WO2013127657A1 - Verfahren zur messung der konzentration einer gaskomponente in einem messgas und laserspektrometer - Google Patents

Verfahren zur messung der konzentration einer gaskomponente in einem messgas und laserspektrometer Download PDF

Info

Publication number
WO2013127657A1
WO2013127657A1 PCT/EP2013/053247 EP2013053247W WO2013127657A1 WO 2013127657 A1 WO2013127657 A1 WO 2013127657A1 EP 2013053247 W EP2013053247 W EP 2013053247W WO 2013127657 A1 WO2013127657 A1 WO 2013127657A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
current signal
absorption
gas component
absorption line
Prior art date
Application number
PCT/EP2013/053247
Other languages
English (en)
French (fr)
Inventor
Thomas Hankiewicz
Piotr Strauch
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CN201380011101.2A priority Critical patent/CN104136897B/zh
Priority to US14/381,103 priority patent/US9207169B2/en
Publication of WO2013127657A1 publication Critical patent/WO2013127657A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J3/433Modulation spectrometry; Derivative spectrometry
    • G01J3/4338Frequency modulated spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/396Type of laser source
    • G01N2021/399Diode laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0691Modulated (not pulsed supply)

Definitions

  • Laser spectrometers are used in particular for the optical analysis gas ⁇ in the process measurement.
  • a laser diode generates light in the infrared range, which is guided through the process gas (sample gas) to be measured and then detected.
  • the wavelength of the light is tuned to a specifi ⁇ specific absorption line of the respective gas component to be measured, wherein the laser diode scans the absorption line perio ⁇ disch.
  • the laser diode is driven periodically with a ramped or triangular (rising and falling ramp) current signal. From the detected at the site of Absorp ⁇ tion line absorption, the concentration of the gas component of interest can be determined.
  • the laser diode can be driven regularly with at least one burst current signal whose amplitude is outside the range of values of the ramped or triangular current signal, so that the wavelengths of the light generated with the burst current signal outside the wavelength ranges of the absorption lines to be measured and other infrared active gas components lie. This makes it possible to normalize the light intensity detected at the location of the absorption line to be measured by division with the light intensity detected at the location of the burst current signal (EP 2 072 979 A1).
  • a wavelength range is sampled which includes both the absorption lines of the gas components to be measured and the absorption lines for the wavelength referencing.
  • a time window is required for the normalization of the measurement. Each sampling period therefore consumes significantly more time than is required for the detection of a single absorption line. This limits the temporal resolution of the measurement with rapidly changing gas concentrations.
  • the invention is therefore based on the object to increase the measurement speed in the laser spectrometric determination of the concentration of a gas component in a sample gas.
  • the object is achieved by the method specified in claim 1 and in claim 3 laser spectrometers according to, of which advantageous developments are specified in the dependent claims.
  • the invention thus provides a process for measuring the concentration of a gas component in a measurement gas by detecting the intensity of light of a wavelength tunable laser diode after passing rays of the measuring gas and a Refe rence ⁇ gas and the concentration of the gas component is determined by the reduction of light intensity by the absorption of light at the location of a selected absorption line of the gas component, wherein the location of the Absorp ⁇ tion line of the gas component is referenced based on a selected absorption line of the reference gas, and wherein
  • the laser diode is driven periodically with a first rising and / or falling current signal to scan the absorption line of the gas component wavelength dependent in a scanning range, which lies outside the absorption line of the reference gas and the immediate
  • the laser diode is driven regularly with a second rising and / or falling current signal to scan the absorption line of the reference gas wavelength dependent in a scanning range, either the two absorption lines of the gas component and the reference gas be ⁇ content or outside the absorption line of Gaskompo ⁇ component is and is limited to the immediate vicinity of the absorption line of the reference gas,
  • the laser diode is driven regularly with at least one burst current signal with a lying outside the value ranges of the first and second current signal amplitude to those detected at the location of the absorption line
  • Burst current signal are generated successively in such a way that single or a few directly generated second current signals and burst current signals with a plurality of immediately successively generated first current signals alternate.
  • the invention furthermore relates to a laser spectrometer for measuring the concentration of a gas component in a sample gas
  • a second signal generator for regular Ansteue- tion of the laser diode with a second rising and / or falling current signal to scan the absorption line of the Refe ⁇ ence gases wavelength-dependent in a scanning region which includes either the two absorption lines of the gas component and the reference gas or outside of the absorption line of the Gas component is located and is limited to the immediate vicinity of the absorption line of the reference ⁇ gas,
  • At least one third signal generator for the regular control of the laser diode with at least one burst current signal with a lying outside the value ranges of ers ⁇ th and second current signal amplitude is ⁇ audited to the detected at the location of the absorption line light intensity with the at the place the at least one burst current signal detected intensity to Normie ⁇ reindeer, and
  • Wavelength referencing, line locking and normalization take place.
  • the duration of the continuous measurement must be such that the measurement conditions remain constant and do not deviate from those during the reference / normalization phase. This applies above all to the transmission conditions as well as temperature and pressure.
  • Figure 1 is a schematic representation of a case of ⁇ game for the inventive spectrometer with laser diode and the
  • FIGS 2 to 6 different examples for the control of the laser diode.
