WO2013125295A1 - 慣性力センサ - Google Patents

慣性力センサ Download PDF

Info

Publication number
WO2013125295A1
WO2013125295A1 PCT/JP2013/051690 JP2013051690W WO2013125295A1 WO 2013125295 A1 WO2013125295 A1 WO 2013125295A1 JP 2013051690 W JP2013051690 W JP 2013051690W WO 2013125295 A1 WO2013125295 A1 WO 2013125295A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
inertial force
force sensor
vibrating body
Prior art date
Application number
PCT/JP2013/051690
Other languages
English (en)
French (fr)
Inventor
健悟 鈴木
青野 宇紀
金丸 昌敏
雅秀 林
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2013125295A1 publication Critical patent/WO2013125295A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5783Mountings or housings not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Definitions

  • the present invention relates to a sensor that detects a physical quantity, and more particularly, to a sensor that detects inertial force such as acceleration and angular velocity by changing a capacitance.
  • Patent Document 1 discloses a method in which a detection electrode is formed in the out-of-plane direction of a silicon substrate with a three-dimensional wiring for a sensor having a three-layer structure in which a silicon substrate is sandwiched between two glass substrates. A signal from a detection electrode formed on a surface opposite to a surface on which an external electrode for connecting to a semiconductor component is formed can be guided to the external electrode through a feedthrough formed on a silicon substrate. .
  • An object of the present invention is to provide an inertial force sensor with high sensitivity.
  • an inertial force sensor of the present invention includes a first electrode for inertial force detection, and a first electrode for extracting a signal detected by the first electrode to an external electrode.
  • a first substrate provided with a fixing portion; and a vibrating body formed so as to cover the first electrode; and the vibrating body is installed on the second fixing portion by a beam, and A second fixing portion fixed to the first substrate, and a second substrate having a third fixing portion for transmitting a signal detected by the first electrode to an external electrode;
  • the fixing to one substrate and the second substrate is all bonding, and is a structure in which conduction is made through the bonding surface.
  • FIG. 3 is a plan view of the acceleration sensor according to the first embodiment on the upper electrode bonding side. Sectional drawing of the manufacture process of the acceleration sensor which is a 1st Example. Sectional drawing of the acceleration sensor which is a 2nd Example. Sectional drawing of the acceleration sensor which is a 3rd Example.
  • a capacitance detection type acceleration sensor and a capacitance detection type angular velocity sensor will be described as examples.
  • the present invention is not limited to these sensors and can be widely applied to general inertial force sensors. .
  • the acceleration sensor includes a lower electrode substrate 50 as a first substrate, a sensor substrate 60 as a second substrate, and an upper electrode substrate 70 as a third substrate. Composed.
  • the lower electrode substrate 50 uses the active layer 23, the lower electrode 2 as the first electrode, the active layer hermetic frame 3, the lower electrode active layer fixing portion 17 as the first fixing portion, and the lower electrode active layer wiring 18.
  • the sensor substrate 60 uses the sensor layer 24, and the vibrating body 5, sensor layer fixing portions 19 a and 19 b as second fixing portions, vibrating body support beams 20 a and 20 b, upper electrode sensor layer fixing portion 6, and third fixing.
  • the lower electrode sensor layer fixing portion 7 is a portion.
  • the upper electrode substrate 70 uses the upper active layer 25, and the upper electrode 11 as the second electrode, the upper active layer hermetic frame 12, and the upper electrode as the fourth fixing portion.
  • Upper active layer fixing portion 10 upper electrode upper active layer wiring 31, upper vibrating body displaceable area 32, lower electrode upper active layer fixing portion 9 as a fifth fixing portion, upper vibrating body upper active layer fixing portion 28 a , 28b.
  • a bonded substrate having an insulating layer 30 sandwiched between an active layer 23 provided with the lower electrode 2 and the support substrate 1 was used for forming the lower electrode 2.
  • the active layer 23 and the support substrate 1 are electrically insulated.
  • the lower electrode 2, the upper electrode active layer fixing portion 4, the vibrator active layer fixing portions 16 a and 16 b, and the active layer hermetic frame 3 are electrically insulated by a space, and there is no cross-talk between adjacent structures.
  • the active layer fixing portions 16a and 16b for the vibrating body are connected to sensor layer fixing portions 19a and 19b for fixing the vibrating body 5.
  • the lower electrode active layer fixing portion 17 is connected to the lower electrode sensor layer fixing portion 7
  • the upper electrode active layer fixing portion 4 is connected to the upper electrode sensor layer fixing portion 6.
  • the vibrating body 5 and the vibrating body support beams 20a and 20b are formed in the upper part of the vibrating body displaceable area 22 and have a structure floating from the active layer 23 including the lower electrode 2.
  • the vibrating body displaceable area 22 is dug down, and the flying distance between the vibrating body 5 and the lower electrode 2 coincides with the distance between the sensor layer 24 and the upper surface of the vibrating body displaceable area 22.
  • the vibrating body support beams 20a and 20b may be folded beams instead of straight beams.
  • the vibrating body 5 is constructed by two vibrating body support beams 20a and 20b at the end of the vibrating body 5, and can vibrate in the in-plane x and y directions and the out-of-plane z direction. It is supported by.
  • the vibrating body 5 is fixed to the vibrating body active layer fixing portions 16a and 16b by sensor layer fixing portions 19a and 19b extending at the ends of the vibrating body support beams 20a and 20b, and the vibrating body support beams 20a and 20b.
  • the vibrating body 5 when the vibrating body 5 receives an acceleration in the out-of-plane direction, the vibrating body 5 is displaced by the inertial force generated in the vibrating body 5, but the spring force of the vibrating body support beams 20 a and 20 b is reached with the end of the acceleration application. To restore the original position.
  • the vibrating body 5 has a function of a movable electrode in a range facing the lower electrode 2.
  • the lower electrode 2 has a larger structure than the vibrating body 5.
  • the vibrator 5, the sensor layer hermetic frame 8, the upper electrode sensor layer fixing part 6, and the lower electrode sensor layer fixing part 7 are electrically insulated by a space and are adjacent to each other. There is no cross line between structures.
  • the sensor layer fixing portions 19a and 19b are connected to the upper active layer fixing portions 28a and 28b for the vibrating body (see FIG. 3).
  • the lower electrode sensor layer fixing part 7 is connected to the lower electrode upper active layer fixing part 9
  • the upper electrode sensor layer fixing part 6 is connected to the upper electrode upper active layer fixing part 10.
  • the substrate on which the connected parts are formed uses a silicon substrate, and since it is the same material, there is no difference in the coefficient of linear expansion, and the strain generated with temperature change is small. Direct connection is used for connection, and the bonding interface has a resistance value equivalent to that of the fixed portion, so the sensitivity does not decrease.
  • the upper electrode 11 was a bonded substrate in which the upper insulating layer 34 was sandwiched between the upper active layer 25 provided with the upper electrode 11 and the upper support substrate 13. Thereby, the upper active layer 25 and the upper support substrate 13 are electrically insulated.
  • the upper electrode 11, the lower electrode upper active layer fixing portion 9, the vibrator upper active layer fixing portions 28 a and 28 b, and the upper active layer hermetic frame 12 are electrically insulated by a space, and crosstalk between adjacent structures is Absent.
  • a lower electrode external electrode 14 and an upper electrode external electrode 27 are formed on the upper support substrate 13 and are electrically insulated by an insulating film 35.
  • the upper electrode upper active layer fixing portion 10 is connected to the upper electrode external electrode 27, and the lower electrode upper active layer fixing portion 9 is connected to the lower electrode external electrode 14.
  • the lower electrode external electrode 14 and the upper electrode external electrode 27 have a structure in which a conductive material is filled in a hole formed perpendicular to the substrate, and is connected to the electrode pad 15 on the surface of the upper support substrate 13. Yes.
  • the electrode pads 15 are all formed on the same surface. For this reason, it is easy to use a BGA (Ball Grid Array) which is a kind of sensor or integrated circuit package, which is suitable for high-density mounting.
  • the upper electrode 11 is configured to face the vibrating body 5 and is formed in a size different from that of the vibrating body 5.
  • the upper electrode 11 has a larger structure than the vibrating body 5, and the lower electrode 2 and the upper electrode 11 have the same size.
  • the vibrating body 5 has a function of a movable electrode in a range facing the upper electrode 11.
  • the signal detected by the lower electrode 2 reaches the lower electrode active layer fixing portion 17 through the lower electrode active layer wiring 18 (see FIG. 1).
  • This signal is transmitted to the lower electrode sensor layer fixing portion 7 through the bonding interface between the lower electrode active layer fixing portion 17 and the lower electrode sensor layer fixing portion 7, and to the lower electrode sensor layer fixing portion 7 and the lower electrode upper active layer fixing. Detection can be performed without attenuation to the lower electrode upper active layer fixing portion 9 through the bonding interface of the portion 9 to the lower electrode outer electrode 14 in conduction with the lower electrode upper active layer fixing portion 9.
  • the vibrating body displaceable area 22 and the upper vibrating body displaceable area 32 are formed by wet etching, and the gap with the vibrating body 5 can be controlled in nanometer order. Thereby, the sensitivity variation for every sensor can be suppressed and it can set to an optimal value.
  • the internal space where the vibrating body 5 exists is isolated from the outside by the active layer hermetic frame 3, the sensor layer hermetic frame 8, and the upper active layer hermetic frame 12.
