酸性基を有する高分子は酸性基としてカルボキシル基、あるいはスルホン酸基が考えられる。
 このうちカルボキシル基を有する高分子としては安価でかつ三価の金属イオンとイオン結合しやすい点でポリアクリル酸が最も好適である。このほかアミノ酸由来のポリアスパラギン酸、ポリグルタミン酸等も毒性が低いという特徴がある。
 アルギン酸はコンブ等海草の主成分の一種であり、原料が生物由来という点で環境負荷が小さい特徴を持つ。
 スルホン酸基を有する高分子としてはポリビニルスルホン酸、ポリスチレンスルホン酸が挙げられる。これらスルホン酸基はカルボキシル基よりも酸性度が大きいため、金属イオンとのイオン結合を形成する割合が高く、安定な凝集物を得られる点で好ましい。
 なお、カルボキシル基を有する高分子はおむつ、生理用品等、世の中で多々使われており、入手しやすく、且つ安価である点で、スルホン酸基を有する高分子より好適である。
 また、酸性基を有する高分子の水溶性が低い場合は、酸性基をアンモニウム塩構造、或いはナトリウム塩構造、カリウム塩構造にすることで水に対する溶解性を向上させることが可能である。アンモニウム塩構造、或いはナトリウム塩構造、カリウム塩構造とした後、汚水に添加することで三価の金属イオンと効率良くイオン結合を形成することが可能である。
 ところで酸性基を有する高分子の平均分子量が小さすぎると、凝集物の架橋部位の数が少なくなるので凝集物の安定性が低くなる。また凝集物が粘度の高い液状になる傾向もある。こうなると濾過では凝集物の除去は困難になる。そこで酸性基を有する高分子の平均分子量は2,000以上が望ましい。
 なお、汚水の温度が40℃以上になると平均分子量が2,000の場合は凝集物が粘着性を有するようになる。オイルサンド排水の場合、温度が60℃程度まで高くなる場合もある。この場合は更に平均分子量を大きくすることで高温でも凝集物を固体化することが可能となる。具体的には平均分子量を5,000以上にすることで、汚水の温度が40℃でも凝集物の固体化が可能となる。よって酸性基を有する高分子の平均分子量は5,000以上がより好ましい。更に平均分子量を10,000以上にすることで、汚水の温度が60℃でも凝集物の固体化が可能となる。よって酸性基を有する高分子の平均分子量は10,000以上が更に好ましい。
 しかし分子量が大きすぎると、三価の金属イオンと架橋を形成する途中で水に対する溶解性が低下し析出してしまう傾向がある。即ち三価の金属イオンのイオン結合状態のもの全てと有機酸とがイオン結合による架橋を形成する前に汚水中に析出してしまう可能性がある。こうなると三価の金属イオンのイオン結合状態の一部と有機酸とが汚水中に溶解した状態で残ってしまう。そのため酸性基を有する高分子の平均分子量は1,000,000以下であることが望ましい。
 なお、本発明において高分子の平均分子量は数平均分子量を示し、この値はGel Permeation Chromatography(ゲル・パーメーション・クロマトグラフィ)によって計測される。
(3)金属塩
 金属塩の金属種としては、鉄、アルミニウム、ネオジム、ディスプロシウム等三価の金属が挙げられる。このうち、地球上に豊富に存在し安価で、入手しやすい点で鉄、アルミニウムが好ましい。また、より安価である点で鉄が望ましい。
 鉄の塩としては汚水のCOD(Chemical Oxygen Demand:化学的酸素要求量)濃度を高めないため、塩自身に炭素を含まない構造が望ましい。そのため酢酸鉄、プロピオン酸鉄等の有機酸の塩構造ではなく塩化鉄、硫酸鉄、硝酸鉄等の無機酸の塩が望ましい。
 金属塩はイオン性化合物なので、凝集剤に表面を改質した磁性粉だけでなく金属塩も含むことで、凝集物がより形成しやすくなる。
 アルミニウムの塩としてはポリ塩化アルミニウムが挙げられる。ポリ塩化アルミニウムは水酸化アルミニウムに塩酸を加えることにより合成される。構造は、[Al2(OH)nCl6-nmであり、1≦n≦5、m≦10である。
 これ以外の塩としては硫酸アルミニウムが挙げられる。
 ネオジム、ディスプロシウムといった希土類金属の場合は、水に対する溶解性が高い点で塩酸塩、或いは硫酸塩、硝酸塩が好ましい。
(4)有機酸トラップ向上のための添加剤
 有機酸の酸性基の酸性度が低い場合、三価の金属イオンとイオン結合を形成する割合が低下する。そこで、酸性基を有する高分子を添加する前に塩化ナトリウムや塩化カリウム等の無機塩を汚水に添加する。これにより三価の金属イオンとイオン結合する有機酸の割合が高まる。これは塩を添加して水中に溶解している有機物を析出させる塩析と類似の効果により汚水中に溶解できる有機酸の許容割合下げているのではないかと推定している。