  • the spectrometer contains a laser diode 3 whose light 4 falls through the measuring gas 1 and a downstream, filled with a reference gas 5 reference gas cuvette 6 on a detector 7 with ⁇ ordered evaluation 8 for the delivery of the measurement result 9.
  • the laser diode 3 is driven by a controllable current source 10 with an injection current i, wherein the intensity I and wavelength ⁇ of the generated light 4 depend on the current i and the operating temperature of the laser diode 3.
  • the injection current i is generated in the form of different current signals.
  • the current source 10 via a summer 11 of different signal generators 12, 13, 14, 15, 16 are actuated, of which a first signal generator 12 is a first ramped or triangular signal 17, a second signal generator 13 is a second ramped or triangular signal 18, a third signal generator 14 is a first burst signal 19, a fourth Signal generator 15, a second burst signal 20 and a fifth signal generator 16 generates a sine signal 21.
  • a digital / analog converter 22 generates a bias signal 23, by means of which the current source 10 generates a bias current for the laser diode 3.
  • the signal generators 12, 13, 14, 15, 16 are controlled by a timer 24 in accordance with a table 25 in which it is determined which of the signal generators 12, 13, 14, 15, 16 the relevant signal 17, 18, 19 , 20 or 21 when and how often un ⁇ indirectly in a row, ie with what number of periods created.
  • the generation of the ramp or triangular signals 17, 18 and burst signal 19, 20 takes place alternately, ie not at the same time, while the sine signal 21 only ⁇ together with the respective ramp or triangular signals 17 may be generated 18th
  • the table 25 is programmable and, as shown, can be implemented in the timer 24 or, for example, a higher-level control device 26 of the laser spectrometer.
  • the control of the laser diode 3 can be realized differently within the scope of the invention.
  • the summer 11 may be controlled by a timer 24 controlled by the timer 24
  • Switching device multiplexer
  • the signals 17, 18, 19, 20 in accordance with the table 25 in a Sig ⁇ nal tile and thus the current source 10 drives.
  • the signals 17, 18 other rising and / or falling waveforms, z. B. a sinusoidal, aufwei ⁇ sen.
  • FIG. 2 shows a first example of the control of the laser diode 3 with the injection current i.
  • the injection current i consists of different current signals 17 ', 18', 19 ', 20' 21 'which result from the activation of the current source 10 with the signals 17, 18, 19, 20, 21. animals.
  • the wavelength ⁇ of the generated light 4 follows more or less linearly the course of the current i.
  • the absorption line of the gas component to be measured is at the position i abs or X abs and that of the reference gas at the position i ref or r ef .
  • the absorption line of the gas component is scanned in a scanning ⁇ range , which is outside the absorption line of the reference gas 5 and the immediate environment of
  • Absorption line of the gas component is limited.
  • the Abtas ⁇ tion takes place over a longer period of, for example, one minute with a plurality of immediately consecutive sampling periods. Due to the comparatively low gen amplitude of current signal 17 ', the period is ent ⁇ speaking short, so that the measurement of the absorption line of the gas component may also follow rapid changes in the concentration of the measured gas component.
  • the sampling of the absorption line of the gas component is re ⁇ gel réelle, here z. B. at minute intervals, interrupted by a measurement of the absorption line of the reference gas 5.
  • the laser diode 3 is driven by the second ramp-shaped or triangular current signal 18 'whose amplitude in the example shown in FIG. 2 is so great that the resulting scanning region contains the two absorption lines of the gas component and the reference gas 5.
  • This second current signal 18 ' is generated for a short duration in the seconds range or less for a single or very few periods.
  • the ramp or triangular current signals 17 may 'and 18' in a known manner with the sinusoidal current signal 21 'of the frequency f modulated ⁇ the. Due to the nonlinearity of the absorption lines, From the modulation of the injection current i with the frequency f, a corresponding variation of the detected light intensity I results with more or less strong harmonic distortions.
  • the first harmonic dominates at the extreme point (absorption maximum) in the center of the absorption line at the frequency 2f, while the proportion of the first harmonic vibration ⁇ decreases greatly in intensity I in wavelength ranges outside the absorption maximum.
  • the absorption taking place at the location of the absorption maximum can therefore be determined in the evaluation device 8 very accurately and without interference by evaluating the 2f signal component.
  • Figures 3 to 6 show further embodiments for controlling the laser diode 3 in which the second current signal 18 'and / or the burst current signals 19', 20 'or only a burst current signal generated in different sequence ⁇ the.
  • the second current signal 18 'in ramp form (Figu ⁇ ren 4 and 6) instead of triangular and / or limiting with a small sampling to the immediate vicinity of the absorption line of the reference gas 5 amplitude (Fi ⁇ gur 3) are generated to to keep the interruption of rapid periodic scanning of the absorption line of parallelsie ⁇ leaders gas component as short as possible.
  • a ramp-shaped signal form is also possible for the first current signal 17 '.
  • the method according to the invention is suitable for spectrometers in all bandwidths (UV, VIS, IR).

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Zur Messung der Konzentration einer Gaskomponente in einem Messgas wird die Intensität des Lichts einer wellenlängendurchstimmbaren Laserdiode nach Durchstrahlen des Messgases und eines Referenzgases detektiert und die Konzentration der Gaskomponente anhand der Minderung der Lichtintensität durch die Absorption des Lichts an der Stelle (iabs, λabs) einer ausgewählten Absorptionslinie der Gaskomponente bestimmt, wobei die Stelle (iabs, λabs) der Absorptionslinie der Gaskomponente anhand einer ausgewählten Absorptionslinie des Referenzgases referenziert wird. Bei dem erfindungsgemäßen Verfahren bzw. bei dem erfindungsgemäßen Laserspektrometer findet ein Mischbetrieb bestehend aus der eigentlichen Messung (periodischer Micro- Scan 17') schneller Konzentrationsänderungen der zu messenden Gaskomponente und einer kurzen Referenz-/Normierungsphase (18', 19', 20') für die Wellenlängenreferenzierung, Line-Locking und Normalisierung statt. Die Dauer der eigentlichen Messung ist so bemessen, dass die Messbedingungen konstant bleiben und nicht von denen während der Referenz-/Normierungsphase abweichen.

