WO2013127373A2 - Anticuerpos recombinantes con especificidad dual por gangliósidos y su uso - Google Patents

Anticuerpos recombinantes con especificidad dual por gangliósidos y su uso Download PDF

Info

Publication number
WO2013127373A2
WO2013127373A2 PCT/CU2013/000001 CU2013000001W WO2013127373A2 WO 2013127373 A2 WO2013127373 A2 WO 2013127373A2 CU 2013000001 W CU2013000001 W CU 2013000001W WO 2013127373 A2 WO2013127373 A2 WO 2013127373A2
Authority
WO
WIPO (PCT)
Prior art keywords
cdr
sec
ident
dent
antibody
Prior art date
Application number
PCT/CU2013/000001
Other languages
English (en)
French (fr)
Other versions
WO2013127373A3 (es
Inventor
Ernesto Moreno Frias
Gertrudis Rojas Dorantes
Ana Victoria CASADESUS PAZOS
Original Assignee
Centro De Inmunologia Molecular
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48039960&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013127373(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to CA2865050A priority Critical patent/CA2865050A1/en
Priority to EA201491618A priority patent/EA201491618A1/ru
Priority to AU2013225453A priority patent/AU2013225453A1/en
Priority to CN201380011913.7A priority patent/CN104136463B/zh
Priority to JP2014559092A priority patent/JP5933044B2/ja
Priority to MX2014010456A priority patent/MX2014010456A/es
Priority to KR1020147024181A priority patent/KR20140126349A/ko
Application filed by Centro De Inmunologia Molecular filed Critical Centro De Inmunologia Molecular
Priority to EP13713074.6A priority patent/EP2821417A2/en
Priority to US14/379,628 priority patent/US9527920B2/en
Priority to SG11201405151YA priority patent/SG11201405151YA/en
Publication of WO2013127373A2 publication Critical patent/WO2013127373A2/es
Publication of WO2013127373A3 publication Critical patent/WO2013127373A3/es
Priority to TNP2014000330A priority patent/TN2014000330A1/fr
Priority to PH12014501950A priority patent/PH12014501950A1/en
Priority to IL234394A priority patent/IL234394A0/en
Priority to ZA2014/07043A priority patent/ZA201407043B/en
Priority to HK14112117.7A priority patent/HK1198654A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3076Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties
    • C07K16/3084Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties against tumour-associated gangliosides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]

