WO2013124913A1 - 走査装置及び表示装置 - Google Patents

走査装置及び表示装置 Download PDF

Info

Publication number
WO2013124913A1
WO2013124913A1 PCT/JP2012/004341 JP2012004341W WO2013124913A1 WO 2013124913 A1 WO2013124913 A1 WO 2013124913A1 JP 2012004341 W JP2012004341 W JP 2012004341W WO 2013124913 A1 WO2013124913 A1 WO 2013124913A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
unit
support arm
reflecting mirror
display
Prior art date
Application number
PCT/JP2012/004341
Other languages
English (en)
French (fr)
Inventor
上仲 浩之
美佳 酒井
佐藤 慎一
直之 坪井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013504029A priority Critical patent/JP5426800B1/ja
Priority to US13/903,604 priority patent/US8988316B2/en
Publication of WO2013124913A1 publication Critical patent/WO2013124913A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
    • G09G3/025Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen with scanning or deflecting the beams in two directions or dimensions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/346Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on modulation of the reflection angle, e.g. micromirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/026Video wall, i.e. juxtaposition of a plurality of screens to create a display screen of bigger dimensions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0464Positioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • the present invention relates to a display device that displays an image in a display area by irradiating light rays, such as a see-through type head mounted display.
  • Wearable device is a general term for devices that users can wear on their bodies and that can acquire information, play AV, etc. without disturbing the operation.
  • One of the wearable devices is a head mounted display (HMD).
  • HMD head mounted display
  • HMDs can be broadly divided into two types.
  • One of them is an immersive HMD.
  • the immersive HMD has a liquid crystal display arranged at a close distance of eyes in an environment shielded from the outside world, and displays an image on the liquid crystal display. This method is often used in games and the like.
  • the other one is a see-through HMD.
  • the see-through HMD has a shape like, for example, glasses, and displays an image on a lens by irradiating a laser beam.
  • the see-through type HMD is expected as a display device particularly for wearable devices.
  • Patent Document 1 discloses a display device including an ultra-small reflection mirror.
  • pivot arms are arranged in two horizontal and vertical scanning directions. Using these pivot arms, light is scanned in both the horizontal and vertical directions while the reflecting mirror is constantly moved at a minute angle.
  • an object of the present invention is to provide a scanning device capable of easily expanding a scanning range and a display device capable of large display.
  • the scanning device is a scanning device that scans a light beam on a display area.
  • the scanning device includes a reflecting mirror that reflects the light beam toward the display area, a main scanning unit that changes an inclination of the reflecting mirror, a reflecting mirror unit that includes the reflecting mirror and the main scanning unit, and the reflecting mirror. And an auxiliary scanning unit that changes the inclination of the unit.
  • the auxiliary scanning unit that changes the tilt of the reflecting mirror unit including the reflecting mirror and the main scanning unit is provided separately from the main scanning unit that changes the tilt of the reflecting mirror. Even if the tilt is not changed, the tilt of the reflecting mirror can be increased by changing the tilt of the reflecting mirror unit in the auxiliary scanning unit. Therefore, the scanning range can be expanded without increasing the mechanical burden on the main scanning unit.
  • the main scanning section has a support arm that can be torsionally deformed, and the tilt of the reflecting mirror changes as the support arm is twisted.
  • the amount of twist of the support arm can be reduced by tilting the reflector unit. Therefore, the mechanical load on the support arm can be reduced.
  • the reflecting mirror unit includes a first supporting member that is disposed outside the reflecting mirror and a second supporting member that is disposed outside the first supporting member. It is out.
  • the support arm includes a first support arm that connects the reflecting mirror and the first support member, and a second support arm that connects the first support member and the second support member. .
  • the first support arm and the second support arm extend in directions orthogonal to each other.
  • the display area can be scanned in the X-axis direction due to the change in the tilt of the reflecting mirror due to the twist of the first support arm, and in the X-axis direction due to the change in the tilt of the reflector due to the twist of the second support arm. Scanning can be performed in the Y-axis direction of the orthogonal display areas. Therefore, the display area can be scanned two-dimensionally.
  • the auxiliary scanning unit includes a third support arm capable of torsional deformation that connects the second support member and the third support member.
  • the third support arm is arranged in series with either the first support arm or the second support arm. Then, the tilt of the reflecting mirror unit is changed by twisting the third support arm.
  • the third support arm that changes the inclination of the reflecting mirror unit is arranged in series with either the first support arm or the second support arm, the third support arm is arranged in series. By twisting in the same direction as the support arm, the range in which the support arm can be scanned can be expanded.
  • a MEMS mirror can be used as a main part including the reflector unit and the auxiliary scanning unit.
  • the display device includes the above-described scanning device, and displays an image on the display area by the light beam to be scanned.
  • the display device includes a light source unit that emits the light beam toward the scanning device, a scanning control unit that controls the scanning device, and an irradiation that controls the light source unit so as to emit the light beam in synchronization with the display of the image.
  • the display area has a plurality of element areas connected to each other. Then, the scanning control unit scans the light beam on any one of the element regions by changing the tilt of the reflecting mirror in a state where the tilt of the reflecting mirror unit is fixed, and the reflection The element area is controlled by changing the inclination of the mirror unit.
  • the display area has a plurality of element areas that are continuous with each other, and the scanning control unit controls the main scanning unit, thereby performing scanning for displaying an image for each of these element areas.
  • the scanning control unit controls the main scanning unit, thereby performing scanning for displaying an image for each of these element areas.
  • the auxiliary scanning unit By controlling the auxiliary scanning unit, the element region in which scanning is performed is switched. Therefore, the display range can be expanded without increasing the mechanical burden on the main scanning unit, and a large display can be achieved.
  • a display device that can display moving images can be realized.
  • the display device includes the above-described scanning device, and displays an image on the display area by the light beam to be scanned.
  • the display device includes a light source unit that emits the light beam toward the scanning device, a scanning control unit that controls the scanning device, and an irradiation that controls the light source unit so as to emit the light beam in synchronization with the display of the image.
  • a control unit By the operation of the main scanning unit, the light beam scans a certain scanning range smaller than the display area. Then, the scanning control unit changes the tilt of the reflecting mirror, changes the tilt of the reflecting mirror unit while scanning the light beam in the scanning range, and shifts the scanning range within the display area.
  • the scanning control unit controls the main scanning unit, so that the scanning control unit controls the auxiliary scanning unit while performing scanning to display an image in a certain scanning range smaller than the display area.
  • the scanning range shifts within the display area. Accordingly, the display range can be expanded without increasing the mechanical burden on the main scanning unit, and the image displayed in the scanning range moves in the display area as the scanning range shifts, so that the moving image display Can do.
  • the scanning range can be easily expanded.
  • the display device of the present invention a large display is possible.
  • FIG. 4 is a schematic view showing a cross section taken along line II in FIG. 3.
  • (A) to (c) show different states.
  • (A)-(c) is a figure for demonstrating the flow of a scan.
  • FIG. 5 is a timing chart of scanning with an HMD to which the present invention is applied. It is the schematic which shows the display in HMD of a modification. It is a figure for demonstrating the scanning range in HMD of a modification. It is a flowchart regarding the display operation of HMD of a modification. It is a timing chart of the scanning in HMD of a modification. It is another Example of the timing chart of the scanning in HMD of a modification. It is a schematic perspective view which shows the other example of application of this invention. It is a schematic perspective view which shows the other example of application of this invention.
  • FIG. 1 shows a see-through type HMD 1 (an example of a display device) to which the present invention is applied.
  • the illustrated HMD 1 includes a glasses-type display 2 and an operation terminal 3.
  • the glasses-type display 2 includes a glasses unit 10 and a laser unit 20.
  • the eyeglass unit 10 includes a lens 11, a lens frame 12, a temple 13, a nose pad 14, and the like.
  • a pair of lenses 11 and 11 are supported on a horizontally long lens frame 12, and these lenses 11 and 11 are arranged side by side.
  • the pair of nose pads 14, 14 are installed between the lenses 11, 11.
  • a pair of temples 13, 13 extending opposite to each other in a direction substantially orthogonal to the lens frame 12 is connected to each end of the lens frame 12 so as to be foldable.
  • the eyeglass unit 10 is worn by putting both noses on the nose pads 14 and putting both temples 13 on the ears in the same manner as normal glasses. By doing so, both lenses 11 are positioned immediately before both eyes (eyeball E).
  • the operation terminal 3 displays an image in cooperation with the laser unit 20.
  • the operation terminal 3 includes a storage device 3a for storing image data, a communication device 3b for wirelessly transmitting image data to the laser unit 20, an operation device 3c for operating on / off of the laser unit 20, and the like.
  • the operation terminal 3 is not essential for the HMD 1. For example, if the function performed by the operation terminal 3 can be incorporated into the laser unit 20, the operation terminal 3 can be omitted.
  • the laser unit 20 has a small rod or columnar appearance and is attached to the eyeglass unit 10.
  • the laser unit 20 is disposed along the inside of one temple 13.
  • An irradiation hole 20 a is formed in the laser unit 20, and a laser beam is irradiated from the irradiation hole 20 a toward one lens 11.
  • the laser beam is applied to the display area 5 provided in the lens 11.
  • the display area 5 is formed with a deflecting structure for deflecting the irradiated laser beam.
  • the laser beam irradiated on the display area 5 is reflected toward the pupil of the eyeball E. Then, when the reflected light is focused on the retina of the eyeball E, an image drawn by the laser beam is visually recognized.
  • the deflection structure various methods such as a half mirror structure, a frosted glass structure, and a laminated structure of a film containing a fluorescent material are conceivable.
  • Hologram elements and diffractive optical elements can also be used for the deflection structure. In short, it is sufficient if the irradiated laser beam can be reflected toward the eye.
  • FIG. 2 shows the structure of the laser unit 20.
  • the laser unit 20 includes a unit case 21, a laser light source 22 (light source unit), a scanning device 23, a control device 24, a battery 25, and the like.
  • the laser light source 22, the scanning device 23, the control device 24, and the battery 25 are accommodated in the unit case 21.
  • the laser light source 22 generates a laser beam and irradiates it toward the scanning device 23.
  • a semiconductor laser is used for the laser light source 22 of the present embodiment from the viewpoint of cost and size.
