WO2013124676A2 - Décodeur d'entrée - Google Patents
Décodeur d'entrée Download PDFInfo
- Publication number
- WO2013124676A2 WO2013124676A2 PCT/GB2013/050446 GB2013050446W WO2013124676A2 WO 2013124676 A2 WO2013124676 A2 WO 2013124676A2 GB 2013050446 W GB2013050446 W GB 2013050446W WO 2013124676 A2 WO2013124676 A2 WO 2013124676A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- duration
- input signal
- output
- threshold
- controller
- Prior art date
Links
- 238000000034 method Methods 0.000 claims description 27
- 230000009471 action Effects 0.000 claims description 14
- 230000001419 dependent effect Effects 0.000 claims description 5
- 238000010348 incorporation Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000013507 mapping Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/02—Input arrangements using manually operated switches, e.g. using keyboards or dials
- G06F3/023—Arrangements for converting discrete items of information into a coded form, e.g. arrangements for interpreting keyboard generated codes as alphanumeric codes, operand codes or instruction codes
- G06F3/0233—Character input methods
- G06F3/0236—Character input methods using selection techniques to select from displayed items
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/42—Bus transfer protocol, e.g. handshake; Synchronisation
- G06F13/4282—Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
- G06F13/4286—Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus using a handshaking protocol, e.g. RS232C link
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/02—Input arrangements using manually operated switches, e.g. using keyboards or dials
- G06F3/0227—Cooperation and interconnection of the input arrangement with other functional units of a computer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/02—Input arrangements using manually operated switches, e.g. using keyboards or dials
- G06F3/023—Arrangements for converting discrete items of information into a coded form, e.g. arrangements for interpreting keyboard generated codes as alphanumeric codes, operand codes or instruction codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M11/00—Coding in connection with keyboards or like devices, i.e. coding of the position of operated keys
- H03M11/02—Details
- H03M11/04—Coding of multifunction keys
- H03M11/06—Coding of multifunction keys by operating the multifunction key itself in different ways
- H03M11/10—Coding of multifunction keys by operating the multifunction key itself in different ways by methods based on duration or pressure detection of keystrokes
Definitions
- Input Decoder This invention relates to input decoders, particularly although not exclusively for user interface devices, and to methods of operating the same to allow for control of a device.
- the invention provides a method of operating an interface controller to give one of a plurality of predetermined outputs, the method comprising:
- the invention also extends to a an interface controller configured to give one of a plurality of predetermined outputs, the interface controller comprising:
- receiving means for receiving an input signal
- processing means configured to:
- an output of an interface controller can be determined simply through the duration of an This gives a very efficient and flexible control mechanism which is easy to implement.
- the interface controller could be arranged to receive (e.g. from the input signal itself) a numerical value representing the duration of the input signal and to compare this value numerically to said first and/or second threshold durations at a later time (e.g. in a separate process). In preferred embodiments however the interface controller measures the duration of the input signal in real time. The interface controller could be arranged to determine the duration of the input signal and then to compare said duration with said second threshold first. It may not be necessary to carry out both comparisons depending on the outcome of the first comparison. For example if the duration is compared with the second threshold duration first and is found to exceed it, the interface controller can give the third output without needing to compare it with the first threshold. The invention is however not limited to this and the interface controller could carry out both comparisons in all cases.
- the interface controller is arranged to compare the duration of the input signal to the first threshold duration first. This potentially allows the interface controller to give the first output more quickly if that is the appropriate output.
- the comparison may be made in real time while the input signal is being received. This potentially allows the interface controller to give the appropriate output more quickly, particularly the third output as it may not be necessary to wait for the input signal to terminate in this case. If the input signal terminates before the first threshold duration is reached the first output can be given, if it terminates after the first threshold duration but before the second threshold duration the second output can be given and if it has not terminated after the second threshold duration the third output can be given, even if the input signal has not yet terminated. Alternatively an output is given only when the input signal has terminated, except that optionally a third threshold may be defined after which the third output is given even though the input signal may not have finished in order to avoid problems with say a stuck key.
- the principle of using the duration of an input signal to determine between a plurality of possible outputs can be yond three outputs to any desired number and thus when viewed from a second aspect the invention provides a method of operating a device comprising an interface controller to give one of a plurality, n, of predetermined outputs, the method comprising:
- the input signal could be generated artificially - e.g. by another process, either internal or external; or by an environmental parameter.