Definitions

  • the present invention is related to the field of biotechnology and particularly to human health.
  • the present invention describes monoclonal antibodies modified by genetic engineering techniques and the use of these antibodies and their fragments in the therapy and / or diagnosis of tumors. STATE OF THE PREVIOUS TECHNIQUE
  • Gangliosides N-acetyl GM3 and N-glycolyl GM3 as tumor-associated antigen Gangliosides are lipid glycosphingol containing sialic acid and which are present in the vertebrate plasma membranes. These molecules are involved in various functions such as cell adhesion, signal transduction, tissue development and differentiation, and also in tumor progression (Hakomori, PNAS USA 99: 225-32, 2002).
  • gangliosides have been characterized as tumor associated antigens because they appear expressed, or their expression is increased in certain types of cancer.
  • tumor-associated gangliosides are N-glycolyl GM3 (NeuGc-GM3) and N-acetyl G 3 (NeuAc-GM3, or simply GM3).
  • NeuGc-GM3 is not expressed in normal human tissues (Varki, Biochimie 83:61 5-622, 2001), but it is expressed in several types of tumors (Marquina and cois., Cancer Res 56: 5 1 65-71, 1 996; Fernández et al., Expert Rev Vaccines 2:81 7-23, 2003).
  • the present invention is related to monoclonal antibodies that recognize with high affinity both N-glycol and G3 and N-acetyl G3.
  • N-acetyl GM3 is common in normal human tissues (Svennerholm, in Structure and Function of Gangliosides, Plenum Press, New York-London, pp. 533-540, 1980; Prokazova and cois., B iochem istry (Moscow) 74: 235-49, 2009), but it was also defined as a tumor-associated antigen because it is overexpressed in different types of cancer (Hersey et al., Int J Cancer 4 1: 336-43, 1988; Ravindranath et al. ., Biochem Biophys Res Commun 353: 25 1-8, 2007; Noguchi et al., Glycobiology 16: 641-50, 2006).
  • GM3 was among the 75 selected antigens, ranking 48 (Cheever and cois ., Clinical Cancer Res 1 5: 5323-37, 2009).
  • the gangliosides N-acetyl G 3 and N-glycolyl G 3 have a very similar structure, composed of three saccharide units (sialic acid, galactose and glucose) and a ceramide tail ( Figure 1). They differ from each other only by the hydroxylation of the methyl group present in the nitrogenous function of N-acetyl sialic acid (NeuAc), which gives rise to sialic acid N-glycolyl (NeuGc). That is, the NeuAc- and the NeuGc-GM3 differ from each other only by replacing a hydrogen atom with a hydroxyl group in sialic acid. This small structural difference, however, results in a differentiated recognition by the immune system (Portoukalian, Clin Rev Allergy Immunol 19: 73-78, 2000; Varki, Biochimie 83: 615-22, 2001).
  • GMA1 mAb human IgG
  • mAbs DH2 and L612 have been shown to be specific for GM3, while the remaining six antibodies show extended reactivity to other gangliosides. None of these antibodies have shown recognition of N-glycolyl GM3, or other N-glycolylated gangliosides.
  • GM3A6, GM3A8, and GM3A15 were obtained from a library of single chain Fv fragments (scFv), expressed on the surface of bacteriophages.
  • This library was constructed from the repertoires of antibody genes of a group of cancer patients (Lee et al., J Am Chem Soc 124: 12439-46, 2002).
  • the affinity of anti-ganglioside monoclonal antibodies is low or medium.
  • the dissociation constants measured by SPR / Biacore for Fab fragments of several of these antibodies are in the order of I0 "6 - I0 " 7 M (Catimel and cois, Glycobiology 8: 927-38; Boffey and cois, .1 Neuroimmunol 165: 92-103, 2005; Townson and cois, Glycobiology 17: 294-303, 2007), with rare exceptions, for example, of anti-GD2 and anti-GDlb fragments with KD of the order of 10 "8 M (Boffey and cois, J Neuroimmunol 165: 92-103, 2005; Hu and cois, J Immunol: 183; 5748-55, 2009).
  • the mAb L612 has been used in the clinic, in a phase 1 trial that involved nine patients with metastatic melanoma (Irie et al., Immunol Immunother Cancer 53: 110-7, 2004). So far, this is the only clinical trial with an anti-N-acetyl GM3 antibody that has been documented. Several patients had clinical responses to treatment. The antibody also produced no toxic effects despite the ubiquity of N-acetyl GM3 in normal tissues.
  • N-acetyl GM3 has also been the target of active therapy in the clinic, in a phase 1 trial with the GM3 / VSSP vaccine, in patients with melanoma (Guthmann et al., .1 Immunother 27: 242-51, 2004).
  • the vaccine generated a strong response of anti-GM3 antibodies of the IgM and IgG type, and yet did not produce toxic effects (Bada et al., Exp Toxicol. 21: 263 -7, 2002).
  • the anti-N-acetyl-GM3 antibodies generated in the patients were of the IgM type, and no toxic effects were observed.
  • the design and genetic engineering of the antibodies that are the subject of the present invention are based on the amino acid sequences and crystallographic structure of the variable domains of the 14F7 antibody (Krengel et al., J Biol Chem 279: 5597-603, 2004) .
  • the murine monoclonal antibody J4F7 produced by the hybridoma deposited with accession number ECACC 98101901, is described in EP patent application 0972782 / Al. Humanized variants and fragments of this antibody are described in patent application WO 2004/094477 / AI.
  • MAb 14F7 is an IgG1 isotype immunoglobulin that recognizes N-glycolyl GM3 with high specificity (Carr et al., Hybridoma 19: 241-47, 2000) and high affinity, with a dissociation constant of the order of I0 "8 M , measured for its scFv fragment (Rojas et al., J Immunol Methods 293: 71-83, 2004) Immunohistochemical studies have shown that antibody 14F7 recognizes several types of tumors, such as ductal carcinoma of the breast and melanoma (Carr and cois ., Hybridoma 19: 241-47, 2000), adenocarcinomas of the stomach, colon and pancreas (Blanco and cois., ISRN Gastroenterol, Article ID 645641, 2011), tumors of the genitourinary system (Blanco and cois., ISRN Pathology, Article ID 953803, 2011) and neuroectodermal tumors (
  • the binding site of mAb 14F7 to N-glycolyl G 3 is located in the variable region of its heavy chain (VH), as demonstrated by the construction of a library of scFv fragments expressed on bacteriophages, which combine the VH domain of mAb 14F7 with a wide variety of variable domains of light chains (VL), both murine and human (Rojas et al., J Immunol Methods 293: 71-83, 2004). More than a third of the fragments in this library were able to recognize N-glycolyl GM3, which further demonstrates that the VH domain of mAb 14F7 can be associated with different VL domains and maintain the original specificity of the antibody.
  • VH variable region of its heavy chain
  • the I4F7 antibody kills tumor cells, but not normal cells, by a novel mechanism that causes damage to the cell membrane (Roque-Navarro et al., Mol Cancer Ther 7: 2033-41, 2008).
  • the high affinity of mAb 14F7 is an important factor in producing this type of death, as recent experiments show with a P3 antibody mutant with increased affinity (Femandez-Marrero et al. Mol Immunol 48: 1059-67, 2011).
  • the P3 antibody, or its P3Q chimeric variant which has the variable region of the P3 mAb and human IgGl constant region, is not capable of producing complement independent cell death in tumor cells expressing GM3 N-glycolyl.
  • the P3Q E99R mutant obtained by Fernandez-Marrero et al. which has a higher affinity for N-glycolyl GM3 (intermediate between the affinity of the P3Q and I4F7 mAbs), is capable of producing complement-independent cell death.
  • the I4F7 mAb, with greater affinity, has a greater death effect than that produced by the P3Q E99R mutant.
  • the antibodies with dual specificity that are the object of the present invention were obtained from a combinatorial library of scFv fragments expressed on filamentous bacteriophages (or phages, abbreviated), which was specially designed for that purpose.
  • phage expression The technology of presentation of antibody fragments on phages (or "phage expression", in short) is a high flow technology that allows the generation of libraries containing a large number of fragments (up to billions) with different amino acid sequences, and subsequent selection of fragments that possess desired binding abilities in terms of specificity and affinity (Hoogenboom, Methods Mol Biol 178: 1-37, 2002)
  • Cancer is a disease characterized by genetic heterogeneity, which makes its treatment with a single therapeutic agent difficult. For this reason, combinatorial therapies targeting multiple molecular targets associated with the disease are more likely to succeed. In this sense, it is possible to use mixtures of antibodies with different specificities, but this type of therapy is very expensive due to the high development and manufacturing costs of each of the different antibodies.
  • This new conceptual design was applied to the Herceptin antibody, using phage expression technology, obtaining a mutant that in addition to maintaining high affinity recognition of the original antigen (the HER2 molecule) also recognizes with high affinity to the endothelial growth factor Vascular (VEGF) (Bostrom et al., Science 323: 1610-14, 2009).
  • VEGF endothelial growth factor Vascular
  • the present invention relates to recombinant monoclonal antibodies that have dual specificity and high affinity for the N-acetyl GM3 and N-glycolyl GM3 gangliosides. Fragments derived from these antibodies are also included within the scope of the invention.
  • the present invention relates to antibodies with dual specificity and high affinity for the N-acetyl GM3 and N-glycolyl GM3 gangliosides wherein said antibodies the heavy chain variable region contains the following CDRs:
  • CDR-H1 GYRFRSYQ1H, sec. with no. of ident: 3
  • CDR-H3 ESPRLRRGIYYYAMDY, sec. with no. of ident: 34
  • the invention relates to antibodies characterized in that the sequence of the heavy chain variable region is: sec. with no. of ident: 1, QVQLQQSGNELA PGASMKMSCRASGYRFRSYQIHWLKQRPDQGLEW1GYIDP ATAYTESNQ F D AILTADRSSNTAFMYLNSLTSEDSAVYYCARESPRLRRGIY YYAMDYWGQGTSVTVWSQGTSV
  • the invention relates to the monoclonal antibody with variable regions of heavy and light chain with the sequences: sec. with no. of ident: 1,
  • the invention relates to the monoclonal antibody with variable region of weighing with sec. with no. of ident: 1:
  • the sequence of the region of the light chain is a region of the light region of a light region of a variable region.
  • variable region of the light chain is any variable region of the light chain of a human antibody.
  • variable region of the light chain is any variable region of the light chain of a humanized antibody.
  • the present invention relates to the antibody characterized in that the antigen binding domain comprises a sequence of the CDR-H1 that is selected from the group consisting of:
  • the antibody of the present invention is characterized in that the sequence of the CDR-H2 is selected from the group consisting of:
  • the antibody of the present invention is characterized in that the sequence of the CDR-H3 is selected from the group consisting of:
  • the antibody of the invention comprises any combination of sequences of the CDRs H I, H2 and H3 of the claims listed above.
  • the antibody of the invention is characterized in that the CDR-H2 sequence and / or the CDR-H3 sequence contain at least one of the amino acid substitutions selected from the group consisting of:
  • CDR-H2 Asp 52 replaced by Ala, Glu, Asn, Ser or Thr
  • CDR-H2 Ala 53 replaced by Asp, Glu, Gly, His, Leu, Ser, Thr or Tyr
  • the invention comprises the constant regions IgGl human for heavy chain and C for light chain.
  • the present invention relates to the Fab, Fab ', (Fab) 2 and scFv fragments of the antibodies of the present description.
  • the fragment of the invention comprises any combination of sequences of the H 1, H2 and 1-13 CDRs listed above.
  • compositions comprising the antibodies of the present description and / or fragments thereof for the diagnosis or treatment of diseases related to ganglioside antigens N-acetyl GM3 and / or N-glycolyl G 3.
  • the present invention encompasses compositions, including pharmaceutical compositions, comprising one or more antibodies, or fragments derived from these antibodies, with dual specificity and high affinity for the N-acetyl GM3 and N-glycolyl GM3 gangliosides. More preferably, the invention comprises pharmaceutical compositions comprising at least one antibody and / or fragment of the present invention and a pharmaceutically acceptable carrier and / or adjuvant. Even more preferably, the present invention comprises an antibody with the variable region of the sec heavy chain. with no. of ident: I and the variable region of the sec light chain. with no. of ident: 2.
  • the present invention also relates to treatment methods comprising the antibodies of the invention and fragments thereof to tumor-bearing subjects expressing at least one of the N-acetyl GM3 and / or N-glycol il GM3 ganglioside antigens.
  • the subject is a human.
  • the invention relates to a set of reagents useful in the diagnosis of tumors, comprising at least one of the antibodies of the invention and / or fragments derived therefrom.
  • the method comprises but is not limited to diagnosis, for example, based on the presence of the pathology-associated antigen, for example the ganglioside N-acetyl GM3 and / or N-glycol l GM3 in a sample of the patient's tissue or fluid, for example, a sample of tumor tissue, blood sample, etc.
  • the abat numbering scheme is used to number the sequence of the VH region of the antibody.
  • this numbering scheme introduces insertion letters in the VH region, after positions 52 (52A), 82 (82A to 82C) and 1 00 (1 OOA to OOH ).
  • the light chain of the 3 Fm fragment was chosen, which was obtained in a previous work (Rojas et al., J Immunol ethods 293: 71 - 83, 2004).
  • This fragment contains the VH domain of mAb 14F7, while its VL domain was extracted from a library of murine light chains and is not related to the original VL domain of mAb 1 4F7.
  • the 3 Fm fragment maintained the specificity and high affinity for the NeuGc-GM3 of mAb I 4F7 and could also be expressed in bacteria.
  • the heavy chain design of the library fragments was based on the sequence of the VH region of the 14F7 antibody. From the analysis of the crystallographic structure of the Fab fragment of mAb 14F7 (rengel et al., J Biol Chem 279: 5597-603, 2004), and also knowing that the VH domain is what determines the binding of this antibody to N -glicoli I GM3, a set of positions to be mutated in the hypervariable bonds of the VH domain was selected. The selection of the positions to be mutated was based on two main criteria: 1) preferably mutating the amino acids whose side chains are exposed to the solvent; and 2) the area of the mutations was confined to positions within a 12 angstroms radius of position 52 of VH. The latter criterion was based on mutagenesis experiments reported by Krengel and cois. (J Biol Chem 279: 5597-603, 2004). which show that the amino acid Asp 52 is involved in the interaction of antibody 14F7 with its antigen.
  • the positions subject to randomization were the following: Ser 28, Phe 29, Thr 30, Ser 31, Trp 33, Lie 34, Tyr 50, Lie 51, Asp 52, Ala 53, Thr 54, Tyr 56, Glu 58, Arg 98 , Leu 99, Arg 100, Arg 100A Gly 100B, lie 100C and Tyr 100D.
  • the designed VH gene collection was synthesized and cloned into a pHAB fagemid containing the scFv 3Fm fragment gene (Rojas et al., J immunol Methods 293: 71-83, 2004).
  • the scFv-presenting phage fragments were rescued from the library using the auxiliary phage MI 3 07 and subsequently purified using the protocol described by Marks et al. (.1 Mol Biol 222: 581-97, 1991).
  • the antibody fragments with dual specificity for the N-glycolyl GM3 and N-acetyl GM3 gangliosides that are the object of the present invention were obtained by means of three rounds of phage selection and amplification of the library, using only the N- target molecule as a target molecule.
  • Acetyl GM3, since a simple round of selection against N-glycolyl GM3 previously performed showed that the library contained a large number of fragments capable of recognizing this antigen.
  • the selection process was carried out following a procedure similar to that described by Rojas and cois. (J Immunol Methods 293: 71-83. 2004) TGI cells in exponential growth were used to rescue the selected phages at a scale of 50 milliliters, as described in (Marks et al., J Mol Biol 222: 581-97, 1991 ). The purified phages were used as starting material for the next round of selection. After three rounds, clones of individually selected phages were rescued in 96-well plates (Marks et al., J Mol Biol 222: 581-97, 1991).
  • Table I shows a group of sequences of the CDRs of the heavy chain of scFv fragments with dual specificity, extracted from the library.
  • Table 2 shows the positions in the VH domain sequence that are relevant for dual specificity, and the positions that admit varying degrees of amino acid variability.
  • the present invention comprises immunoglobulins of any isotype, whether of human, murine or other species origin, as well as any type of fragment of these immunoglobulins, which have dual specificity for the gangliosides NeuAc-GM3 and NeuGc-GM3.
  • An immunoglobulin of any desired isotype can be constructed from the amino acid sequence of the VH region of a scFv fragment with the ability to bind to both gangliosides, and of a VL region sequence of human, urinary, or human origin. other species This purpose can be achieved by using established molecular biology techniques, using any of the vectors described for efficient expression of recombinant proteins, particularly monoclonal antibodies.
  • an IgG 1 isotype immunoglobulin can be constructed using the vectors pAH4604 and pAG4622 (Coloma et al., J Immunol Methods 52: 89-104, 1992), commonly used for the expression of immunoglobulins in upper cells.
  • the VH sequence to be used to construct an immunoglobulin with dual specificity by the gangliosides NeuAc-G 3 and NeuGc-GM3, can be extracted directly from the phage library constructed in the present invention, or can be designed from the experimental data shown in Table I, retaining in the sequence the positions important for dual specificity and introducing any of the appropriate amino acids at the positions of the CDRs that They allow some degree of variability.
  • the VL sequence to be used admits a high degree of variability, both in the framework regions and in the hypervariable bonds, as demonstrated in (Rojas and cois., J Immunol Methods 293: 7 1-83, 2004).
  • the present invention also includes chimeric immunoglobulins, that is, with human constant regions and human variable regions, as well as immunoglobulins with humanized variable regions.
  • the invention provides pharmaceutical compositions comprising one or more antibodies of the present invention, or fragments thereof. In one embodiment, these pharmaceutical compositions also comprise a pharmaceutically acceptable excipient.
  • the term "pharmaceutically acceptable carrier or adjuvant” includes solvents, dispersion media, coatings, antibacterial and anti-fungal agents, ultrasonic agents and absorption retarders, and the like, compatible with the adm pharmaceutical istration Supplementary active compounds can also be incorporated into the compositions.
  • pharmaceutically acceptable carrier or adjuvant refers to a vehicle or adjuvant that can be treated with a subject, along with the antibodies or fragments, and that does not destroy their pharmacological activity and is not toxic when administered. Istra in sufficient doses to deliver a therapeutic amount of the antibodies.
  • a pharmaceutical composition is formulated to be compatible with its intended route of administration.
  • routes of administration include among others parenteral, for example, parenteral, intravenous and subcutaneous intradermal.
  • the solutions or suspensions used for parenteral, intradermal or subcutaneous application may include the following components: a sterile diluent such as water for injection, salt solution, fixed oils, polyether polyols, glycerin, own tongue or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as eti lendiaminotetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose.
  • a sterile diluent such as water for injection, salt solution, fixed oils, polyether polyols, glycerin, own tongue or other synthetic solvents
  • antibacterial agents such as benzyl alcohol or methyl paraben
  • antioxidants such as ascor
  • the pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
  • Parenteral preparation can be enclosed in ampoules, disposable syringes or multi-dose vials made of glass or plastic. It is advantageous to formulate parenteral compositions in unit dose form to facilitate administration and a dosage form.
  • the dosage form Unitary as used herein refers to physically discrete units suitable as unit doses for the subject to be treated; Each unit contains a predetermined amount of active compound, calculated to produce the desired therapeutic effect, in association with the required pharmaceutical carrier.
  • compositions may be included in a container, package or dispenser together with instructions for administration.
  • the antibodies of the present invention can be used for the treatment of tumors expressing the N-acetyl GM3 ganglioside, or the N-glycolyl GM3 ganglioside, or both gangliosides simultaneously.
  • a suitable therapeutic dose of the antibodies of the present invention is in the range of about 1 mg to about 1 g per dose, preferably about 50 mg to about 500 mg per dose.
  • the antibodies of the invention are administered by any suitable means, including the parenteral, subcutaneous, intrapulmonary, intranasal and intracranial routes, and if desired for local treatment, the intralesional route.
  • a method of treatment comprises the administration to the patient of the pharmaceutical composition of the invention in a dose schedule of those known to those skilled in the art for passive therapy with monoclonal antibodies or fragments thereof.
  • An example of a method of treatment, but not limiting the present invention comprises the administration of a weekly dose of 200 mg of an antibody of the present invention for example 6 weeks and subsequently maintenance dose for example every 2 or 3 weeks until progression. of the disease or limiting toxicity.
  • Figure 1 A) Recognition by the 7C1 mAb of the gangliosides N-glycolyl GM3 and N-acetyl GM3, in ELISA assays, using different antibody concentrations.
  • Figure 2 Recognition by mAb 7C 1 of tumor cell lines expressing N-acetyl GM3 or N-glycolyl GM3, in flow cytometry experiments.
  • FIG. 4 A) Splenocyte recognition of Balb / c mice by humanized antibody 7C 1, in flow cytometry experiments.
  • B Cell viability assays with purified Balb / c mouse B lymphocytes, treated with the 7C 1 antibody. In both experiments the B lymphocytes were labeled with a polyclonal anti-B220 antibody and the humanized antibody C5Q was used as a relevant control.
  • Example 1 Construction of a recombinant immunoglobulin of the IgG 1 sotype with dual specificity for the gangliosides N-acetyl GM3 and N-glycolyl GM3 (antibody 7C U.
  • the selected VH domain has only three amino acid level mutations with respect to the original 14F7 antibody sequence. These three mutations are: Ser 28 ⁇ Arg, Thr 30 ⁇ Arg and Trp 33 ⁇ Gln.
  • the genes encoding VH and VL were cloned into vectors pAH4604 and pAG4622 (Coloma and cois., J Immunol Methods 52: 89-1 04, 1 992), respectively, following known molecular biology procedures. These vectors are used for the expression of immunoglobulins in higher cells.
  • the vector pAH4604 contained the human constant region of IgG I isotype, while vector pAG4622 contained the human kappa constant region.
  • Sp2 / 0 murine myeloma cells were used, which does not produce antibodies, which were sequentially transfected with the genetic constructs obtained for VH and VL.
  • the immunoglobulin produced by these cells was purified by the use of a protein A column.
  • the recombinant monoclonal antibody produced was called 7C 1.
  • the mAb 7C 1 was able to bind to both gangliosides with virtually the same affinity, as shown in Figure 1 A, where it is observed that the optical density (OD) curves that quantify the recognition level of the NeuAc- gangliosides GM3 and NeuGc-GM3 by the 7C 1 antibody, are very similar to each other.
  • the binding affinity of the 7C 1 antibody to the N-glycolyl GM3 (and by transition, also to the N-acetyl GM3) is very similar (only slightly below) to that observed for the binding of the 14F7 mAb with the N-gl icolil G 3, as shown in Figure 1 B.
  • 14F7hT a humanized version of the 14F7 mAb with a human IgG I isotype, called 14F7hT, was used, which retains the recognition properties of the original 14F7 antibody (Fernandez-Marrero et al., Immunobiology 216: 1239-47, 201 1).
  • the antibody T l h anti-CD6 was used, also with human IgG I isotype.
  • the binding capacity of the 7C I antibody to the two gangliosides was checked by thin layer chromatography (TLC), as shown in Figure 1 C, where it is observed that mAb 7C 1 was able to label the purified samples of N-acetyl GM3 and N-glycol l GM3.
  • Example 2 Recognition by the 7C 1 antibody of tumor cell lines expressing N-acetyl GM3 or N-glycol l GM3.
  • the ability of the 7C I antibody to recognize tumor cells expressing the ganglioside N-glycolyl G 3 or the N-acetyl GM3 was demonstrated by flow cytometry experiments using two variants of the L 1210 cell line (purchased from the American Type Culture Collection), which is a line of mouse infocitic leukemia. The same native strain of said line, which expresses N-glycolyl GM3, and a variant was used genetically transformed (L 1210-SH), which expresses N-acetyl GM3 (Fernández-Marrero et al., Mol Immunol 48: 1059-67, 201 1).
  • the L 12 I 0-SH line which expresses N-aceti l GM3 instead of N-glycolyl GM3, was obtained by lentiviral transduction of an interfering RNA fragment that inhibits the expression of the CMP-NeuAc hydroxylase enzyme, the which transforms N-acetyl sialic acid into N-glycolyl sialic acid (Shaw and Schauer, Biol Chem Hoppe Seyler 369: 477-86, 1988).
  • the drastic decrease in the expression of N-glycolyl GM3 in this transformed line was demonstrated by Fernández-Marrero and cois. (Mol Immunol 48: 1059-67, 201 1).
  • Flow cytometry experiments were performed in a FACScan (Becton Dickinson) equipment. In each assay 104 cells were collected. For fluorescent cell mapping, an anti-human IgG antibody conjugated to FITC was used. As a negative control the antibody T l h was used.
  • the 7C 1 antibody was able to label the cells of the L 1210-SH line (expressing N-acetyl GM3), unlike the 14F7hT antibody that does not recognize such cells.
  • the 7C 1 antibody also marked the cells of the native strain of L 1 2 10 (which have a high expression of N-glycol il GM3), which were also labeled by the antibody! 4F7hT used in this case as a positive control ( Figure 2B).
  • mapping of the native strain of L1210 by mAb 7C 1 was more intense compared to the mapping by mAb 14F7hT, because mAb 7C 1 can be linked to both the N-glycolyl variant and the N variant -acetyl of GM3, both expressed in these cells.
  • Example 3 Cytotoxic effect of 7C 1 antibody on tumor cells expressing N-acetyl GM3 or N-glycolyl GM3.
  • the ability of the 7C 1 antibody to kill tumor cells expressing N-acetyl GM3 or N-glycolyl GM3, by a complement independent cell death mechanism was demonstrated in experiments performed with the cell lines L 12 10 and LI 2 10- SH.
  • the cells were suspended in culture medium with 1% fetal bovine serum at a concentration of 1 thousand cells per milliliter, and then incubated with the antibody in an atmosphere of 5% C02 at 37 degrees Celsius for 3 hours. The cells were subsequently washed, suspended in PBS with propidium iodide (Pl) at 10 micrograms / milliliter, and analyzed by flow cytometry. Dead cells were identified from the measurement of frontal and lateral dispersion, and the incorporation of Pl. Cells with Dispersion levels outside the characteristic range of living cells and also marked with PI, were counted as dead cells.
  • PBS propidium iodide
  • Example 4 Recognition by the 7C 1 mAb of normal cells, without causing cell death.
  • the 7C 1 antibody which has a strong cytotoxic effect on tumor cells, does not, however, cause cell death in normal cells expressing N-glycolyl or N-acetyl GM3, as evidenced by splenocytes of Balb / c mice.
  • the Balb / c mouse B cells were double labeled with an anti-B220 polyclonal antibody (Dako, 1: 200 dilution), and with the 7C I antibody (at a concentration of 10 micrograms / milli liter).
  • Cell viability assays were performed with B lymphocytes from the spleen of Balb / c mice, incubated with 7C 1 antibody.
  • One million B lymphocytes purified with magnetic beads (Myltecni Biotec) were incubated with 50 micrograms of antibody dissolved in DMEM medium -F 12 supplemented with 1% BSA, for 3 hours at 37 ° C in C02 atmosphere. Death induced by treatment was determined by incorporation of propidium iodide.
  • the humanized antibody C5Q was used as an irrelevant control.
  • the mAb 7C I produced a noticeable mapping of the Balb / c mouse B lymphocytes, as well as other splenocytes. Notwithstanding the marked recognition of these cells by the 7C I mAb, cell viability assays performed with purified B lymphocytes demonstrated that the 7C 1 antibody has no cytotoxic effect on normal B lymphocytes, as shown in Figure 4B.
  • the CDR Hl in the table includes positions 26-35 of the VH region,

Abstract

La presente invención se relaciona con nuevos anticuerpos monoclonales y fragmentos de estos anticuerpos, con especificidad dual y alta afinidad por los gangliósidos N-acetil GM3 y N-glicolil GM3, y que no reconocen otros gangliósidos. En otro aspecto, la presente invención se relaciona con el uso de estos anticuerpos y sus fragmentos en la terapia de tumores que tienen una expresión significativa de cualquiera de los dos antígenos reconocidos por estos anticuerpos, o una expresión mixta de ambos antígenos. Así como al uso de estos anticuerpos en el diagnóstico de tumores que expresen al menos uno de los antígenos.