  • the battery 25 supplies power to the laser light source 22, the scanning device 23, and the control device 24.
  • the battery 25 is preferably replaceable or rechargeable.
  • a charging terminal can be provided outside the unit case 21, and the battery 25 can be charged through the terminal.
  • the scanning device 23 reflects the laser beam toward the display area 5 and scans the display area 5.
  • the MEMS mirror 30 is used in the main part of the scanning device 23.
  • MEMS is an abbreviation for “Micro Electro Mechanical Systems” and means a device in which mechanical element parts, sensors, actuators, electronic circuits, and the like are integrated on a single silicon substrate, glass substrate, organic material, and the like.
  • the MEMS mirror 30 is a device in which the MEMS technology is applied to optical processing, and is suitable for downsizing.
  • FIG. 3 shows the structure of the MEMS mirror 30.
  • the MEMS mirror 30 of this embodiment includes a reflecting mirror 31, a support base 32, an inner frame 33 (first support member), an outer frame 34 (second support member), a support frame 35 (third support member), and a first support.
  • the inner part from the outer frame 34 that is, the reflecting mirror 31, the support base 32, the inner frame 33, the outer frame 34, the first support arm 36 and the second support arm 37 constitute a reflecting mirror unit 45.
  • the first support arm 36 and the second support arm 37 constitute a main scanning unit
  • the third support arm 38 constitutes an auxiliary scanning unit.
  • the support base 32, the inner frame 33, the outer frame 34, the support frame 35, the first support arm 36, the second support arm 37, and the third support arm 38 are made of a thin film such as a silicon wafer having a thickness less than 1 mm, for example. . These are integrally formed using a known thin film manufacturing technique such as semiconductor manufacturing.
  • the support frame 35 is formed in a rectangular frame shape.
  • the outer frame 34 is formed in a rectangular frame shape that is slightly smaller than the support frame 35.
  • the outer frame 34 is disposed inside the support frame 35 with a gap.
  • the inner frame 33 is formed in a rectangular frame shape that is slightly smaller than the outer frame 34.
  • the inner frame 33 is disposed inside the outer frame 34 with a gap.
  • the support base 32 is formed in a rectangular plate shape that is slightly smaller than the inner frame 33.
  • the support base 32 is disposed inside the inner frame 33 with a gap therebetween.
  • the reflecting mirror 31 is installed on the upper surface of the support base 32.
  • the first support arm 36 is disposed in the gap between the support base 32 and the inner frame 33 and connects them.
  • the second support arm 37 is disposed in the gap between the inner frame 33 and the outer frame 34 and connects them.
  • the third support arm 38 is disposed in the gap between the outer frame 34 and the support frame 35 and connects them.
  • the first support arm 36, the second support arm 37, and the third support arm 38 are all configured as a pair.
  • Each of the first support arms 36 and the like is disposed on each of a pair of sides positioned opposite to each other such as the support frame 35 and the like.
  • the first support arm 36 is disposed so as to extend along the first axis A ⁇ b> 1 passing through the center of the support base 32.
  • the second support arm 37 is disposed so as to extend along the second axis A2 passing through the center of the support base 32 and orthogonal to the first axis A1.
  • the third support arm 38 of this embodiment is arranged in series with the first support arm 36. That is, the third support arm 38 is disposed so as to extend along the first axis A1.
  • the first support arm 36, the second support arm 37, and the third support arm 38 are all torsionally deformable. Therefore, the support base 32 can rotate around the first axis A1 with respect to the inner frame 33, the inner frame 33 can rotate around the second axis A2 with respect to the outer frame 34, The outer frame 34 is rotatable with respect to the support frame 35 about the first axis A1.
  • the support frame 35 is fixed to the scanning device 23.
  • the first coil 39 is provided on the support base 32.
  • the first coil 39 is arranged so as to go around the support base 32.
  • the second coil 40 is provided on the inner frame 33.
  • the second coil 40 is provided so as to go around the inner frame 33.
  • the third coil 41 is provided on the outer frame 34.
  • the third coil 41 is arranged so as to go around the outer frame 34.
  • the first support arm 36 is twisted by the Lorentz force by passing a current through the first coil 39.
  • the support base 32 is rotationally displaced about the first axis A1 according to the amount of current.
  • the second support arm 37 is twisted by passing a current through the second coil 40.
  • the inner frame 33 is rotationally displaced about the second axis A2 according to the amount of current.
  • the third support arm 38 is twisted by passing a current through the third coil 41.
  • the outer frame 34 is rotationally displaced about the first axis A1 according to the amount of current.
  • the tilt of the reflecting mirror 31 can be changed around the first axis A1 and the second axis A2 by controlling the amount of current flowing through the first coil 39 and the second coil 40. Furthermore, by controlling the amount of current flowing through the third coil 41, the tilt of the reflecting mirror unit 45 can be changed around the first axis A1.
  • the scanning device 23 is arranged so that the laser beam strikes the reflecting mirror 31 and is reflected by the display area 5 as shown in FIG.
  • the reflected laser beam scans the display area 5 by controlling the tilt of the reflecting mirror 31.
  • the reflected laser beam scans along the X axis extending laterally of the display area 5 by controlling the tilt of the reflecting mirror 31 around the first axis A1. Then, by controlling the tilt of the reflecting mirror 31 around the second axis A2, the reflected laser beam scans along the Y axis (perpendicular to the X axis) extending vertically in the display area 5. .
  • the display area 5 is scanned without changing the inclination of the reflecting mirror 31 (inclination with respect to the inner frame 33) by controlling the inclination of the reflecting mirror unit 45 about the first axis A1.
  • the possible range is expanded in the X-axis direction (details will be described later).
  • FIG. 5 shows the configuration of the laser unit 20 including the control device 24.
  • the laser light source 22 and the scanning device 23 are driven and controlled by a control device 24.
  • the control device 24 includes an irradiation control unit 51, a scanning control unit 52, a synchronization control unit 53, a controller 54, a communication unit 55, a memory 56, and the like.
  • the irradiation control unit 51 cooperates with the laser light source 22 to control on / off of laser beam irradiation and / or output intensity of the laser beam. Although details will be described later, in particular, the irradiation control unit 51 executes a process of irradiating light rays in synchronization with the display of an image.
  • the scanning control unit 52 controls the scanning of the laser beam in cooperation with the scanning device 23.
  • the scanning control unit 52 includes a first control unit 52a, a second control unit 52b, and a third control unit 52c.
  • the first control unit 52a controls the twist of the first support arm 36, adjusts the inclination of the reflecting mirror 31 around the first axis A1, and scans the display area 5 in the X-axis direction.
  • the second control unit 52b controls the torsion of the second support arm 37, adjusts the inclination of the reflecting mirror 31 around the second axis A2, and scans the display area 5 in the Y-axis direction.
  • the third control unit 52c controls torsion of the third support arm 38, adjusts the inclination of the reflecting mirror unit 45 about the first axis A1, and expands the range in which scanning in the X-axis direction is possible. Process.
  • the synchronization control unit 53 controls the synchronization of the processes of the irradiation control unit 51 and the scanning control unit 52 in cooperation with the controller 54. Specifically, the synchronization control unit 53 outputs a synchronization signal to the irradiation control unit 51 and the scanning control unit 52 based on an instruction from the controller 54. By inputting a synchronization signal to the irradiation control unit 51 and the scanning control unit 52, the timing of irradiation and scanning is synchronized.
  • a scanning line is formed on the display area 5 and an image is displayed.
  • a scanning line since an image is displayed by irradiation with a laser beam, a scanning line includes a display portion (irradiated with a laser beam) and a non-display portion (not irradiated with a laser beam) that does not configure an image. Is included.
  • the communication unit 55 communicates with the operation terminal 3 and acquires image data from the operation terminal 3.
  • Communication between the communication unit 55 and the operation terminal 3 may be either wireless or wired, but wireless is preferable from the viewpoint of operability.
  • the communication unit 55 is not essential.
  • the image data may be acquired via a storage medium such as a memory card. If the image data can be generated by the controller 54, neither the communication unit 55 nor the operation terminal 3 is required. In short, it is sufficient that the laser unit 20 can acquire necessary image data.
  • the memory 56 temporarily stores image data as well as data such as programs.
  • Specific examples of the memory 56 include a DRAM, an SRAM, and a flash memory.
  • the storage capacity of the image data in the memory 56 may be a storage capacity in units of frames or a storage capacity in units of scanning lines. However, since the calculation burden of the controller 54 can be reduced, a larger storage capacity is preferable.
  • the controller 54 has a calculation function and a control function, and comprehensively controls the entire laser unit 20. Specifically, the controller 54 performs a decompression process, an image process, or the like on the acquired image data and temporarily stores the acquired image data in the memory 56, or the irradiation control unit 51, the scan control unit 52, and the like based on the temporarily stored image data. A process for controlling the synchronization control unit 53 is executed.
  • Fig. 6 shows the display area 5.
  • the display area 5 of the present embodiment is formed in a horizontally long rectangular shape extending in the X-axis direction. Specifically, the display area 5 is composed of a plurality of element areas 60 connected in series in the horizontal direction.
  • the display area 5 of the present embodiment is composed of three element areas 60 (the element areas 60 are appropriately distinguished using reference numerals 60a to 60c).
  • the display area 5 including the element area 60 is composed of a plurality of pixel areas P partitioned in a lattice shape along the X axis and the Y axis.
  • the element area 60 has a rectangular shape with the same dimensions, and has a standard size of a conventional display area. Therefore, the display area 5 extends in the X-axis direction by the number of the element areas 60, and the dimension of the display area 5 of the present embodiment in the X-axis direction is three times that of the standard display area.
  • a still image D showing an icon for each element area 60 is displayed.
  • the image D may be displayed across adjacent element regions 60.
  • the image D may be a moving image.
  • scanning is performed for each element region 60.
  • scanning is performed between the pixel region P0 located at the upper left corner and the pixel region P1 located at the lower right corner.
  • the scanning moves back and forth between both ends in the X-axis direction in the element region 60a while moving in the Y-axis direction to scan the entire range of the element region 60a.
  • the image area D is displayed by irradiating the pixel region P constituting the image D with a laser beam.
  • the pixel region Pr constituting the image D is irradiated with the laser beam, and the pixel region Ps not forming the image D is not irradiated with the laser beam.
  • the scanning lines are visually recognized as an image D by performing a series of these scans at high speed.
  • the first support arm 36 Since the display area 5 of the present embodiment extends in the X-axis direction, the first support arm 36 needs to be largely twisted when the entire area of the display area 5 is scanned only by the tilt of the reflecting mirror. However, the range in which the first support arm 36 is twisted is limited, and even if the first support arm 36 is twisted, the mechanical load on the first support arm 36 is large and may be damaged.