 添加する無機塩は塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウム等のアルカリ金属、及びアルカリ土類金属の塩酸塩、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム等のアルカリ金属、及びアルカリ土類金属の硫酸塩、硝酸ナトリウム、硝酸カリウム、硝酸マグネシウム、硝酸カルシウム等のアルカリ金属、及びアルカリ土類金属の硝酸塩、等が挙げられる。
 また、本発明の凝集剤は汚水の液性は弱酸性から中性のときが、有機酸を凝集除去する性能が高い。pHで言えば、5~7が最適である。本発明の凝集剤は有機酸とイオン結合により凝集物を形成する。その際の凝集物の安定なpHが5~7であるため、有機酸を凝集除去するにはこのpH領域が最適である。汚水の液性がこの範囲に入っていなくても、有機酸の除去は可能であるが、除去率が低下したり、加える金属塩の割合を増加させる必要がある。
 塩化鉄や硫酸アルミニウム等の金属塩を添加すると液性は酸性に傾く。また酸性基を有する水溶性高分子を加えても汚水のpHは酸性に傾く。さらに凝集物が水中で不溶物として安定なのはpHが2~5であり、この範囲から外れると凝集物は水に溶解しやすくなってくる。よって酸性基を有する水溶性高分子や金属塩を加える前の汚水のpHは5~7が最適である。
[2]凝集方法
(1)本発明の凝集方法の概略
 本発明の有機酸を凝集物にする方法を簡単に記述すると(a)~(e)のようになる。なお、酸性基を図2ではカルボキシル基で説明しているが、スルホン酸基でも同様である。
(a):有機酸6を含む汚水に、表面改質した磁性粉5及び三価の金属塩の水溶液を添加する。なお、この図では、三価の金属塩は塩化鉄7とする。
(b):汚水中で有機酸6と表面改質した磁性粉5と塩化鉄中の鉄イオン7とがイオン結合を形成する。
(c):酸性基を有する高分子8の水溶液を加える。なお、この図では酸性基を有する高分子はカルボキシル基を有する高分子8とする。
(d):鉄イオン7、及び磁性粉5の表面と有機酸6のカルボキシル基、及びカルボキシル基を有する水溶性高分子8のカルボキシル基がイオン結合する。
(e):水に不溶の凝集物9が形成される。
(2)有機酸除去の向上策
 有機酸の除去率を高める方法は後で加える高分子を添加する前に汚水中に無機の塩を添加しておく方法が挙げられる。これは前述したように塩析に類似の効果により除去率が高まるものと推定される。加える無機の塩は自然界に豊富に存在する塩化ナトリウムが好適である。特に海底油田の汚水処理の場合は海水中の平均塩化ナトリウム濃度が約3%なので、そのレベルまでは添加しても環境に与える影響は軽微なので特に好適である。
 なお、添加の順序としては後で加える高分子の添加前に加えるようにする。これは後で加える高分子の添加後に加えてもこれ以上は凝集しないためである。
 また、前述のように酸性基を有する水溶性高分子や金属塩を加える前の汚水のpHは5~7に制御しておくことによっても有機酸除去率は向上する。
(3)凝集物大型化
 酸性基を有する高分子の溶液を添加する際は、攪拌が激しすぎると凝集物のサイズが小さくなりすぎ、濾過層を通す際に詰まりやすくなり、処理速度が低下する恐れもある。
 汚水中に砂、油滴等の縣濁物質が共存していると、凝集の際凝集物の中にこれが取りこまれ、凝集物の大型化が進むことが明らかになった。更に比重の大きな砂が凝集物に取り込まれると比重が大きくなり沈降しやすくなるので濾過等で凝集物を除去する際好適であることも判った。
(4)縣濁物質の除去
 本発明の凝集剤は汚水中の有機酸除去を目的としているが、上記のように縣濁物質も一緒に除去できることが明らかになった。そのため、従来縣濁物質除去で一般的なポリ塩化アルミニウムとポリアクリルアミドを用いた凝集を行う必要が無いので、水の浄化プロセス負荷(コスト、処理時間)低減につながるメリットがある。
[3]水処理装置の実施の形態
 次に本発明の水処理装置について説明する。
(1)水処理装置の形態1
 本発明の水処理装置のうち磁気分離方式を利用したものの基本構成について図3を使って説明する。
 汚水はポンプ51により、配管52を通って、第一の混合槽53に投入される。この中の液体はオーバーヘッドスターラー54によって攪拌される。ここで、汚水の液性を確認する。この図では省略されているが液性を確認するためのpHセンサが第一の混合槽53中に設けられている。なお、第一の混合槽53は、複数あってもかまわない。