Description

ANTICUERPOS RECOMBIN ANTES CON ESPECIFICIDAD DUAL POR
GANGLIÓSIDOS Y SU USO
SECTOR TÉCNICO
La presente invención está relacionada con el campo de la biotecnología y particularmente con la salud humana. En la presente invención se describen anticuerpos monoclonales modificados por técnicas de ingeniería genética y el uso de estos anticuerpos y sus fragmentos en la terapia y/o el diagnostico de tumores. ESTADO DE LA TÉCNICA ANTERIOR
Gangliósidos N-acetil GM3 y N-glicolil GM3 como antígeno s asociados a tumores Los gangliósidos son glicoesfingol ípidos que contienen ácido siál ico y que están presentes en las membranas plasmáticas de los vertebrados. Estas moléculas están involucradas en diversas funciones como la adhesión celular, la transducción de señales, el desarrollo y diferenciación de tej idos, y también en la progresión tumoral (Hakomori, PNAS USA 99:225-32, 2002).
Varios gangliósidos han sido caracterizados como antígenos asociados a tumores debido a que aparecen expresados, o su expresión se incrementa en determ inados tipos de cáncer. Entre estos gangliósidos asociados a tumores se encuentran el N-glicolil GM3 (NeuGc-GM3) y el N-acetil G 3 (NeuAc-GM3, o simplemente GM3).
El NeuGc-GM3 no se expresa en tejidos humanos normales (Varki, Biochimie 83:61 5- 622, 2001 ), pero aparece expresado en varios tipos de tumores (Marquina y cois., Cáncer Res 56:5 1 65-71 , 1 996; Fernández y cois., Expert Rev Vaccines 2:81 7-23, 2003). La presente invención está relacionada con anticuerpos monoclonales que reconocen con alta afinidad tanto al N-gl icol il G 3 como al N-aceti l G 3.
El N-acetil GM3 es común en los tej idos humanos normales (Svennerholm, in Structure and Function of Gangliosides, Plenum Press, New York-London, pp. 533-540, 1980; Prokazova y cois., B iochem istry (Moscow) 74:235-49, 2009), pero se definió también como un antígeno asociado a tumores porque se encuentra sobre expresado en diferentes tipos de cáncer (Hersey y cois., Int J Cáncer 4 1 :336-43, 1988; Ravindranath y cois., Biochem Biophys Res Commun 353:25 1 -8, 2007; Noguchi y cois., Glycobiology 16:641 -50, 2006). En un reciente estudio organizado por el Instituto Nacional de Cáncer de los Estados Unidos, dirigido a determ inar qué antígenos se deben priorizar como dianas en la inmunoterapia del cáncer, el GM3 estuvo entre los 75 antígenos seleccionados, ocupando el lugar 48 (Cheever y cois., Clinical Cáncer Res 1 5: 5323-37, 2009).
Los gangliósidos N-acetil G 3 y N-glicolil G 3 tienen una estructura muy similar, compuesta por tres unidades sacarídicas (ácido siál ico, galactosa y glucosa) y una cola de ceramida .(Figura 1 ). Se diferencian entre sí únicamente por la hidroxi lación del grupo metilo presente en la función nitrogenada del ácido siálico N-acetil (NeuAc), que da lugar al ácido siálico N-glicolil (NeuGc). O sea, el NeuAc- y el NeuGc-GM3 se diferencian entre sí solo por la sustitución de un átomo de hidrógeno por un grupo hidroxilo en el ácido siálico. Esta pequeña diferencia estructural, sin embargo, resulta en un reconocimiento diferenciado por el sistema inmune (Portoukalian, Clin Rev Allergy Immunol 19:73-78, 2000; Varki, Biochimie 83: 615-22, 2001).
Anticuerpos monoclonales que reconocen al N-acelil GM3
Varios anticuerpos monoclonales de origen humano o murino que reconocen al GM3 (N-acetil) se han descrito en la literatura: M2590 mAb (IgM murina) (Hirabayashi y cois., J Biol Chem 260:13328-33, 1985); FCM1 mAb (IgM humana) (Yamaguchi y cois., PNAS 84:2416-20, 1987); DH2 mAb (lgG murina) (Dohi y cois., Cáncer Res 48, 5680-5, 1988); GMR6 mAb (IgM murina) (Kotani y cois., Biochim Biophys Acta 1117:97-103, 1992); L612 mAb (IgM humana) (Hoon y cois., Cáncer Res 53:5244-20, 1993); los mAbs "17" y AHI 8 (human IgM) (Brandt y cois. Patent US005610280A, 1997); GMA1 mAb (IgG humana) (Mukerjee y cois, Hybridoma 17:133-42,1998). De estos ocho anticuerpos, los mAbs DH2 y L612 han demostrado ser específicos por el GM3, mientras que los restantes seis anticuerpos muestran reactividad extendida a otros gangliósidos. Ninguno de estos anticuerpos ha mostrado reconocimiento del N-glicolil GM3, ni de otros gangliósidos N-glicolilados.
En un trabajo más reciente, tres anticuerpos anti-GM3 (llamados GM3A6, GM3A8, y GM3A15) fueron obtenidos a partir de una biblioteca de fragmentos Fv de cadena simple (scFv), expresados sobre la superficie de bacteriófagos. Dicha biblioteca fue construida a partir de los repertorios de genes de anticuerpo de un grupo de pacientes de cáncer (Lee y cois, J Am Chem Soc 124:12439-46, 2002). Las constantes de disociación ( D) de estos fragmentos scFv. medida por SPR/Biacore, fueron del orden de 10"5 - 10~7 M.
En general, la afinidad de los anticuerpos monoclonales anti-gangliósidos es baja o mediana. Las constantes de disociación medidas por SPR/Biacore para fragmentos Fab de varios de estos anticuerpos, están en el orden de I0"6 - I0"7 M (Catimel y cois, Glycobiology 8:927-38; Boffey y cois, .1 Neuroimmunol 165:92-103, 2005; Townson y cois, Glycobiology 17:294-303, 2007), con raras excepciones, por ejemplo, de fragmentos anti-GD2 y anti-GDlb con KD del orden de 10"8 M (Boffey y cois, J Neuroimmunol 165:92-103, 2005; Hu y cois, J Immunol: 183;5748-55, 2009).
En el caso particular del gangliósido N-acetil GM3, su baja inmunogenicidad es un fuerte obstáculo para obtener anticuerpos IgG de alta afinidad (Livingston y cois. Cáncer Immunol Immunother 29:179-84, 1989; Portoukalian, Clin Rev Allergy Immunol 19:73-8, 2000).
Resultados preclinicos y clínicos con anticuerpos anli-N-acetil GM3 De los diferentes anticuerpos anti-GM3 descritos en la literatura, se han publicado evidencias de actividad anti-tumoral in vitro e in vivo para los mAbs DH2 y L612. El anticuerpo DH2 indujo citotoxicidad celular dependiente de anticuerpos in vitro e inhibió el crecimiento de células de melanoma BI6 en ratones C57BL/6 (Dohi y cois., Cáncer Res 48, 5680-5, 1988). El mAb L612 produjo citotoxicidad dependiente de complemento en experimentos realizados in vitro con células de cáncer que expresan el GM3 (Nishinaka y cois., J Immunogenetics 48:73-5, 1998). Una versión ingenierizada de este anticuerpo, en formato de IgM hexamérica, mostró una capacidad incrementada de producir muerte celular dependiente de complemento, y un mayor efecto anti- tumoral en ratones (Azuma y cois., Clin Cáncer Res 13:2745-50, 2007).
El mAb L612 ha sido usado en la clínica, en un ensayo fase 1 que involucró a nueve pacientes con melanoma metastásico (Irie y cois., Cáncer Immunol Immunother 53: 110- 7, 2004). Hasta el presente, este es el único ensayo clínico con un anticuerpo anti N- acetil GM3 que ha sido documentado. Varios pacientes tuvieron respuestas clínicas al tratamiento. El anticuerpo, además, no produjo efectos tóxicos a pesar de la ubicuidad del N-acetil GM3 en los tejidos normales.
El N-acetil GM3 ha sido también diana de terapia activa en la clínica, en un ensayo fase 1 con la vacuna GM3/VSSP, en pacientes con melanoma (Guthmann y cois., .1 Immunother 27:242-51, 2004). Previamente, en un ensayo preclínico realizado en monos durante 12 meses, la vacuna generó una fuerte respuesta de anticuerpos anti- GM3 de tipo IgM e IgG, y sin embargo, no produjo efectos tóxicos (Bada y cois., Exp Toxicol. 21:263-7, 2002). En el ensayo clínico, los anticuerpos anti-N-acetil-GM3 generados en los pacientes fueron de tipo IgM, y tampoco se observaron efectos tóxicos de consideración.
Anticuerpos monoclonales que reconocen al N-glicolil GM3
Dos anticuerpos monoclonales que reconocen al N-glicolil GM3, pero no a su variante N-acetilada, han sido descritos en la literatura: el mAb P3 (IgM murina) (Vázquez y cois., Hybridoma 14:551-56, 1995) y el mAb 14F7 (IgG murina) (Carr y cois., Hybridoma 19:241-47, 2000). El anticuerpo P3 reconoce también a otros gangliósidos N-glicolilados (Moreno y cois., Glycobiology 8, 695-708, 1998), mientras que el anticuerpo 14F7 ha demostrado ser específico por el N-glicolil GM3.
El diseño y la ingeniería genética de los anticuerpos que son objeto de la presente invención están basados en las secuencias aminoacídicas y la estructura cristalográfica de los dominios variables del anticuerpo 14F7 (Krengel y cois., J Biol Chem 279:5597- 603, 2004).
El anticuerpo monoclonal I4F7
El anticuerpo monoclonal murino J4F7, producido por el hibridoma depositado con el número de acceso ECACC 98101901, está descrito en la solicitud de patente EP 0972782/Al. Variantes humanizadas y fragmentos de este anticuerpo se describen en la solicitud de patente WO 2004/094477/A I .
El mAb 14F7 es una inmunoglobulina de isotipo IgGl que reconoce al N-glicolil GM3 con alta especificidad (Carr y cois., Hybridoma 19:241-47, 2000) y alta afinidad, con una constante de disociación del orden de I0"8 M, medida para su fragmento scFv (Rojas y cois., J Immunol Methods 293:71-83, 2004). Estudios ¡nmunohistoquímicos han demostrado que el anticuerpo 14F7 reconoce varios tipos de tumores, como carcinoma ductal de mama y melanoma (Carr y cois., Hybridoma 19:241-47, 2000), adenocarcinomas de estómago, colon y páncreas (Blanco y cois., ISRN Gastroenterol, Article ID 645641, 2011), tumores del sistema genitourinario (Blanco y cois., ISRN Pathology, Article ID 953803, 2011) y tumores neuroectodérmicos (Scursoni y cois., Clin Devel Immunol, Article ID 245181, 2011).
El sitio de unión del mAb 14F7 al N-glicolil G 3 está ubicado en la región variable de su cadena pesada (VH), como fue demostrado a partir de la construcción de una biblioteca de fragmentos scFv expresados sobre bacteriófagos, que combinan el dominio VH del mAb 14F7 con una gran variedad de dominios variables de cadenas ligeras (VL), tanto murinas como humanas (Rojas y cois., J Immunol Methods 293:71- 83, 2004). Más de un tercio de los fragmentos de esta biblioteca fueron capaces de reconocer al N-glicolil GM3, lo cual demuestra además, que el dominio VH del mAb 14F7 puede asociarse a dominios VL diferentes y mantener la especificidad original del anticuerpo.
En estudios in vitro e in vivo, el mAb I4F7 fue capaz de provocar muerte celular independiente de complemento y de inhibir el crecimiento de mielomas en ratones (Carr y cois., Hybridoma 21:463-8, 2002). En un ensayo clínico prospectivo fase 1/2 realizado en pacientes con cáncer de mama, el anticuerpo 14F7 marcado con tecnecio se acumuló en los tumores (Oliva y cois., Breast Cáncer Res Treat 96: 115-21, 2006).
Estudios posteriores demostraron que el anticuerpo I4F7 mata las células tumorales, pero no células normales, mediante un novedoso mecanismo que provoca daños en la membrana celular (Roque-Navarro y cois., Mol Cáncer Ther 7:2033-41, 2008). La alta afinidad del mAb 14F7 es un factor importante para producir este tipo de muerte, como demuestran experimentos recientes con un mutante del anticuerpo P3 con afinidad incrementada (Femandez-Marrero y cois. Mol Immunol 48:1059-67, 2011). El anticuerpo P3, o su variante quimérica P3Q (que tiene la región variable del mAb P3 y región constante de IgGl humana), no es capaz de producir muerte celular independiente de complemento en células tumorales que expresan el N-glicolil GM3. Sin embargo, el mutante P3Q E99R obtenido por Fernandez-Marrero y colaboradores, que tiene una mayor afinidad por el N-glicolil GM3 (intermedia entre la afinidad de los mAbs P3Q y I4F7), sí es capaz de producir muerte celular independiente de complemento. El mAb I4F7, con mayor afinidad, tiene un efecto de muerte mayor que el producido por el mutante P3Q E99R. Terapias en la clínica que tienen como diana al N-glicolil GM3
Hasta el presente, las evidencias de mayor peso de que anticuerpos que reconocen al gangliósido N-glicolil GM3 pueden tener un efecto antitumoral, provienen de los ensayos clínicos fase 2/3 de dos productos vacunales que tienen como diana a este gangliósido. Uno de estos productos es la vacuna NGcGM3/VSSP, que incluye en su formulación la propia molécula de N-glicolil GM3, mientras que el otro es un anticuerpo antiidiotípico llamado Racotumumab o 1E10 (Fernández y cois., Clin Devel Immunol, Article ID 814397, 2010). Ambas vacunas producen altos títulos de anticuerpos anti-N-glicolil G 3 en pacientes de cáncer, con un demostrado efecto antitumoral (Fernández y cois., Clin Devel Immunol, Article ID 814397, 2010; Hernández y cois., J Immunol 186:3735-44, 2011).
Bibliotecas de fragmentos de anticuerpos expresados sobre bacteriófagos
Los anticuerpos con especificidad dual que son objeto de la presente invención, fueron obtenidos de una biblioteca combinatoria de fragmentos scFv expresados sobre bacteriófagos filamentosos (o fagos, abreviadamente), la cual fue especialmente diseñada con ese objetivo.
La tecnología de presentación de fragmentos de anticuerpos sobre fagos (o "expresión en fagos", abreviadamente) es una tecnología de alto flujo que permite la generación de bibliotecas que contienen un gran número de fragmentos (hasta miles de millones) con secuencias aminoacídicas diferentes, y la selección subsecuente de los fragmentos que posean capacidades de unión deseadas en cuanto a especificidad y afinidad (Hoogenboom, Methods Mol Biol 178:1-37, 2002)
Anticuerpos de especificidad dual