  • the environment around the vibrating body 5 is stable, and sticking of the vibrating body 5 due to dust and moisture from the outside, and sensitivity fluctuation due to pressure fluctuation due to gas inflow are suppressed.
  • an SOI (Silicon On Insulator) substrate was prepared in which an active layer 23 and a supporting substrate 1 were bonded to each other with an insulating layer 30 made of a silicon oxide film interposed therebetween.
  • the active layer 23 of the SOI substrate is a low resistance material that can be used as an electrode.
  • step (b) an oxide film was formed on the entire surface of the SOI substrate by thermal oxidation in order to use as a wet etching mask for forming the vibrating body displaceable area 22 in the active layer 23. Then, a wet etching mask was formed on the active layer 23 by patterning the oxide film using photolithography and an oxide film etching technique. Wet etching was performed using the formed oxide film pattern as a mask, and a vibrator-displaceable area 22 having a step of several micrometers was formed in the active layer 23.
  • a dry etching mask was formed on the active layer 23 by patterning the entire surface of the active layer 23 including the vibrator-displaceable area 22 using photolithography and an oxide film etching technique. Using the formed oxide film pattern and resist pattern as a mask, dry etching of silicon is performed, the active layer 23 is penetrated to the insulating layer 30, the lower electrode 2, the active layer hermetic frame 3, the active layer fixing part 4 for the upper electrode, and the lower part An electrode active layer fixing portion 17 was formed and electrically separated. The oxide film on the surface of the active layer 23 is removed, and the silicon surface is exposed so that direct bonding is possible.
  • step (d) a single crystal silicon substrate for forming the sensor layer 24 was prepared.
  • the sensor layer 24 is a low resistance material that can be used as an electrode.
  • the sensor layer 24 was bonded to the silicon surface in an exposed state, and was firmly bonded by direct bonding. Before the active layer 23 and the sensor layer 24 are bonded, the bonding surface is sufficiently cleaned, surface-activated using plasma, and secured with a hydroxyl group as a bonding medium.
  • step (e) a photolithography was used for the sensor layer 24 to form a dry etching mask on the sensor layer 24.
  • a photolithography was used for the sensor layer 24 to form a dry etching mask on the sensor layer 24.
  • dry etching of silicon is performed to penetrate to the active layer 23, and the vibrator 5, the upper electrode sensor layer fixing portion 6, the lower electrode sensor layer fixing portion 7, and the sensor layer hermetic frame 8 are formed. Formed and electrically separated.
  • steps (f) to (h) the same steps as those for forming the lower electrode 2 and the vibrating body displaceable area 22 on the SOI substrate on which the lower electrode external electrode 14 and the upper electrode external electrode 27 are formed.
  • the upper electrode 11 and the upper vibrating body displaceable area 32 were formed.
  • a dry etching mask was formed on the upper active layer 25 by patterning the entire surface including the upper vibrating body displaceable area 32 of the upper active layer 25 using photolithography and an oxide film etching technique. Using the formed oxide film pattern and resist pattern as a mask, dry etching of silicon is performed, and the upper active layer 23 is penetrated to the upper insulating layer 34 to fix the upper electrode 11, the upper active layer hermetic frame 12, and the upper active layer for the upper electrode. The portion 10 and the lower electrode upper active layer fixing portion 9 were formed and electrically separated. The oxide film is removed from the surface of the upper active layer 25, and the silicon surface is exposed so as to enable direct bonding.
  • step (i) the sensor layer 24 on which the vibrating body 5 was formed and the upper active layer with the silicon surface exposed for bonding were bonded together and bonded firmly by direct bonding.
  • the bonding surface is sufficiently cleaned, surface-activated using plasma, and secured with a hydroxyl group as a bonding medium.
  • a metal film for electrode pads is formed on the upper support substrate 13 by sputtering.
  • An electrode pad 15 is formed so as to be connected to the lower electrode external electrode 14 and the upper electrode external electrode 27 using photolithography.
  • the above-described configuration that is, the silicon substrate and the detection electrode are not in contact with each other, but is firmly bonded to both substrates of the fixed portion extending to the detection electrode by using direct bonding, and the bonding interface is conducted. By doing so, there is little change in contact resistance, and a decrease in sensitivity and zero point output over a long period of time is prevented.
  • a silicon substrate as the detection electrode, it is possible to prevent distortion caused by a difference in linear expansion coefficient due to a temperature change, and to perform highly accurate detection with few errors.
  • the lower electrode 2 and the upper electrode 11 were formed in a size different from that of the vibrating body 5.
  • the vibrating body 5 operates so as to be off the lower electrode 2 and the upper electrode 11, the lower electrode 2 and the vibrating body 5
  • the sensitivity between the electrode 11 and the vibrating body 5 is lowered, and it has the effect of preventing measurement that appears to be displaced in the z direction.
  • FIG. 5 is a cross-sectional view of the acceleration sensor according to the second embodiment. The description of the components having the same functions as those already described with reference to FIGS. 1 to 4 is omitted.
  • the lower electrode external electrode 14 and the upper electrode external electrode 27 have a structure in which a conductive material is formed in a tapered hole formed in the vertical direction of the substrate.
  • the electrode pad 15 is made of the same material.
  • Each external electrode is connected to the electrode pad 15 on the surface of the upper support substrate 13.
  • the electrode pads 15 are all formed on the same surface. For this reason, it is easy to use a BGA (Ball Grid Array) which is a kind of sensor or integrated circuit package, which is suitable for high-density mounting.
  • the second embodiment has the following effects in addition to the effects of the first embodiment.
  • the tapered hole can be processed at a relatively low cost such as wet etching or blasting, and can be manufactured at a lower cost than embedding a conductive material. Moreover, it has the effect of suppressing the risk of disconnection by forming the wiring on the taper.
  • FIG. 6 is a cross-sectional view of the acceleration sensor according to the third embodiment. The description of the components having the same functions as those already described with reference to FIGS. 1 to 5 is omitted.
  • the sensor layer fixing portions 19a and 19b are connected to the upper active layer fixing portions 28a and 28b for the vibrator.
  • the lower electrode sensor layer fixing portion 7 is connected to the lower electrode upper active layer fixing portion 9 through the conductive bonding material 33 formed at the bonding interface, and the upper electrode sensor layer fixing portion 6 is connected to the upper electrode.
  • the upper active layer fixing part 10 is connected. Since the silicon substrate is used for each of the substrates in which the connected portions are formed, since there is no difference in the linear expansion coefficient because of the same material, the strain generated with the temperature change is small. For the connection, a eutectic bond sandwiching a conductive material is used, and the joint interface has the same resistance value as that of the fixed portion, so the sensitivity does not decrease. Au-Si, Au-Sn, Au-Ge, Au-In, Al-Ge, Cu-Sn is used as the eutectic reaction.
  • the third embodiment has the following effects in addition to the effects of the first embodiment.
  • eutectic bonding bonding is possible even if the smoothness of the upper part of the sensor substrate 60 deteriorates to some extent by processing. Further, there is no need to attach a hydroxyl group, which is a bonding medium necessary for direct bonding, to the vibrating body 5, and it has an effect of suppressing the vibrating body 5 from adhering to the lower electrode 2 due to moisture.
  • FIG. 7 is a bird's eye view of the angular velocity sensor of Example 5, and is an exploded view of each substrate.
  • FIG. 8 is a cross-sectional view of the angular velocity sensor, and
  • FIG. 9 is a plan view of the angular velocity sensor on the upper electrode bonding side.
  • the angular velocity sensor in this embodiment includes a lower electrode substrate 150 that is a first substrate, a sensor substrate 160 that is a second substrate, and an upper electrode substrate 170 that is a third substrate. Composed.
  • the lower electrode substrate 150 uses the active layer 123, the lower electrodes 102a and 102b as the first electrodes, the active layer hermetic frame 103, the lower electrode active layer fixing portions 117a and 117b as the first fixing portions, and the lower electrode
  • the sensor substrate uses the sensor layer 124, the vibrating bodies 105a and 105b, sensor layer fixing parts 119a to 119d as second fixing parts, vibrating body support beams 120a to 120d, upper electrode sensor layer fixing parts 106a and 106b, It consists of lower electrode sensor layer fixing portions 107a and 107b and link beams 135, which are three fixing portions.
  • the upper electrode substrate uses the upper active layer 125, the upper electrodes 111a and 111b, the upper active layer hermetic frame 112, the upper electrode upper active layer fixing portions 110a and 110b, which are the fourth fixing portions, and the upper electrode upper active layer wiring. 131a and 131b, an upper vibrating body displaceable area 132, lower electrode upper active layer fixing portions 109a and 109b which are fifth fixing portions, and vibrating body upper active layer fixing portions 128a to 128d.
  • the lower electrodes 102a and 102b As the lower electrodes 102a and 102b, a bonded substrate in which the insulating layer 130 is sandwiched between the active layer 123 including the lower electrodes 102a and 102b and the support substrate 101 was used. Thereby, the active layer 123 and the support substrate 101 are electrically insulated.
  • the lower electrodes 102a and 102b, the upper electrode active layer fixing portions 104a and 104b, the vibrator active layer fixing portions 116a to 116d, and the active layer hermetic frame 103 are electrically insulated by a space, and are mixed between adjacent structures. There is no.
  • the active layer fixing portions 116a to 116d for the vibrator are connected to sensor layer fixing portions 119a to 119d for fixing the vibrators 105a and 105b.