 ここで、汚水のpHが7を超える場合は、塩酸の水溶液のタンク55からポンプ56により、配管57を通って塩酸の水溶液が第一の混合槽53に投入される。
 ここで、汚水のpHが5未満の場合は、塩酸の水溶液ではなく水酸化ナトリウムの水溶液を加える。こうして液性を制御する。
 次に酸化鉄、三価の金属塩、アルカリ金属塩或いはアルカリ土類金属塩を水に溶解させた金属塩の水溶液が貯蔵されているタンク58から、ポンプ59により、配管60を通って酸化鉄、三価の金属塩、アルカリ金属塩或いはアルカリ土類金属塩の水溶液を、第一の混合槽53に投入し、汚水と混合する。その後、第一の混合槽53中の液を、ポンプ61を用いて、配管62を通して第二の混合槽63に投入する。この中の液体はオーバーヘッドスターラー64によって攪拌されている。
 ところで金属塩の水溶液のタンク58内は三価の金属塩、アルカリ金属塩或いはアルカリ土類金属塩の水溶液と磁性粉を混合するためのオーバーヘッドスターラー等の撹拌機構(図示していない)を設けることが好ましい。これは撹拌が無ければ水溶液より比重の大きな磁性粉がタンク下に沈んでしまうためである。なお、金属塩の水溶液と磁性粉は後述する第二の混合槽63に別々に入れることも可能であるが、凝集物に含有する磁性粉の単位体積あたりの密度に偏りが生じる傾向があるので、本装置のようにあらかじめ混合後に第二の混合槽63へ投入する方法が望ましい。或いはあらかじめ第一の混合槽53で混合しても同様の効果が得られる。
 次に酸性基を有する高分子の水溶液のタンク65からポンプ66により、配管67を通って酸性基を有する高分子の水溶液を第二の混合槽63に投入すると、第二の混合槽63中で凝集物が生成する。
 生成した凝集物は、磁性粉が混ざった状態である。この凝集物は表面がメッシュ状で磁気を帯びているドラム68に付着する。ドラム68はこの図では時計回りに回転し、表面に付着した凝集物はスクレイパー69によってドラム68のメッシュから剥がされる。剥がされた凝集物70は下面がメッシュ状になった凝集物回収装置71に集められる。集められたばかりの凝集物70はかなりの水分を含んでいるので、凝集物回収装置71の下面のメッシュから排水される。なお、ドラム68の回転方向は、凝集物70の付着を増やす目的で、反時計回りにする場合がある。この場合、スクレイパー69と凝集物回収装置71の位置は、ドラム68の反対側になる。
 一方、ドラム68のメッシュを通り抜けた水はメッシュにより凝集物が除かれた状態になっている。この水は凝集物が除かれた水としてドラム68の中心部分にある配管72を通って出てくる。
 配管67の第二の混合槽63に液を投入する部分の先端73はストレートではなく、扇状に広げたり、シャワーの口のように広げ、液がなるべく広範囲に第二の混合槽63中に投入するようにすることが好ましい。これは投入に伴い、瞬時に凝集が始まるため、狭い面積に投入すると、投入した液が凝集物に内包され、更なる凝集物生成に生かされないためである。
 配管62、及び配管67の第二の混合槽63に液を投入する部分の先端73は、第二の混合槽63の液面に接触しないよう、液の投入口は液面の上に設ける。これは第二の混合槽63で生成する凝集物が配管73の先端に付着し、先端の穴を塞ぐ恐れがあるためである。
 この装置では磁気分離するためのドラムを設けず、凝集物を沈降後、濾過する機構を設けても良い。凝集物は磁性粉を含有しているため、比重が大きくなり、沈みやすくなる。そこで、大半の凝集物を第二の混合槽63の下に沈め、上澄みを濾過することにより、磁気分離を行わなくても水の浄化が可能となる。
 なお、本装置では混合槽を2個設けたが、1個の混合槽でも機能は発揮する。ただし、複数のプロセスを混合槽1個で行うよりは2個で行った方が、混合槽、及びそれに併設する配管等を別々にメンテナンスできる。そのためどちらかの槽でプロセスを進めながらもう一方の混合槽をメンテナンスでき、汚水処理プロセスを停止させることなく稼働しやすい点で混合槽を2個有する方が好適である。
(2)水処理装置の形態2
 本発明の水処理装置のうち磁気分離方式でドラムを2個備えたものの基本構成について図4を使って説明する。
 この装置は表面がメッシュのドラム68上に凝集物を集めた後、ドラム68内部から少量の水を吹き出し、これにより凝集物をドラム68のメッシュ上から剥がし、ドラム68に隣り合って設けたドラム74の方に飛ばし、ドラム74の表面に付着させる。このドラム74の表面はメッシュではなく金属板である。