Description

Beschreibung
Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas und Laserspektrometer
Laserspektrometer werden insbesondere für die optische Gas¬ analyse in der Prozessmesstechnik eingesetzt. Dabei erzeugt eine Laserdiode Licht im Infrarotbereich, das durch das zu messende Prozessgas (Messgas) geführt und anschließend detek- tiert wird. Die Wellenlänge des Lichts wird auf eine spezifi¬ sche Absorptionslinie der jeweils zu messenden Gaskomponente abgestimmt, wobei die Laserdiode die Absorptionslinie perio¬ disch abtastet. Dazu wird die Laserdiode periodisch mit einem rampen- oder dreieckförmigen (steigende und fallende Rampe) Stromsignal angesteuert. Aus der an der Stelle der Absorp¬ tionslinie detektierten Absorption kann die Konzentration der interessierenden Gaskomponente bestimmt werden.
Da die Intensität und Wellenlänge des erzeugten Lichts nicht- lineare Funktionen des Injektionsstromes und der Betriebstem¬ peratur der Laserdiode sind, ist in vielen Fällen eine Wel- lenlängenreferenzierung erforderlich. Dazu wird in den Lichtweg zusätzlich ein Referenzgas in bekannter Konzentration eingebracht und eine Absorptionslinie des Referenzgases ge- messen. Die Temperatur der Laserdiode kann dann über die Position der Absorptionslinie des Referenzgases derart geregelt werden, dass sich die Absorptionslinie der zu messenden Gas¬ komponente immer an einer bestimmten Stelle der Rampe des Stromsignals befindet. Dabei muss die Stromrampe groß genug sein, damit der daraus resultierende Abtastbereich der Laserdiode sowohl die Absorptionslinie der zu messenden Gaskompo¬ nente als auch die des Referenzgases umfasst.
Beim Durchstrahlen des Mess- und Referenzgases findet neben der wellenlängenabhängigen Absorption durch infrarotaktive Gaskomponenten auch eine wellenlängenunabhängige Absorption durch optische Bauelemente (z. B. Fenster) oder Aerosole (z. B. Rauchpartikel) statt. Dies macht eine Normierung der Messung erforderlich. Dazu kann die Laserdiode regelmäßig mit mindestens einem Burst-Stromsignal angesteuert werden, dessen Amplitude außerhalb des Wertebereichs des rampen- oder drei- eckförmigen Stromsignals liegt, so dass die mit dem Burst- Stromsignal erzeugten Wellenlängen des Lichts außerhalb der Wellenlängenbereiche der Absorptionslinien der zu messenden und anderer infrarotaktiver Gaskomponenten liegen. Dies macht es möglich, die der Stelle der zu messenden Absorptionslinie detektierte Lichtintensität durch Division mit der an der Stelle des Burst-Stromsignals detektierten Lichtintensität zu normieren (EP 2 072 979 AI) .
Wie oben erläutert, wird bei aktuellen Laserspektrometern ein Wellenlängenbereich abgetastet, der sowohl die Absorptions- linien der zu messenden Gaskomponenten als auch die Absorptionslinien für die Wellenlängenreferenzierung umfasst. Zusätzlich wird ein Zeitfenster für die Normierung der Messung benötigt. Jede Abtastperiode beansprucht daher deutlich mehr Zeit als für die Erfassung einer einzelnen Absorptionslinie erforderlich ist. Dadurch wird die zeitliche Auflösung der Messung bei sich schnell ändernden Gaskonzentrationen limitiert .
Der Erfindung liegt daher die Aufgabe zugrunde, die Messge- schwindigkeit bei der laserspektrometrischen Bestimmung der Konzentration einer Gaskomponente in einem Messgas zu erhöhen .
Gemäß der Erfindung wird die Aufgabe durch das in Anspruch 1 angegebene Verfahren und in Anspruch 3 angegebene Laserspek- trometer gemäß gelöst, von denen vorteilhafte Weiterbildungen in den Unteransprüchen angegeben sind.
Gegenstand der Erfindung ist somit ein Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas, indem die Intensität des Lichts einer wellenlängendurchstimmbaren Laserdiode nach Durchstrahlen des Messgases und eines Refe¬ renzgases detektiert und die Konzentration der Gaskomponente anhand der Minderung der Lichtintensität durch die Absorption des Lichts an der Stelle einer ausgewählten Absorptionslinie der Gaskomponente bestimmt wird, wobei die Stelle der Absorp¬ tionslinie der Gaskomponente anhand einer ausgewählten Ab- sorptionslinie des Referenzgases referenziert wird und wobei
- die Laserdiode periodisch mit einem ersten ansteigenden und/oder abfallenden Stromsignal angesteuert wird, um die Absorptionslinie der Gaskomponente wellenlängenabhängig in einem Abtastbereich abzutasten, der außerhalb der Absorp- tionslinie des Referenzgases liegt und auf die unmittelbare
Umgebung der Absorptionslinie der Gaskomponente beschränkt ist,
- die Laserdiode regelmäßig mit einem zweiten ansteigenden und/oder abfallenden Stromsignal angesteuert wird, um die Absorptionslinie des Referenzgases wellenlängenabhängig in einem Abtastbereich abzutasten, der entweder die beiden Absorptionslinien der Gaskomponente und des Referenzgases be¬ inhaltet oder außerhalb der Absorptionslinie der Gaskompo¬ nente liegt und auf die unmittelbare Umgebung der Absorp- tionslinie des Referenzgases beschränkt ist,
- die Laserdiode regelmäßig mit mindestens einem Burst-Strom- signal mit einer außerhalb der Wertebereiche des ersten und zweiten Stromsignals liegenden Amplitude angesteuert wird, um die an der Stelle der Absorptionslinie detektierte