  • the lower electrode active layer fixing portions 117a and 117b are connected to the lower electrode sensor layer fixing portions 107a and 107b, and the upper electrode active layer fixing portions 104a and 104b are connected to the upper electrode sensor layer fixing portions 106a and 106b.
  • the vibrating bodies 105a and 105b and the vibrating body support beams 120a to 120d are formed on the upper part of the vibrating body displaceable area 122 and have a structure floating from the active layer 123 including the lower electrodes 102a and 102b.
  • the vibrating body displaceable area 122 is dug down, and the flying distance between the vibrating body 105 and the lower electrode 102 matches the distance between the sensor layer 124 and the upper surface of the vibrating body displaceable area 122.
  • the vibrating body support beams 120a and 120b may be folded beams instead of straight beams.
  • the vibrating bodies 105a and 105b are installed at the ends of the vibrating bodies 105a and 105b by two vibrating body support beams 120a and 120b, respectively, in the x and y directions which are in-plane directions and the z direction which is an out-of-plane direction. It is supported so that it can vibrate.
  • the vibrating body 105 is fixed to the vibrating body active layer fixing portions 116a to 116d by sensor layer fixing portions 119a to 119d extending at the ends of the vibrating body support beams 120a to 120d.
  • the vibrating bodies 105a and 105b receive out-of-plane acceleration and angular velocity
  • the vibrating bodies 105a and 105b are displaced by the inertial force generated in the vibrating bodies 105a and 105b.
  • the original position is restored by the spring force of the vibrating body support beams 120a to 120d.
  • the vibrating body support beams 120a to 120d vibrate in conjunction with the vibrating bodies 105a and 105b.
  • the two vibrating bodies 105 a and 105 b are connected to each other by a link beam 135. Between the vibrating bodies 105a and 105b, the vibration energy of both is exchanged through the link beam 135.
  • the vibrating bodies 105a and 105b have a function of a movable electrode in a range facing the lower electrodes 102a and 102b.
  • the lower electrodes 102a and 102b were formed in a size different from that of the vibrating bodies 105a and 105b. This is because, when the movable body vibrates in the x and y directions, which are in-plane directions, if the vibrating bodies 105a and 105b operate so as to deviate from the upper part of the lower electrode 2, the lower electrodes 102a and 102b and the vibrating bodies 105a and 105b This is for the purpose of preventing the measurement from appearing as if the sensitivity is reduced and apparently displaced in the z direction.
  • the lower electrodes 102 a and 102 b have a larger structure than the vibrating body 5.
  • the vibrating bodies 105a and 105b, the sensor layer hermetic frame 108, the upper electrode sensor layer fixing portions 106a and 106b, and the lower electrode sensor layer fixing portions 107a and 107b are electrically insulated by a space, and are mixed between adjacent structures. There is no.
  • the sensor layer fixing portions 119a to 119d are connected to the upper active layer fixing portions 128a to 128d for the vibrator.
  • the lower electrode sensor layer fixing portions 107a and 107b are connected to the lower electrode upper active layer fixing portions 109a and 109b, and the upper electrode sensor layer fixing portion 6 is connected to the upper electrode upper active layer fixing portions 110a and 110b. Connected. Since the silicon substrate is used for each of the substrates in which the connected portions are formed, since there is no difference in the linear expansion coefficient because of the same material, the strain generated with the temperature change is small. Direct connection is used for connection, and the bonding interface has a resistance value equivalent to that of the fixed portion, so the sensitivity does not decrease.
  • the upper electrodes 111a and 111b are made of a bonded substrate in which the upper insulating layer 134 is sandwiched between the upper active layer 125 including the upper electrodes 111a and 111b and the upper support substrate 113. used. Thereby, the upper active layer 125 and the upper support substrate 113 are electrically insulated.
  • the upper electrodes 111a and 111b, the upper active layer fixing portions 109a and 109b for the lower electrode, the upper active layer fixing portions 128a to 128d for the vibrator, and the upper active layer hermetic frame 112 are electrically insulated by a space and are adjacent to each other. There is no cross-talk between each other.
  • Lower electrode external electrodes 114 a and 114 b and upper electrode external electrodes 127 a and 127 b are formed on the upper support substrate 113, and are electrically insulated by an insulating film 35. It is connected to the upper active layer fixing portions 128a to 128d for the vibrator.
  • the upper electrode upper active layer fixing portions 110a and 110b are connected to the upper electrode external electrodes 127a and 127b, and the lower electrode upper active layer fixing portions 109a and 109b are connected to the lower electrode external electrodes 114a and 114b. is doing.
  • the lower electrode external electrodes 114 a and 114 b and the upper electrode external electrodes 127 a and 127 b have a structure in which a conductive material is filled in a hole formed perpendicular to the substrate, and the electrode pad 115 is formed on the surface of the upper support substrate 113. It is connected to the.
  • the electrode pads 115 are all formed on the same surface. For this reason, it is easy to use a BGA (Ball Grid Array) which is a kind of sensor or integrated circuit package, which is suitable for high-density mounting.
  • BGA All Grid Array
  • the upper electrodes 111a and 111b are also configured to face the vibrating bodies 105a and 105b, and are formed in a size different from that of the vibrating bodies 105a and 105b.
  • the upper electrodes 111a and 111b operate so that the vibrating bodies 105a and 105b move off the upper portions of the upper electrodes 111a and 111b. This is to prevent the capacitance with 111a and 111b from being lowered and measured to appear to be displaced in the z direction.
  • the upper electrode 111 has a larger structure than the vibrating body 105, and the lower electrode 102 and the upper electrode 111 have the same size.
  • the vibrating bodies 105a and 105b have a function of a movable electrode in a range facing the upper electrodes 111a and 111b.
  • the signals detected by the lower electrodes 102a and 102b reach the lower electrode active layer fixing portions 117a and 117b through the lower electrode active layer wirings 118a and 118b.
  • This signal is transmitted to the lower electrode sensor layer fixing portion 107 through the bonding interface between the lower electrode active layer fixing portions 117a and 117b and the lower electrode sensor layer fixing portion 107, and to the lower electrode sensor layer fixing portions 107a and 107b and the lower electrode.
  • the lower electrode external electrodes 114a and 114b that are electrically connected to the lower electrode upper active layer fixing portions 109a and 109b. The signal can be detected without being attenuated.
  • the vibrating body 105a since the vibrating body 105a is displaced away from the upper electrode 111a, the capacitance between the vibrating body 105a and the upper electrode 111a decreases.
  • the vibrating body 105b and the vibrating body 105b constructed by the link beam 135 are displaced in a direction away from the lower electrode 102b by the Coriolis force, so that the capacitance between the vibrating body 105b and the upper electrode 111b decreases.
  • the intervals between the vibrating body displaceable area 122 and the vibrating bodies 105a and 105b, and the upper vibrating body displaceable area 132 and the vibrating bodies 105a and 105b are the same.
  • the capacitance changes of the lower electrode 102a and the upper electrode 111b increase with the same value, the capacitance changes of the lower electrode 102b and the upper electrode 111a also decrease with the same value. Utilizing this fact, it is possible to amplify the sensitivity by differentially amplifying the capacitance changes of the lower electrodes 102a and 102b and the upper electrodes 111a and 111b.
  • acceleration when applied, when the capacitance change of the lower electrode 102a and the lower electrode 102b increases with the same value, the capacitance change of the upper electrode 111a and the upper electrode 111b also decreases with the same value. Thereby, acceleration and angular velocity can be separated.
  • the vibrating body displaceable area 122 and the upper vibrating body displaceable area 132 are formed by wet etching, and the gap between the vibrating bodies 105a and 105b can be controlled in nanometer order. Thereby, the sensitivity variation for every sensor can be suppressed and it can set to an optimal value.
  • the internal space where the vibrators 105a and 105b exist is isolated from the outside by the active layer hermetic frame 103, the sensor layer hermetic frame 108, and the upper active layer hermetic frame 112. Accordingly, the environment around the vibrating bodies 105a and 105b is stable, and the fluctuation of the sensitivity due to the pressure fluctuation caused by gas inflow and the adhesion of the vibrating bodies 105a and 105b due to dust and moisture from the outside are suppressed.
  • the angular velocity sensor of the fourth embodiment has the following effects as in the first embodiment. It is not a contact between the silicon substrate and the detection electrode, but it is firmly bonded to both substrates of the fixed part extended to the detection electrode using direct bonding, and the bonding interface is made conductive so that there is little change in contact resistance and long-term sensitivity. And prevents the zero point output from decreasing. In addition, by using a silicon substrate as the detection electrode, it is possible to prevent distortion caused by a difference in linear expansion coefficient due to a temperature change, and to perform highly accurate detection with few errors.
  • the lower electrode 2 and the upper electrode 11 were formed in a size different from that of the vibrating body 5. This is because when the movable body vibrates in the x and y directions, which are in-plane directions, if the vibrating body 5 moves so as to be off the lower electrode 2 and the upper electrode 11, the lower electrode 2, the vibrating body 5 and the upper electrode The sensitivity between 11 and the vibrating body 5 is reduced, and it has the effect of preventing the measurement from appearing to be displaced in the z direction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Pressure Sensors (AREA)
  • Gyroscopes (AREA)