 凝集物を剥がす際、従来はドラム68のメッシュ表面をスクレイパーで擦るが、この時メッシュにスクレイパーが引っかかり、メッシュを破損することがある。
 しかし、本装置ではスクレイパーで凝集物を剥がす際、接触するのはメッシュに比べて丈夫なドラム74の表面の金属板であるため、スクレイパーによる破損を起こしにくいため好適である。
(3)水処理装置の形態3
 本発明の水処理装置のうち磁気分離方式で凝集物除去槽75を別に設けたものの基本構成について図5を使って説明する。
 これは第二の混合槽63で発生した凝集物を、同じ槽中で磁気分離するのではなく、別の槽(凝集物除去槽75)に移し、そこで磁気分離を行うものである。凝集物除去槽75に入れる処理水の量はバルブ76で制御する。
 この構成にすることで、磁気分離前にかなりの割合の凝集物が第二の混合槽63中に残り、磁気分離で除去する凝集物の量が少なくなる。そのため、ドラム68のメッシュが詰まりにくくなり、メッシュのメンテナンスの軽減が図れるため、好適である。
(4)水処理装置の形態4
 本発明の水処理装置のうち磁気分離方式でドラムが1個で且つ凝集物除去槽77を別に設けたものの基本構成について図6を使って説明する。
 これは凝集物除去槽77の底とドラム74の距離を短くすることで、凝集物をドラム74にほぼ完全に付着させる。こうしてドラム1個で浄化を行う。ドラム74に付着した凝集物はスクレイパーで取り除く。この方式はドラムが1個で浄化できるため凝集物除去槽、ひいては装置の省スペース化が図れるため、好適である。
(5)水処理装置の形態5
 本発明の油分回収、浄水システムの基本構成について図7を使って説明する。
 油分抽出プラント81ではオイルサンドに水蒸気を吹き込み、油分を砂から分離する。水蒸気を吹き込むと、油分が加熱され、粘度が低下し水蒸気由来の熱水と混合された油濁水として、砂から分かれる。油濁水は放置することにより比重の違いで油分と水分に分離するので、上層の油分(通称ビチュメン)を回収することにより油分抽出は終了する。抽出された油分は、精製工程で沸点の違いにより、ガソリン、重油、アスファルト等に分離し、各種産業で使われる。
 ところで油分抽出プラントから排出された油分の混合した汚水は配管82を通って水処理装置83に送られる。ここで油分、有機酸等を除去されることで浄化された処理水は配管84を通って、水蒸気発生装置85に送られる。処理水はこの装置で加熱されて水蒸気となり、配管86を通って油分抽出プラント81に送られる。この水蒸気が再びオイルサンドから油分を抽出する工程に用いられる。
 水蒸気発生装置85で水蒸気を製造するため処理水を加熱する工程では水処理装置83からベルトコンベア87によって凝集物を運搬する。凝集物は油分や有機酸、酸性基を有する水溶性高分子を含んでおり、処理水を加熱する工程で燃料の一部として燃やすことにより、廃棄物を削減できる効果がある。
 本発明の実施例を以下に示す。
(1)磁性粉改質
 初めに磁性粉を改質する。 
 改質の方法は以下の通りである。まず磁性粉(元素組成はFe34、2.4g、0.01mmol)を入れた容器に5重量%塩酸(65.7g、HClとしては0.09mmol)を加え、1時間撹拌する。溶液が淡黄色透明になったことから、磁性粉表面のFeがFeCl2、或いはFeCl3に変化し、溶解したものと考えられる。また表面のFeも若干イオン化し塩素イオンが近傍に存在、或いは付着していると推定される。次に磁性粉をろ過で回収し、水で洗浄後、減圧乾燥し、表面改質した磁性粉を得る。
 この磁性粉表面をSEM-EDXで調べたところ、表面に処理前の磁性粉由来の鉄と酸素以外に塩素の存在が確認された。表面を電子線で数nm削ったところ、塩素のシグナルはほぼ消失し、鉄と酸素のシグナルが観測された。よって改質した磁性粉の表面は塩素が結合した状態になっているものと考えられる。水洗後も塩素が存在していることから、表面は塩素と鉄の塩構造になっていると考えられる。
(2)凝集、磁気分離による汚水処理
 有機酸としてナフテン酸が220ppm溶解している試験水1リットル(ナフテン酸としては1mmol)を準備する。この水を今後「模擬汚水」とする。この模擬汚水のpHは6.9であった。
 ところで、ナフテン酸は環状炭化水素のカルボン酸の総称であり、環のサイズ、分岐のアルキル鎖の有無などにより分子量は異なる。本発明の実験では、これらの混合物を入手し、平均分子量を測定後使用した。測定によると平均分子量は220であった。また、ナフテン酸を水に溶解するため、ナフテン酸を予めアンモニウム塩構造にして加えた。