El cáncer es una enfermedad caracterizada por heterogeneidad genética, lo cual hace difícil su tratamiento con un único agente terapéutico. Por esta razón las terapias combinatorias dirigidas a múltiples dianas moleculares asociadas a la enfermedad tienen una mayor probabilidad de éxito. En este sentido, es posible usar mezclas de anticuerpos con distintas especificidades, pero este tipo de terapia resulta muy cara debido a los altos costos de desarrollo y manufactura de cada uno de los diferentes anticuerpos.
Con las técnicas de la ingeniería genética ha sido posible crear diversas soluciones para obtener anticuerpos, o fragmentos derivados de estos, con la capacidad de reconocer dos o más moléculas. Estos enfoques han consistido fundamentalmente en la combinación de más de un sitio de unión de anticuerpo, cada uno con una especificidad diferente, en una misma construcción molecular (Hudson y Souriau, Nat Med 9:129-34, 2003; Hollander, lmmunotherapy 1:211-22, 2009). Recientemente fue descrito un nuevo diseño conceptual de anticuerpo con doble especificidad, donde el sitio de unión de un anticuerpo monoclonal es se diseñó para que reconozca un segundo antígeno, manteniendo el reconocimiento por el antígeno original. Este nuevo diseño conceptual fue aplicado al anticuerpo Herceptin, haciendo uso de la tecnología de expresión en fagos, obteniéndose un mutante que además de mantener el reconocimiento de alta afinidad del antígeno original (la molécula HER2) reconoce también con alta afinidad al factor de crecimiento endotelial vascular (VEGF) (Bostrom y cois., Science 323:1610-14, 2009). Este nuevo diseño conceptual de anticuerpo con especificidad dual ("dos en uno") posee varias ventajas, entre ellas una muy importante: la facilidad de su producción como anticuerpo monoclonal.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención se refiere a anticuerpos monoclonales recom binantes que tienen especificidad dual y alta afinidad por los gangliósidos N-acetil GM3 y N-glicolil GM3. También se incluyen dentro del alcance de la invención fragmentos derivados de éstos anticuerpos.
En una modalidad preferida, la presente invención se refiere a los anticuerpos con especificidad dual y alta afinidad por los gangliósidos N-acetil GM3 y N-glicolil GM3 donde dichos anticuerpos la región variable de la cadena pesada contiene las siguientes CDRs:
CDR-H1: GYRFRSYQ1H, sec. con núm. de ident: 3
CDR-H2: Y DPATAYTESNQ F D, sec. con núm. de ident: 17
CDR-H3: ESPRLRRGIYYYAMDY, sec. con núm. de ident: 34
En otra modalidad la invención se refiere a anticuerpos caracterizados porque la secuencia de la región variable de la cadena pesada es: sec. con núm. de ident: 1, QVQLQQSGNELA PGASMKMSCRASGYRFRSYQIHWLKQRPDQGLEW1GYIDP ATAYTESNQ F D AILTADRSSNTAFMYLNSLTSEDSAVYYCARESPRLRRGIY YYAMDYWGQGTSVTVSS
En otra modalidad particular, la invención se refiere al anticuerpo monoclonal con regiones variables de cadena pesada y ligera con las secuencias: sec. con núm. de ident: 1,
QVQLQQSGNELA PGASMK SCRASGYRFRSYQIHWLKQRPDQGLEWIGYIDP ATAYTESNQ F D AILTADRSSNTAF YLNSLTSEDSAVYYCARESPRLRRG1Y YYAMDYWGQGTSVTVSS
y
sec. con núm. de ident: 2:
DLVLTQSPATLSVTPGDSVSFSCRASQSISNNLHWYQQRTHESPRLLI YASQSIS GIPSRFSGSGSGTDFTLSIISVETEDFGMYFCQQSNRWPLTFGAGT LEL RA En otro aspecto la invención se refiere al anticuerpo monoclonal con región variable de pesada con sec. con núm. de ident: 1 :
QVQLQQSGNELA PGASMKMSCRASGYRFRSYQIHWL QRPDQGLEWIGYIDP ATAYTESNQKF D AILTADRSSNTAFMYLNSLTSEDSAVYYCARESPRLRRGIY YYAMDYWGQGTSVTVSS y la secuencia de la región variable de la cadena ligera es cualquier secuencia de región variable de cadena ligera de un anticuerpo.
En otro aspecto la región variable de la cadena ligera es cualquier región variable de cadena ligera de un anticuerpo humano.
En otro aspecto particular la región variable de la cadena ligera es cualquier región variable de cadena ligera de un anticuerpo humanizado.
En una modalidad preferida la presente invención se refiere al anticuerpo caracterizado porque el dominio de unión al antígeno comprende una secuencia de la CDR-H1 que se selecciona del grupo que consiste de:
CDR-H 1 GYRFRSYQIH, sec. con núm. de ident: 3
CDR-H 1 GYSFTRYQ1H, sec. con núm. de ident: 4
CDR-H1 GYRFTSNQIH, sec. con núm. de ident: 5
CDR-H 1 GYSFNRYQ1H, sec. con núm. de ident: 6
CDR-H1 GYSFRRYQIH, sec. con núm. de ident: 7
CDR-H 1 GYSITRYQIH, sec. con núm. de ident: 8
CDR-H1 GYSFTRYQIH, sec. con núm. de ident: 9
CDR-H1 GYSFKSYQIH, sec. con núm. de ident: 10
CDR-H 1 GYSFTSYQÍH, sec. con núm. de ident: 11
CDR-H1 GYRFTRYWIH, sec. con núm. de ident: 12
CDR-H 1 GYTFTRYQIH, sec. con núm. de ident: 13
CDR-H1 GYPFTRYQIH. sec. con núm. de ident: 14
CDR-H 1 GYSFSRYQIV, sec. con núm. de ident: 15
CDR-H1 GYHFTRYQIH, sec. con núm. de ident: 16
En otra modalidad el anticuerpo de la presente invención se caracteriza porque la secuencia de la CDR-H2 se selecciona del grupo que consiste de:
CDR-H2 YIDPATAYTESNQKF D, sec. con núm. de ident: 17
CDR-H2 YINPATASTESNQ FKD, sec. con núm. de ident: 18
CDR-H2 FfDPATAYTESNQKFKD, sec. con núm. de ident: 19
CDR-H2 DIDPGRAYTESNQKF D, sec. con núm. de ident: 20
CDR-H2 YIDPATANTESNQ F D, sec. con núm. de ident: 21
CDR-H2 FINPATAYTESNQKFKD, sec. con núm. de ident: 22
CDR-H2 FÍDPASAYTVSNQKFKD, sec. con núm. de ident: 23
CDR-H2 YIDPATAKTESNQKFKD, sec. con núm. de ident: 24
CDR-H2 YINPGSAYTESNQKFKD, sec. con núm. de ident: 25
CDR-H2 YLDPANAYTESNQ F D, sec. con núm. de ident: 26
CDR-H2 YVDPANAYTESNQ FKD, sec. con núm. de ident: 27 CDR-H2 Y1NPATAYTESNQKFKD, sec. con núm. de ¡dent: 28
CDR-H2 YIDPATAWTESNQ FKD, sec. con núm. de ¡dent: 29
CDR-H2 YIDPGTAYTESNQKFKD. sec. con núm. de ¡dent: 30
CDR-H2 YIDPRTAYTESNQKF D, sec. con núm. de ¡dent: 31
CDR-H2 YVDPATAHTESNQKFKD, sec. con núm. de ¡dent: 32
CDR-H2 Y1NPATAYTDSNQ F D, sec. con núm. de ¡dent: 33
En aun otra modalidad, el anticuerpo de la presente invención se caracteriza porque la secuencia de la CDR-H3 se selecciona del grupo que consiste de:
CDR-H3 ESPRLRRGÍYYYA DY, sec. con núm. de ident: 34
CDR-H3 ESPRFRRGRYYYA DY, sec. con núm. de ident: 35
CDR-H3 ESPRMRRG1YYYAMDY, sec. con núm. de ¡dent: 36
CDR-H3 ESPRVRRGIYYYA DY, sec. con núm. de ident: 37
CDR-H3 ESPRLRRGLYYYA DY, sec. con núm. de ¡dent: 38
En otra modalidad el anticuerpo de la invención comprende cualquier combinación de secuencias de las CDRs H I, H2 y H3 de las reivindicaciones enumeradas anteriormente. En otra modalidad el anticuerpo de la invención se caracteriza porque la secuencia del CDR-H2 y/o la secuencia del CDR-H3 contienen al menos una de las sustituciones de aminoácidos seleccionadas del grupo que consiste de:
CDR-H2 Asp 52 sustituida por Ala, Glu, Asn, Ser o Thr
CDR-H2 Ala 53 sustituida por Asp, Glu, Gly, His, Leu, Ser, Thr o Tyr
CDR-H3 Arg 100-Arg 100A sustituidas por Ala-Lys, His-Arg o Thr-Arg
CDR-H3 Gly 100B sustituida por Ala, Asp, Phe, Leu, Gln, Arg o Ser
CDR-H3 Tyr 100 D sustituida por Phe
Y adicionalmente comprende cualquier cadena ligera de anticuerpo
En otra modalidad particular la invención comprende las regiones constantes IgGl humana para cadena pesada y C para la cadena ligera.
En otro aspecto la presente invención se refiere a los fragmentos Fab, Fab', (Fab)2 y scFv de los anticuerpos de la presente descripción.
Los fragmentos de la presente invención se caracterizan por:
una secuencia de la CDR-H 1 que se selecciona del grupo que consiste de:
CDR-H1 GYRFRSYQIH, sec. con núm. de ident: 3
CDR-H1 GYSFTRYQIH, sec. con núm. de ¡dent: 4
CDR-H1 GYRFTSNQIH, sec. con núm. de ident: 5
CDR-H1 GYSFNRYQIH, sec. con núm. de ¡dent: 6
CDR-H1 GYSFRRYQ1H, sec. con núm. de ¡dent: 7
CDR-H1 GYSITRYQIH, sec. con núm. de ¡dent: 8
CDR-H 1 GYSFTRYQIH, sec. con núm. de ¡dent: 9
CDR-H 1 GYSF SYQ1H, sec. con núm. de ¡dent: 10
CDR-H 1 GYSFTSYQIH, sec. con núm. de ¡dent: 11
CDR-H1 GYRFTRYW1H, sec. con núm. de ¡dent: 12 CDR-H1 GYTFTRYQIH, sec. con núm. de ident: .13
CDR-H1 GYPFTRYQ1H, sec. con núm. de ident: 14
CDR-H1 GYSFSRYQIV, sec. con núm. de ident: 15
CDR-H1 GYHFTRYQIH, sec. con núm. de ident: 16
una secuencia de la CDR-H2 que se selecciona del grupo que consiste de:
CDR-H2 YIDPATAYTESNQKFKD, sec. con núm. de ident: 17
CDR-H2 YINPATASTESNQKFKD, sec. con núm. de ident: 18
CDR-H2 FIDPATAYTESNQ F D, sec. con núm. de ident: 19
CDR-H2 DIDPGRAYTESNQKF D, sec. con núm. de ident: 20
CDR-H2 YIDPATANTESNQKFKD, sec. con núm. de ident: 21
CDR-H2 FINPATAYTESNQKFKD, sec. con núm. de ident: 22
CDR-H2 FIDPASAYTVSNQKFKD, sec. con núm. de ident: 23
CDR-H2 YIDPATAKTESNQKFKD, sec. con núm. de ident: 24
CDR-H2 YFNPGSAYTESNQKFKD, sec. con núm. de ident: 25
CDR-H2 YLDPAN AYTESNQKFKD, sec. con núm. de ident: 26
CDR-H2 Y VDPA AYTESNQKFKD, sec. con núm. de ident: 27
CDR-H2 YINPATAYTESNQKFKD, sec. con núm. de ident: 28
CDR-H2 YIDPATAWTESNQKFKD, sec. con núm. de ident: 29
CDR-H2 YÍDPGTAYTESNQKFKD, sec. con núm. de ident: 30
CDR-H2 Y1DPRTAYTESNQKFKD, sec. con núm. de ident: 31
CDR-H2 YVDPATAHTESNQKFKD, sec. con núm. de ident: 32
CDR-H2 YTNPATAYTDSNQKFKD, sec. con núm. de ident: 33
una secuencia de la CDR-H3 que se selecciona del grupo que consiste de:
CDR-H3 ESPRLRRG1YYYAMDY, sec. con núm. de ident: 34
CDR-H3 ESPRFRRGRYYYA DY, sec. con núm. de ident: 35
CDR-H3 ESPR RRGIYYYAMDY sec. con núm. de ident: 36
CDR-H3 ESPRVRRG1YYYA DY, sec. con núm. de ident: 37
CDR-H3 ESPRLRRGLYYYA DY. sec. con núm. de ident: 38
En otra modalidad el fragmento de la invención comprende cualquier combinación de secuencias de las CDRs H 1, H2 y 1-13 enumeradas anteriormente.
Estos anticuerpos y sus fragmentos son útiles para los fines diagnósticos y terapéuticos que se exponen en la presente descripción. Por lo que en otro aspecto la presente invención se refiere a composiciones que comprenden los anticuerpos de la presente descripción y/o fragmentos de éstos para el diagnóstico o tratamiento de enfermedades relacionadas con los antígenos gangliósidos N-acetil GM3 y/o N-glicolil G 3.
Preferentemente, la presente invención engloba composiciones, incluidas composiciones farmacéuticas, que comprenden uno o varios anticuerpos, o fragmentos derivados de estos anticuerpos, con especificidad dual y alta afinidad por los gangliósidos N-acetil GM3 y N-glicolil GM3. Con mayor preferencia, la invención comprende composiciones farmacéuticas que comprenden al menos un anticuerpo y/o fragmento de la presente invención y un vehícu lo y/o adyuvante farmacéuticamente aceptable. Con aun mayor preferencia la presente invención comprende un anticuerpo con la región variable de la cadena pesada de sec. con núm. de ident: I y la región variable de la cadena ligera de sec. con núm. de ident: 2.
En un aspecto la presente invención también se refiere a métodos de tratamiento que comprenden los anticuerpos de la invención y fragmentos de éstos a sujetos portadores de tumores que expresan al menos uno de los antígenos gangliósido N-acetil GM3 y/o N-glicol i l GM3. En una modal idad particular el sujeto es un humano.
En un aspecto adicional, la invención se relaciona con un juego de reactivos úti l en el diagnóstico de tumores, que comprende al menos uno de los anticuerpos de la invención y/o fragmentos derivados de éstos. En una modal idad particular el método comprende pero no se l imita al diagnóstico, por ejemplo, en base a la presencia del antígeno asociado a la patología, por ejemplo el gangliósido N-acetil GM3 y/o N-glicoli l GM3 en una muestra de tej ido o fl u ido del paciente, por ejemplo, una muestra de tej ido tumoral, muestra de sangre, etc.
Método de obtención de los anticuerpos de la invención- Diseño y construcción de la biblioteca de fragmentos scFv, basada en el Ab 14F7 Los anticuerpos que son objeto de esta invención se obtuvieron a partir de una biblioteca de genes de fragmentos de regiones Fv de cadena si mple (scFv), diseñada especialmente con ese propósito. La racional idad y original idad del d iseño estuvieron dadas en primer lugar por la selección cuidadosa de las posiciones a aleatorizar en la secuencia de am inoácidos de los fragmentos de anticuerpo, restringiendo las mutaciones a la zona más probable de interacción con el antígeno.
En la presente descri pción se usa el esquema de numeración de abat para numerar la secuencia de la región VH del anticuerpo. Para los anticuerpos y sus fragmentos que son objeto de la presente invención, este esquema de numeración introduce letras de inserción en la región VH , después de las posiciones 52 (52A), 82 (82A a 82C) y 1 00 ( l OOA a l OOH).
Como cadena l igera (dom i n io VL) de los fragmentos scFv de la bibl ioteca, se escogió la cadena l igera del fragmento 3 Fm, que se obtuvo en un trabajo anterior (Rojas y cois., J Immunol ethods 293 :71 -83, 2004). Este fragmento contiene el dom inio VH del mAb 14F7, m ientras que su dom in io VL se extrajo de una bibl ioteca de cadenas l igeras murinas y no está relacionado con el dom in io VL original del mAb 1 4F7. Sin embargo, a pesar de tener una cadena l igera diferente, el fragmento 3 Fm mantuvo la especificidad y alta afin idad por el NeuGc-GM3 del mAb I 4F7 y además se pudo expresar en bacteria. Tomando en cuenta los datos experimentales obtenidos por Rojas y colaboradores (J Immunol Methods 293 :7 1 -83, 2004) y por Krengel y colaboradores (J Biol Chem 279:5597-603, 2004), los cuales ind ican que la cadena l igera no es importante en el reconocimiento del antígeno, la secuencia de esta cadena se mantuvo invariable en la biblioteca.