Abstract

 感度のよい慣性力センサを提供するために、慣性力検出のための第一の電極と前記第一の電極で検出した信号を外部電極に引き出すための第一の固定部とを備えた第一の基板と、前記第一の電極から一定の距離を設けて形成した振動体と前記振動体を梁により架設し前記第一の基板に固定した第二の固定部と前記第一の電極で検出した信号を外部電極に伝達するための第三の固定部とを備えた第二の基板と、を有し前記第一の基板と前記第二の基板とは接合により固定されており、前記接合面を介して導通するように構成した。

Description

慣性力センサ
 本発明は、物理量を検出するセンサに係り、特に、加速度、角速度などの慣性力を静電容量変化により検出するセンサに関する。
 本技術分野の背景技術として、下記の特許文献1がある。この公報には、2枚のガラス基板の間にシリコン基板を挟んだ三層構造を有するセンサについて、検出電極を三次元配線によってシリコン基板の面外方向に形成する方法が開示されている。半導体部品と接続するための外部電極が形成された面とは反対の面に形成された検出電極からの信号を、シリコン基板に形成されたフィードスルーを介して外部電極に導くことを可能としている。
特開2007-194611号公報
 しかしながら、上記構造の場合、検出電極とフィードスルー間の接触抵抗が大きくなることにより、感度が悪化するという課題が残されている。
 本発明の目的は、感度のよい慣性力センサを提供することにある。
 上記課題を解決するために、本発明の慣性力センサは、慣性力検出のための第一の電極を備え、かつ、前記第一の電極で検出した信号を外部電極に引き出すための第一の固定部を備えた第一の基板と、前記第一の電極を覆うように形成された振動体を備え、かつ、振動体は梁により第二の固定部に架設されており、かつ、前記第二の固定部は前記第一の基板に固定されており、第一の電極で検出した信号を外部電極に伝達するための第三の固定部を備えた第二の基板と、において、前記第一の基板、前記第二の基板、との固定は全て接合であり、接合面を介して導通している構造である。
 本発明によれば、感度のよい慣性力センサを提供することが可能となる。
第1の実施例である加速度センサの鳥瞰図。 第1の実施例である加速度センサの断面図。 第1の実施例である加速度センサの上部電極接合側の平面図。 第1の実施例である加速度センサの製作工程断面図。 第2の実施例である加速度センサの断面図。 第3の実施例である加速度センサの断面図。 第4の実施例である角速度センサの鳥瞰図。 第4の実施例である角速度センサの断面図。 第4の実施例である角速度センサの上部電極接合側の平面図。
 以下に、本発明の実施例について図面を用いて詳細に説明する。なお、以下の実施例では静電容量検出式加速度センサと静電容量検出式角速度センサを例にして説明するが、本発明は、これらのセンサにとらわれず広く慣性力センサ全般に適用可能である。
 図1と図2に示すように、本実施例における加速度センサは、第一の基板である下部電極基板50、第二の基板であるセンサ基板60、第三の基板である上部電極基板70で構成される。下部電極基板50は活性層23を用い、第一の電極である下部電極2、活性層気密枠3、第一の固定部である下部電極用活性層固定部17、下部電極用活性層配線18、振動体変位可能エリア22、上部電極用活性層固定部4、振動体用活性層固定部16a,16bからなる。センサ基板60はセンサ層24を用い、振動体5、第二の固定部であるセンサ層固定部19a,19b、振動体支持梁20a,20b、上部電極用センサ層固定部6、第三の固定部である下部電極用センサ層固定部7からなる。上部電極基板70は、図2、図3に示されるように上活性層25を用い、第二の電極である上部電極11、上活性層気密枠12、第四の固定部である上部電極用上活性層固定部10、上部電極用上活性層配線31、上振動体変位可能エリア32、第五の固定部である下部電極用上活性層固定部9、振動体用上活性層固定部28a,28bからなる。
 図1に示されるように、下部電極2形成には、下部電極2を備えた活性層23と支持基板1の間に絶縁層30を挟んだ状態である貼り合わせ基板を使用した。これにより、活性層23と支持基板1は電気的に絶縁されている。下部電極2、上部電極用活性層固定部4、振動体用活性層固定部16a,16b、活性層気密枠3は空間によって電気的に絶縁されており、隣り合う構造同士で混線はない。
 振動体用活性層固定部16a,16bは振動体5を固定するセンサ層固定部19a,19bと接続している。また、下部電極用活性層固定部17は下部電極用センサ層固定部7と接続しており、上部電極用活性層固定部4は上部電極用センサ層固定部6と接続している。
 振動体5と振動体支持梁20a,20bは振動体変位可能エリア22の上部に構成されており、下部電極2を備えた活性層23から浮いた構造となっている。振動体変位可能エリア22は掘り下げられており、振動体5と下部電極2の浮上距離はセンサ層24と振動体変位可能エリア22の上面との距離と一致する。振動体支持梁20a,20bは直梁ではなく、折り返し梁でも良い。
 振動体5は振動体5の端部において2本の振動体支持梁20a,20bにより架設されており、面内方向であるx,y方向と面外方向であるz方向にそれぞれ振動可能な状態で支持されている。振動体5は振動体支持梁20a,20bの端に延設されたセンサ層固定部19a,19bによって、振動体用活性層固定部16a,16bに固定されており、振動体支持梁20a,20bは、ばね機構の役割を持つ。
 例えば、振動体5が面外方向の加速度を受けた場合に、振動体5に発生する慣性力により、振動体5が変位するが、加速度印加終了とともに上記振動体支持梁20a,20bのばね力により元の位置に復元する。
 振動体5には、下部電極2と対向する範囲において可動電極の機能を備えている。 
 なお、本実施例においては振動体5よりも下部電極2の方を大きな構造とした。また、図2に示されるように、振動体5、センサ層気密枠8、上部電極用センサ層固定部6、下部電極用センサ層固定部7は空間によって電気的に絶縁されており、隣り合う構造同士で混線はない。
 センサ層固定部19a,19bは振動体用上活性層固定部28a,28b(図3参照。)と接続している。また、下部電極用センサ層固定部7は下部電極用上活性層固定部9と接続しており、上部電極用センサ層固定部6は上部電極用上活性層固定部10と接続している。
 接続している箇所が構成されている基板はそれぞれシリコン基板を用いており、同材料であるため線膨脹係数に差異がなく、温度変化に伴い発生する歪は小さい。接続には直接接合が用いられており、接合界面も上記固定部と同等の抵抗値であるため感度が低下することはない。
 図2と図3に示すように上部電極11は、上部電極11を備えた上活性層25と上支持基板13の間に上絶縁層34を挟んだ状態である貼り合わせ基板を使用した。これにより、上活性層25と上支持基板13は電気的に絶縁されている。上部電極11、下部電極用上活性層固定部9、振動体用上活性層固定部28a,28b、上活性層気密枠12は空間によって電気的に絶縁されており、隣り合う構造同士で混線はない。上支持基板13には下部電極用外部電極14と上部電極用外部電極27が形成されており、それぞれ絶縁膜35によって電気的に絶縁している。また、上部電極用上活性層固定部10は上部電極用外部電極27と接続しており、下部電極用上活性層固定部9は下部電極用外部電極14と接続している。下部電極用外部電極14と上部電極用外部電極27は基板に垂直に形成された孔に導電性材料が充填された構造となっており、上支持基板13の表面で電極パッド15に接続されている。電極パッド15は全て同じ面に形成されている。このため、センサや集積回路のパッケージの一種であるBGA(Ball Grid Array)を用いることが容易であり、高密度実装に適している。