 上記模擬汚水(1リットル)を攪拌中、三価の金属の塩として塩化鉄(III)の10重量%水溶液1.62g(鉄イオンの数としては1mmol)、表面改質した磁性粉(5mg)を加える。
 次に酸性基を有する高分子としてカルボキシル基を有するポリアクリル酸(平均分子量は250,000)の5重量%水溶液1.44g(酸性基であるカルボキシル基の数としては1mmol)を加えると凝集物が析出する。
 棒磁石を模擬汚水中に入れ、凝集物に近づけると、凝集物が棒磁石に付着する。棒磁石をゆっくり引き上げると、模擬汚水中には目視で確認可能の凝集物は見られず、大部分の凝集物が除去されたことが確認された。
 棒磁石で凝集物を除去後の模擬汚水のナフテン酸量を液体クロマトグラフィで定量したところ、ナフテン酸濃度は10ppmに低下した。
 よって本発明の凝集剤、及び磁気分離プロセスにより水に溶解しているナフテン酸の除去が可能であることを確認した。
 なお、塩酸の代わりに濃度が10重量%の硫酸、或いは濃度が10重量%の硝酸を用いて改質した磁性粉を用いても同様に凝集物は回収でき、ナフテン酸濃度は10ppmに低下した。
 よって、塩酸に限らず無機の酸であれば磁性粉の改質は可能であることが確認された。
 硫酸、或いは硝酸を用いて改質した磁性粉を塩酸で改質した磁性粉の表面を分析した時と同様の方法で分析したところ、それぞれ、表面は鉄と酸素と硫黄の原子、或いは鉄と酸素と窒素の原子が観測された。また表面を数nm削ったところ、硫酸を用いて改質した磁性粉は硫黄のシグナルがほぼ消失し、鉄と酸素のシグナルのみ観測された。同様に硝酸を用いて改質した磁性粉も窒素のシグナルがほぼ消失し、鉄と酸素のシグナルのみ観測された。
 水洗後も硫黄原子、或いは窒素原子が存在していることから、表面は硫酸と鉄、或いは硝酸と鉄の塩構造になっていると判断される。
 磁性粉改質の際、濃度が2重量%の塩酸を用いて処理を行ったところ、1時間撹拌後の溶液は目視で無色透明であった。この後ろ過、水洗、乾燥プロセスにより得た磁性粉を用いて凝集実験を行い、凝集物を棒磁石で回収したところ、回収されない凝集物が全体の半分以上であった。また濃度が4重量%の硫酸、或いは濃度が5重量%の硝酸を用いて改質した磁性粉を用いても同様に回収できない凝集物が半分以上であった。
 濃度が3重量%の塩酸を用いて処理を行った磁性粉を用いて凝集実験を行い、凝集物を棒磁石で回収したところ、実施例1と同様に凝集物は回収でき、ナフテン酸濃度は10ppmに低下した。
 また濃度が5重量%の硫酸、或いは濃度が6重量%の硝酸を用いて改質した磁性粉を用いても同様に凝集物は回収でき、ナフテン酸濃度は10ppmに低下した。
 よって、磁性粉改質の際は、塩酸は3重量%以上、硫酸は5重量%以上、硝酸は6重量%以上必要であることが判った。
 磁性粉改質の際、濃度が12重量%の塩酸を用いて処理を行ったところ、1時間撹拌後の溶液は目視で黄色透明であった。この後ろ過、水洗、乾燥プロセスにより得た磁性粉の重量は改質前の約半分に減っていた。
 なお、濃度が3~11重量%の塩酸を用いた場合は磁性粉の重量は改質前の90%以上であった。
 よって磁性粉を高収率で改質するためには、塩酸濃度は11重量%以下にすることが望ましい。
 塩酸の代わりに硫酸を用いた場合も、17重量%以上で処理した場合は磁性粉の回収率が50%以下になってしまった。16重量%で処理した場合は磁性粉の回収率は90%以上であった。
 塩酸の代わりに硝酸を用いた場合も、19重量%以上で処理した場合は磁性粉の回収率が50%以下になってしまった。18重量%で処理した場合は磁性粉の回収率は90%以上であった。
 実施例2と本実施例より、酸単独で磁性粉改質の際の酸の適切な濃度は、塩酸が3~11重量%、硫酸が5~16重量%、硝酸が6~18重量%であることが示された。
 磁性粉の改質の際、塩化ナトリウムが5重量%でかつ、塩酸濃度が2重量%の溶液を用いて処理を行ったところ、1時間撹拌後の塩酸は目視で淡黄色透明であった。この後、ろ過、水洗、乾燥により得た磁性粉を用いて凝集実験、及び棒磁石で凝集物を回収したところ、実施例1と同様に凝集物は回収でき、ナフテン酸濃度は10ppmに低下した。