El diseño de las cadenas pesadas de los fragmentos de la biblioteca tuvo como base la secuencia de la región VH del anticuerpo 14F7. A partir del análisis de la estructura cristalográfica del fragmento Fab del mAb 14F7 ( rengel y cois., J Biol Chem 279:5597-603, 2004), y conociendo además que el dominio VH es el que determina la unión de este anticuerpo al N-glicoli I GM3, se seleccionó un conjunto de posiciones a mutar en los lazos hipervariables del dominio VH. La selección de las posiciones a mutar se basó en dos criterios principales: 1) mutar preferentemente los aminoácidos cuyas cadenas laterales están expuestas al solvente; y 2) la zona de las mutaciones se circunscribió a posiciones dentro de un radio de 12 angstroms de la posición 52 de VH. Este último criterio se basó en experimentos de mutagénesis informados por Krengel y cois. (J Biol Chem 279:5597-603, 2004). los cuales evidencian que el aminoácido Asp 52 está involucrado en la interacción del anticuerpo 14F7 con su antígeno.
En total, 20 posiciones del sitio de unión en VH fueron sometidas a una aleatorización suave (Fairbrother y cois., Biochemistry 37:17754-64, 1998) ajustando el proceso de síntesis génica del dominio VH, lo que permitió introducir cualquiera de los veinte aminoácidos naturales en cada posición a mutar, manteniendo al mismo tiempo, en cada molécula individual, un grado limitado de divergencia de su cadena pesada con respecto a la cadena VH original del anticuerpo 14F7.
Las posiciones sometidas a aleatorización fueron las siguientes: Ser 28, Phe 29, Thr 30, Ser 31, Trp 33, lie 34, Tyr 50, lie 51, Asp 52, Ala 53, Thr 54, Tyr 56, Glu 58, Arg 98, Leu 99, Arg 100, Arg 100A Gly 100B, lie 100C y Tyr 100D.
Tres de las posiciones a mutar, Phe 29, lie 34 e lie 51, corresponden a aminoácidos hidrofóbicos que tienen su cadena lateral enterrada en el interior de la proteína, los cuales son importantes para mantener la conformación de los CDRs ΗΊ y H2. Para estos tres aminoácidos en particular, así como para Leu 99 en el CDR H3, se utilizaron codones especialmente diseñados: TTT, ATT, ATT y TTG, respectivamente, donde los nucleótidos subrayados representan la mezcla de dicho nucleótido (85%) con una mezcla equimolar de los restantes tres nucleótidos (15%). Estos codones parcialmente degenerados codifican para aminoácidos hidrofóbicos, privilegiando la inserción del aminoácido original en cada posición. El propósito de este diseño fue generar una diversidad limitada, que pudiera tener solo efectos muy ligeros en la conformación de los CDRs, con posibles efectos de modulación de la afinidad por el antígeno.
Tomando en consideración que Krengel y colaboradores (J Biol Chem 279:5597-603, 2004) demostraron que el aminoácido Asp 52 es importante para la unión al NeuGc- GM3, para este aminoácido se diseñó una mezcla particular de codones (G-80%/A- 20%)A(C-50%/T-50%) que codifican para seis aminoácidos diferentes, en su mayoría con cadenas laterales de pequeño y mediano tamaño, entre los cuales predomina el ácido aspártico original. Para las restantes 15 posiciones aleatorizadas, cada base del triplete que codifica para esa posición fue sintetizada utilizando una mezcla de nucleótidos que contenía un 85% del nucleótido original y un 15% de una mezcla equimolar de los restantes tres nucleótidos.
La colección de genes VH diseñada fue sintetizada y clonada en un fagemido pHAB que contiene el gen del fragmento scFv 3Fm (Rojas y cois., J ímmunol Methods 293:71-83, 2004). Los fagos presentadores de fragmentos scFv fueron rescatados de la biblioteca usando el fago auxiliar MI 3 07 y posteriormente purificados utilizando el protocolo descrito por Marks y colaboradores (.1 Mol Biol 222:581-97, 1991).
La obtención de fragmentos de anticuerpos mutantes del 14F7 con la capacidad de reconocer al gangliósido N-acetil GM3 con alta afinidad, y manteniendo al mismo tiempo el reconocimiento de alta afinidad del N-glicolil GM3, fue un resultado sorprendente. Los cambios de aminoácidos en la cadena pesada del anticuerpo I4F7, que confirieron las nuevas propiedades a los mutantes, no eran predecibles a partir de las piezas de conocimiento acumuladas anteriormente. La obtención de anticuerpos con especificidad dual fue posible gracias al diseño racional de la biblioteca donde se combinó el procedimiento de aleatorización suave con una selección cuidadosa de la posiciones a mutar, basada en conocimiento estructural, para concentrar la diversidad de la biblioteca en la zona del sitio de unión del anticuerpo que es relevante para la unión de su antígeno.
Selección de fragmentos scFv con especificidad dual
Los fragmentos de anticuerpo con especificidad dual por los gangliósidos N-glicolil GM3 y N-acetil GM3 que son objeto de la presente invención, fueron obtenidos mediante tres rondas de selección y amplificación de fagos de la biblioteca, utilizando como molécula diana únicamente al N-acetil GM3, ya que una simple ronda de selección contra el N-glicolil GM3 realizada previamente demostró que la biblioteca contenía una gran cantidad de fragmentos capaces de reconocer este antígeno.
El proceso de selección se realizó siguiendo un procedimiento similar al descrito por Rojas y cois. (J Immunol Methods 293:71-83. 2004) Células TGIen crecimiento exponencial fueron usadas para rescatar los fagos seleccionados a una escala de 50 mililitros, como se describe en (Marks y cois., J Mol Biol 222:581 -97, 1991 ). Los fagos purificados fueron utilizados como material de partida para la siguiente ronda de selección. Después de tres rondas, clones de fagos seleccionados individualmente fueron rescatados en placas de 96 pozos (Marks y cois., J Mol Biol 222:581-97, 1991). La capacidad de los fagos seleccionados de unirse al N-acetil GM3 y al N-glicolil GM3 fue evaluada por ELISA siguiendo un procedimiento similar al descrito en (Rojas y cois., J Immunol Methods 293:71-83, 2004). Las secuencias de nucleótidos de los fragmentos de anticuerpo que mostraron mayor capacidad de unirse a ambos gangliósidos fueron determinadas por la compañía Macrogen (Korea). Caracterización del sitio de unión de los anticuerpos con especificidad dual
Además de los fragmentos con especificidad dual por NeuAc-GM3 y NeuGc-GM3, también fueron secuenciados otros fragmentos de anticuerpo derivados de la biblioteca que solo reconocen al N-glicolil GM3, así como fragmentos que no fueron capaces de reconocer a ninguno de los dos gangliósidos en experimentos de ELISA. Adicionalmente, y partiendo de uno de los fragmentos con especificidad dual seleccionados de la biblioteca, se estudió la influencia de un grupo particular de posiciones de la región VH, realizando una aleatorización exhaustiva de manera individual para cada posición.
Estos estudios permitieron determinar en detalle cuáles de los aminoácidos del sitio de unión del anticuerpo son los más importantes para el reconocimiento dual del N-glicolil GM3 y del N-acetil GM3. En la Tabla I se muestra un grupo de secuencias de los CDRs de la cadena pesada de fragmentos scFv con especificidad dual, extraídos de la biblioteca. En la Tabla 2 se muestran las posiciones en la secuencia del dominio VH que son relevantes para la especificidad dual, y las posiciones que admiten diferentes grados de variabilidad en aminoácidos.
Solo dos o tres mutaciones en el CDR H l fueron suficientes para conferir a los fragmentos de anticuerpo la capacidad de unirse también al N-acetil GM3, además de al N-glicol il GM3. En particular, las sustituciones Ser 28→ Arg, Thr 30→ Arg y Trp 33 → Gln produjeron un muíante (imitante RRQ) con alta afinidad por ambos gangliósidos.
Construcción de inmunoglobulinas recombinanles con especificidad dual por los gangliósidos N-acetil GM3 y N-glicolil GM3
La presente invención comprende inmunoglobulinas de cualquier isotipo, ya sea de origen humano, murino o de otra especie, así como cualquier tipo de fragmento de estas inmunoglobulinas, que tengan especificidad dual por los gangliósidos NeuAc-GM3 y NeuGc-GM3. Una inmunoglobulína de cualquier isotipo deseado se puede construir a partir de la secuencia de aminoácidos de la región VH de un fragmento scFv con la capacidad de unirse a ambos gangl iósidos, y de una secuencia de región VL de procedencia m urina, humana, o de otra especie. Este propósito se puede lograr empleando técnicas establecidas de la biología molecu lar, uti lizando cualquiera de los vectores descritos para la expresión eficiente de proteínas recombinantes, particularmente de anticuerpos monoclonales.
En una forma de realización, se puede construir una inmunoglobulína de isotipo IgG l utilizando los vectores pAH4604 y pAG4622 (Coloma y cois., J Immunol Methods 52:89- 104, 1992), comúnmente usados para la expresión de inmunoglobulinas en células superiores.
La secuencia VH a utilizar para construir una inmunoglobulína con especificidad dual por los gangliósidos NeuAc-G 3 y NeuGc-GM3, puede ser extraída directamente de la biblioteca de fagos construida en la presente invención, o puede ser diseñada a partir de los datos experimentales mostrados en la Tabla I , conservando en la secuencia las posiciones importantes para la especificidad dual e introduciendo cualquiera de los aminoácidos apropiados en las posiciones de los CDRs que permiten algún grado de variabilidad. La secuencia VL a uti l izar admite un alto grado de variabil idad, tanto en las regiones marco como en los lazos hipervariables, como fue demostrado en (Rojas y cois., J Immunol Methods 293 :7 1 -83, 2004).
En otra forma de real ización, la presente invención i ncluye tam bién inmunoglobul inas quiméricas, o sea, con regiones constantes humanas y regiones variables humanas, así como inmunoglobulinas con regiones variables humanizadas.
Compos ic iones farmacé uticas
En una forma de real ización, la invención proporciona composiciones farmacéuticas que comprenden uno o más anticuerpos de la presente invención, o fragmentos de éstos. En una forma de realización, estas composiciones farmacéuticas comprenden también un excipiente farmacéuticamente aceptable.
Como se usa en la presente, la expresión "vehículo farmacéuticamente aceptable o adyuvante" incluye disolventes, medios de dispersión, recubrimientos, agentes antibacterianos y anti fúngicos, agentes ¡sotón icos y retardadores de la absorción, y simi lares, compatibles con la adm i n istración farmacéutica. Com puestos activos suplementarios también se pueden incorporar en las composiciones. El término "vehículo o adyuvante farmacéuticamente aceptable " se refiere a un vehículo o adyuvante que se puede adm in istrar a un sujeto, j unto con los anticuerpos o fragmentos, y que no destruye la actividad farmacológica de éstos y no es tóxico cuando se admin istra en dosis suficientes para entregar una cantidad terapéutica de los anticuerpos. Una composición farmacéutica se formula para que sea compatible con su vía de administración prevista. Ejemplos de rutas de administración incluyen entre otras parenteral, por ejemplo, parenteral, i ntradérm ica intravenosa y subcutánea. Las soluciones o suspensiones que se usan para apl icación parenteral, intradérm ica o subcutánea pueden inclu i r los sigu ientes componentes: un d i luyente estéri l tal como agua para inyección, sol ución sal ina, aceites fijos, pol ieti lengl icoles, glicerina, propi lengl icol u otros d isolventes sintéticos; agentes antibacterianos tales como alcohol bencílico o meti l parabeno; antioxidantes tales como ácido ascórbico o bisulfito de sodio; agentes quelantes tales como ácido eti lendiaminotetraacético; tampones tales como acetatos, citratos o fosfatos y agentes para el aj uste de la tonicidad tales como cloruro de sodio o dextrosa. El pH se puede aj ustar con ácidos o bases, tales como ácido clorhídrico o hidróxido de sod io. La preparación parenteral se puede encerrar en ampollas, jeringas desechables o viales de dosis m últiples hechos de vidrio o plástico. Es ventajoso formu lar composiciones parenterales en forma de dosis unitaria para faci litar la admin istración y un i form idad de la dosificación. La forma de dosificación unitaria como se usa en la presente se refiere a unidades físicamente discretas adecuadas como dosis unitarias para el sujeto a tratar; cada unidad contiene una cantidad predeterminada de compuesto activo, calculada para producir el efecto terapéutico deseado, en asociación con el vehículo farmacéutico requerido.
Las composiciones farmacéuticas se pueden incluir en un contenedor, paquete o dispensador junto con instrucciones para su administración.
Métodos de tratamiento
Los anticuerpos de la presente invención se pueden usar para el tratamiento de tumores que expresen el gangliósido N-acetil GM3, o el gangliósido N-glicolil GM3, o ambos gangliósidos simultáneamente.
Una dosis terapéutica adecuada de los anticuerpos de la presente invención está en el intervalo de aproximadamente 1 mg a aproximadamente 1 g por dosis, preferentemente de aproximadamente 50 mg a aproximadamente 500 mg por dosis. Los anticuerpos de la invención se administran por cualquier medio adecuado, incluyendo las vías parenteral, subcutánea, intrapulmonar, ¡ntranasal e intracraneal, y si se desea para tratamiento local, la vía ¡ntralesional.
Un método de tratamiento comprende la administración al paciente de la composición farmacéutica de la invención en un esquema de dosis de los conocidos por aquellos con experiencia en la materia para la terapia pasiva con anticuerpos monoclonales o fragmentos de éstos. Un ejemplo de método de tratamiento, pero que no limita la presente invención comprende la administración de una dosis semanal de 200 mg de un anticuerpo de la presente invención durante por ejemplo 6 semanas y posteriormente dosis de mantenimiento por ejemplo cada 2 o 3 semanas hasta progresión de la enfermedad o toxicidad limitante.