 下部電極2と同様に上部電極11も振動体5と対向するように構成されており、振動体5と異なるサイズで形成した。本実施例においては振動体5よりも上部電極11の方を大きな構造とし、下部電極2と上部電極11は同じ大きさとした。振動体5には、上部電極11と対向する範囲において可動電極の機能を備えている。
 図2に示すように、下部電極2で検出した信号は下部電極用活性層配線18(図1参照。)を通じて下部電極用活性層固定部17まで到達する。この信号は下部電極用活性層固定部17と下部電極用センサ層固定部7の接合界面を通じて下部電極用センサ層固定部7へ、下部電極用センサ層固定部7と下部電極用上活性層固定部9の接合界面を通じて下部電極用上活性層固定部9へ、下部電極用上活性層固定部9と導通している下部電極用外部電極14まで減衰することなく検出できる。
 図1~図3に示すように、センサは基板面外であるz方向の加速度を印加されると、振動体5と下部電極2と上部電極11との間に形成される静電容量の変化に基づく加速度を検出することが可能である。また、振動体5が下部電極2に近づく方向に変位した場合、振動体5と下部電極2間の静電容量は増加する。その場合、振動体5は上部電極11から遠ざかる方向に変位するので振動体5と上部電極11間の静電容量は減少する。振動体変位可能エリア22と振動体5、上振動体変位可能エリア32と振動体5との間隔は一致する。そのため、下部電極2と上部電極11の容量変化は同じ値であり、かつ、符号は逆である。このことを利用し、下部電極2と上部電極11の容量変化を差動増幅することで感度を倍にすることが可能である。
 なお、振動体変位可能エリア22と上振動体変位可能エリア32はウェットエッチングを用いて形成されており、振動体5とのギャップをナノメートルオーダーで制御することが可能となっている。これにより、センサ毎の感度ばらつきを抑制し、最適値に設定可能である。
 また、振動体5の存在する内部空間は活性層気密枠3とセンサ層気密枠8と上活性層気密枠12によって外部から隔離されている。これにより振動体5の周囲の環境は安定しており、外部からのごみや湿気起因の振動体5の固着や、ガス流入に伴う圧力変動起因の感度変動を抑制している。
 次に、図4を用いてに上記静電容量検出式加速度センサの製造工程を説明する。
 工程(a)において、活性層23と支持基板1の2枚の単結晶シリコン基板の間にシリコン酸化膜からなる絶縁層30を挟んで接合したSOI(Silicon On Insulator)基板を用意した。SOI基板の活性層23は電極として使用可能な低抵抗のものを使用した。
 工程(b)において、活性層23に振動体変位可能エリア22を形成するためのウェットエッチング用のマスクとするため、熱酸化によりSOI基板全面に酸化膜を形成した。次に酸化膜をフォトリソグラフィと酸化膜エッチング技術を利用しパターニングすることにより、活性層23にウェットエッチング用マスクを形成した。形成した酸化膜パターンをマスクとしてウェットエッチングを実施し、活性層23に数ミクロンメートルの段差である振動体変位可能エリア22を形成した。
 工程(c)において、活性層23の振動体変位可能エリア22を含む全面においてフォトリソグラフィと酸化膜エッチング技術を利用しパターニングすることにより、活性層23にドライエッチング用マスクを形成した。形成した酸化膜パターンとレジストパターンをマスクとしてシリコンのドライエッチングを実施し、活性層23を絶縁層30まで貫通させ、下部電極2と活性層気密枠3と上部電極用活性層固定部4と下部電極用活性層固定部17を形成し、電気的に分離した。活性層23表面の酸化膜を除去し、直接接合を可能とするようにシリコン面を露出させる。
 工程(d)において、センサ層24を形成するための単結晶シリコン基板を用意した。センサ層24は電極として使用可能な低抵抗のものを使用した。センサ層24と上記シリコン面を露出させた状態で貼り合わせ、直接接合により強固に接合した。活性層23とセンサ層24を接合する前に接合面は十分な洗浄とプラズマを用いた表面活性化、かつ、接合媒体である水酸基がついた状態を確保する。
 工程(e)において、センサ層24においてフォトリソグラフィを利用し、センサ層24にドライエッチング用マスクを形成した。形成したレジストパターンをマスクとしてシリコンのドライエッチングを実施し、活性層23まで貫通させ、振動体5と上部電極用センサ層固定部6と下部電極用センサ層固定部7とセンサ層気密枠8を形成し、電気的に分離した。
 工程(f)~(h)において、下部電極用外部電極14と上部電極用外部電極27が形成されたSOI基板に、上記下部電極2と上記振動体変位可能エリア22の形成工程と同様の工程で上部電極11と上振動体変位可能エリア32を形成した。上活性層25の上振動体変位可能エリア32を含む全面においてフォトリソグラフィと酸化膜エッチング技術を利用しパターニングすることにより、上活性層25にドライエッチング用マスクを形成した。形成した酸化膜パターンとレジストパターンをマスクとしてシリコンのドライエッチングを実施し、上活性層23を上絶縁層34まで貫通させ、上部電極11と上活性層気密枠12と上部電極用上活性層固定部10と下部電極用上活性層固定部9を形成し、電気的に分離した。上活性層25の表面は酸化膜が除去されており、直接接合を可能とするようにシリコン面が露出している。
 工程(i)において、振動体5が形成されたセンサ層24と接合用にシリコン面を露出させた上活性層を貼り合わせ、直接接合により強固に接合した。上活性層25とセンサ層24を接合する前に接合面は十分な洗浄とプラズマを用いた表面活性化、かつ、接合媒体である水酸基がついた状態を確保する。上支持基板13上にスパッタを用いて電極パッド用金属膜を成膜する。フォトリソグラフィを利用し下部電極用外部電極14と上部電極用外部電極27に接続するように電極パッド15を形成する。
 実施例1の加速度センサにおいて、上述した構成、すなわち、シリコン基板と検出電極の接触ではなく検出電極に延設された固定部の両基板に直接接合を用いて強固に接合し、接合界面を導通させることにより、接触抵抗変化が少なく長期間での感度やゼロ点出力の低下を防止する。また、検出電極にもシリコン基板を用いることで温度変化に伴う線膨脹係数差を起因とした歪を防ぎ、誤差の少ない高精度検出を可能とする。
 また、下部電極2と上部電極11は振動体5と異なるサイズで形成した。これにより、可動部が面内方向であるx,y方向に振動した際に、振動体5が下部電極2と上部電極11の上を外れるように動作すると、下部電極2と振動体5や上部電極11と振動体5の間の感度が低下し、見掛け上z方向に変位したように計測されるのを防止する効果を有する。
 図5は、実施例2の加速度センサの断面図である。 
 既に説明した図1~図4に示された同一の符号を付された構成と、同一の機能を有する部分については、説明を省略する。
 本実施例における加速度センサにおいては、下部電極用外部電極14と上部電極用外部電極27は基板の垂直方向に形成されたテーパのついた孔に導電性材料が成膜された構造となっており、電極パッド15と同材料で形成される。それぞれの外部電極は上支持基板13の表面で電極パッド15に接続されている。また、電極パッド15は全て同じ面に形成されている。このため、センサや集積回路のパッケージの一種であるBGA(Ball Grid Array)を用いることが容易であり、高密度実装に適している。