 同様に磁性粉の改質の際、塩化ナトリウムが5重量%でかつ、硫酸濃度が2重量%、或いは硝酸濃度が2重量%の溶液を用いて処理を行ったところ、1時間撹拌後の溶液は目視で淡黄色透明であった。この後、ろ過、水洗、乾燥により得た磁性粉を用いて凝集実験、及び棒磁石で凝集物を回収したところ、実施例1と同様に凝集物は回収でき、ナフテン酸濃度は10ppmに低下した。
 よって、磁性粉改質の際、酸に塩化ナトリウムを加えることによって、低濃度の酸でも磁性粉改質を行うことが可能であることが明らかになった。
 塩化ナトリウムの代わりに、硝酸カリウム、或いは塩化マグネシウム、硫酸マグネシウム、塩化カルシウムを5重量%になるよう加えた溶液で磁性粉改質を行った場合も全て上記塩化ナトリウムの結果と同様に凝集物は棒磁石で回収でき、ナフテン酸濃度は10ppmに低下した。
 よって磁性粉改質の際、アルカリ金属塩、アルカリ土類金属塩を添加した酸を用いることによって、低濃度の酸でも改質可能であることを確認した。
 ナフテン酸が220ppm溶解しているpH6.9の模擬汚水5リットルを用いて、凝集実験を行い、凝集物を棒磁石で回収したところ、実施例1と同様に凝集物は回収できたが、ナフテン酸濃度は110ppmであった。そこで、三価の金属の塩として塩化鉄(III)の10重量%水溶液1.62g(鉄イオンの数としては1mmol)、表面改質した磁性粉(5mg)と共に塩化ナトリウム(50g)を加える。
 次に酸性基を有する高分子としてカルボキシル基を有するポリアクリル酸(平均分子量は250,000)の5重量%水溶液7.2g(酸性基であるカルボキシル基の数としては5mmol)を加えると凝集物が析出する。
 凝集物を棒磁石で回収したところ、実施例1と同様に凝集物は回収でき、凝集物回収後の模擬汚水中のナフテン酸濃度は10ppmであった。
 この結果より、塩化ナトリウム添加により凝集物へナフテン酸が包接されやすくなった。
 ところで、加える塩化ナトリウムの量を200gにする以外は上記と同様の実験を試みたところ、凝集物回収後の模擬汚水中のナフテン酸濃度は4ppmであった。
 塩化ナトリウムの添加量、つまり汚水中の塩化ナトリウム濃度を高めた方がナフテン酸の除去率は向上した。
 塩化ナトリウム(50g)の代わりに塩化マグネシウム(50g)を加える以外は実施例5と同様に実験したところ、凝集物回収後の模擬汚水中のナフテン酸濃度は20ppmであった。
 よって、塩化物の塩を添加することにより凝集物へナフテン酸が包接されやすくなった。
 塩化ナトリウム(50g)の代わりに硫酸マグネシウム(50g)を加える以外は実施例5と同様に実験したところ、凝集物回収後の模擬汚水中のナフテン酸濃度は20ppmであった。
 また塩化ナトリウム(50g)の代わりに塩化カリウム(50g)を加える以外は実施例5と同様に実験したところ、凝集物回収後の模擬汚水中のナフテン酸濃度は10ppmであった。
 よって、アルカリ金属塩、或いはアルカリ土類金属塩を添加することにより凝集物へナフテン酸が包接されやすくなった。
 ポリアクリル酸の5重量%水溶液1.44gの代わりにポリメタクリル酸の5重量%水溶液1.72g(酸性基であるカルボキシル基の数としては1mmol)を用いる以外は実施例1と同様の実験を試みたところ、濾過液中のナフテン酸濃度は10ppmに低下した。
 よってカルボキシル基を有する高分子としてポリアクリル酸の代わりにポリメタクリル酸を用いても水に溶解している有機酸を除去できることが確かめられた。
 ポリアクリル酸の5重量%水溶液1.44gの代わりにポリスチレンスルホン酸の10重量%水溶液1.84g(スルホン酸基の数としては1mmol)を用いる以外は実施例1と同様の試験を試みたところ、濾過液中の安息香酸濃度は10ppmに低下した。
 よって酸性基を有する高分子としてスルホン酸基を有する水溶性高分子を用いても水に溶解している有機酸を除去できることが確かめられた。
4 磁性粉
5 表面を改質した磁性粉
6 有機酸
7 鉄イオン
8 カルボキシル基を有する水溶性高分子
9 有機酸と磁性粉を包接した凝集物
51、56、59、61、66 ポンプ
52、57、60、62、67、72、82、84、86 配管
53 第一の混合槽
54、64 オーバーヘッドスターラー
55 塩酸の水溶液のタンク
58 金属塩の水溶液のタンク
63 第二の混合槽
65 酸性基を有する水溶性高分子の水溶液のタンク
68、74 ドラム
69 スクレイパー
70 凝集物
71 凝集物回収装置
73 第二の混合槽に液を投入する部分の先端
75、77 凝集物除去槽
76 バルブ
81 油分抽出プラント
83 水処理装置
85 水蒸気発生装置
87 ベルトコンベア