Lichtintensität mit der an der Stelle des mindestens einen
Burst-Stromsignals detektierten Intensität zu normieren, und
- das erste Stromsignal, das zweite Stromsignal und das
Burst-Stromsignal nacheinander in der Weise erzeugt werden, dass sich einzelne oder wenige unmittelbar nacheinander erzeugte zweite Stromsignale und Burst-Stromsignale mit einer Vielzahl von unmittelbar nacheinander erzeugten ersten Stromsignalen abwechseln.
Gegenstand der Erfindung ist ferner ein Laserspektrometer zur Messung der Konzentration einer Gaskomponente in einem Messgas,
- mit einer wellenlängendurchstimmbaren Laserdiode deren
Licht nach Durchstrahlen des Messgases und eines Referenz- gases auf einen Detektor mit nachgeordneter Auswerteeinrichtung fällt, in der die Konzentration der Gaskomponente anhand der Minderung der Lichtintensität durch die Absorption des Lichts an der Stelle einer ausgewählten Absorptionslinie der Gaskomponente bestimmt wird, wobei die Stel¬ le der Absorptionslinie der Gaskomponente anhand einer Ab¬ sorptionslinie des Referenzgases referenziert wird, mit einem ersten Signalgenerator zur periodischen Ansteue- rung der Laserdiode mit einem ersten ansteigenden und/oder abfallenden Stromsignal, um die Absorptionslinie der Gas¬ komponente wellenlängenabhängig in einem Abtastbereich abzutasten, der außerhalb der Absorptionslinie des Referenz¬ gases liegt und auf die unmittelbare Umgebung der Absorp¬ tionslinie der Gaskomponente beschränkt ist,
mit einem zweiten Signalgenerator zur regelmäßigen Ansteue- rung der Laserdiode mit einem zweiten ansteigenden und/oder abfallenden Stromsignal, um die Absorptionslinie des Refe¬ renzgases wellenlängenabhängig in einem Abtastbereich abzutasten, der entweder die beiden Absorptionslinien der Gaskomponente und des Referenzgases beinhaltet oder außerhalb der Absorptionslinie der Gaskomponente liegt und auf die unmittelbare Umgebung der Absorptionslinie des Referenz¬ gases beschränkt ist,
mit mindestens einem dritten Signalgenerator zur regelmäßigen Ansteuerung der Laserdiode mit mindestens einem Burst- Stromsignal mit einer außerhalb der Wertebereiche des ers¬ ten und zweiten Stromsignals liegenden Amplitude angesteu¬ ert wird, um die an der Stelle der Absorptionslinie detek- tierte Lichtintensität mit der an der Stelle des mindestens einen Burst-Stromsignals detektierten Intensität zu normie¬ ren, und
mit einem die Signalgeneratoren derart steuernden Zeitgeber, dass das erste Stromsignal, das zweite Stromsignal und das Burst-Stromsignal nacheinander erzeugt werden, wobei sich einzelne oder wenige unmittelbar nacheinander erzeugte zweite Stromsignale und Burst-Stromsignale mit einer Viel¬ zahl von unmittelbar nacheinander erzeugten ersten Stromsignalen abwechseln. Mit dem erfindungsgemäßen Verfahren bzw. bei dem erfindungsgemäßen Laserspektrometer findet ein Mischbetrieb bestehend aus der eigentlichen Messung (periodischer Micro-Scan) schneller Konzentrationsänderungen der zu messenden Gaskompo- nente und einer kurzen Referenz-/Normierungsphase für die
Wellenlängenreferenzierung, das Line-Locking und die Normalisierung statt. Die Dauer der kontinuierlichen Messung muss so bemessen sein, dass die Messbedingungen konstant bleiben und nicht von denen während der Referenz-/Normierungsphase abwei- chen. Dies betrifft vor allem die Transmissionsbedingungen sowie Temperatur und Druck.
Im Weiteren wird die Erfindung unter Bezugnahme auf die Figu¬ ren der Zeichnung anhand von Ausführungsbeispielen erläutert; im Einzelnen zeigen
Figur 1 eine schematische Darstellung eines Bei¬ spiels für das erfindungsgemäße Spektrometer mit Laserdiode und die
Figuren 2 bis 6 unterschiedliche Beispiele für die Ansteue- rung der Laserdiode.
Figur 1 zeigt ein Laserspektrometer zur Messung der Konzen- tration mindestens einer interessierenden Gaskomponente eines Messgases 1, das in einem Messvolumen 2, beispielsweise einer Messküvette oder einer Prozessgasleitung, enthalten ist. Das Spektrometer enthält eine Laserdiode 3, deren Licht 4 durch das Messgas 1 und eine nachgeordnete, mit einem Referenzgas 5 gefüllte Referenzgasküvette 6 auf einen Detektor 7 mit nach¬ geordneter Auswerteeinrichtung 8 zur Lieferung des Messergebnisses 9 fällt. Die Laserdiode 3 wird von einer steuerbaren Stromquelle 10 mit einem Injektionsstrom i angesteuert, wobei die Intensität I und Wellenlänge λ des erzeugten Lichts 4 von dem Strom i und der Betriebstemperatur der Laserdiode 3 abhängen. Der Injektionsstrom i wird in Form unterschiedlicher Stromsignale erzeugt. Dazu wird die Stromquelle 10 über einen Summierer 11 von unterschiedlichen Signalgeneratoren 12, 13, 14, 15, 16 angesteuert, von denen ein erster Signalgenerator 12 ein erstes rampen- oder dreieckförmiges Signal 17, ein zweiter Signalgenerator 13 ein zweites rampen- oder dreieck- förmiges Signal 18, ein dritter Signalgenerator 14 ein erstes Burst-Signal 19, ein vierter Signalgenerator 15 ein zweites Burst-Signal 20 und ein fünfter Signalgenerator 16 ein Sinussignal 21 erzeugt. Ein Digital-/Analog-Umsetzer 