BREVE DESCRIPCION DE LAS FIGURAS
La Figura 1: A) Reconocimiento por el mAb 7C1 de los gangliósidos N-glicolil GM3 y N-acetil GM3, en ensayos de ELISA, utilizando diferentes concentraciones del anticuerpo. B) Reconocimiento en ensayos de ELISA del gangliósido N-glicolil GM3 por los anticuerpos 14F7hT (versión humanizada del mAb 14F7 con isotipo lgGl humano), 7CI y Tlh (anticuerpo humanizado usado como control negativo. C) Inmunotinción sobre placas de TLC de los gangliósidos N-acetil GM3 y N- glicolil GM3 (carriles 1 y 2, respectivamente, en cada una de las 4 placas). De izquierda a derecha: revelado de ambos gangliósidos con orcinol, e inmunotinción con los anticuerpos 14F7hT, 7C1 y Tlh, respectivamente. Solo el anticuerpo 7C1 mostró reactividad con N-acetil G 3. D) Reconocimiento en ensayos de ELISA de un panel de diferentes gangliósidos, por los anticuerpos 14F7hT y 7C 1.
La Figura 2. Reconocimiento por el mAb 7C 1 de líneas celulares tumorales que expresan N-acetil GM3 o N-glicolil GM3, en experimentos de citometría de flujo. A) Mareaje de la línea tumoral transformada L 1210-SH, que expresa solo N-acetil GM3. B) Mareaje de la línea L 1210 nativa, que expresa mayoritariamente N-glicolil GM3.
La Figura 3. Efecto citotóxico del anticuerpo 7C I sobre células tumorales que expresan N-acetil GM3 o N-glicolil GM3, en comparación con el anticuerpo 14F7hT. A) Efecto de muerte celular sobre la línea L 12 I 0 nativa. B) Efecto citotóxico sobre la línea transformada L 1210-SH. C) Tabla resumen con los resultados numéricos del experimento.
La Figura 4. A) Reconocimiento de esplenocitos de ratones Balb/c por el anticuerpo humanizado 7C 1 , en experimentos de citometría de flujo. B) Ensayos de viabilidad celular con linfocitos B de ratón Balb/c purificados, tratados con el anticuerpo 7C 1 . En ambos experimentos los linfocitos B fueron marcados con un anticuerpo policlonal anti- B220 y se utilizó el anticuerpo humanizado C5Q como control ¡rrelevante. EJEMPLOS
Ejemplo 1. Construcción de una inmunoglobulina recombinante de ¡sotipo IgG l con especificidad dual por los gangliósidos N-acetil GM3 y N-glicolil GM3 (anticuerpo 7C U.
A partir de la secuencia de aminoácidos de la región VH de los fragmento scFv con especificidad dual por los gangl iósidos N-aceti l GM3 y N-glicolil GM3, se diseñó un gen que codifica para este dom inio, el cual además se optimizó para expresión en células de mamífero. De forma similar, se diseñó un gen que codifica para la región VL original del anticuerpo 14F7. Ambos genes fueron sintetizados por la compañía Geneart (Alemania).
El dominio VH seleccionado tiene solo tres mutaciones a nivel de aminoácidos con respecto a la secuencia original del anticuerpo 14F7. Estas tres mutaciones son: Ser 28 → Arg, Thr 30→ Arg y Trp 33→ Gln.
Los genes codificantes para VH y VL se clonaron en los vectores pAH4604 y pAG4622 (Coloma y cois., J Immunol Methods 52:89- 1 04, 1 992), respectivamente, siguiendo procedimientos conocidos de la biología molecular. Estos vectores son usados para la expresión de inmunoglobulinas en células superiores. El vector pAH4604 contenía la región constante humana de isotipo IgG I , mientras que el vector pAG4622 contenía la región constante kappa humana. Para expresar la inmunoglobulina recombinante se utilizaron células de mieloma murino Sp2/0, que no produce anticuerpos, las cuales se transfectaron secuencialmente con las construcciones genéticas obtenidas para VH y VL. La inmunoglobulina producida por estas células se purificó mediante el uso de una columna de proteína A.
El anticuerpo monoclonal recombinante producido recibió el nombre de 7C 1 .
La capacidad del anticuerpo recombinante 7C 1 de unirse a los gangliósidos NeuAc- GM3 y NeuGc-GM3 fue medida por ELISA para diferentes concentraciones de la inmunoglobulina, siguiendo un procedimiento sim ilar al descrito por Rojas y cois. (J Immunol Methods 293:71 -83, 2004).
El mAb 7C 1 fue capaz de unirse a ambos gangl iósidos prácticamente con la misma afinidad, como se muestra en la Figura 1 A, donde se observa que las curvas de densidad óptica (DO) que cuantifican el nivel de reconocimiento de los gangliósidos NeuAc- GM3 y NeuGc-GM3 por el anticuerpo 7C 1 , son muy sim ilares entre sí. Además, la afinidad de unión del anticuerpo 7C 1 al N-glicolil GM3 (y por transición, también al N- acetil GM3) es muy similar (solo ligeramente por debajo) a la observada para la unión del mAb 14F7 con el N-gl icolil G 3, como se muestra en la Figura 1 B.
En estos experimentos se utilizó una versión humanizada del mAb 14F7 con isotipo IgG I humano, llamada 14F7hT, la cual conserva las propiedades de reconocimiento del anticuerpo 14F7 original (Fernandez-Marrero y cois., Immunobiology 216: 1239-47, 201 1 ). Como control negativo se util izó el anticuerpo T l h (anti-CD6), también con isotipo IgG I humano.
Adicionalmente, la capacidad de unión del anticuerpo 7C I a los dos gangliósidos fue comprobada por cromatografía en capa fina (TLC), como se muestra en la Figura 1 C, donde se observa que el mAb 7C 1 fue capaz de marcar las muestras purificadas de N- acetil GM3 y N-glicoli l GM3.
La especificidad del anticuerpo 7C I es verdaderamente dual, no múltiple, como se prueba en la Figura I D, donde se muestra que este anticuerpo no reconoció ninguna de las moléculas de un diverso panel de gangliósidos, tanto de tipo N-acetil como N- gl icol i 1
Ejemplo 2. Reconocimiento por el anticuerpo 7C 1 de líneas celulares tumorales que expresan N-acetil GM3 o N-glicoli l GM3.
La capacidad del anticuerpo 7C I de reconocer células tumorales que expresan el gangliósido N-glicolil G 3 o el N-aceti l GM3 fue demostrada mediante experimentos de citometría de flujo utilizando dos variantes de la l ínea celular L 1210 (comprada a la American Type Culture Collection), que es una línea de leucemia l infocítica de ratón. Se utilizó la propia cepa nativa de dicha línea, que expresa N-glicolil GM3, y una variante transformada genéticamente (L 1210-SH), que expresa N-acetil GM3 (Fernández- Marrero y cois., Mol Immunol 48: 1059-67, 201 1 ).
La alta expresión de N-glicolil GM3 por la línea L 1210, evidenciada por el marcado reconocimiento de esta línea por el anticuerpo 14F7, fue demostrada por Roque-Navarro y cois. (Mol Cáncer Ther 7:2033-41 , 2008). El anál isis por extracción del contenido de gangliósidos de estas células dio como resultado una proporción de 85: 15 de NeuGc- GM3/NeuAc-GM3.
La línea L 12 I 0-SH, que expresa N-aceti l GM3 en lugar de N-glicolil GM3, fue obtenida mediante la transducción lentiviral de un fragmento de RNA de interferencia que inhibe la expresión de la enzima CMP-NeuAc hidroxilasa, la cual transforma el ácido siálico N-acetil en ácido siálico N-glicolil (Shaw and Schauer, Biol Chem Hoppe Seyler 369:477-86, 1988). La disminución drástica de la expresión de N-glicolil GM3 en esta línea transformada fue demostrada por Fernández-Marrero y cois. (Mol Immunol 48: 1059-67, 201 1 ).
Los experimentos de citometría de flujo se realizaron en un equipo FACScan (Becton Dickinson). En cada ensayo se recolectaron 104 células. Para el mareaje fluorescente de las células se util izó un anticuerpo anti-lgG humana conjugado con FITC. Como control negativo se utilizó el anticuerpo T l h.
Como se muestra en la Figura 2A, el anticuerpo 7C 1 fue capaz de marcar las células de la línea L 1210-SH (que expresan N-acetil GM3), a diferencia del anticuerpo 14F7hT que no reconoce dichas células. Por otro lado, el anticuerpo 7C 1 también marcó las células de la cepa nativa de L 1 2 10 (que tienen una alta expresión de N-glicol il GM3), las cuales fueron marcadas también por el anticuerpo ! 4F7hT uti lizado en este caso como control positivo (Figura 2B). Es de destacar que el mareaje de la cepa nativa de L1210 por el mAb 7C 1 fue más intenso comparado con el mareaje por el mAb 14F7hT, debido a que el mAb 7C 1 puede unirse tanto a la variante N-glicolil como a la variante N-acetil del GM3, expresadas ambas en estas células.
Ejemplo 3. Efecto citotóxico del anticuerpo 7C 1 sobre células tumorales que expresan N-acetil GM3 o N-glicolil GM3.
La capacidad del anticuerpo 7C 1 de matar células tumorales que expresan N-acetil GM3 o N-glicolil GM3, por un mecan ismo de muerte celular independiente de complemento, fue demostrada en experimentos realizados con las líneas celulares L 12 10 y L I 2 10-SH. Para inducir la muerte con el anticuerpo, las células fueron suspendidas en medio de cultivo con 1 % de suero fetal bovino a una concentración de 1 mil lón de células por mililitro, y luego incubadas con el anticuerpo en una atmósfera de 5% de C02 a 37 grados centígrados durante 3 horas. Posteriormente las células fueron lavadas, suspendidas en PBS con yoduro de propidio (Pl) a 1 0 microgramos/mililitro, y analizadas por citometría de flujo. Las células muertas fueron identificadas a partir de la medición de la dispersión frontal y lateral, y de la incorporación de Pl . Las células con niveles de dispersión fuera del rango característico de las células vivas y marcadas además con PI, fueron contadas como células muertas.
A diferencia del mAb 14F7, que produjo muerte celular solo en la línea L 1210 nativa, el anticuerpo 7C 1 con especificidad dual produjo un marcado efecto de muerte celular tanto en la línea L 1210 nativa (Figura 3A) como en la línea transformada L 1210-SH que expresa N-acetil GM3 (Figura 3 B). Es de destacar el fuerte efecto de muerte celular (95%) producido por el mAb 7C I en la línea L 12 I 0 nativa, mayor que el efecto producido por el mAb 14F7hT (54%), lo cual demuestra que el anticuerpo 7C 1 tiene un efecto citotóxico superior en células con una sobre-expresión mixta de los gangliósidos N-acetil y N-glicolil GM3. La Figura 3C resume los resultados de estos experimentos.
Ejemplo 4. Reconocimiento por el mAb 7C 1 de células normales, sin producir muerte celular.
El anticuerpo 7C 1 , que tiene un fuerte efecto citotóxico en células tumorales, no produce sin embargo muerte celular en células normales que expresan N-glicolil o N- acetil GM3, como demuestran los experimentos realizados con esplenocitos de ratones Balb/c.
En experimentos de reconocim iento celular por citometría de flujo, los l infocitos B de ratón Balb/c fueron doblemente marcados con un anticuerpo policlonal anti-B220 (Dako, dilución 1 :200), y con el anticuerpo 7C I (a una concentración de 10 microgramos/mili litro). Los ensayos de viabilidad celular fueron realizados con linfocitos B provenientes de bazo de ratones Balb/c, incubados con el anticuerpo 7C 1. Un millón de linfocitos B purificados con perlas magnéticas (Myltecni Biotec) fueron incubaron con 50 microgramos de anticuerpo disuelto en medio DMEM-F 12 suplementado con BSA 1 %, por 3 horas a 37°C en atmósfera de C02. La muerte inducida por el tratamiento se determinó por incorporación de ioduro de propidio. Tanto en los experimentos de reconocimiento celular como en los de viabilidad celular, se utilizó el anticuerpo humanizado C5Q como control irrelevante.
Como se muestra en la Figura 4A, el mAb 7C I produjo un notable mareaje de los linfocitos B de ratón Balb/c, así como de otros esplenocitos. No obstante el marcado reconocimiento de estas células por el mAb 7C I , los ensayos de viabilidad celular realizados con linfocitos B purificados demostraron que el anticuerpo 7C 1 no tiene efecto citotóxico sobre los linfocitos B normales, como se muestra en la Figura 4B.
Tabla 1. Secuencias de las regiones hipervariabies (CDRs) de cadena pesada de fragmentos scFv extraídos de la biblioteca de fagos, que tienen especificidad dual por los gangliósidos N-acetil GM3 y N-glicolil GM3.
ClondescFv CDR H1 * CDR H2 CDR H3
14F7 original GYSFTSYWIH YIDPATAYTESNQKFKD ESPRLRRGIYYYAMD (anti NeuGc- Y
GM3)
1 -R-R— Q--
2 RQ- -N— -S
3 -R -NQ-- F
4 — -NR-Q-- D— GR
5 - -RR-Q - N
6 — I-R-Q-- --N— -S — -F
7 — - --Q-- F-N
8 R-Q - N
9 R-Q - F— -S— V
10 Q - -N— -S —
11 R Q - K
12 R Q - R
13 R-Q- --N-GS — -M
14 --R--R-... -L— N --V-
15 -R— R - - -V— N —v
16 R Q - -N
17 — -NR-Q-- w
18 -T— R-Q - G
19 -P— R-Q - --R L
20 — -SR-QV- -V H L
21 -H--Q- --N
22 — -R.Q- -N D L
* El CDR Hl en la tabla incluye las posiciones 26-35 de la región VH,
según (Chothia & Lesk, J Mol Biol 196:901-17, 1987). Las rayas en las
secuencias de los diferentes clones representan identidad con el
aminoácido correspondiente en la secuencia del mAb 14F7. Las
mutaciones más frecuentes están señaladas con letras en negrita. Tabla 2. Efecto de diferentes sustituciones de aminoácidos scFv realizadas en un conjunto de posiciones de la región VH, en la unión de los fragmentos a NeuAc-GM3 y
NeuGc-GM3.
Posición Aminoácid Sustituciones Sustituciones con efecto negativo en la o compatibles unión a NeuAc-GM3 / NeuGc-GM3 original con especificidad dual
*
33 W Q C, E, G, H, K, N, P, R, S, T
52 D A, E, N, S, T C, F, H, , P, R, V, Y
53 A D, E, G, H, L, S, T, Y C
98 R R A, E, G, I, , L, M, N, P, Q, S, T, V, W, Y
100- RR AK, HR, TR GC, LD, PA, TD, AL, DR, LS, PQ, PT,
100 A TP, WP
100B G A, D, F, L, Q, R, S C
100D Y F D, G, H, , L, P, Q, R, S, T, V
* Las sustituciones que resultaron compatibles con la especificidad dual fueron realizadas sobre la secuencia del imitante RRQ (las tres letras representan los am inoácidos presentes en las posiciones 28, 30 y 33, respectivamente).