Claims (14)

  1.  汚水中の有機酸と凝集物を形成する凝集剤において、
     表面に無機塩を有する酸化鉄と、酸性基を有する高分子の水溶液とを含むことを特徴とする凝集剤。
  2.  三価の金属塩を含むことを特徴とする請求項1記載の凝集剤。
  3.  前記三価の金属塩が、鉄塩又はアルミニウム塩であることを特徴とする請求項2記載の凝集剤。
  4.  前記三価の金属塩が、塩酸塩であることを特徴とする請求項2または3に記載の凝集剤。
  5.  前記酸化鉄がFe34であることを特徴とする請求項1~4の何れかに記載の凝集剤。
  6.  前記酸性基を有する高分子がポリアクリル酸であることを特徴とする請求項1~5の何れかに記載の凝集剤。
  7.  前記ポリアクリル酸の平均分子量が2,000~1,000,000であることを特徴とする請求項6記載の凝集剤。
  8.  前記ポリアクリル酸の平均分子量が100,000~500,000であることを特徴とする請求項6記載の凝集剤。
  9.  前記酸性基を有する高分子の水溶液の酸性基がアルカリ金属塩であることを特徴とする請求項1~8の何れかに記載の凝集剤。
  10.  汚水中の有機酸を凝集物にして除去する汚水浄化方法において、
     表面に無機塩を有する酸化鉄を前記汚水に加える工程と、酸性基を有する高分子の水溶液を加える工程と、析出する凝集物を磁気分離する工程とを備えることを特徴とする汚水浄化方法。
  11.  前記汚水に酸又は塩基性の水溶液を加える工程と、前記酸又は塩基性の水溶液を加えることにより分離した酸化鉄を回収する工程とを備えることを特徴とする請求項10記載の汚水浄化方法。
  12.  前記酸性基を有する高分子の水溶液を加える工程の前に前記汚水のpHを5~7に制御する工程を備えることを特徴とする請求項10又は11記載の汚水浄化方法。
  13.  汚水を浄化する水処理装置において、
     前記汚水を撹拌する機構と、表面に無機塩を有する酸化鉄を前記汚水に加える機構と、酸性基を有する高分子の水溶液を加える機構と、生成する凝集物を磁気分離する機構とを備えることを特徴とする水処理装置。
  14.  前記酸化鉄を添加する前に、前記汚水のpHを計測する機構と前記汚水に酸又は塩基を添加する機構とを備えることを特徴とする請求項13記載の水処理装置。
PCT/JP2012/077904 2012-02-27 2012-10-29 凝集剤および凝集方法、水処理装置 WO2013128711A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/369,723 US20140367341A1 (en) 2012-02-27 2012-10-29 Coagulant, coagulation method, and water treatment apparatus
CA2861733A CA2861733A1 (en) 2012-02-27 2012-10-29 Coagulant, coagulation method, and water treatment apparatus
MX2014007722A MX2014007722A (es) 2012-02-27 2012-10-29 Coagulante, metodo de coagulacion y aparato de tratamiento de agua.
RU2014126342A RU2014126342A (ru) 2012-02-27 2012-10-29 Коагулянт, способ коагуляции и аппарат для обработки воды