  • the scanning unit 23 is provided with the reflecting mirror unit 45 and the third support arm 38 so that the entire display area 5 can be scanned without increasing the amount of twist of the first support arm 36. . This point will be specifically described with reference to the flowchart shown in FIG.
  • the user operates the operation terminal 3 to turn on the laser unit 20.
  • image data is transmitted to the laser unit 20 through the communication unit 55 as necessary until an off operation is performed, and the image D is displayed in the display area 5 (steps S1 and S2).
  • the displayed image D is often a still image as shown in the figure, but can be either a still image or a moving image.
  • the image data acquired via the communication unit 55 is temporarily stored in the memory 56 as appropriate.
  • the controller 54 controls the third control unit 52c based on the temporarily stored image data, and positions the reflector unit 45 in accordance with the element region 60 to be scanned, that is, the element region 60 from which scanning is started. (Step S3).
  • the first support arm 36 and the second support arm 37 are not twisted, and the support base 32 and the inner frame 33 are parallel to each other (reference state).
  • the tilt of the reflector unit 45 is set so that the laser beam is reflected at the center line J1 that bisects the element region 60a to be scanned in the X-axis direction, and the reflector unit 45 is fixed by the tilt. Is done.
  • the controller 54 controls the first control unit 52a and the second control unit 52b based on the temporarily stored image data. Thereby, the inclination of the reflecting mirror 31 changes around the first axis A1 and the second axis A2, and the laser beam scans the entire range of the element region 60 (step S4).
  • the support base 32 moves between a predetermined angle ⁇ x about the first axis A1. Shake.
  • the support base 32 also swings between a predetermined angle from the reference state around the second axis A2.
  • step S6 When the pixel area P1 is reached and scanning in the element area 60a is completed (Yes in step S5), the element area 60 is switched (step S6).
  • the controller 54 controls the third control unit 52c to change the tilt of the reflecting mirror unit 45.
  • the inclination of the reflector unit 45 is set at a predetermined angle ⁇ 1 so that the laser beam is reflected on the center line J2 of the element region 60b to be scanned next.
  • the reflecting mirror unit 45 is fixed with the inclination (step S3).
  • the scanable range is shifted in the X-axis direction due to the tilt of the reflecting mirror 31, and the process moves to the next element region 60b to be scanned.
  • the reflecting mirror 31 tilts while the tilt at the end of scanning in the element region 60a (tilt with respect to the reflecting mirror unit 45) is held, and as a result, the scanning position of the pixel region P1. Shifts to the pixel region P2 of the element region 60b. Accordingly, during this time, the twisted state of the first support arm 36 is constant, and thus there is an advantage that the mechanical load on the first support arm 36 and the processing load for controlling the first support arm 36 are reduced.
  • step S4 scanning is performed in the reverse direction from the pixel region P2 toward the pixel region P3, and the entire range is scanned (step S4).
  • the support base 32 is centered on the first axis A1 as in the element region 60a. Swings between a predetermined angle ⁇ x.
  • step S6 switching control of the element area 60 is performed.
  • the controller 54 changes the inclination of the reflecting mirror unit 45 as in the previous switching, and the inclination of the reflecting mirror unit 45 is set to a predetermined angle ⁇ 2 as shown in FIG.
  • the reflecting mirror unit 45 is fixed by the inclination (step S3).
  • the range that can be scanned by the tilt of the reflecting mirror 31 is further shifted in the X-axis direction, and then moves to the element region 60c to be scanned.
  • the scanning position of the pixel region P3 shifts to the pixel region P4 of the element region 60c.
  • step S4 scanning is performed again in the reverse direction from the pixel region P4 toward the pixel region P5, and the entire range is scanned (step S4).
  • the support base 32 swings similarly to the other element regions 60.
  • step S6 switching control of the element region 60 is performed.
  • the next scanning is performed from the adjacent element region 60. Thereby, the burden on the third support arm 38 can be reduced. That is, the reflecting mirror unit 45 is set to the state shown in FIG. 8B, and the element region 60b is scanned. Subsequently, the reflecting mirror unit 45 is set to the state shown in FIG. 8A, and the element region 60a is scanned.
  • FIG. 10 shows a timing chart in the scanning of this embodiment.
  • the right part of the timing chart represents the scanning position in the X-axis direction.
  • the left part of the timing chart represents the scanning position in the Y-axis direction.
  • the thick line on the right side of the timing chart represents the position of the center line J1 and the like.
  • the first support arm 36 needs to be twisted at a large angle ( ⁇ x + ⁇ 2).
  • a part ( ⁇ 2) is assisted by the third support arm 38, so that the twisting angle of the first support arm 36 does not need to be changed.
  • the scanning range can be expanded without increasing the mechanical burden on the first support arm 36. Since the scanning control in each element region 60 is made uniform, the processing load of the control can be reduced.
  • the still image D can be displayed as a moving image as shown in FIG. 11, for example, by changing the control applied to the HMD 1 described above.
  • the basic configuration and control of the display device of this modification are the same as those of the HMD1. Therefore, a configuration different from the HMD 1 in the display device (HMD 1 ′) of the present modification will be described in detail.
  • the entire range of the display area 5 is scanned by changing the inclination of the reflecting mirror unit 45 for each element area 60 and switching the element area 60 to be scanned intermittently.
  • the HMD 1 ′ is configured to scan the entire range of the display area 5 while continuously changing the scanning range.
  • a certain scanning range 71 corresponding to the element region 60 of the HMD 1 is set in advance for the display region 5.
  • the size of the scanning range 71 in the Y-axis direction coincides with the size of the display region 5 in the Y-axis direction
  • the size of the scanning range 71 in the X-axis direction corresponds to the size of the display region 5 in the X-axis direction. It is set smaller than the size.
  • Information on the scanning range 71 is stored in the memory 56.
  • scanning for displaying the image D in units of the scanning range 71 is performed based on the data of the scanning range 71 stored in the memory 56 and the temporarily stored image data.
  • One icon still image D is displayed in the scanning range 71 of the present embodiment.
  • this icon is displayed so as to move in the display area 5 along the X-axis direction. This point will be specifically described with reference to the flowchart shown in FIG.
  • step S1 and step S2 are the same as HMD1, description thereof is omitted.
  • the controller 54 controls the first control unit 52a and the second control unit 52b based on the temporarily stored image data. Thereby, the tilt of the reflecting mirror 31 changes around the first axis A1 and the second axis A2, and the laser beam scans while reciprocating continuously over the entire scanning range 71 (step S11).
  • the laser beam is reflected by the center line Jn that bisects the scanning range 71 in the X-axis direction (reference state). It swings between a predetermined angle around the first axis A1 and the second axis A2.
  • the scanning direction is reversed, and scanning in the opposite direction is performed from the pixel area Pd toward the pixel area Pu. These scans are repeated until an off operation for stopping the display is performed.
  • the scanning range 71 is shifted within the display area 5 by changing the tilt of the reflecting mirror unit 45 (step S12).
  • the speed at which the scanning range 71 is shifted may be constant or may be changed by adding acceleration. In this embodiment, the shift is performed at a constant speed.
  • the center line Jn of the scanning range 71 is continuously changed due to the change in the tilt of the reflecting mirror unit 45. Shift to the right. Accordingly, the icon displayed in the scanning range 71 moves to the right side.
  • step S14 the direction in which the scanning range 71 is shifted is reversed.
  • the shift direction is reversed in the direction toward the left end of the display area 5. Control of the shift direction is performed until an off operation is performed, and reversal of the shift direction is performed repeatedly.
  • the icon moves to the display area 5 and is displayed as a moving image. If the image data is changed during the display, the display content changes accordingly. For example, if the icon image data disappears in the middle of display, the icon display disappears accordingly. If the icon image data is changed, the icon display changes accordingly.
  • FIG. 14 shows a timing chart in the scanning of this modification. Similar to FIG. 10, the right portion of the timing chart represents the scanning position in the X-axis direction. The left part of the timing chart represents the scanning position in the Y-axis direction. A thick line in the X-axis direction represents the position of the center line Jn.
  • a distortion correction mechanism is incorporated in the controller 54 in order to display the image D without distortion.
  • a distortion correction program for calculating in advance a distortion coefficient corresponding to the degree of distortion of the image D based on the tilting angle and tilting angle of the reflecting mirror unit 45 is installed in the control device 24.
  • the controller 54 uses the distortion coefficient obtained by the distortion correction mechanism to correct the image data before outputting it to the irradiation control unit 51. By doing so, distortion of the image D is corrected, and the image D without distortion can be displayed as a moving image. When the distortion of the image D can be ignored or when the distortion of the image D is acceptable, the distortion correction mechanism may not be provided.
  • the scanning range 71 may be shifted intermittently when the scanning direction is reversed in scanning in the X-axis direction. Then, since the image D without distortion is intermittently moved and displayed, a moving image display without distortion can be performed.
  • the display device according to the present invention is not limited to the above-described embodiment, and includes various other configurations.
  • Display device is not limited to HMD.
  • an image D may be displayed by incorporating the laser unit 20 or the like into a table or the like and reflecting the laser beam with a mirror.
  • the laser unit 20 or the like may be incorporated in the front panel of the automobile, and the image D may be displayed by reflecting the laser beam with the windshield. It can also be displayed on the window glass of a residence or the windshield of a helmet.
  • the laser light source 22 is not limited to a semiconductor laser.
  • an LED light source can be used.
  • the light emitted from the LED light source may be collected using a lens or the like to form a laser beam.
  • any light source capable of irradiating light condensed to such an extent that does not hinder image recognition may be used.
  • the MEMS mirror 30 may be driven not only by electromagnetic force but also by electrostatic force.
  • the scanning device 23 is not limited to the MEMS mirror 30 and may be configured using, for example, a galvanometer mirror.
  • 1,1 'HMD display device
  • glasses-type display 5 display area 10 glasses unit 20 laser unit 22 laser light source (light source part) 23 Scanning Device 30 MEMS Mirror 31 Reflecting Mirror 32 Support Stand 33 Inner Frame (First Support Member) 34 Outer frame (second support member) 35 Support frame (third support member) 36 First support arm (main scanning section) 37 Second support arm (main scanning section) 38 Third support arm (auxiliary scanning unit) 39 1st coil 40 2nd coil 41 3rd coil 42 Permanent magnet 45 Reflective mirror unit 51 Irradiation control part 52 Scan control part 52a 1st control part 52b 2nd control part 52c 3rd control part 53 Synchronization control part 54 Controller 55 Communication Part 56 Memory (storage part) 60 element area 70 HMD 71 Scanning range A1 First axis A2 Second axis