- the input signal is generated by a user action. This could be for example the press of a button or key, the touching of a touch-screen, the hovering of a mouse or other input mechanism, the making of a sound or indeed any other form of user input.
- the outputs generated by the interface controller do not need to be mutually exclusive and thus one or more outputs may be given either simultaneously or sequentially.
- the threshold comparisons are made in real time, an output may be given when the duration of the input signal reaches corresponding threshold duration. Different outputs might thereby be given as the input signal continues. If an output is not finished when another output is generated the unfinished output may or may not continue. If the subsequent outputs generated are on the same output line, then the latest output will cancel any output currently active.
- the interface controller may have a single input or may have multiple inputs. Where it has multiple inputs these could each be arranged to generate outputs according to the duration of their respective input signal in accordance with the invention as set out herein.
- the inputs and their outputs could be independent of one another but in a set of embodiments the outputs generated in respective of two or more input combined to provide a final output. This allows for a multiplication in the number of final outputs dependent on the durations of the respective input signals.
- an output is given whenever an input signal is detected, regardless of its duration. This could be the first output or a separate output.
- the interface controller may be arranged to give the first output as soon as an input signal is detected and to change to or add the second output if the first threshold duration is exceeded.
- an output could be given indicative of an input signal being received but a separate duration-dependent output generated when the duration is determined.
- the interface controller detects the beginning of the input signal and generates said first output and if the input signal continues past the first threshold duration it generates the second output and if the input signal continues past the second threshold duration it generates the third output.
- the outputs could take any of a number of different forms and these need not be the same as each other for the three or more outputs.
- the outputs, or some of them could comprise a simple change in the logic level of an output pin (either transiently or until changed again).
- One or more outputs could be null - i.e. the output comprises the absence of a signal or other positive output.
- At least one of said outputs comprises a pulse train waveform.
- at least some of the outputs comprise a pulse train waveform having at least one parameter which differs between them.
- a value of said at least one parameter may by determined by an input.
- the at least one parameter could be one selected from the group comprising an on time, off time, pulse period and duty cycle of the waveform.
- Other parameters could be defined and more than one parameter could be associated with the respective outputs.
- said at least one parameter pertaining to the pulse train waveform or other output parameter is configurable by a user.
- the output pin on which an output is generated and/or how many output pins on which an output is generated may be configurable by a user.
- a value of one or more parameters can be selected from a list of pre-defined values.
- a value of one or more parameter can be defined by a user.
- at least one, and preferably all, of the duration thresholds is configurable by a user. Configurability of the input duration thresholds and/or outputs (collectively hereinafter "configuration data") allows for significant flexibility in customisation of the interface controller.
- the interface controller is adapted to allow a user to set one or more of said threshold durations and/or pulse train waveform parameters and thereafter to store the duration(s) and/or parameter(s) in a non- volatile memory - e.g. a one-time programmable memory.
- a non- volatile memory e.g. a one-time programmable memory.
- This allows for easy configuration of the mapping of various inputs to possible outputs and also the characteristics of output waveforms simply by setting configuration data. This can be done by means of an intuitive user interface - e.g. a graphical user interface or web- style interface in a preferred set of embodiments - without the developer requiring a deep-level knowledge of the operation of the device.
- the user interface may permit a user with no knowledge of a programming language used to write the interface controller software to configure the interface controller.
- the interface controller may be configurable by a user for incorporation in a non- predetermined controlled device.
- a non-exhaustive list of possible devices includes a media device such as a DVD player, a remote controller device such as a TV remote, a monitoring device such as a thermometer or heart rate monitor, or a wireless smartphone accessory.
- the controlled device may take one or more outputs from the interface controller as inputs.
- the controlled device may perform an action in response to one or more of said inputs.
- the interface controller may take an output from the controlled device as an input.
- the controller enters a configuration mode if the configuration data has not been set to allow a user to enter it. Otherwise the controller uses pre-stored configuration data.
- Figure 1 shows a block diagram representing an exemplary device application utilizing a controller in accordance with an embodiment of the present invention
- e 2a shows an edge trigger event and a short press event which are registered in response to the detection of a short input pulse according to an embodiment of the present invention
- Figure 2b shows an edge trigger event and a medium press event which are registered in response to the detection of a medium input pulse according to an embodiment of the present invention
- Figure 2c shows an edge trigger event and a long press event which are registered in response to the detection of a long input pulse according to an embodiment of the present invention
- Figure 3a shows a pulse train defined by an on-state duration parameter and an off-state duration parameter in accordance with an embodiment of the present invention.