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-039519 2012-02-27
JP2012039519A JP2013173110A (ja) 2012-02-27 2012-02-27 凝集剤、凝集方法、水処理装置

Publications (1)

Publication Number Publication Date
WO2013128711A1 true WO2013128711A1 (ja) 2013-09-06

Family

ID=49081937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077904 WO2013128711A1 (ja) 2012-02-27 2012-10-29 凝集剤および凝集方法、水処理装置

Country Status (6)

Country Link
US (1) US20140367341A1 (ja)
JP (1) JP2013173110A (ja)
CA (1) CA2861733A1 (ja)
MX (1) MX2014007722A (ja)
RU (1) RU2014126342A (ja)
WO (1) WO2013128711A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2903243C (en) * 2014-11-19 2021-06-01 Amirix Systems Inc. Predation detection animal tracking tag
CN107001081A (zh) 2015-03-13 2017-08-01 富士电机株式会社 洗涤器排水的处理方法以及洗涤器排水的处理装置
EP3318534A1 (en) * 2016-11-07 2018-05-09 Höganäs AB (publ) Iron based media
CN109264932A (zh) * 2018-11-09 2019-01-25 深圳市深水水务咨询有限公司 一种达标地表准四类水的城镇污水处理工艺
CN112573599A (zh) * 2020-12-10 2021-03-30 铜陵六国威立雅水务有限责任公司 一种用于工业污水处理的添加剂投放机构
CN114084994B (zh) * 2022-01-21 2022-05-03 河北海力香料股份有限公司 一种bpda系列酸化废盐水的处理方法
JP7437103B1 (ja) 2022-06-28 2024-02-22 株式会社ワイ・ジェー・エス. 異物除去装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327962A (ja) * 2005-05-24 2006-12-07 Chisso Corp 目的物質の分離方法および分子コンプレックス
WO2008105521A1 (ja) * 2007-02-28 2008-09-04 Nippon Poly-Glu Co., Ltd. 磁性体凝集剤、その製造方法、及び磁性体凝集剤を用いた水の浄化方法
JP2010022888A (ja) * 2008-07-15 2010-02-04 Toshiba Corp 水質浄化材料およびそれを用いた水質浄化方法
JP2011036746A (ja) * 2009-08-07 2011-02-24 Hitachi Ltd 凝集剤,凝集剤を用いた汚水浄化方法及び凝集剤を用いた浄水装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327962A (ja) * 2005-05-24 2006-12-07 Chisso Corp 目的物質の分離方法および分子コンプレックス
WO2008105521A1 (ja) * 2007-02-28 2008-09-04 Nippon Poly-Glu Co., Ltd. 磁性体凝集剤、その製造方法、及び磁性体凝集剤を用いた水の浄化方法
JP2010022888A (ja) * 2008-07-15 2010-02-04 Toshiba Corp 水質浄化材料およびそれを用いた水質浄化方法
JP2011036746A (ja) * 2009-08-07 2011-02-24 Hitachi Ltd 凝集剤,凝集剤を用いた汚水浄化方法及び凝集剤を用いた浄水装置

Also Published As

Publication number Publication date
CA2861733A1 (en) 2013-09-06
MX2014007722A (es) 2014-10-13
JP2013173110A (ja) 2013-09-05
US20140367341A1 (en) 2014-12-18
RU2014126342A (ru) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2013128711A1 (ja) 凝集剤および凝集方法、水処理装置
JP5352256B2 (ja) 排水浄化用凝集剤、並びにこれを用いた排水浄化方法及び排水浄化装置
JP5277997B2 (ja) 浄水方法
JP6793014B2 (ja) 排水処理方法及び排水処理装置
Chen et al. Complexation and precipitation of scale-forming cations in oilfield produced water with polyelectrolytes
JP5222808B2 (ja) 凝集剤,凝集剤を用いた汚水浄化方法及び凝集剤を用いた浄水装置
JP2007209886A (ja) フッ素除去剤、それを用いたフッ素含有排水の処理方法及びその処理装置
JP5629650B2 (ja) 水処理プロセス及びその浄水装置
JP5343051B2 (ja) 汚水浄化方法、凝集剤、並びに汚水浄化装置及びそれを用いた油分抽出システム
JP5452677B2 (ja) 浄水装置
JP2019198806A (ja) 水処理方法および水処理装置
JP2009056346A (ja) 汚濁泥水処理システム
Hethnawi et al. Nanoparticles for Cleaning up Oil Sands Process-Affected Water
JP4598415B2 (ja) 有機ヒ素化合物処理方法
AU2016277790B2 (en) Water softening treatment using in-situ ballasted flocculation system
JP3939970B2 (ja) 貯炭場排水の処理方法
SU1386584A1 (ru) Способ очистки сточных вод от соединений т желых металлов
Zouboulis et al. Inorganic pre-polymerized coagulants: current status and future trends
JP4019889B2 (ja) 重金属含有廃液の処理方法及びそれに用いる処理剤
JP7303430B2 (ja) 回収方法
Ntwampe Comparison of chemical reactivity between inorganic and synthetic polymers in the treatment of AMD
JP4187201B2 (ja) 凝集方法
TWI652231B (zh) Polymer agglutinating agent and method for removing suspended matter in water using same
JP2022061315A (ja) 排水処理方法及び排水処理装置
KR102021627B1 (ko) 역침투 처리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869768

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/007722

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2861733

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14369723

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014126342

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 12869768

Country of ref document: EP

Kind code of ref document: A1