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

 表示領域5上で光線を走査させる走査装置23である。走査装置23は、表示領域5に向けて光線を反射する反射鏡31と、反射鏡31の傾きを変化させる主走査部36,37と、反射鏡31及び主走査部36,37を含む反射鏡ユニット45と、反射鏡ユニット45の傾きを変化させる補助走査部38とを備える。

Description

走査装置及び表示装置
 本発明は、例えば、シースルー型のヘッドマウントディスプレイ等、光線を照射して表示領域に画像を表示する表示装置に関する。
 近年、AV機器の軽量化及び小型化が大きく進んでいる。その流れの中で新たな分野としてウェアラブル機器が注目されている。
 ウェアラブル機器とは、ユーザーが身体に装着し、動作を邪魔されることなく、情報取得やAV再生等ができる機器の総称である。このウェアラブル機器の1つに、ヘッドマウントディスプレイ(HMD)がある。
 現状、HMDは2種類に大別できる。そのひとつは、没入型のHMDである。没入型のHMDは、外界から遮断された環境下で目の至近距離に配置された液晶ディスプレイを有しており、その液晶ディスプレイに画像を表示する。この方式はゲームなどで利用される場合が多い。
 他のひとつは、シースルー型のHMDである。シースルー型のHMDは、例えば、眼鏡のような形状をしていて、レーザー光を照射してレンズに画像を表示する。
 両HMDを比較すると、前者は視界が遮られてしまうため、用途が限られる。それに対し、後者は、視界が遮られずに表示を見ることができる。そのため、シースルー型のHMDは、特にウェアラブル機器向けの表示装置として期待されている。
 シースルー型のHMDで重要な光学処理の1つに、レーザー光を表示サイズに応じて走査させる処理がある。特許文献1には、超小型の反射ミラーを備えた表示装置が開示されている。
 そこでは、水平及び垂直の2つの走査方向別に一対のピボットアームが配置されている。これらピボットアームを用いて、反射ミラーを微小な角度で絶えず動かしながら、水平及び垂直の両方向に光を走査させている。
特許第4379331号公報
 特許文献1の表示装置では、走査方向ごとに一対のピボットアームが配置されているので、走査範囲が大きくなると、ピボットアームの機械的負担が大きくなる。従って、拡大できる走査範囲は限られるため、大きな表示は困難である。
 そこで本発明の目的は、走査範囲を容易に拡大できる走査装置、及び大きな表示ができる表示装置を提供することにある。
 本発明に係る走査装置は、表示領域上で光線を走査させる走査装置である。走査装置は、前記表示領域に向けて前記光線を反射する反射鏡と、前記反射鏡の傾きを変化させる主走査部と、前記反射鏡及び前記主走査部を含む反射鏡ユニットと、前記反射鏡ユニットの傾きを変化させる補助走査部と、を備える。
 この走査装置によれば、反射鏡の傾きを変化させる主走査部とは別に、反射鏡及び主走査部を含む反射鏡ユニットの傾きを変化させる補助走査部が備えられているので、反射鏡の傾きを変えなくても、補助走査部で反射鏡ユニットの傾きを変化させれば、反射鏡の傾きを大きくできる。従って、主走査部の機械的負担を増加させずに走査範囲を拡大できる。
 具体的には、前記主走査部は、捩り変形可能な支持腕を有し、前記支持腕が捩られることによって前記反射鏡の傾きが変化する。
 この場合、反射鏡の傾きが大きくなっても、反射鏡ユニットを傾ければ支持腕の捩り量を減らすことができる。従って、支持腕の機械的負荷を軽減できる。
 より具体的には、前記反射鏡ユニットは、前記反射鏡の外側に離れて配置された第1支持部材と、前記第1支持部材の外側に離れて配置された第2支持部材と、を含んでいる。前記支持腕は、前記反射鏡と前記第1支持部材とを連結する第1支持腕と、前記第1支持部材と前記第2支持部材とを連結する第2支持腕と、を有している。そして、前記第1支持腕と前記第2支持腕とが、互いに直交する方向に延びている。
 この場合、例えば、第1支持腕の捩りによる反射鏡の傾き変化により、表示領域のX軸方向に走査させることができ、第2支持腕の捩りによる反射鏡の傾き変化により、X軸方向に直交する表示領域のY軸方向に走査させることができる。従って、表示領域を2次元的に走査できる。
 更に具体的には、前記第2支持部材の外側に離れて配置された第3支持部材を更に備える。前記補助走査部は、前記第2支持部材と前記第3支持部材とを連結する捩り変形可能な第3支持腕を有している。前記第3支持腕は、前記第1支持腕及び前記第2支持腕のいずれか一方と直列に配置されている。そして、前記第3支持腕が捩られることによって前記反射鏡ユニットの傾きが変化する。
 この場合、反射鏡ユニットの傾きを変化させる第3支持腕が、第1支持腕及び前記第2支持腕のいずれか一方と直列に配置されているので、第3支持腕を、直列に配置された支持腕と同じ方向に捩ることで、その支持腕が走査できる範囲を拡大することができる。
 例えば、前記反射鏡ユニット及び補助走査部を含む主要部分には、MEMSミラーを用いることができる。
 そうすれば、MEMSミラーの耐久性が向上するため、高品質なHMD等を提供できる。
 上述した走査装置を用いれば、大きな表示ができる表示装置を実現できる。
 例えば、その表示装置は、上述した走査装置を含み、走査する前記光線によって前記表示領域に画像を表示する。表示装置は、前記走査装置に向けて前記光線を発する光源部と、前記走査装置を制御する走査制御部と、前記画像の表示に同期して前記光線を発するように前記光源部を制御する照射制御部と、を備える。前記表示領域は、互いに連なる複数の要素領域を有している。そして、前記走査制御部が、前記反射鏡ユニットの傾きを固定した状態で、前記反射鏡の傾きを変化させることにより、いずれか1つの前記要素領域上で前記光線を走査させる制御と、前記反射鏡ユニットの傾きを変化させることにより、前記要素領域を切り替える制御と、を行う。
 この表示装置の場合、表示領域が互いに連なる複数の要素領域を有し、走査制御部が主走査部を制御することにより、これら要素領域ごとに画像を表示する走査が行われ、走査制御部が補助走査部を制御することにより、走査が行われる要素領域が切り替わる。従って、主走査部の機械的負担を増加させずに表示できる範囲が拡大でき、大きな表示ができる。
 更に、動画的な表示ができる表示装置も実現できる。
 例えば、その表示装置は、上述した走査装置を含み、走査する前記光線によって前記表示領域に画像を表示する。表示装置は、前記走査装置に向けて前記光線を発する光源部と、前記走査装置を制御する走査制御部と、前記画像の表示に同期して前記光線を発するように前記光源部を制御する照射制御部と、を備える。前記主走査部の作動により、前記光線は、前記表示領域よりも小さい一定の走査範囲を走査する。そして、前記走査制御部が、前記反射鏡の傾きを変化させて、前記走査範囲で前記光線を走査させながら、前記反射鏡ユニットの傾きを変化させて、前記走査範囲を前記表示領域内でシフトさせる。
 この表示装置の場合、走査制御部が主走査部を制御することにより、表示領域よりも小さい一定の走査範囲で画像を表示する走査を行いながら、走査制御部が補助走査部を制御することにより、走査範囲が表示領域内でシフトする。従って、主走査部の機械的負担を増加させずに表示できる範囲が拡大できることに加え、走査範囲で表示される画像が、走査範囲のシフトに伴って表示領域を移動するため、動画的な表示ができる。
 本発明の走査装置によれば、走査範囲を容易に拡大できる。本発明の表示装置によれば、大きな表示ができる。
本発明を適用したHMDを示す概略斜視図である。 レーザーユニットの構造を示す概略断面図である。 走査装置の要部の構造を示す概略斜視図である。 走査装置の要部の配置を示す概略斜視図である。 レーザーユニットの構成を示すブロック図である。 表示領域を示す概略図である。 HMDの表示動作に関するフローチャートである。 図3におけるI-I線断面を示す概略図である。(a)~(c)は、それぞれ異なる状態を示している。 (a)~(c)は、走査の流れを説明するための図である。 本発明を適用したHMDでの走査のタイミングチャートである。 変形例のHMDでの表示を示す概略図である。 変形例のHMDにおける走査範囲を説明するための図である。 変形例のHMDの表示動作に関するフローチャートである。 変形例のHMDでの走査のタイミングチャートである。 変形例のHMDにおける走査のタイミングチャートの別実施例である。 本発明の他の適用例を示す概略斜視図である。 本発明の他の適用例を示す概略斜視図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。ただし、以下の説明は、本質的に例示に過ぎず、本発明、その適用物あるいはその用途を制限するものではない。
 (表示装置の構成)
 図1に、本発明を適用したシースルー型のHMD1(表示装置の一例)を示す。図示のHMD1は、眼鏡型ディスプレイ2や操作端末3などで構成されている。