 実施例2において、実施例1の効果と共に以下の効果も有する。 
 テーパのついた孔は、ウェットエッチングやブラスト加工などの比較的安価な加工が可能であり、導電性材料の埋め込みよりも低コストでの製作を可能とする。また、テーパに配線を成膜することにより断線の危険性を抑制する効果を有する。
 図6は、実施例3の加速度センサの断面図である。 
 既に説明した図1~図5に示された同一の符号を付された構成と、同一の機能を有する部分については、説明を省略する。
 本実施例における加速度センサにおいては、センサ層固定部19a,19bは振動体用上活性層固定部28a,28bと接続している。また、下部電極用センサ層固定部7は接合界面に形成された導電性接合材料33を通じて下部電極用上活性層固定部9と接続しており、上部電極用センサ層固定部6は上部電極用上活性層固定部10と接続している。接続している箇所が構成されている基板はそれぞれシリコン基板を用いており、同材料であるため線膨脹係数に差異がなく、温度変化に伴い発生する歪は小さい。接続には導電性材料を挟み込んだ共晶結合を利用しており、接合界面も固定部と同程度の抵抗値であるため感度が低下することはない。共晶反応としてAu-Si、Au-Sn、Au-Ge、Au-In、Al-Ge、Cu-Snを利用する。
 実施例3において、実施例1の効果と共に以下の効果も有する。 
 共晶接合を利用することで、センサ基板60の上部の平滑性が加工によりある程度悪化しても接合することを可能とする。また、直接接合する際に必要な接合媒体である水酸基を振動体5に付着させる工程が必要なく、湿気により振動体5が下部電極2に固着してしまうのを抑制する効果を有する。
 図7は、実施例5の角速度センサの鳥瞰図であり、各基板で分解した分解図である。図8は、角速度センサの断面図であり、図9は角速度センサの上部電極接合側の平面図である。
 図7と図8に示すように、本実施例における角速度センサは、第一の基板である下部電極基板150、第二の基板であるセンサ基板160、第三の基板である上部電極基板170で構成される。下部電極基板150は活性層123を用い、第一の電極である下部電極102a,102b、活性層気密枠103、第一の固定部である下部電極用活性層固定部117a,117b、下部電極用活性層配線118a,118b、振動体変位可能エリア122、上部電極用活性層固定部104a,104b、振動体用活性層固定部116a~116dからなる。センサ基板はセンサ層124を用い、振動体105a,105b、第二の固定部であるセンサ層固定部119a~119d、振動体支持梁120a~120d、上部電極用センサ層固定部106a,106b、第三の固定部である下部電極用センサ層固定部107a,107b、リンク梁135からなる。上部電極基板は上活性層125を用い、上部電極111a,111b、上活性層気密枠112、第四の固定部である上部電極用上活性層固定部110a,110b、上部電極用上活性層配線131a,131b、上振動体変位可能エリア132、第五の固定部である下部電極用上活性層固定部109a,109b、振動体用上活性層固定部128a~128dからなる。
 下部電極102a,102bは、下部電極102a,102bを備えた活性層123と支持基板101の間に絶縁層130を挟んだ状態である貼り合わせ基板を使用した。これにより、活性層123と支持基板101は電気的に絶縁されている。下部電極102a,102b、上部電極用活性層固定部104a,104b、振動体用活性層固定部116a~116d、活性層気密枠103は空間によって電気的に絶縁されており、隣り合う構造同士で混線はない。
 振動体用活性層固定部116a~116dは振動体105a,105bを固定するセンサ層固定部119a~119dと接続している。また、下部電極用活性層固定部117a,117bは下部電極用センサ層固定部107a,107bと接続しており、上部電極用活性層固定部104a,104bは上部電極用センサ層固定部106a,106bと接続している。接続している箇所が構成されている基板はそれぞれシリコン基板を用いており、同材料であるため線膨脹係数に差異がなく、温度変化に伴い発生する歪は小さい。接続には直接接合が用いられており、接合界面も上記固定部と同等の抵抗値であるため感度が低下することはない。
 振動体105a,105bと振動体支持梁120a~120dは振動体変位可能エリア122の上部に構成されており、下部電極102a,102bを備えた活性層123から浮いた構造となっている。振動体変位可能エリア122は掘り下げられており、振動体105と下部電極102の浮上距離はセンサ層124と振動体変位可能エリア122の上面との距離と一致する。振動体支持梁120a,120bは直梁ではなく、折り返し梁でも良い。振動体105a,105bは振動体105a,105bの端部において2本の振動体支持梁120a,120bにより架設されており、面内方向であるx,y方向と面外方向であるz方向にそれぞれ振動可能な状態で支持されている。振動体105は振動体支持梁120a~120dの端に延設されたセンサ層固定部119a~119dによって、振動体用活性層固定部116a~116dに固定されており、振動体支持梁120a~120dは、ばね機構の役割を持つ。例えば、振動体105a,105bが面外方向の加速度や角速度を受けた場合に、振動体105a,105bに発生する慣性力により、振動体105a,105bが変位するが、加速度や角速度印加終了とともに上記振動体支持梁120a~120dのばね力により元の位置に復元する。振動体支持梁120a~120dは振動体105a,105bと連動して振動する。また、二つの振動体105a,105bは互いにリンク梁135により連結されている。振動体105a,105b間では、リンク梁135を通じ、双方の振動エネルギーの授受が行われる。
 振動体105a,105bには、下部電極102a,102bと対向する範囲において可動電極の機能を備えている。下部電極102a,102bは振動体105a,105bと異なるサイズで形成した。これは可動部が面内方向であるx,y方向に振動した際に、振動体105a,105bが下部電極2の上部を外れるように動作すると、下部電極102a,102bと振動体105a,105bとの感度が低下し、見掛け上z方向に変位したように計測されるのを防止するためである。本実施例においては振動体5よりも下部電極102a,102bの方を大きな構造とした。振動体105a,105b、センサ層気密枠108、上部電極用センサ層固定部106a,106b、下部電極用センサ層固定部107a,107bは空間によって電気的に絶縁されており、隣り合う構造同士で混線はない。
 センサ層固定部119a~119dは振動体用上活性層固定部128a~128dと接続している。また、下部電極用センサ層固定部107a,107bは下部電極用上活性層固定部109a,109bと接続しており、上部電極用センサ層固定部6は上部電極用上活性層固定部110a,110bと接続している。接続している箇所が構成されている基板はそれぞれシリコン基板を用いており、同材料であるため線膨脹係数に差異がなく、温度変化に伴い発生する歪は小さい。接続には直接接合が用いられており、接合界面も上記固定部と同等の抵抗値であるため感度が低下することはない。