22 erzeugt ein Bias-Signal 23, anhand dessen die Stromquelle 10 einen Bias-Strom für die Laserdiode 3 erzeugt. Die Signalgenerato- ren 12, 13, 14, 15, 16 werden von einem Zeitgeber 24 nach Maßgabe einer Tabelle 25 gesteuert, in der festgelegt ist, welcher der Signalgeneratoren 12, 13, 14, 15, 16 das betreffende Signal 17, 18, 19, 20 oder 21 wann und wie oft un¬ mittelbar hintereinander, also mit welcher Anzahl von Perio- den, erzeugt. Die Erzeugung der rampen- oder dreieckförmigen Signale 17, 18 und Burst-Signale 19, 20 erfolgt abwechselnd, d. h. nicht gleichzeitig, während das Sinussignal 21 nur zu¬ sammen mit dem jeweiligen rampen- oder dreieckförmigen Signale 17, 18 erzeugt werden kann. Die Tabelle 25 ist program- mierbar und kann, wie gezeigt, in dem Zeitgeber 24 oder beispielsweise einer übergeordneten Steuereinrichtung 26 des La- serspektrometers implementiert sein.
Die Ansteuerung der Laserdiode 3 kann im Rahmen der Erfindung unterschiedlich realisiert werden. So kann beispielsweise der Summierer 11 durch eine von dem Zeitgeber 24 gesteuerte
Schalteinrichtung (Multiplexer) ersetzt werden, die die Signale 17, 18, 19, 20 nach Maßgabe der Tabelle 25 in eine Sig¬ nalfolge umwandelt und damit die Stromquelle 10 ansteuert. Auch können die Signale 17, 18 andere ansteigende und/oder abfallende Signalverläufe, z. B. einen Sinusverlauf, aufwei¬ sen .
Figur 2 zeigt ein erstes Beispiel für die Ansteuerung der La- serdiode 3 mit dem Injektionsstrom i. In seinem zeitlichen Verlauf besteht der Injektionsstrom i aus unterschiedlichen Stromsignalen 17', 18', 19', 20' 21', die aus der Ansteuerung der Stromquelle 10 mit den Signalen 17, 18, 19, 20, 21 resul- tieren. Die Wellenlänge λ des erzeugten Lichts 4 folgt mehr oder weniger linear dem Verlauf des Stromes i. Die Absorptionslinie der zu messenden Gaskomponente liegt an der Stelle iabs bzw. Xabs und die des Referenzgases an der Stelle iref bzw. ref .
Mit dem ersten rampen- oder dreieckförmigen Stromsignal 17' wird die Absorptionslinie der Gaskomponente in einem Abtast¬ bereich abgetastet, der außerhalb der Absorptionslinie des Referenzgases 5 liegt und auf die unmittelbare Umgebung der
Absorptionslinie der Gaskomponente beschränkt ist. Die Abtas¬ tung erfolgt dabei über eine längere Zeit von beispielsweise einer Minute mit einer Vielzahl von unmittelbar aufeinander folgenden Abtastperioden. Aufgrund der vergleichsweise gerin- gen Amplitude des Stromsignals 17' ist die Periodendauer ent¬ sprechend kurz, so dass die Messung der Absorptionslinie der Gaskomponente auch schnellen Konzentrationsänderungen der zu messenden Gaskomponente folgen kann. Die Abtastung der Absorptionslinie der Gaskomponente wird re¬ gelmäßig, hier z. B. im Minutenabstand, von einer Messung der Absorptionslinie des Referenzgases 5 unterbrochen. Dazu wird die Laserdiode 3 mit dem zweiten rampen- oder dreieckförmigen Stromsignal 18' angesteuert, dessen Amplitude bei dem in Fi- gur 2 gezeigten Beispiel so groß ist, dass der resultierende Abtastbereich die beiden Absorptionslinien der Gaskomponente und des Referenzgases 5 beinhaltet. Diese zweite Stromsignal 18' wird nur für kurze Dauer im Sekundenbereich oder darunter für eine einzige oder sehr wenige Perioden erzeugt.
Vor und/oder hinter dem zweiten Stromsignal 18' werden die zur Normierung der Messung dienenden Burst-Stromsignale 19' bzw. 20' erzeugt. Zur Erhöhung der Messgenauigkeit können die rampen- oder dreieckförmigen Stromsignale 17' und 18' in bekannter Weise mit dem Sinus-Stromsignal 21' der Frequenz f moduliert wer¬ den. Aufgrund der Nichtlinearität der Absorptionslinien re- sultiert aus der Modulation des Injektionsstromes i mit der Frequenz f eine entsprechende Variation der detektierten Lichtintensität I mit mehr oder weniger starken harmonischen Verzerrungen. An der Extremstelle (Absorptionsmaximum) in der Mitte der Absorptionslinie dominiert die erste Oberschwingung mit der Frequenz 2f, während in Wellenlängenbereichen außerhalb des Absorptionsmaximums der Anteil der ersten Ober¬ schwingung in der Intensität I stark abnimmt. Die an der Stelle des Absorptionsmaximums stattfindende Absorption kann daher in der Auswerteeinrichtung 8 sehr genau und störungsfrei durch Auswertung des 2f-Signalanteils ermittelt werden.
Die Figuren 3 bis 6 zeigen weitere Ausführungsbeispiele für die Ansteuerung der Laserdiode 3, bei denen das zweite Strom- signal 18' und/oder die Burst-Stromsignale 19', 20' oder nur ein Burst-Stromsignal in unterschiedlicher Folge erzeugt wer¬ den. Auch kann das zweite Stromsignal 18' rampenförmig (Figu¬ ren 4 und 6) anstatt dreieckförmig und/oder mit einer kleinen, die Abtastung auf die unmittelbare Umgebung der Absorp- tionslinie des Referenzgases 5 beschränkenden Amplitude (Fi¬ gur 3) erzeugt werden, um die Unterbrechung der schnellen periodischen Abtastung der Absorptionslinie der interessie¬ renden Gaskomponente möglichst kurz zu halten. Eine rampen- förmige Signalform ist natürlich auch für das erste Strom- signal 17' möglich.
Das erfindungsgemäße Verfahren ist für Spektrometer in allen Bandbreiten (UV, VIS, IR) geeignet.