 眼鏡型ディスプレイ2には、眼鏡ユニット10とレーザーユニット20とが備えられている。眼鏡ユニット10は、レンズ11やレンズフレーム12、テンプル13、ノーズパッド14などで構成されている。
 眼鏡ユニット10では、横長なレンズフレーム12に一対のレンズ11,11が支持されていて、これらレンズ11,11が横並びに配置されている。一対のノーズパッド14,14は、これらレンズ11,11の間に設置されている。レンズフレーム12の各端には、レンズフレーム12と略直交する方向に対向して延びる一対のテンプル13,13が折り畳み可能に連結されている。
 眼鏡ユニット10は、通常の眼鏡と同様に、両ノーズパッド14に鼻を当て、両テンプル13を耳にかけて装着する。そうすることで、両レンズ11が両眼(眼球E)の直前に位置決めされる。
 操作端末3は、レーザーユニット20と協働して画像を表示する。操作端末3には、画像データを記憶する記憶装置3aや、画像データをレーザーユニット20に無線送信する通信装置3b、レーザーユニット20のオンオフ等を操作する操作装置3cなどが備えられている。
 操作端末3はHMD1に必須ではない。例えば、操作端末3が果たす機能をレーザーユニット20に組み込むことができれば、操作端末3は省略できる。
 レーザーユニット20は、小さな棒ないし柱状の外観を有し、眼鏡ユニット10に取り付けられている。レーザーユニット20は、一方のテンプル13に沿ってその内側に配置されている。レーザーユニット20には照射孔20aが形成されており、照射孔20aから一方のレンズ11に向けてレーザー光線が照射される。
 レーザー光線は、レンズ11に設けられた表示領域5に照射される。図示はしないが、表示領域5には、照射されたレーザー光線を偏向させる偏向構造が形成されている。それにより、表示領域5に照射されたレーザー光線は眼球Eの瞳孔に向かって反射される。そして、その反射光が、眼球Eの網膜で焦点を結ぶことにより、レーザー光線が描く画像が視認される。
 偏向構造としては、例えば、ハーフミラー構造や磨りガラス構造、蛍光材料を含むフィルムの積層構造など、様々な方法が考えられる。ホログラム素子や回折光学素子なども偏向構造に利用できる。要は、照射されたレーザー光線を眼に向けて反射できるものであればよい。
 図2に、レーザーユニット20の構造を示す。レーザーユニット20には、ユニットケース21やレーザー光源22(光源部)、走査装置23、制御装置24、バッテリー25などが備えられている。レーザー光源22、走査装置23、制御装置24及びバッテリー25は、ユニットケース21に収容されている。
 レーザー光源22は、レーザー光線を発生し、走査装置23に向けて照射する。本実施形態のレーザー光源22には、コスト及びサイズの観点から、半導体レーザーが用いられている。
 バッテリー25は、レーザー光源22、走査装置23及び制御装置24に電力を供給する。バッテリー25は、交換又は充電できるのが好ましい。例えば、ユニットケース21の外部に充電用の端子を設け、その端子を通じてバッテリー25に充電可能にすることができる。
 (走査装置の構成)
 走査装置23は、レーザー光線を表示領域5に向けて反射し、表示領域5の上で走査させる。本実施形態では、走査装置23の主要部にMEMSミラー30が用いられている。
 MEMSとは、「Micro Electro Mechanical Systems」の略称であり、機械要素部品、センサー、アクチュエータ、電子回路などを一つのシリコン基板、ガラス基板、有機材料などの上に集積したデバイスを意味する。MEMSミラー30は、そのMEMS技術を光学処理に応用したデバイスであり、小型化に適している。
 図3に、MEMSミラー30の構造を示す。本実施形態のMEMSミラー30は、反射鏡31や支持台32、内枠33(第1支持部材)、外枠34(第2支持部材)、支持枠35(第3支持部材)、第1支持腕36、第2支持腕37、第3支持腕38、第1コイル39、第2コイル40、第3コイル41、永久磁石42などで構成されている。
 これらのうち、外枠34から内側の部分、すなわち、反射鏡31、支持台32、内枠33、外枠34、第1支持腕36及び第2支持腕37は、反射鏡ユニット45を構成している。また、第1支持腕36及び第2支持腕37は、主走査部を構成し、第3支持腕38は補助走査部を構成している。
 支持台32、内枠33、外枠34、支持枠35、第1支持腕36、第2支持腕37及び第3支持腕38は、例えば、厚みが1mmよりも薄いシリコンウエハなどの薄膜からなる。これらは、半導体製造など公知の薄膜製造技術を用いて一体に形成されている。
 支持枠35は、矩形の枠形状に形成されている。外枠34は、支持枠35よりもひとまわり小さい矩形の枠形状に形成されている。外枠34は、支持枠35の内側に隙間を隔てて配置されている。内枠33は、外枠34よりもひとまわり小さい矩形の枠形状に形成されている。内枠33は、外枠34の内側に隙間を隔てて配置されている。支持台32は、内枠33よりもひとまわり小さい矩形の板状に形成されている。支持台32は、内枠33の内側に隙間を隔てて配置されている。反射鏡31は支持台32の上面に設置されている。
 第1支持腕36は、支持台32と内枠33との間の隙間に配置され、これらを連結している。第2支持腕37は、内枠33と外枠34との間の隙間に配置され、これらを連結している。第3支持腕38は、外枠34と支持枠35との間の隙間に配置され、これらを連結している。
 第1支持腕36、第2支持腕37及び第3支持腕38は、いずれも一対で構成されている。第1支持腕36等の各々は、支持枠35等の対向して位置する一対の辺の各々に配置されている。第1支持腕36は、支持台32の中心を通る第1軸A1に沿って延びるように配置されている。第2支持腕37は、支持台32の中心を通り、第1軸A1と直交する第2軸A2に沿って延びるように配置されている。
 本実施形態の第3支持腕38は、第1支持腕36と直列に配置されている。すなわち、第3支持腕38は、第1軸A1に沿って延びるように配置されている。
 第1支持腕36、第2支持腕37及び第3支持腕38は、いずれも捩り変形可能である。従って、支持台32は、内枠33に対して第1軸A1を中心に回動可能であり、内枠33は、外枠34に対して第2軸A2を中心に回動可能であり、外枠34は、支持枠35に対して第1軸A1を中心に回動可能である。支持枠35は、走査装置23に固定されている。
 第1コイル39は支持台32に設けられている。第1コイル39は、支持台32を周回するように配置されている。第2コイル40は内枠33に設けられている。第2コイル40は、内枠33を周回するように設けられている。第3コイル41は外枠34に設けられている。第3コイル41は、外枠34を周回するように配置されている。永久磁石42は、4個あり、支持枠35の各辺の外側に近接して配置されている。
 従って、この走査装置23の場合、第1コイル39に電流を流すことで、ローレンツ力によって第1支持腕36が捩られる。それにより、電流量に応じて支持台32が第1軸A1を中心に回動変位する。また、第2コイル40に電流を流すことで第2支持腕37が捩られる。それにより、電流量に応じて内枠33が第2軸A2を中心に回動変位する。更に、第3コイル41に電流を流すことで第3支持腕38が捩られる。それにより、電流量に応じて外枠34が第1軸A1を中心に回動変位する。
 すなわち、この走査装置23では、第1コイル39及び第2コイル40に流す電流量を制御することにより、第1軸A1及び第2軸A2を中心に反射鏡31の傾きを変化させることができる。更に、第3コイル41に流す電流量を制御することにより、第1軸A1を中心に反射鏡ユニット45の傾きを変化させることができる。
 走査装置23は、例えば図4に示すように、レーザー光線が反射鏡31に当たって表示領域5に反射されるように配置されている。反射鏡31の傾きが制御されることにより、反射されるレーザー光線は表示領域5の上を走査する。
 具体的には、第1軸A1を中心に反射鏡31の傾きを制御することにより、反射されたレーザー光線は、表示領域5の横方に延びるX軸に沿って走査する。そして、第2軸A2を中心に反射鏡31の傾きを制御することにより、反射されたレーザー光線は、表示領域5の縦方に延びるY軸(X軸と直交している)に沿って走査する。
 更に、この走査装置23の場合、第1軸A1を中心に反射鏡ユニット45の傾きを制御することにより、反射鏡31の傾き(内枠33に対する傾き)を変えずに、表示領域5の走査できる範囲をX軸方向に拡大させている(詳細は後述する)。
 図5に、制御装置24を含めたレーザーユニット20の構成を示す。レーザー光源22及び走査装置23は、制御装置24によって駆動制御されている。制御装置24は、照射制御部51や走査制御部52、同期制御部53、コントローラ54、通信部55、メモリ56などで構成されている。
 照射制御部51は、レーザー光源22と協働してレーザー光線の照射のオンオフ及び/又はレーザー光線の出力強度を制御する。詳細は後述するが、特に、照射制御部51は、画像の表示に同期して光線を照射する処理を実行する。