Claims

REIVINDICACIONES
1. Un anticuerpo monoclonal anti-gangliósidos caracterizado porque tiene especificidad dual y alta afinidad por los gangliósidos N-acetil GM3 y N-glicolil GM3.
2. El anticuerpo monoclonal de la reivindicación I, caracterizado porque la región variable de la cadena pesada contiene los siguientes CDRs:
CDR-H1: GYRFRSYQIH, sec. con núm. de ident: 3
CDR-H2: YIDPATAYTESNQ F D, sec. con núm. de ident: 17
CDR-H3: ESPRLRRG1YYYAMDY, sec. con núm. de ident: 34
3. El anticuerpo de la reivindicación 1 caracterizado porque la secuencia de la región variable de la cadena pesada es la sec. con núm. de ident: 1, QVQLQQSGNELAKPGAS K SCRASGYRFRSYQIHWLKQRPDQGLEWIGYIDP ATAYTESNQKFKDKAILTADRSSNTAFMYLNSLTSEDSAVYYCARESPRLRRGIY YYAMDYWGQGTSVTVSS
4. El anticuerpo según la reivindicación 1 caracterizado porque la secuencia de la CDR-HI se selecciona del grupo que consiste de:
CDR-H I GYRFRSYQIH, sec. con núm. de ident: 3
CDR-H I GYSFTRYQIH, sec. con núm. de ident: 4
CDR-H 1 GYRFTSNQIH, sec. con núm. de ident: 5
CDR-HI GYSFNRYQIH, sec. con núm. de ident: 6
CDR-HI GYSFRRYQIH, sec. con núm. de ident: 7
CDR-H 1 GYSITRYQ1H, sec. con núm. de ident: 8
CDR-HI GYSFTRYQIH, sec. con núm. de ident: 9
CDR-HI GYSFKSYQIH, sec. con núm. de ident: 10
CDR-H I GYSFTSYQIH, sec. con núm. de ident: 11
CDR-H 1 GYRFTRYWIH, sec. con núm. de ident: 12
CDR-HI GYTFTRYQIH, sec. con núm. de ident: 13
CDR-HI GYPFTRYQIH, sec. con núm. de ident: 14
CDR-H 1 GYSFSRYQI V, sec. con núm. de ident: 15
CDR-H 1 GYHFTRYQIH, sec. con núm. de ident: 16
5. El anticuerpo según la reivindicación 1 caracterizado porque la secuencia de la CDR-H2 se selecciona del grupo que consiste de:
CDR-H2 YIDPATAYTESNQKFKD, sec. con núm. de ident: 17 CDR-H2 YINPATASTESNQ F D, sec. con núm. de ¡dent: 18
CDR-H2 FIDPATAYTESNQ FKD, sec. con núm. de ¡dent: 19
CDR-H2 DIDPGRAYTESNQ F D, sec. con núm. de ¡dent: 20
CDR-H2 YIDPATANTESNQKFKD, sec. con núm. de ¡dent: 21
CDR-H2 F1N PATAYTESNQ FKD, sec. con núm. de ident: 22
CDR-H2 FI DPASAYTVSNQK FKD, sec. con núm. de ident: 23
CDR-H2 YI DPATAKTESNQKFKD, sec. con núm. de ident: 24
CDR-H2 YINPGSAYTESNQK.FK.D. sec. con núm. de ¡dent: 25
CDR-H2 YLDPANAYTESNQKF D, sec. con núm. de ¡dent: 26
CDR-H2 YVDPANAYTESNQKFKD, sec. con núm. de ¡dent: 27
CDR-H2 Y1NPATAYTESNQKF D, sec. con núm. de ¡dent: 28
CDR-H2 Y1DPATAWTESNQKFKD, sec. con núm. de ident: 29
CDR-H2 Y1DPGTAYTESNQ F D, sec. con núm. de ident: 30
CDR-H2 Y1DPRTAYTESNQ F D, sec. con núm. de ident: 3 1
CDR-H2 YVDPATAHTESNQKF D, sec. con núm. de ¡dent: 32
CDR-H2 Y1NPATAYTDSNQKFKD, sec. con núm. de ¡dent: 33
6. El anticuerpo según la reivindicación I caracterizado porque la secuencia de la
CDR-H3 se selecciona del grupo que consiste de:
CDR-H3 ESPRLRRG IYYYA DY. sec. con núm. de ident: 34
CDR-H3 ESPRFRRGRYYYAM DY, sec. con núm. de ¡dent: 35
CDR-H3 ESPR RRG1YYYA DY, sec. con núm. de ident: 36
CDR-H3 ESPRVRRGIYYYAMDY, sec. con núm. de ¡dent: 37
CDR-H3 ESPRLRRGLYYYAMDY, sec. con núm. de ¡dent: 38
7. Un anticuerpo monoclonal anti-gangl iósidos caracterizado porque tiene especificidad dual y alta afinidad por los gangiiósidos N-acetil GM3 y N-glicolil GM3 caracterizado porque comprende cualquier combinación de secuencias de las CDRs
H l , H2 y H3 del grupo que consiste de:
CDR-H 1 GYRFRSYQI H, sec. con núm. de ident: 3
CDR-H 1 GYSFTRYQI H, sec. con núm. de ¡dent: 4
CDR-H 1 GYRFTSNQI H, sec. con núm. de ident: 5
CDR-H 1 GYSF RYQ1 H, sec. con núm. de ¡dent: 6
CDR-H 1 GYSFRRYQI H, sec. con núm. de ¡dent: 7
CDR-H 1 GYS1TRYQI H, sec. con núm . de ¡dent: 8
CDR-H 1 GYSFTRYQI H, sec. con núm. de ¡dent: 9
CDR-H 1 GYSF SYQ1H, sec. con núm. de ¡dent: 1 0
CDR-H 1 GYSFTSYQ1 H, sec. con núm. de ident: 1 1
CDR-H 1 GYRFTRYWIH, sec. con núm. de ¡dent: 1 2 CDR-H 1 GYTFTRYQIH, sec. con núm. de ident: 13
CDR-H 1 GYPFTRYQIH, sec. con núm. de ¡dent: 14
CDR-H 1 GYSFSRYQ1V, sec. con núm. de ident: 15
CDR-H 1 GYHFTRYQIH, sec. con núm. de ident: 16
CDR-H2 YIDPATAYTESNQKFKD. sec. con núm. de ident: 17
CDR-H2 YÍNPATASTESNQKFKD, sec. con núm. de ident: 1 8
CDR-H2 FIDPATAYTESNQKFKD, sec. con núm. de ¡dent: 19
CDR-H2 DIDPGRAYTESNQKFKD, sec. con núm. de ident: 20
CDR-H2 Y1DPATANTESNQKFKD, sec. con núm. de ident: 21
CDR-H2 F1 PATAYTESNQ FKD, sec. con núm. de ¡dent: 22
CDR-H2 FIDPASAYTVSNQKFKD, sec. con núm. de ident: 23
CDR-H2 YIDPATAKTESNQKFKD, sec. con núm. de ¡dent: 24
CDR-H2 YINPGSAYTESNQKFKD, sec. con núm. de ident: 25
CDR-H2 YLDPANAYTESNQKFKD, sec. con núm. de ¡dent: 26
CDR-H2 YVDPANAYTESNQKFK D, sec. con núm. de ¡dent: 27
CDR-H2 Y INPATAYTESNQKFKD, sec. con núm. de ¡dent: 28
CDR-H2 YI DPATAWTESNQKFKD, sec. con núm. de ¡dent: 29
CDR-H2 Y1DPGTAYTESNQKFKD, sec. con núm. de ident: 30
CDR-H2 YIDPRTAYTESNQKFKD, sec. con núm. de ident: 3 1
CDR-H2 YVDPATAHTESNQKFKD, sec. con núm. de ¡dent: 32
CDR-H2 Y1NPATAYTDSNQKFKD, sec. con núm. de ¡dent: 33
CDR-H3 ESPRLRRG1YYYAMDY, sec. con núm. de ¡dent: 34
CDR-H3 ESPRFRRGRYYYA DY, sec. con núm. de ¡dent: 35
CDR-H3 ESPR RRGIYYYA DY, sec. con núm. de ident: 36
CDR-H3 ESPRVRRGIYYYAMDY, sec. con núm. de ident: 37
CDR-H3 ESPRLRRGLYYYAMDY, sec. con núm. de ident: 38
8. El anticuerpo monoclonal de las reivindicaciones 1 a 7 caracterizado porque la secuencia de la región variable de la cadena ligera es: sec. con núm. de ident: 2:
DLVLTQSPATLSVTPG DSVSFSCRASQSISNN LH WYQQRTHESPRLL1KYASQSIS GIPSRFSGSGSGTDFTLS1ISVETEDFGMYFCQQSNRWPLTFGAGTKLELKRA El anticuerpo monoclonal de las reivindicaciones 1 a 7caracterizado porque la secuencia de la región variable de la cadena ligera es cualquier secuencia de región variable de cadena ligera de un anticuerpo.
9. El anticuerpo monoclonal de las reivindicaciones 1 a 7caracterizado porque la secuencia de la región variable de la cadena ligera es cualquier secuencia de región variable de cadena ligera de un anticuerpo humano.
10. El anticuerpo monoclonal de las reivindicaciones I a 7caracterizado porque la secuencia de la región variable de la cadena ligera es cualquier secuencia de región variable de cadena ligera de un anticuerpo humanizado.
11. El anticuerpo de la reivindicación 2, caracterizado porque la secuencia del CDR- H2 y/o la secuencia del CDR-H3 contienen al menos una de las sustituciones de aminoácidos seleccionada del grupo que consiste de:
CDR-H2 Asp 52 sustituida por Ala, Glu, Asn, Ser o Thr
CDR-H2 Ala 53 sustituida por Asp, Glu, Gly, His, Leu, Ser, Thr o Tyr CDR-H3 Arg 100-Arg 100A sustituidas por Ala-Lys, His-Arg o Thr-Arg CDR-H3 Gly 100B sustituida por Ala, Asp, Phe, Leu, Gln, Arg o Ser CDR-H3 Tyr 100 D sustituida por Phe
12. Un fragmento derivado del anticuerpo de cualquiera de las reivindicaciones 1 a 12.
13. El fragmento según la reivindicación 13 caracterizado por:
una secuencia de la CDR-H I que se selecciona del grupo que consiste de:
CDR-H 1 GYRFRSYQIH, sec. con núm. de ident: 3
CDR-H 1 GYSFTRYQ1H, sec. con núm. de ident: 4
CDR-H1 GYRFTSNQIH, sec. con núm. de ident: 5
CDR-H 1 GYSFNRYQIH, sec. con núm. de ident: 6
CDR-H1 GYSFRRYQIH, sec. con núm. de ident: 7
CDR-H 1 GYSITRYQIH. sec. con núm. de ident: 8
CDR-H 1 GYSFTRYQIH, sec. con núm. de ident: 9
CDR-H 1 GYSFKSYQ1H, sec. con núm. de ident: 10
CDR-H1 GYSFTSYQIH, sec. con núm. de ident: 11
CDR-H1 GYRFTRYWÍH, sec. con núm. de ident: 12
CDR-H1 GYTFTRYQIH, sec. con núm. de ident: 13
CDR-H 1 GYPFTRYQIH, sec. con núm. de ident: 14 CDR-H 1 GYSFSRYQ1 V, sec. con núm. de ident: 1 5
CDR-H 1 GYHFTRYQ1H, sec. con núm. de ¡dent: 16
una secuencia de la CDR-H2 que se selecciona del grupo que consiste de:
CDR-H2 Y1DPATAYTESNQ FKD, sec. con núm. de ident: 17
CDR-H2 YINPATASTESNQKFKD, sec. con núm. de ident: 1 8
CDR-H2 FIDPATAYTESNQKFKD, sec. con núm. de ident: 19
CDR-H2 D1 DPGRAYTESNQKFKD, sec. con núm. de ident: 20
CDR-H2 YIDPATANTESNQKFKD, sec. con núm. de ident: 21
CDR-H2 FINPATAYTESNQ F D, sec. con núm. de ident: 22
CDR-H2 FIDPASAYTVSNQ F D, sec. con núm. de ident: 23
CDR-H2 YIDPATAKTESNQKFKD, sec. con núm. de ident: 24
CDR-H2 YINPGSAYTESNQKF D, sec. con núm. de ¡dent: 25
CDR-H2 YLDPANAYTESNQ F D, sec. con núm. de ident: 26
CDR-H2 YVDPANAYTESNQKF D, sec. con núm. de ident: 27
CDR-H2 Y1NPATAYTESNQKFKD, sec. con núm. de ident: 28
CDR-H2 YIDPATAWTESNQKFKD, sec. con núm. de ident: 29
CDR-H2 YI DPGTAYTESNQ FKD, sec. con núm. de ¡dent: 30
CDR-H2 Y1DPRTAYTESNQK.FKD, sec. con núm. de ident: 3 1
CDR-H2 YVDPATAHTESNQ FKD, sec. con núm. de ident: 32
CDR-H 2 YINPATAYTDSNQ F D, sec. con núm. de ident: 33 una secuencia de la CDR-H3 que se selecciona del grupo que consiste de:
CDR-H3 ESPRLRRG1YYYAMDY, sec. con núm. de ident: 34
CDR-H3 ESPRFRRG RYYYAMDY, sec. con núm. de ident: 35
CDR-H3 ESPRMRRG1YYYAMDY, sec. con núm. de ¡dent: 36
CDR-H3 ESPRVRRG1YYYAMDY, sec. con núm. de ¡dent: 37
CDR-H3 ESPRLRRGLYYYAMDY, sec. con núm. de ident: 38
14. El fragmento según la reivindicación 1 3 caracterizado porque comprende cualquier combinación de secuencias de las CDRs H l , H2 y H3 del grupo que consiste de:
CDR-H 1 GYRFRSYQ1 H, sec. con núm. de ¡dent: 3
CDR-H 1 GYSFTRYQI H, sec. con núm. de ¡dent: 4
CDR-H I GYRFTSNQI H, sec. con núm. de ¡dent: 5
CDR-H 1 GYSFNRYQI H, sec. con núm. de ¡dent: 6
CDR-H 1 GYSFRRYQI H, sec. con núm. de ¡dent: 7
CDR-H 1 GYS1TRYQI H, sec. con núm. de ¡dent: 8
CDR-H 1 GYSFTRYQIH, sec. con núm. de ¡dent: 9 CDR-Hl GYSF SYQIH, sec. con núm. de ident: 10
CDR-H1 GYSFTSYQ1H, sec. con núm. de ident: 11
CDR-Hl GYRFTRYWIH, sec. con núm. de ident: 12
CDR-H 1 GYTFTRYQIH, sec. con núm. de ident: 13
CDR-Hl GYPFTRYQ1H, sec. con núm. de ident: 14
CDR-Hl GYSFSRYQIV, sec. con núm. de ident: 15
CDR-Hl GYHFTRYQIH, sec. con núm. de ident: 16
CDR-H2 Y1DPATAYTESNQ F D, sec. con núm. de ident: 17 CDR-H2 Y1NPATASTESNQ FKD, sec. con núm. de ident: 18
CDR-H2 FIDPATAYTESNQ FKD, sec. con núm. de ident: 19
CDR-H2 DIDPGRAYTESNQKFKD, sec. con núm. de ident: 20
CDR-H2 YIDPATANTESNQKFKD, sec. con núm. de ident: 21
CDR-H2 FÍNPATAYTESNQKFKD, sec. con núm. de ident: 22 CDR-H2 FrDPASAYTVSNQKFKD, sec. con núm. de ident: 23
CDR-H2 YIDPATAKTESNQKFKD, sec. con núm. de ident: 24
CDR-H2 YÍMPGSAYTESNQ F D, sec. con núm. de ident: 25
CDR-H2 YLDPANAYTESNQKFKD, sec. con núm. de ident: 26
CDR-H2 YVDPANAYTESNQKFKD, sec. con núm. de ident: 27 CDR-H2 YINPATAYTESNQKFKD, sec. con núm. de ident: 28
CDR-H2 YIDPATAWTESNQKFKD, sec. con núm. de ident: 29
CDR-H2 Y1DPGTAYTESNQKFKD. sec. con núm. de ident: 30
CDR-H2 YIDPRTAYTESNQKFKD, sec. con núm. de ident: 31
CDR-H2 YVDPATAHTESNQKFKD, sec. con núm. de ident: 32 CDR-H 2 YfNPATAYTDSNQKFKD, sec. con núm. de ident: 33
CDR-H3 ESPRLRRGI YYYA DY, sec. con núm. de ident: 34
CDR-H3 ESPRFRRGRYYYAMDY, sec. con núm. de ident: 35
CDR-H3 ESPRMRRGI YYYAMDY, sec. con núm. de ident: 36 CDR-H3 ESPRVRRG1 YYYAMDY, sec. con núm. de ident: 37
CDR-H 3 ESPRLRRGLYYYAMDY, sec. con núm. de ident: 38
15. Un fragmento según la reivindicación 14 o 15 caracterizado porque fragmento de tipo Fab.
16. Un fragmento según la reivindicación 14 o 15 caracterizado porque es un fragmento de tipo Fab'.
17. Un fragmento según la reivindicación 14 o 15 caracterizado porque es un fragmento de tipo (Fab)2.
18. Un fragmento según la reivindicación 14 o 15 caracterizado porque es un fragmento de tipo scFv.
19. Un a composición farmacéutica para el tratamiento de tumores malignos que expresen los gangliósidos N-acetil GM3 y/o N-glicolil GM3, caracterizada porque comprende cualquiera de los anticuerpos de las reivindicaciones 1 a 12 o los fragmentos derivados de éstos y un vehículo farmacéuticamente estable.
20. Un método de tratamiento de tumores malignos que expresen los gangliósidos N-acetil GM3 y/o N-glicolil GM3, caracterizado porque comprende la administración de la composición farmacéutica de la reivindicación 20 a un sujeto que lo necesite.
21. El método de la reivindicación 21 donde el sujeto es humano.
22. Un juego de reactivos para el diagnostico de enfermedades que expresen los gangliósidos N-acetil G 3 y/o N-glicolil GM3, caracterizado porque comprende cualquiera de los anticuerpos de las reivindicaciones 1 a 12 o los fragmentos derivados de éstos.
PCT/CU2013/000001 2012-03-01 2013-02-21 Anticuerpos recombinantes con especificidad dual por gangliósidos y su uso WO2013127373A2 (es)