 図8と図9に示すように上部電極111a,111bは、上部電極111a,111bを備えた上活性層125と上支持基板113の間に上絶縁層134を挟んだ状態である貼り合わせ基板を使用した。これにより、上活性層125と上支持基板113は電気的に絶縁されている。上部電極111a,111b、下部電極用上活性層固定部109a,109b、振動体用上活性層固定部128a~128d、上活性層気密枠112は空間によって電気的に絶縁されており、隣り合う構造同士で混線はない。上支持基板113には下部電極用外部電極114a,114bと上部電極用外部電極127a,127bが形成されており、それぞれ絶縁膜35によって電気的に絶縁している。振動体用上活性層固定部128a~128dと接続している。また、上部電極用上活性層固定部110a,110bは上部電極用外部電極127a,127bと接続しており、下部電極用上活性層固定部109a,109bは下部電極用外部電極114a,114bと接続している。下部電極用外部電極114a,114bと上部電極用外部電極127a,127bは基板に垂直に形成された孔に導電性材料が充填された構造となっており、上支持基板113の表面で電極パッド115に接続されている。電極パッド115は全て同じ面に形成されている。このため、センサや集積回路のパッケージの一種であるBGA(Ball Grid Array)を用いることが容易であり、高密度実装に適している。
 下部電極102a,102bと同様に上部電極111a,111bも振動体105a,105bと対向するように構成されており、振動体105a,105bと異なるサイズで形成した。これは下部電極102a,102bと同様に可動部が面内方向であるx,y方向に振動した際に、振動体105a,105bが上部電極111a,111bの上部を外れるように動作すると、上部電極111a,111bとの静電容量が低下し、見掛け上z方向に変位したように計測されるのを防止するためである。本実施例においては振動体105よりも上部電極111の方を大きな構造とし、下部電極102と上部電極111は同じ大きさとした。振動体105a,105bには、上部電極111a,111bと対向する範囲において可動電極の機能を備えている。
 図8に示すように、下部電極102a,102bで検出した信号は下部電極用活性層配線118a,118bを通じて下部電極用活性層固定部117a,117bまで到達する。この信号は下部電極用活性層固定部117a,117bと下部電極用センサ層固定部107の接合界面を通じて下部電極用センサ層固定部107へ、下部電極用センサ層固定部107a,107bと下部電極用上活性層固定部109a,109bの接合界面を通じて下部電極用上活性層固定部109a,109bへ、下部電極用上活性層固定部109a,109bと導通している下部電極用外部電極114a,114bまで信号を減衰させることなく検出できる。
 図7~図9に示すように、振動体105a,105bと下部電極102a,102bと上部電極111a,111bとの間に形成される静電容量の変化に基づく角速度を検出することが可能である。センサは基板面外であるx軸周りの角速度を印加されると、二つの振動体105a,105bはリンク梁135を通じて振動エネルギーの授受をしながら、コリオリ力により面外であるz軸方向に互いに逆方向に変位する。振動体105aが下部電極102aに近づく方向に変位した場合、振動体105aと下部電極102a間の静電容量は増加する。その場合、振動体105aは上部電極111aから遠ざかる方向に変位するので振動体105aと上部電極111a間の静電容量は減少する。同時に振動体105aとリンク梁135で架設された振動体105bはコリオリ力により下部電極102bから遠ざかる方向に変位するので振動体105bと上部電極111b間の静電容量は減少する。振動体変位可能エリア122と振動体105a,105b、上振動体変位可能エリア132と振動体105a,105bとの間隔は一致する。そのため、下部電極102aと上部電極111bの容量変化が同じ値で増加した時、下部電極102bと上部電極111aの容量変化も同じ値で減少する。このことを利用し、下部電極102a,102bと上部電極111a,111bの容量変化を差動増幅することで感度を増幅することが可能である。また、加速度が印加された場合は、下部電極102aと下部電極102bの容量変化が同じ値で増加した時、上部電極111aと上部電極111bとの容量変化も同じ値で減少する。これにより、加速度と角速度を切り分けることが可能である。
 なお、振動体変位可能エリア122と上振動体変位可能エリア132はウェットエッチングを用いて形成されており、振動体105a,105bとのギャップをナノメートルオーダーで制御することが可能となっている。これにより、センサ毎の感度ばらつきを抑制し、最適値に設定可能である。
 また、振動体105a,105bの存在する内部空間は活性層気密枠103とセンサ層気密枠108と上活性層気密枠112によって外部から隔離されている。これにより振動体105a,105bの周囲の環境は安定しており、外部からのごみや湿気起因の振動体105a,105bの固着や、ガス流入に伴う圧力変動起因の感度変動を抑制している。
 実施例4の角速度センサにおいて、実施例1と同様に以下の効果を有する。 
 シリコン基板と検出電極の接触ではなく検出電極に延設された固定部の両基板に直接接合を用いて強固に接合し、接合界面を導通させることにより、接触抵抗変化が少なく長期間での感度やゼロ点出力の低下を防止する。また、検出電極にもシリコン基板を用いることで温度変化に伴う線膨脹係数差を起因とした歪を防ぎ、誤差の少ない高精度検出を可能とする。
 また、下部電極2と上部電極11は振動体5と異なるサイズで形成した。これは可動部が面内方向であるx,y方向に振動した際に、振動体5が下部電極2と上部電極11の上を外れるように動作すると、下部電極2と振動体5や上部電極11と振動体5の間の感度が低下し、見掛け上z方向に変位したように計測されるのを防止する効果を有する。
1,101 支持基板
2,102a,102b 下部電極
3,103 活性層気密枠
4,104a,104b 上部電極用活性層固定部
5,105a,105b 振動体
6,106a,106b 上部電極用センサ層固定部
7,107a,107b 下部電極用センサ層固定部
8,108 センサ層気密枠
9,109a,109b 下部電極用上活性層固定部
10,110a,110b 上部電極用上活性層固定部
11,111a,111b 上部電極
12,112 上活性層気密枠
13,113 上支持基板
14,114a,114b 下部電極用外部電極
15,115 電極パッド
16a,16b,116a~116d 振動体用活性層固定部
17,117a,117b 下部電極用活性層固定部
18,118a,118b 下部電極用活性層配線
19a,19b,119a~119d センサ層固定部
20a,20b,120a~120d 振動体支持梁
22,122 振動体変位可能エリア
23,123 活性層
24,124 センサ層
25,125 上活性層
27,127a,127b 上部電極用外部電極
28a,28b,128a~128d 振動体用上活性層固定部
30,130 絶縁層
31,131a,131b 上部電極用上活性層配線
32,132 上振動体変位可能エリア
33 導電性接合材料
34,134 上絶縁層
50 下部電極基板
60 センサ基板
70 上部電極基板
135 リンク梁