 走査制御部52は、走査装置23と協働してレーザー光線の走査を制御する。具体的には、走査制御部52は、第1制御部52a、第2制御部52b及び第3制御部52cを備える。
 第1制御部52aは、第1支持腕36の捩れを制御して、第1軸A1を中心とする反射鏡31の傾きを調整し、表示領域5のX軸方向の走査を行う。第2制御部52bは、第2支持腕37の捩れを制御して、第2軸A2を中心とする反射鏡31の傾きを調整し、表示領域5のY軸方向の走査を行う。
 そして、第3制御部52cは、第3支持腕38の捩れを制御して、第1軸A1を中心とする反射鏡ユニット45の傾きを調整し、X軸方向の走査ができる範囲を拡大する処理を行う。
 同期制御部53は、コントローラ54と協働して、照射制御部51及び走査制御部52の処理の同期を制御する。具体的には、同期制御部53は、コントローラ54からの指示に基づいて照射制御部51及び走査制御部52に同期信号を出力する。照射制御部51及び走査制御部52に同期信号が入力されることにより、照射と走査のタイミングが同期する。
 同期した照射及び走査が行われることにより、表示領域5の上に走査線が形成され、画像が表示される。このHMD1では、レーザー光線の照射によって画像の表示が行われるため、走査線には、画像を構成する表示部分(レーザー光線が照射される)と、画像を構成しない無表示部分(レーザー光線が照射されない)とが含まれる。
 通信部55は、操作端末3と通信し、画像データを操作端末3から取得する。通信部55と操作端末3との間の通信は、無線及び有線のいずれでもよいが、操作性の面からは無線が好ましい。
 なお、通信部55は必須ではない。例えば、メモリーカード等の記憶媒体を介して画像データを取得してもよい。画像データがコントローラ54で生成できれば、通信部55も操作端末3も不要になる。要は、レーザーユニット20が、必要な画像データを取得できればよい。
 メモリ56は、プログラム等のデータを記憶するとともに、画像データを一時記憶する。メモリ56の具体例としては、例えば、DRAM、SRAM又はフラッシュメモリが挙げられる。メモリ56の画像データの記憶容量は、フレーム単位の記憶容量でもよいし、走査線単位の記憶容量であってもよい。ただし、コントローラ54の演算負担が軽減できるため、記憶容量は大きい方が好ましい。
 コントローラ54は、演算機能や制御機能を有し、レーザーユニット20の全体を総合的に制御する。具体的には、コントローラ54は、取得した画像データに解凍処理や画像処理等を行ってメモリ56に一時記憶させる処理や、一時記憶した画像データに基づいて照射制御部51、走査制御部52及び同期制御部53を制御する処理を実行する。
 (走査装置、表示装置の動作)
 次に、走査装置23及びHMD1の動作について説明する。
 図6に表示領域5を示す。本実施形態の表示領域5は、X軸方向に延びた横長な矩形状に形成されている。具体的には、表示領域5は、横方向に直列して連なる複数の要素領域60で構成されている。本実施形態の表示領域5は、3つの要素領域60で構成されている(適宜、符号60a~60cを用いて要素領域60を区別する)。
 また、要素領域60を含め、表示領域5は、X軸及びY軸に沿って格子状に区画された複数の画素領域Pで構成されている。
 要素領域60は、いずれも同寸法の矩形形状であり、従来の表示領域の標準的な大きさを有している。従って、表示領域5は、要素領域60の個数分だけX軸方向に延びており、本実施形態の表示領域5のX軸方向の寸法は、標準的な表示領域の3倍である。
 本実施形態の表示領域5では、要素領域60ごとにアイコンを示す静止画の画像Dが表示されている。画像Dは、隣接する要素領域60に跨って表示されていてもよい。また、画像Dは動画であってもよい。
 本実施形態のHMD1では、要素領域60ごとに走査が行われる。例えば、図6において左端に位置する要素領域60aを見たとき、その左上角部に位置する画素領域P0と、その右下角部に位置する画素領域P1との間で走査が行われる。具体的には、要素領域60aにおけるX軸方向の両端間を往復する走査を繰り返しながらY軸方向に移行し、要素領域60aの全範囲を走査する。
 これら走査の過程で、画像Dを構成する画素領域Pにレーザー光線が照射されることにより、画像Dが表示される。例えば、図6に拡大して示すように、画像Dを構成する画素領域Prにはレーザー光線が照射され、画像Dを構成しない画素領域Psにはレーザー光線は照射されない。これら一連の走査が高速で行われることにより、走査線が画像Dとして視認される。
 本実施形態の表示領域5はX軸方向に延びているため、反射鏡の傾きだけで表示領域5の全域を走査すると、第1支持腕36を大きく捩る必要がある。しかし、第1支持腕36の捩れる範囲は限られるし、仮に捩れたとしても第1支持腕36の機械的負荷は大きく、破損するおそれがある。
 そこで、このHMD1では、第1支持腕36の捩り量を大きくしなくても表示領域5の全域を走査できるように、走査装置23に反射鏡ユニット45や第3支持腕38が設けられている。この点、図7に示すフローチャートを参照しながら具体的に説明する。
 例えば、ユーザーが操作端末3を操作してレーザーユニット20の電源をオンにする。そうすることで、オフの操作が行われるまで、必要に応じて画像データが通信部55を介してレーザーユニット20に送信され、表示領域5に画像Dが表示される(ステップS1,S2)。表示される画像Dは、図示のような静止画である場合が多いが、静止画及び動画のいずれもあり得る。
 通信部55を介して取得される画像データは、適宜メモリ56に一時記憶される。コントローラ54は、一時記憶された画像データに基づいて、第3制御部52cを制御し、走査対象の要素領域60、つまり、これから走査を開始する要素領域60に合わせて反射鏡ユニット45を位置決めする(ステップS3)。
 例えば、図8の(a)に示すように、第1支持腕36及び第2支持腕37が捩られず、支持台32と内枠33とが平行な状態(基準状態)で、図6に示すように、走査対象の要素領域60aをX軸方向に二等分する中心線J1にレーザー光線が反射されるように、反射鏡ユニット45の傾きが設定され、その傾きで反射鏡ユニット45が固定される。
 そうして、コントローラ54は、一時記憶された画像データに基づいて、第1制御部52a及び第2制御部52bを制御する。それにより、反射鏡31の傾きが第1軸A1及び第2軸A2を中心に変化し、レーザー光線は要素領域60の全範囲を走査する(ステップS4)。
 例えば、図9の(a)に示すように、画素領域P0から走査が開始されたとすると、画素領域P0から画素領域P1に向かって走査が行われる。この間、図8の(a)に仮想線で示すように、要素領域60aでのX軸方向の走査を行うために、支持台32は、第1軸A1を中心に所定の角度θxの間で揺れ動く。なお、図示はしないが、要素領域60aでのY軸方向の走査を行うために、支持台32はまた、第2軸A2を中心に基準状態から所定の角度の間で揺れ動く。
 そして、画素領域P1に至って要素領域60aでの走査が終了すると(ステップS5でYes)、要素領域60の切替が行われる(ステップS6)。
 すなわち、コントローラ54は、第3制御部52cを制御し、反射鏡ユニット45の傾きを変更する。例えば、図8の(b)に示すように、基準状態で、レーザー光線が次に走査対象となる要素領域60bの中心線J2に反射されるように、反射鏡ユニット45の傾きが所定の角度θ1に設定され、その傾きで反射鏡ユニット45が固定される(ステップS3)。
 そうすることで、反射鏡31の傾きによって走査できる範囲がX軸方向にシフトされ、次の走査対象の要素領域60bに移行する。要素領域60の移行時には、反射鏡31は、要素領域60aでの走査終了時の傾き(反射鏡ユニット45に対する傾き)を保持した状態で反射鏡ユニット45自体が傾く結果、画素領域P1の走査位置は、要素領域60bの画素領域P2に移行する。従って、この間、第1支持腕36の捩れ状態は一定であるため、第1支持腕36の機械的負荷や第1支持腕36を制御する演算処理の負担が軽減される利点がある。
 そして、図9の(b)に示すように、要素領域60bでは、画素領域P2から画素領域P3に向かって逆向きに走査が行われ、全範囲が走査される(ステップS4)。この間、図8の(b)に仮想線で示すように、要素領域60bでのX軸方向の走査を行うために、支持台32は、要素領域60aと同様に、第1軸A1を中心に所定の角度θxの間で揺れ動く。
 そして、画素領域P3に至って走査が終了すると(ステップS5でYes)、要素領域60の切替制御が行われる(ステップS6)。
 すなわち、コントローラ54が、先の切替と同様に、反射鏡ユニット45の傾きを変更し、図8の(c)に示すように、反射鏡ユニット45の傾きが所定の角度θ2に設定され、その傾きで反射鏡ユニット45が固定される(ステップS3)。
 そうすることで、反射鏡31の傾きによって走査できる範囲は、X軸方向に更に大きくシフトされ、次に走査対象となる要素領域60cに移行する。要素領域60の移行に伴い、画素領域P3の走査位置は、要素領域60cの画素領域P4に移行する。