Claims

Patentansprüche
1. Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas (1), indem die Intensität (I) des Lichts (4) einer wellenlängendurchstimmbaren Laserdiode (3) nach Durchstrahlen des Messgases (1) und eines Referenzgases (5) detektiert und die Konzentration der Gaskomponente anhand der Minderung der Lichtintensität (I) durch die Absorption des Lichts (4) an der Stelle (iabs / ^abs) einer ausgewählten Ab- sorptionslinie der Gaskomponente bestimmt wird, wobei die
Stelle ( i a s / ^abs) der Absorptionslinie der Gaskomponente an¬ hand einer ausgewählten Absorptionslinie des Referenzgases (5) referenziert wird und wobei
- die Laserdiode (3) periodisch mit einem ersten ansteigenden und/oder abfallenden Stromsignal (17') angesteuert wird, um die Absorptionslinie der Gaskomponente wellenlängenabhängig in einem Abtastbereich abzutasten, der außerhalb der Absorptionslinie des Referenzgases (5) liegt und auf die un¬ mittelbare Umgebung der Absorptionslinie der Gaskomponente beschränkt ist,
- die Laserdiode (3) regelmäßig mit einem zweiten ansteigen¬ den und/oder abfallenden Stromsignal (18') angesteuert wird, um die Absorptionslinie des Referenzgases (5) wellen¬ längenabhängig in einem Abtastbereich abzutasten, der ent- weder die beiden Absorptionslinien der Gaskomponente und des Referenzgases (5) beinhaltet oder außerhalb der Absorp¬ tionslinie der Gaskomponente liegt und auf die unmittelbare Umgebung der Absorptionslinie des Referenzgases (5) be¬ schränkt ist,
- die Laserdiode (3) regelmäßig mit mindestens einem Burst- Stromsignal (19', 20') mit einer außerhalb der Werteberei¬ che des ersten und zweiten Stromsignals (17', 18') liegen¬ den Amplitude angesteuert wird, um die an der Stelle (iabs, Xabs) der Absorptionslinie detektierte Lichtintensität (I) mit der an der Stelle des mindestens einen Burst-Strom- signals (19', 20') detektierten Intensität (I) zu normie¬ ren, und - das erste Stromsignal (17'), das zweite Stromsignal (18') und das Burst-Stromsignal (19', 20') nacheinander in der Weise erzeugt werden, dass sich einzelne oder wenige unmit¬ telbar nacheinander erzeugte zweite Stromsignale (18') und Burst-Stromsignale (19', 20') mit einer Vielzahl von unmit¬ telbar nacheinander erzeugten ersten Stromsignalen (17') abwechseln .
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Erzeugung des ersten Stromsignals (17'), des zweiten
Stromsignals (18') und des Burst-Stromsignals (19', 20') durch einen Zeitgeber (24) nach Maßgabe einer Tabelle (25) gesteuert wird, in der die Anzahl und Reihenfolge der zu er¬ zeugenden Signale (17', 18', 19', 20') gespeichert sind.
3. Laserspektrometer zur Messung der Konzentration einer Gaskomponente in einem Messgas (1),
- mit einer wellenlängendurchstimmbaren Laserdiode (3) deren Licht (4) nach Durchstrahlen des Messgases (1) und eines Referenzgases (5) auf einen Detektor (6) mit nachgeordneter
Auswerteeinrichtung (8) fällt, in der die Konzentration der Gaskomponente anhand der Minderung der Lichtintensität (I) durch die Absorption des Lichts (4) an der Stelle (ia s / Xabs) einer ausgewählten Absorptionslinie der Gaskomponente bestimmt wird, wobei die Stelle (ia s / ^abs) der Absorptions¬ linie der Gaskomponente anhand einer Absorptionslinie des Referenzgases (5) referenziert wird,
- mit einem ersten Signalgenerator (12) zur periodischen An- steuerung der Laserdiode (3) mit einem ersten ansteigenden und/oder abfallenden Stromsignal (17'), um die Absorptions¬ linie der Gaskomponente wellenlängenabhängig in einem Abtastbereich abzutasten, der außerhalb der Absorptionslinie des Referenzgases (5) liegt und auf die unmittelbare Umge¬ bung der Absorptionslinie der Gaskomponente beschränkt ist, - mit einem zweiten Signalgenerator (13) zur regelmäßigen An- steuerung der Laserdiode (3) mit einem zweiten ansteigenden und/oder abfallenden Stromsignal (18'), um die Absorptions¬ linie des Referenzgases (5) wellenlängenabhängig in einem Abtastbereich abzutasten, der entweder die beiden Absorp- tionslinien der Gaskomponente und des Referenzgases (5) be¬ inhaltet oder außerhalb der Absorptionslinie der Gaskom¬ ponente liegt und auf die unmittelbare Umgebung der Absorp¬ tionslinie des Referenzgases (5) beschränkt ist,
- mit mindestens einem dritten Signalgenerator (14, 15) zur regelmäßigen Ansteuerung der Laserdiode (3) mit mindestens einem Burst-Stromsignal (19', 20') mit einer außerhalb der Wertebereiche des ersten und zweiten Stromsignals (17', 18') liegenden Amplitude, um die an der Stelle (ia s / ^abs ) der Absorptionslinie detektierte Lichtintensität (I) mit der an der Stelle des mindestens einen Burst-Stromsignals (19', 20') detektierten Intensität zu normieren, und
- mit einem die Signalgeneratoren (12, 13, 14, 15) derart steuernden Zeitgeber (24), dass das erste Stromsignal
(17'), das zweite Stromsignal (18') und das Burst-Strom¬ signal (19', 20') nacheinander erzeugt werden, wobei sich einzelne oder wenige unmittelbar nacheinander erzeugte zweite Stromsignale (18') und Burst-Stromsignale (19', 20') mit einer Vielzahl von unmittelbar nacheinander erzeugten ersten Stromsignalen (17') abwechseln.
4. Laserspektrometer nach Anspruch 3, dadurch gekennzeichnet, dass der Zeitgeber (24) Zugriff auf eine Tabelle (25) hat, in der die Anzahl und Reihenfolge der zu erzeugenden ersten und zweiten Stromsignale (17', 18') und Burst-Stromsignale (19', 20') gespeichert sind.
5. Laserspektrometer nach Anspruch 4, dadurch gekennzeichnet, dass die Tabelle (25) programmierbar ist.
PCT/EP2013/053247 2012-02-27 2013-02-19 Verfahren zur messung der konzentration einer gaskomponente in einem messgas und laserspektrometer WO2013127657A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380011101.2A CN104136897B (zh) 2012-02-27 2013-02-19 用于测量测量气体中的气体成分浓度的方法和激光光谱仪
US14/381,103 US9207169B2 (en) 2012-02-27 2013-02-19 Laser spectrometer and method for measuring concentration of a gas component in a measurement gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012202893.5 2012-02-27
DE102012202893A DE102012202893B3 (de) 2012-02-27 2012-02-27 Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas und Laserspektrometer