Priority Applications (15)

Application Number Priority Date Filing Date Title
EP13713074.6A EP2821417A2 (en) 2012-03-01 2013-02-21 Recombinant antibodies having dual specificity for gangliosides and use thereof
US14/379,628 US9527920B2 (en) 2012-03-01 2013-02-21 Recombinant antibodies having dual specificity for gangliosides and use thereof
EA201491618A EA201491618A1 (ru) 2012-03-01 2013-02-21 Рекомбинантные антитела с двойной специфичностью к ганглиозидам и их применение
SG11201405151YA SG11201405151YA (en) 2012-03-01 2013-02-21 Recombinant antibodies having dual specificity for gangliosides and use thereof
JP2014559092A JP5933044B2 (ja) 2012-03-01 2013-02-21 ガングリオシドに対する二重特異性を有する組換え抗体及びこれらの使用
MX2014010456A MX2014010456A (es) 2012-03-01 2013-02-21 Anticuerpos recombinantes con especificidad dual por gangliosidos y su uso.
KR1020147024181A KR20140126349A (ko) 2012-03-01 2013-02-21 강글리오시드에 대한 이중 특이성을 갖는 재조합 항체 및 그 용도
CA2865050A CA2865050A1 (en) 2012-03-01 2013-02-21 Recombinant antibodies having dual specificity for gangliosides and use thereof
CN201380011913.7A CN104136463B (zh) 2012-03-01 2013-02-21 具有对于神经节苷脂的双重特异性的重组抗体以及其用途
AU2013225453A AU2013225453A1 (en) 2012-03-01 2013-02-21 Recombinant antibodies having dual specificity for gangliosides and use thereof
TNP2014000330A TN2014000330A1 (en) 2012-03-01 2014-07-31 Recombinant antibodies having dual specificity for gangliosides and use thereof
PH12014501950A PH12014501950A1 (en) 2012-03-01 2014-08-29 Recombinant antibodies having dual specificity for gangliosides and use thereof
IL234394A IL234394A0 (en) 2012-03-01 2014-08-31 Recombinant antibodies with dual specificity for gangliosides and their use
ZA2014/07043A ZA201407043B (en) 2012-03-01 2014-09-29 Recombinant antibodies having dual specificity for gangliosides and use thereof
HK14112117.7A HK1198654A1 (en) 2012-03-01 2014-12-02 Recombinant antibodies having dual specificity for gangliosides and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CUCU/P/2012-0035 2012-03-01
CU20120035A CU24120B1 (es) 2012-03-01 2012-03-01 Anticuerpos recombinantes con especificidad dual por los gangliósidos n-acetil gm3 y n-glicolil gm3

Publications (2)

Publication Number Publication Date
WO2013127373A2 true WO2013127373A2 (es) 2013-09-06
WO2013127373A3 WO2013127373A3 (es) 2013-10-31

Family

ID=48039960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2013/000001 WO2013127373A2 (es) 2012-03-01 2013-02-21 Anticuerpos recombinantes con especificidad dual por gangliósidos y su uso

Country Status (22)

Country Link
US (1) US9527920B2 (es)
EP (1) EP2821417A2 (es)
JP (1) JP5933044B2 (es)
KR (1) KR20140126349A (es)
CN (1) CN104136463B (es)
AR (1) AR090207A1 (es)
AU (1) AU2013225453A1 (es)
CA (1) CA2865050A1 (es)
CL (1) CL2014002236A1 (es)
CO (1) CO7051011A2 (es)
CU (1) CU24120B1 (es)
EA (1) EA201491618A1 (es)
HK (1) HK1198654A1 (es)
IL (1) IL234394A0 (es)
MX (1) MX2014010456A (es)
PE (1) PE20142277A1 (es)
PH (1) PH12014501950A1 (es)
SG (1) SG11201405151YA (es)
TN (1) TN2014000330A1 (es)
TW (1) TW201348259A (es)
WO (1) WO2013127373A2 (es)
ZA (1) ZA201407043B (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107438620A (zh) * 2015-03-31 2017-12-05 韦斯夸尔德有限公司 多肽

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CU24120B1 (es) * 2012-03-01 2015-08-27 Ct De Inmunología Molecular Anticuerpos recombinantes con especificidad dual por los gangliósidos n-acetil gm3 y n-glicolil gm3
CN104651314B (zh) * 2015-02-14 2018-06-19 百泰生物药业有限公司 获得高产稳定表达细胞克隆的方法及由此获得的抗体分子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610280A (en) 1990-10-11 1997-03-11 Boehringer Mannheim Gmbh Monoclonal antibodies against melanoma
EP0972782A1 (en) 1998-02-05 2000-01-19 Centro de Inmunologia Molecular Monoclonal antibody which recognizes the oligosaccharide n-glycolylated-galactose-glucose sialic acid in malignant tumors, and composition containing it
WO2004094477A1 (es) 2003-04-23 2004-11-04 Centro De Inmunologia Molecular Anticuerpos recombinantes y fragmentos que reconocen el gangliosido n-glicolil gm3 y su uso para diagnostico y tratamiento de tumores.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CU24120B1 (es) * 2012-03-01 2015-08-27 Ct De Inmunología Molecular Anticuerpos recombinantes con especificidad dual por los gangliósidos n-acetil gm3 y n-glicolil gm3

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610280A (en) 1990-10-11 1997-03-11 Boehringer Mannheim Gmbh Monoclonal antibodies against melanoma
EP0972782A1 (en) 1998-02-05 2000-01-19 Centro de Inmunologia Molecular Monoclonal antibody which recognizes the oligosaccharide n-glycolylated-galactose-glucose sialic acid in malignant tumors, and composition containing it
WO2004094477A1 (es) 2003-04-23 2004-11-04 Centro De Inmunologia Molecular Anticuerpos recombinantes y fragmentos que reconocen el gangliosido n-glicolil gm3 y su uso para diagnostico y tratamiento de tumores.

Non-Patent Citations (54)

* Cited by examiner, † Cited by third party
Title
AZUMA ET AL., CLIN CANCER RES, vol. 13, 2007, pages 2745 - 50
BADA ET AL., EXP TOXICOL., vol. 21, 2002, pages 263 - 7
BLANCO ET AL., ISRN GASTROENTEROL, 2011
BLANCO ET AL., ISRN PATHOLOGY, 2011
BOFFEY ET AL., J NEUROIMMUNOL, vol. 165, 2005, pages 92 - 103
BOSTROM ET AL., SCIENCE, vol. 323, 2009, pages 1610 - 14
CARR ET AL., HYBRIDOMA, vol. 19, 2000, pages 241 - 47
CARR ET AL., HYBRIDOMA, vol. 21, 2002, pages 463 - 8
CATIMEL ET AL., GLYCOBIOLOGY, vol. 8, pages 927 - 38
CHEEVER ET AL., CLINICAL CANCER RES, vol. 15, 2009, pages 5323 - 37
COLOMA ET AL., J IMMUNOL METHODS, vol. 52, 1992, pages 89 - 104
DOHI ET AL., CANCER RES, vol. 48, 1988, pages 5680 - 5
FAIRBROTHER ET AL., BIOCHEMISTRY, vol. 37, 1998, pages 17754 - 64
FERNÁNDEZ ET AL., CLIN DEVEL IMMUNOL, 2010
FERNANDEZ ET AL., EXPERT REV VACCINES, vol. 2, 2003, pages 817 - 23
FERNANDEZ-MARRERO ET AL., IMMUNOBIOLOGY, vol. 216, 2011, pages 1239 - 47
FERNANDEZ-MARRERO ET AL., MOL IMMUNOL, vol. 48, 2011, pages 1059 - 67
GUTHMANN ET AL., J IMMUNOTHER, vol. 27, 2004, pages 242 - 51
HAKOMORI, PNAS USA, vol. 99, 2002, pages 225 - 32
HERNANDEZ ET AL., J IMMUNOL, vol. 186, 2011, pages 3735 - 44
HERSEY ET AL., INT J CANCER, vol. 41, 1988, pages 336 - 43
HIRABAYASHI ET AL., J BIOL CHEM, vol. 260, 1985, pages 13328 - 33
HOLLANDER, IMMUNOTHERAPY, vol. 1, 2009, pages 211 - 22
HOOGENBOOM, METHODS MOL BIOL, vol. 178, 2002, pages 1 - 37
HOON ET AL., CANCER RES, vol. 53, 1993, pages 5244 - 20
HU ET AL., J IMMUNOL, vol. 183, 2009, pages 5748 - 55
HUDSON; SOURIAU, NAT MED, vol. 9, 2003, pages 129 - 34
IRIE ET AL., CANCER IMMUNOL IMMUNOTHER, vol. 53, 2004, pages 110 - 7
KOTANI ET AL., BIOCHIM BIOPHYS ACTA, vol. 1117, 1992, pages 97 - 103
KRENGEL ET AL., J BIOL CHEM, vol. 279, 2004, pages 5597 - 603
LEE ET AL., J AM CHEM SOC, vol. 124, 2002, pages 12439 - 46
LIVINGSTON ET AL., CANCER IMMUNOL IMMUNOTHER, vol. 29, 1989, pages 179 - 84
MARKS ET AL., J MOL BIOL, vol. 222, 1991, pages 581 - 97
MARKS, J MOL BIOL, vol. 222, 1991, pages 581 - 97
MARQUINA ET AL., CANCER RES, vol. 56, 1996, pages 5165 - 71
MORENO ET AL., GLYCOBIOLOGY, vol. 8, 1998, pages 695 - 708
MUKERJEE ET AL., HYBRIDOMA, vol. 17, 1998, pages 133 - 42
NISHINAKA ET AL., J IMMUNOGENETICS, vol. 48, 1998, pages 73 - 5
NOGUCHI ET AL., GLYCOBIOLOGY, vol. 16, 2006, pages 641 - 50
OLIVA ET AL., BREAST CANCER RES TREAT, vol. 96, 2006, pages 115 - 21
PORTOUKALIAN, CLIN REV ALLERGY IMMUNOL, vol. 19, 2000, pages 73 - 78
PORTOUKALIAN, CLIN REV ALLERGY IMMUNOL, vol. 19, 2000, pages 73 - 8
PROKAZOVA ET AL., BIOCHEMISTRY (MOSCOW, vol. 74, 2009, pages 235 - 49
RAVINDRANATH ET AL., BIOCHEM BIOPHYS RES COMMUN, vol. 353, 2007, pages 251 - 8
ROJAS ET AL., J IMMUNOL METHODS, vol. 293, 2004, pages 71 - 83
ROJAS, J IMMUNOL METHODS, vol. 293, 2004, pages 71 - 83
ROQUE-NAVARRO ET AL., MOL CANCER THER, vol. 7, 2008, pages 2033 - 41
SCURSONI ET AL., CLIN DEVEL IMMUNOL, 2011
SHAW; SCHAUER, BIOL CHEM HOPPE SEYLER, vol. 369, 1988, pages 477 - 86
SVENNERHOLM: "Structure and Function of Gangliosides", 1980, PLENUM PRESS, pages: 533 - 540
TOWNSON ET AL., GLYCOBIOLOGY, vol. 17, 2007, pages 294 - 303
VARKI, BIOCHIMIE, vol. 83, 2001, pages 615 - 22
VAZQUEZ ET AL., HYBRIDOMA, vol. 14, 1995, pages 551 - 56
YAMAGUCHI ET AL., PNAS, vol. 84, 1987, pages 2416 - 20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107438620A (zh) * 2015-03-31 2017-12-05 韦斯夸尔德有限公司 多肽

Also Published As

Publication number Publication date
US9527920B2 (en) 2016-12-27
JP2015516367A (ja) 2015-06-11
EP2821417A2 (en) 2015-01-07
ZA201407043B (en) 2015-12-23
CU20120035A7 (es) 2013-10-29
PE20142277A1 (es) 2015-01-15
IL234394A0 (en) 2014-10-30
CA2865050A1 (en) 2013-09-06
WO2013127373A3 (es) 2013-10-31
CN104136463B (zh) 2016-08-24
MX2014010456A (es) 2014-10-13
TN2014000330A1 (en) 2015-12-21
EA201491618A1 (ru) 2014-12-30
CO7051011A2 (es) 2014-09-10
CU24120B1 (es) 2015-08-27
CN104136463A (zh) 2014-11-05
TW201348259A (zh) 2013-12-01
SG11201405151YA (en) 2014-10-30
HK1198654A1 (en) 2015-05-22
CL2014002236A1 (es) 2014-12-05
JP5933044B2 (ja) 2016-06-08
PH12014501950A1 (en) 2014-11-24
AR090207A1 (es) 2014-10-29
EP2821417A9 (en) 2015-04-01
KR20140126349A (ko) 2014-10-30
US20150093385A1 (en) 2015-04-02
AU2013225453A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
US20210221907A1 (en) Antibodies specific to trophoblast antigen 2 (trop2)
CN106456766B (zh) 抗免疫原性糖肽的抗体、包含其的组合物及其用途
CN109963591B (zh) B7h3抗体-药物偶联物及其医药用途
ES2367675T3 (es) Anticuerpo anti-epcam y usos del mismo.
ES2780374T3 (es) Anticuerpos antagonistas anti-receptor de IL-7 y procedimientos
KR20210020999A (ko) CD47-SIRPα 상호 작용을 차단할 수 있는 항체 및 이의 응용
JP2023511163A (ja) エリブリン誘導体の薬物複合体、その調製方法及びその医薬的応用
JP7407841B2 (ja) クローディン18a2に対する抗体及びその応用
CN113286634A (zh) 对gucy2c特异性的抗体及其用途
US20230250168A1 (en) Anti-human claudin 18.2 antibody and application thereof
JP6419064B2 (ja) 抗tlr4抗体およびその使用
BR122020002414B1 (pt) Uso de anticorpos anti-cd27 humanos
US10662250B2 (en) Humanized monoclonal antibody specific to syndecan-1
CA3105415A1 (en) Antibodies specific to folate receptor alpha
US20220041749A1 (en) Antibodies specific to muc18
WO2013127373A2 (es) Anticuerpos recombinantes con especificidad dual por gangliósidos y su uso
EP3919516A1 (en) Anti-cd79b antibody, antigen-binding fragment thereof, and pharmaceutical use thereof
KR20210018316A (ko) 항-sez6 항체 약물 접합체 및 사용 방법
JP2024514855A (ja) Dll3に対する結合分子及びその使用
JP2020524527A (ja) ヒト腫瘍幹細胞をターゲティングするモノクローナル抗体及びその使用
WO2023235808A2 (en) Claudin 18.2 antibodies, methods of making the same, and uses thereof
CN117843781A (zh) Cd138抗体及其应用
TW202337908A (zh) 抗b7-h7抗體或其抗原結合片段及製備方法與應用
CN114729057A (zh) 抗岩藻糖基-gm1抗体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13713074

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14379628

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2865050

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2013713074

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013713074

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14187637

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 20147024181

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014559092

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 001340-2014

Country of ref document: PE

Ref document number: MX/A/2014/010456

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 234394

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2013225453

Country of ref document: AU

Date of ref document: 20130221

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201491618

Country of ref document: EA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014021246

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014021246

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140827