 そして、図9の(c)に示すように、要素領域60cでは、画素領域P4から画素領域P5に向かって再度、逆向きに走査が行われ、全範囲が走査される(ステップS4)。この間、図8の(c)に仮想線で示すように、支持台32は他の要素領域60と同様に揺れ動く。
 そして、画素領域P5に至って走査が終了すると(ステップS5でYes)、要素領域60の切替制御が行われる(ステップS6)。
 このHMD1では、隣接する要素領域60から次の走査が行われる。それにより、第3支持腕38の負担を軽減することができる。すなわち、反射鏡ユニット45が、図8の(b)に示す状態に設定され、要素領域60bの走査が行われる。続いて、反射鏡ユニット45が、図8の(a)に示す状態に設定され、要素領域60aの走査が行われる。
 これら一連の制御が繰り返されることにより、表示領域5に画像Dが表示される。図10に、本実施形態の走査におけるタイミングチャートを示す。
 タイミングチャートの右側部分は、X軸方向の走査位置を表している。タイミングチャートの左側部分は、Y軸方向の走査位置を表している。タイミングチャートの右側部分の太線は、中心線J1等の位置を表している。
 反射鏡31の傾きだけで走査すれば、第1支持腕36は、大きな角度(θx+θ2)で捩る必要がある。それに対し、このHMD1であれば、第3支持腕38により、その一部(θ2)が補助されるので、第1支持腕36の捩る角度は変えずに済む。
 従って、第1支持腕36の機械的負担を増加せずに、走査できる範囲を拡大することができる。個々の要素領域60での走査制御が画一化されるため、制御の処理負担も軽減できる。
 (変形例)
 本変形例の表示装置では、上述したHMD1に適用した制御を変更することにより、例えば、図11に示すように、静止画像Dを動画的に表示できるようにした。
 走査装置23等、本変形例の表示装置の基本的な構成や制御はHMD1と同様である。従って、本変形例の表示装置(HMD1’とする)のうち、HMD1と異なる構成について詳しく説明する。
 HMD1では、反射鏡ユニット45の傾きを要素領域60ごとに変化させ、走査する要素領域60を断続的に切り替えることにより、表示領域5の全範囲が走査される。それに対し、HMD1’では、走査を行う範囲を連続的に変化させながら表示領域5の全範囲を走査するように構成されている。
 例えば、図12に示すように、HMD1’では、HMD1の要素領域60に相当する一定の走査範囲71が、予め表示領域5に対して設定されている。具体的には、走査範囲71のY軸方向の大きさは、表示領域5のY軸方向の大きさと一致し、走査範囲71のX軸方向の大きさは、表示領域5のX軸方向の大きさよりも小さく設定されている。走査範囲71の情報は、メモリ56に記憶されている。
 HMD1’では、メモリ56に記憶された走査範囲71のデータ及び一時記憶された画像データに基づき、走査範囲71単位で画像Dを表示する走査が行われる。本実施形態の走査範囲71には、アイコンの静止画像Dが1つ表示されている。
 そして、HMD1’では、このアイコンが図11に示すように、表示領域5をX軸方向に沿って動くように表示される。この点、図13に示すフローチャートを参照しながら具体的に説明する。
 ステップS1及びステップS2は、HMD1と同じであるため、その説明は省略する。
 コントローラ54は、一時記憶された画像データに基づいて、第1制御部52a及び第2制御部52bを制御する。それにより、反射鏡31の傾きが第1軸A1及び第2軸A2を中心に変化し、レーザー光線は走査範囲71の全範囲を連続的に往復しながら走査する(ステップS11)。
 詳しくは、支持台32と内枠33とが平行な時に、レーザー光線が走査範囲71をX軸方向に二等分する中心線Jnに反射される状態(基準状態)で、支持台32は、第1軸A1及び第2軸A2を中心に所定の角度の間で揺れ動く。
 例えば、図12に示すように、画素領域Puから走査が開始されたとすると、HMD1の要素領域60の場合と同様に、画素領域Pdに向かって走査が行われる。
 そして、画素領域Pdに至れば、走査方向が反転し、画素領域Pdから画素領域Puに向かって逆向きの走査が行われる。表示を止めるオフの操作が行われるまで、これら走査が繰り返し行われる。
 これら走査の制御と同時に、反射鏡ユニット45の傾きを変化させることにより、表示領域5内で走査範囲71をシフトさせる制御が行われる(ステップS12)。走査範囲71をシフトさせる速度は、一定であってもよいし、加速度を加えて変化させてもよい。本実施形態では、等速でシフトさせている。
 例えば、図11に示すように、表示領域5の左端から右端に向かって走査範囲71のシフトが行われるとすると、反射鏡ユニット45の傾きの変化により、走査範囲71の中心線Jnが連続的に右側にシフトする。それに伴い、走査範囲71に表示されるアイコンは右側に移行する。
 そして、走査範囲71が表示領域5の端に至ると(ステップS13でYes)、走査範囲71をシフトする方向が反転する(ステップS14)。図例の場合であれば、走査範囲71が表示領域5の右端に至ると、表示領域5の左端に向かう方向にシフト方向が反転する。オフの操作が行われるまで、シフト方向の制御が行われ、そして、繰り返しシフト方向の反転が行われる。
 その結果、アイコンは表示領域5を移行し、動画的に表示される。表示の途中で画像データが変更されれば、それに伴って表示内容も変化する。例えば、アイコンの画像データが表示の途中で無くなれば、それに伴ってアイコンの表示は無くなる。また、アイコンの画像データが変更されれば、それに伴ってアイコンの表示が変化する。
 図14に、本変形例の走査におけるタイミングチャートを示す。図10と同様に、タイミングチャートの右側部分は、X軸方向の走査位置を表している。タイミングチャートの左側部分は、Y軸方向の走査位置を表している。X軸方向の太線は、中心線Jnの位置を表している。
 反射鏡31の傾きだけで図11に示したような画像Dを表示しようとすると、画像Dを表示する走査処理の内容は時間とともに変化し、画像Dが移動するタイミングに合わせて、連続的に画像Dを表示する画素領域Pをマッピングし直す必要がある。それに対し、このHMD1’では、画像Dを表示する走査処理の内容は変化させることなく、反射鏡ユニット45の傾きを変化させるだけで済むため、マッピング処理の負担が軽減できる。
 なお、このように走査範囲71を連続的にシフトさせると、通常、画像Dは歪んで表示される。従って、HMD1’では、歪みの無い画像Dを表示するために、コントローラ54に、歪み補正機構が組み込まれている。具体的には、反射鏡ユニット45を傾ける速度や傾斜角度等に基づき、画像Dの歪み度合に応じた歪み係数を予め演算する歪み補正プログラムが制御装置24に実装されている。
 コントローラ54は、歪み補正機構によって得られる歪み係数を用い、照射制御部51に出力する前に画像データを補正処理する。そうすることで、画像Dの歪みが修整され、歪みの無い画像Dを動画的に表示することができる。画像Dの歪みが無視できる場合や、画像Dの歪みが許容できる場合には、歪み補正機構は無くてもよい。
 また、図15に示すように、X軸方向の走査において走査方向が反転する時に、走査範囲71を断続的にシフトさせてもよい。そうすれば、歪みの無い画像Dが断続的に移動して表示されるため、歪みの無い動画的な表示ができる。
 (その他)
 本発明にかかる表示装置は、上述した実施形態に限定されず、それ以外の種々の構成をも包含する。
 表示装置はHMDに限らない。例えば、図16に示すように、レーザーユニット20等を鏡台などに組み込み、レーザー光線を鏡で反射させて画像Dを表示させてもよい。
 また、図17に示すように、レーザーユニット20等を自動車のフロントパネルに組み込み、レーザー光線をフロントガラスで反射させて画像Dを表示させてもよい。住居の窓ガラスやヘルメットの風防等に表示させることもできる。
 レーザー光源22は、半導体レーザーに限らない。例えば、LED光源が利用できる。この場合、LED光源から放出される光をレンズなどを用いて集光し、レーザー状の光線を形成すればよい。要は、画像認識に支障のない程度に集光された光を照射できるものであればよい。
 MEMSミラー30は、電磁力に限らず静電力で駆動してもよい。また、走査装置23は、MEMSミラー30に限らず、例えばガルバノミラーを用いて構成してもよい。
1,1’ HMD(表示装置)
2 眼鏡型ディスプレイ
5 表示領域
10 眼鏡ユニット
20 レーザーユニット
22 レーザー光源(光源部)
23 走査装置
30 MEMSミラー
31 反射鏡
32 支持台
33 内枠(第1支持部材)
34 外枠(第2支持部材)
35 支持枠(第3支持部材)
36 第1支持腕(主走査部)
37 第2支持腕(主走査部)
38 第3支持腕(補助走査部)
39 第1コイル
40 第2コイル
41 第3コイル
42 永久磁石
45 反射鏡ユニット
51 照射制御部
52 走査制御部
 52a 第1制御部
 52b 第2制御部
 52c 第3制御部
53 同期制御部
54 コントローラ
55 通信部
56 メモリ(記憶部)
60 要素領域
70 HMD
71 走査範囲
A1 第1軸
A2 第2軸