Claims (11)

  1.  慣性力検出のための第一の電極と前記第一の電極で検出した信号を外部電極に引き出すための第一の固定部とを備えた第一の基板と、
     前記第一の電極から一定の距離を設けて形成した振動体と前記振動体を梁により架設し前記第一の基板に固定した第二の固定部と前記第一の電極で検出した信号を外部電極に伝達するための第三の固定部とを備えた第二の基板と、を有し
     前記第一の基板と前記第二の基板とは接合により固定されており、前記接合面を介して導通していることを特徴とする慣性力センサ。
  2.  請求項1に記載の慣性力センサにおいて、
     前記振動体から一定の距離を設けて形成した慣性力検出のための第二の電極と前記第二の電極で検出した信号を外部電極に引き出すための第四の固定部と前記第一の電極で検出した信号を外部電極に伝達するための第五の固定部とを備えた第三の基板と、を有し
     前記第一の基板と前記第二の基板、および、前記第二の基板と前記第三の基板とは、接合により固定され、前記接合面を介して導通している構造であることを特徴とする慣性力センサ。
  3.  請求項2に記載の慣性力センサにおいて、
     前記第一の基板と前記第二の基板、あるいは、前記第二の基板と前記第三の基板の基板間接合のうち少なくともいずれかの接合が直接接合であることを特徴とする慣性力センサ。
  4.  請求項3に記載の慣性力センサにおいて、
     前記第一の基板および前記第二の基板および前記第三の基板はそれぞれ気密枠を備えており、
     前記気密枠同士を接合することにより前記気密枠の内部の気密を保つことを特徴とする慣性力センサ。
  5.  請求項4に記載の慣性力センサにおいて、
     前記気密枠の内部に前記振動体を備えることを特徴とする慣性力センサ。
  6.  請求項4に記載の慣性力センサにおいて、
     前記第一の基板および前記第二の基板および前記第三の基板は、導電性シリコンで形成され、
     前記第一の電極から前記第三の基板までの導通経路は、前記気密枠の内側に形成されていることを特徴とする慣性力センサ。
  7.  請求項1に記載の慣性力センサにおいて、
     前記第一の電極の慣性力検出部と前記振動体の静電容量検出に使用する検出部の面積が異なることを特徴とする慣性力センサ。
  8.  請求項2に記載の慣性力センサにおいて、
     前記第二の電極の慣性力検出部と前記振動体の静電容量検出に使用する検出部の面積が異なることを特徴とする慣性力センサ。
  9.  請求項8に記載の慣性力センサにおいて、
     前記第一の電極に形成された慣性力検出部と前記第二の電極に形成された慣性力検出部の面積が同じであることを特徴とする慣性力センサ。
  10.  請求項3に記載の慣性力センサにおいて、
     前記第一の電極と前記振動体との距離と、前記第二の電極と前記振動体との距離と、が等しいことを特徴とする慣性力センサ。
  11.  請求項3に記載の慣性力センサにおいて、
     前記第一の基板と前記第二の基板、あるいは、前記第二の基板と前記第三の基板の基板間の接合のいずれか一方をAu-Si、Au-Sn、Au-Ge、Au-In、Al-Ge、Cu-Snのいずれかの共晶接合により接合されることを特徴とする慣性力センサ。
PCT/JP2013/051690 2012-02-23 2013-01-28 慣性力センサ WO2013125295A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012036926A JP2013171009A (ja) 2012-02-23 2012-02-23 慣性力センサ
JP2012-036926 2012-02-23

Publications (1)

Publication Number Publication Date
WO2013125295A1 true WO2013125295A1 (ja) 2013-08-29

Family

ID=49005488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051690 WO2013125295A1 (ja) 2012-02-23 2013-01-28 慣性力センサ

Country Status (2)

Country Link
JP (1) JP2013171009A (ja)
WO (1) WO2013125295A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108450008A (zh) * 2015-09-30 2018-08-24 日立汽车系统株式会社 惯性力传感器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009322A (ja) * 2015-06-17 2017-01-12 三菱電機株式会社 加速度センサおよびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6308569B1 (en) * 1999-07-30 2001-10-30 Litton Systems, Inc. Micro-mechanical inertial sensors
JP2008528968A (ja) * 2005-01-21 2008-07-31 ハネウェル・インターナショナル・インコーポレーテッド 高性能mems実装アーキテクチャ
JP2010122143A (ja) * 2008-11-21 2010-06-03 Dainippon Printing Co Ltd 物理量センサおよびその製造方法、ならびに電子機器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304450A (ja) * 1995-05-12 1996-11-22 Zexel Corp 加速度センサ及び加速度センサの製造方法
JP2007292499A (ja) * 2006-04-21 2007-11-08 Sony Corp モーションセンサ及びその製造方法
JP4924238B2 (ja) * 2007-06-26 2012-04-25 大日本印刷株式会社 角速度センサの製造方法
JP5486271B2 (ja) * 2009-11-17 2014-05-07 ラピスセミコンダクタ株式会社 加速度センサ、及び加速度センサの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6308569B1 (en) * 1999-07-30 2001-10-30 Litton Systems, Inc. Micro-mechanical inertial sensors
JP2008528968A (ja) * 2005-01-21 2008-07-31 ハネウェル・インターナショナル・インコーポレーテッド 高性能mems実装アーキテクチャ
JP2010122143A (ja) * 2008-11-21 2010-06-03 Dainippon Printing Co Ltd 物理量センサおよびその製造方法、ならびに電子機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108450008A (zh) * 2015-09-30 2018-08-24 日立汽车系统株式会社 惯性力传感器
EP3358357A4 (en) * 2015-09-30 2019-11-06 Hitachi Automotive Systems, Ltd. SENSOR OF INERTIA

Also Published As

Publication number Publication date
JP2013171009A (ja) 2013-09-02

Similar Documents

Publication Publication Date Title
JP5092462B2 (ja) 力学量センサ
JP5450451B2 (ja) 垂直方向に集積した電子回路およびウェハスケール密封包装を含むx−y軸二重質量音叉ジャイロスコープ
US9366687B2 (en) Angular velocity detecting device
US20100127715A1 (en) Semiconductor physical quantity sensor and control device using the same
US20110138912A1 (en) Micro electro mechanical system
JP2006275660A (ja) 半導体センサおよびその製造方法
JP2005249454A (ja) 容量型加速度センサ
US9511993B2 (en) Semiconductor physical quantity detecting sensor
WO2015001813A1 (ja) 複合センサ
WO2007061056A1 (ja) センサ装置及びその製造方法
JP6258977B2 (ja) センサおよびその製造方法
JP2004333133A (ja) 慣性力センサ
WO2013125295A1 (ja) 慣性力センサ
JPH06342007A (ja) 半導体加速度センサおよびその試験方法
JP5771921B2 (ja) 封止型デバイス及びその製造方法
US20180002164A1 (en) Semiconductor sensor device
JP2007080985A (ja) 力学量センサ
JP2010008172A (ja) 半導体装置
CN113008420A (zh) 压力传感器及其制造方法
WO2015008422A1 (ja) センサ
JP2003344444A (ja) 半導体加速度センサ
WO2014030492A1 (ja) 慣性力センサ
JP2006214963A (ja) 加速度センサ及び電子機器並びに加速度センサの製造方法
US20220155072A1 (en) Physical quantity sensor
JP2010210402A (ja) Memsセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752008

Country of ref document: EP

Kind code of ref document: A1