Publications (1)

Publication Number Publication Date
WO2013127657A1 true WO2013127657A1 (de) 2013-09-06

Family

ID=47425871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/053247 WO2013127657A1 (de) 2012-02-27 2013-02-19 Verfahren zur messung der konzentration einer gaskomponente in einem messgas und laserspektrometer

Country Status (4)

Country Link
US (1) US9207169B2 (de)
CN (1) CN104136897B (de)
DE (1) DE102012202893B3 (de)
WO (1) WO2013127657A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524725A (en) * 2014-03-24 2015-10-07 Servomex Group Ltd Method and system for correcting incident light fluctuations in absorption spectroscopy
CN110806395A (zh) * 2019-11-19 2020-02-18 国网重庆市电力公司电力科学研究院 一种气体浓度测量方法、装置、设备及系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013201459B4 (de) * 2013-01-30 2017-01-05 Siemens Aktiengesellschaft Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas
DE102013213458B4 (de) * 2013-07-09 2015-07-09 Siemens Aktiengesellschaft Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas
EP2853869B1 (de) * 2013-09-25 2018-10-31 Siemens Aktiengesellschaft Verfahren und Gasanalysator zur Messung der Konzentration einer Gaskomponente in einem Messgas
DE102014226845B4 (de) * 2014-12-17 2016-11-03 Siemens Aktiengesellschaft Absorptionsspektrometer
CN109615816A (zh) * 2019-01-31 2019-04-12 中磊电子(苏州)有限公司 可避免假警报的烟雾检测器
CN112730304B (zh) * 2020-12-18 2023-03-14 宁波舜宇红外技术有限公司 一种红外燃气报警及气体浓度检测方法
CN114460023B (zh) * 2022-04-14 2022-08-05 华电智控(北京)技术有限公司 一种用于同时测量多种气体浓度的检测方法、系统和装置
CN115015149B (zh) * 2022-05-05 2023-11-17 汉威科技集团股份有限公司 基于动态吸收线的激光红外气体浓度检测方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2153994A (en) * 1984-01-18 1985-08-29 Laser Applic Limited Gas detection system
US20050046852A1 (en) * 2003-08-28 2005-03-03 Rikard Larking Wavelength modulation spectroscopy method and system
US20080304066A1 (en) * 2007-06-06 2008-12-11 Pawel Kluczynski Method for measuring the concentration of a gas component in a measuring gas
EP2072979A1 (de) 2007-12-21 2009-06-24 Siemens Aktiengesellschaft Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937448A (en) * 1988-05-26 1990-06-26 Spectra-Physics, Inc. Self-normalizing single-beam laser spectrometer
US6351309B1 (en) * 1991-08-06 2002-02-26 Southwest Sciences Incorporated Dual modulation laser line-locking technique for wavelength modulation spectroscopy
US5742399A (en) * 1996-04-18 1998-04-21 American Air Liquide, Inc. Method for stabilizing the wavelength in a laser spectrometer system
JP3459564B2 (ja) 1998-03-11 2003-10-20 日本酸素株式会社 ガスの分光分析装置および分光分析方法
DE10345507A1 (de) * 2003-09-30 2005-05-04 Siemens Ag Diodenlaser-Spektrometer
EP1544604B1 (de) * 2003-12-17 2017-09-27 Siemens Aktiengesellschaft Verfahren zur Wellenlängenmodulationsspektroskopie
DE602005003337T2 (de) * 2004-03-09 2008-09-04 Senscient Ltd., Sandford Gasnachweis
US20060044562A1 (en) * 2004-08-25 2006-03-02 Norsk Elektro Optikk As Gas monitor
US20070229834A1 (en) * 2004-10-22 2007-10-04 Patel C Kumar N System and method for high sensitivity optical detection of gases
JP4231854B2 (ja) * 2005-03-17 2009-03-04 アンリツ株式会社 半導体レーザ素子及びガス検知装置
AU2008240146B2 (en) * 2007-04-11 2013-10-17 Spectrasensors, Inc. Reactive gas detection in complex backgrounds
US9360415B2 (en) * 2010-10-21 2016-06-07 Spectrasensors, Inc. Dynamic reconstruction of a calibration state of an absorption spectrometer
DE102013202289B4 (de) * 2013-02-13 2016-03-17 Siemens Aktiengesellschaft Verfahren und Anordnung zur Ansteuerung einer wellenlängendurchstimmbaren Laserdiode in einem Spektrometer
DE102013213458B4 (de) * 2013-07-09 2015-07-09 Siemens Aktiengesellschaft Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas
EP2853869B1 (de) * 2013-09-25 2018-10-31 Siemens Aktiengesellschaft Verfahren und Gasanalysator zur Messung der Konzentration einer Gaskomponente in einem Messgas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2153994A (en) * 1984-01-18 1985-08-29 Laser Applic Limited Gas detection system
US20050046852A1 (en) * 2003-08-28 2005-03-03 Rikard Larking Wavelength modulation spectroscopy method and system
US20080304066A1 (en) * 2007-06-06 2008-12-11 Pawel Kluczynski Method for measuring the concentration of a gas component in a measuring gas
EP2072979A1 (de) 2007-12-21 2009-06-24 Siemens Aktiengesellschaft Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524725A (en) * 2014-03-24 2015-10-07 Servomex Group Ltd Method and system for correcting incident light fluctuations in absorption spectroscopy
GB2524725B (en) * 2014-03-24 2016-03-30 Servomex Group Ltd Method and system for correcting incident light fluctuations in absorption spectroscopy
US9546902B2 (en) 2014-03-24 2017-01-17 Servomex Group Limited Method and system for correcting incident light fluctuations in absorption spectroscopy
CN110806395A (zh) * 2019-11-19 2020-02-18 国网重庆市电力公司电力科学研究院 一种气体浓度测量方法、装置、设备及系统

Also Published As

Publication number Publication date
DE102012202893B3 (de) 2013-01-17
US20150042991A1 (en) 2015-02-12
CN104136897A (zh) 2014-11-05
US9207169B2 (en) 2015-12-08
CN104136897B (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
WO2013127657A1 (de) Verfahren zur messung der konzentration einer gaskomponente in einem messgas und laserspektrometer
EP3201604B1 (de) Verfahren und gasanalysator zur messung der konzentration einer gaskomponente in einem messgas
DE102012223874B3 (de) Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas
DE102013209751B3 (de) Laserspektrometer und Verfahren zum Betreiben eines Laserspektrometers
DE3741026A1 (de) Verfahren und system zur (spuren-) gasanalyse
EP2853869B1 (de) Verfahren und Gasanalysator zur Messung der Konzentration einer Gaskomponente in einem Messgas
DE102013201459B4 (de) Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas
WO2018115472A1 (de) Verfahren zur korrektur der wellenlänge und des abstimmbereichs eines laserspektrometers
DE112009001711T5 (de) Vorrichtung zur Messung von Infrarotabsorption und Verfahren zur Messung von Infrarotabsorption
EP3112846A1 (de) Verfahren zur bestimmung der konzentration einer gaskomponente und spektrometer dafür
DE102011080086B4 (de) Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas
DE102013213458B4 (de) Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas
DE3106441C2 (de) Verfahren zur quantitativen Bestimmung von Elementen durch Zeeman-Atomabsorptionsspektrometrie und Zeeman-Atomabsorptionsspektrometer
DE102011079342B3 (de) Verfahren zur Ansteuerung einer Laserdiode in einem Spektrometer
WO2015039936A1 (de) Verfahren und gasanalysator zur messung der konzentration einer gaskomponente in einem messgas
DE102004031643A1 (de) Nichtdispersiver Infrarot-Gasanalysator
EP3364169B1 (de) Prozess-gasanalysator
DE102016108267A1 (de) Vorrichtung und Verfahren zum Ermitteln einer Konzentration von wenigstens einer Gaskomponente eines Gasgemischs
DE102011083750A1 (de) Verfahren und Anordnung zum Einstellen eines Laserspektrometers
EP3816609B1 (de) Vorrichtung und verfahren zur ferndetektion eines zielgases
EP2899533A1 (de) Verfahren zur Wellenlängenmodulationsspektroskopie mit einem Filter für das demodulierte Messsignal und das simulierte Signal
DE3544015C2 (de)
EP1063518B1 (de) Vorrichtung zur Analyse einer Gasprobe mittels Infrarot-Absorption
EP1640708A1 (de) Zweistrahl-Gasanalysator
DE102005008042A1 (de) Einrichtung und Verfahren zur Kalibrierung der Empfindlichkeit eines Fotometers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13707579

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14381103

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13707579

Country of ref document: EP

Kind code of ref document: A1