Claims (7)

  1.  表示領域上で光線を走査させる走査装置であって、
     前記表示領域に向けて前記光線を反射する反射鏡と、
     前記反射鏡の傾きを変化させる主走査部と、
     前記反射鏡及び前記主走査部を含む反射鏡ユニットと、
     前記反射鏡ユニットの傾きを変化させる補助走査部と、
    を備える走査装置。
  2.  請求項1に記載の走査装置において、
     前記主走査部は、捩り変形可能な支持腕を有し、
     前記支持腕が捩られることによって前記反射鏡の傾きが変化する走査装置。
  3.  請求項2に記載の走査装置において、
     前記反射鏡ユニットは、
     前記反射鏡の外側に離れて配置された第1支持部材と、
     前記第1支持部材の外側に離れて配置された第2支持部材と、
    を含み、
     前記支持腕は、
     前記反射鏡と前記第1支持部材とを連結する第1支持腕と、
     前記第1支持部材と前記第2支持部材とを連結する第2支持腕と、
    を有し、
     前記第1支持腕と前記第2支持腕とが、互いに直交する方向に延びている走査装置。
  4.  請求項3に記載の走査装置において、
     前記第2支持部材の外側に離れて配置された第3支持部材を更に備え、
     前記補助走査部は、前記第2支持部材と前記第3支持部材とを連結する捩り変形可能な第3支持腕を有し、
     前記第3支持腕は、前記第1支持腕及び前記第2支持腕のいずれか一方と直列に配置され、
     前記第3支持腕が捩られることによって前記反射鏡ユニットの傾きが変化する走査装置。
  5.  請求項2~請求項4のいずれか1つに記載の走査装置において、
     前記反射鏡ユニット及び補助走査部を含む主要部分に、MEMSミラーが用いられている走査装置。
  6.  請求項1に記載の走査装置を含み、走査する前記光線によって前記表示領域に画像を表示する表示装置であって、
     前記走査装置に向けて前記光線を発する光源部と、
     前記走査装置を制御する走査制御部と、
     前記画像の表示に同期して前記光線を発するように前記光源部を制御する照射制御部と、
    を備え、
     前記表示領域は、互いに連なる複数の要素領域を有し、
     前記走査制御部が、
     前記反射鏡ユニットの傾きを固定した状態で、前記反射鏡の傾きを変化させることにより、いずれか1つの前記要素領域上で前記光線を走査させる制御と、
     前記反射鏡ユニットの傾きを変化させることにより、前記要素領域を切り替える制御と、
    を行う表示装置。
  7.  請求項1に記載の走査装置を含み、走査する光線によって表示領域に画像を表示する表示装置であって、
     前記走査装置に向けて前記光線を発する光源部と、
     前記走査部を制御する走査制御部と、
     前記画像の表示に同期して前記光線を発するように前記光源部を制御する照射制御部と、
    を備え、
     前記主走査部の作動により、前記光線は、前記表示領域よりも小さい一定の走査範囲を走査し、
     前記走査制御部が、前記反射鏡の傾きを変化させて、前記走査範囲で前記光線を走査させながら、前記反射鏡ユニットの傾きを変化させて、前記走査範囲を前記表示領域内でシフトさせる表示装置。
PCT/JP2012/004341 2012-02-21 2012-07-04 走査装置及び表示装置 WO2013124913A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013504029A JP5426800B1 (ja) 2012-02-21 2012-07-04 表示装置
US13/903,604 US8988316B2 (en) 2012-02-21 2013-05-28 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-034621 2012-02-21
JP2012034621 2012-02-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/903,604 Continuation US8988316B2 (en) 2012-02-21 2013-05-28 Display device

Publications (1)

Publication Number Publication Date
WO2013124913A1 true WO2013124913A1 (ja) 2013-08-29

Family

ID=49005138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004341 WO2013124913A1 (ja) 2012-02-21 2012-07-04 走査装置及び表示装置

Country Status (3)

Country Link
US (1) US8988316B2 (ja)
JP (1) JP5426800B1 (ja)
WO (1) WO2013124913A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219565A (ja) * 2013-05-08 2014-11-20 株式会社東芝 プロジェクタ及び携帯端末
JP2016038484A (ja) * 2014-08-08 2016-03-22 セイコーエプソン株式会社 虚像表示装置及び方法
JP2017004545A (ja) * 2016-08-03 2017-01-05 株式会社コロプラ ヘッドマウントディスプレイとコントローラとを連動させて画面操作するシステム、プログラム、及び方法
WO2019187598A1 (ja) * 2018-03-30 2019-10-03 ソニー株式会社 情報処理装置、情報処理方法、プロブラム及びヘッドマウントディスプレイ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013223937B4 (de) * 2013-11-22 2022-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrospiegelanordnung
USD875821S1 (en) * 2018-01-26 2020-02-18 Snail Innovation Institute Fiber feeding display glasses
KR20200110543A (ko) * 2019-03-14 2020-09-24 삼성디스플레이 주식회사 증강 현실 제공 장치와 그의 구동 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117897A (ja) * 2001-10-11 2003-04-23 Nippon Telegr & Teleph Corp <Ntt> マイクロアクチュエータ
JP2005088188A (ja) * 2003-08-12 2005-04-07 Fujitsu Ltd マイクロ揺動素子およびマイクロ揺動素子駆動方法
JP2005526289A (ja) * 2002-05-17 2005-09-02 マイクロビジョン インコーポレイテッド 一つの次元において画像ビームを掃引し、第二の次元において画像ビームを双方向に掃引する装置及び方法
US20100201292A1 (en) * 2009-02-04 2010-08-12 Michael Krueger Electrostatic drive, method for operating a micromechanical component having an electrostatic drive, and method for manufacturing an electrostatic drive

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI226940B (en) 2002-10-01 2005-01-21 Sony Corp Optical scan device, image position calibration method, and image display device
US7252394B1 (en) 2003-07-03 2007-08-07 Advanced Numicro Systems, Inc. Laser projection display and illumination device with MEMS scanning mirror for indoor and outdoor applications
US7133061B2 (en) 2004-06-14 2006-11-07 Texas Instruments Incorporated Multilaser bi-directional printer with an oscillating scanning mirror
US7333121B2 (en) 2005-04-28 2008-02-19 Marvell International Technology Ltd System and method for scaling data to compensate for slanted scanning in a bidirectional scanning laser printer
US7262894B2 (en) 2005-07-27 2007-08-28 Texas Instruments Incorporated Method for aligning bi-directional images in a mirror display
US20070058086A1 (en) 2005-09-12 2007-03-15 Samsung Electro-Mechanics Co., Ltd. Color display device using bi-directional scanning method
US7817178B2 (en) 2006-08-29 2010-10-19 Lexmark International, Inc. Thermal compensation of bi-directional alignment in a bi-directional laser scanning unit
JP4264570B2 (ja) 2007-08-31 2009-05-20 シャープ株式会社 偏向装置を用いた投影型映像表示装置
CN101720445B (zh) * 2008-04-30 2013-02-27 松下电器产业株式会社 扫描式图像显示装置、眼镜型头戴式显示器以及车辆
JP2010008614A (ja) 2008-06-25 2010-01-14 Panasonic Electric Works Co Ltd 投影型表示装置及びそれに用いられる表示方法
JP2011107347A (ja) 2009-11-16 2011-06-02 Seiko Epson Corp 画像形成装置
JP5381801B2 (ja) 2010-02-23 2014-01-08 セイコーエプソン株式会社 画像形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117897A (ja) * 2001-10-11 2003-04-23 Nippon Telegr & Teleph Corp <Ntt> マイクロアクチュエータ
JP2005526289A (ja) * 2002-05-17 2005-09-02 マイクロビジョン インコーポレイテッド 一つの次元において画像ビームを掃引し、第二の次元において画像ビームを双方向に掃引する装置及び方法
JP2005088188A (ja) * 2003-08-12 2005-04-07 Fujitsu Ltd マイクロ揺動素子およびマイクロ揺動素子駆動方法
US20100201292A1 (en) * 2009-02-04 2010-08-12 Michael Krueger Electrostatic drive, method for operating a micromechanical component having an electrostatic drive, and method for manufacturing an electrostatic drive

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219565A (ja) * 2013-05-08 2014-11-20 株式会社東芝 プロジェクタ及び携帯端末
JP2016038484A (ja) * 2014-08-08 2016-03-22 セイコーエプソン株式会社 虚像表示装置及び方法
JP2017004545A (ja) * 2016-08-03 2017-01-05 株式会社コロプラ ヘッドマウントディスプレイとコントローラとを連動させて画面操作するシステム、プログラム、及び方法
WO2019187598A1 (ja) * 2018-03-30 2019-10-03 ソニー株式会社 情報処理装置、情報処理方法、プロブラム及びヘッドマウントディスプレイ
US11176911B2 (en) * 2018-03-30 2021-11-16 Sony Corporation Information processing apparatus, information processing method, program, and head-mounted display

Also Published As

Publication number Publication date
US20130257693A1 (en) 2013-10-03
US8988316B2 (en) 2015-03-24
JPWO2013124913A1 (ja) 2015-05-21
JP5426800B1 (ja) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5426800B1 (ja) 表示装置
JP5373892B2 (ja) ビーム走査型表示装置
JP5222856B2 (ja) 画像表示装置、その表示方法、プログラム、集積回路、眼鏡型ヘッドマウントディスプレイ、自動車、双眼鏡、及び卓上型ディスプレイ
US10429650B2 (en) Head-mounted display
JP5290092B2 (ja) 眼鏡型画像表示装置
US6396461B1 (en) Personal display with vision tracking
EP1230575B1 (en) Personal display with vision tracking
CN108508600B (zh) 头部佩戴型显示装置以及图像形成光学系统
TW201643506A (zh) 頭戴式顯示裝置
JP2007537465A (ja) 大開口数光源を使用した走査光ディスプレイシステム、その使用方法および走査鏡アセンブリの製作方法
US10712576B1 (en) Pupil steering head-mounted display
JP2012520487A (ja) バイザー型ヘッドアップディスプレイ
JP2008046253A (ja) 画像表示装置
WO2019235059A1 (ja) 映像投射システム、映像投射装置、映像表示光回折用光学素子、器具、及び映像投射方法
JP2010117541A (ja) ビーム走査型表示装置
JP2004145367A (ja) 画像表示装置
JP7235146B2 (ja) 頭部装着型表示装置および表示システム
JP2014010347A (ja) 画像表示装置および画像表示方法
WO2013108302A1 (ja) 表示装置
US20180017800A1 (en) Virtual image display apparatus
US20240142771A1 (en) Optical device, retinal projection display, and head-mounted display
US20220236563A1 (en) Optical device, image display, and optometric apparatus
JP2024052098A (ja) 網膜投影表示装置、頭部装着型表示装置および検眼装置
US11487127B2 (en) Magnetic seesaw scanner
KR101893538B1 (ko) 동공의 위치 변화에 따라 망막 투영 디스플레이를 구현하기 위한 광학 제어 시스템 및 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013504029

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869397

Country of ref document: EP

Kind code of ref document: A1