- Figure 3b shows a pulse train defined by an on-state duration parameter and an off-state duration parameter, further defined by parameter indicating a number of repetitions of a period, in accordance with an embodiment of the present invention.
- Figure 3c shows a pulse train defined by an on-state duration parameter; an off-state duration parameter; a parameter indicating a number of repetitions of a period; and further defined by a parameter indicating a duration after which the pulse train is repeated, in accordance with an embodiment of the present invention.
- Figure 3d shows a pulse train defined by an on-state duration parameter; an off-state duration parameter; a parameter indicating a number of repetitions of a period; a parameter indicating a duration after which the pulse train is repeated; and further defined by a parameter indicating a number of repetitions of the pulse train, in accordance with an embodiment of the present invention.
- Figure 4 shows a block diagram representing input and output pins provided to a device in accordance with an embodiment of the present invention.
- Figure 5 shows a block diagram representing a start-up process of a device in accordance with an embodiment of the present invention.
- FIG. 1 shows a block diagram schematically representing a Bluetooth Low Energy (TM) system-on-chip device 1 which incorporates an interface controller 2 embodying the present invention.
- the interface controller 2 is in communication with a host 3 which comprises an application control interface.
- the interface controller 2 includes a state machine 4, an input decoder 5, an output encoder 6 and a universal asynchronous receiver/transmitter (UART) 7.
- the interface controller is also h a non-volatile one-time programmable (OTP) memory and random access memory (RAM).
- OTP non-volatile one-time programmable
- the interface controller 2 implements Bluetooth Low Energy (TM) radio communication protocols to communicate with peer devices (not shown).
- a peer device may be for example a remote sensor (e.g. a temperature sensor or heart rate monitor), a remote media device (e.g. a television or music player), a
- the state machine 4 receives input 8 from the host 3.
- the input may be instructions, for example to cause the device to connect with or disconnect from a peer device (not shown) or to enter an idle state or to transmit or receive data to or from a peer device.
- the input may also be data, for example sensor data (e.g. from a local battery monitor or temperature sensor).
- the state machine 4 can also convey output to the host 3.
- the output may be instructions, for example to carry out an action in response to user input decoded by the input decoder 5 (as described in more detail below).
- the output may also be data received
- the input decoder 5 in this embodiment is able to identify three kinds of pulses: a short pulse 21 1 , as shown in Fig 2a; a medium pulse 221 as shown in Fig 2b; and long pulse 231 as shown in Fig 2c.
- the input decoder receives an input signal 21 1 , 221 , 231 .
- the input signal may be generated by a user interaction with a button in communication with the input decoder so that the input pulse corresponds to the user pressing the button.
- the input signal may be any kind of analogue or digital signal, however.
- the input decoder 5 Upon detection of the leading edge 21 2, 222, 232 (Fig 2a) of the pulse, the input decoder 5 registers an edge trigger event 214, 224, 234 and communicates to the state machine 4 a message that an edge trigger event 214, 224, 234 has been registered.
- the input decoder Upon detecting the trailing edge of the pulse 21 3, 223, 233, the input decoder compares the duration of the pulse with two threshold duration values t1 and t2 stored in the RAM. If the pulse is shorter than both t1 and t2, the input decoder 5 registers a short press event 21 5 and communicates to the state machine that a 3vent 215 has been registered. If the pulse is longer than t1 but shorter than t2, the input decoder 5 registers a medium press event 226 and communicates to the state machine that a medium press event 226 has been registered. If the pulse is longer than both t1 and t2, the input decoder 5 registers a press event 237 and communicates to the state machine that a long press event 237 has been registered.
- the various events generated by the input decoder 5 are the outputs of the input decoder which are generated in dependence upon the duration of the input signal.
- the state machine 4 may perform any of a number of functions and/or enter one of a number of states based on the event message it receives from the input decoder 5 - i.e. corresponding to a short, medium or long press or an edge trigger event.
- the action performed by the state machine or by the host depends on a mapping of the type of event (short, medium or long press or edge trigger event) to possible actions that could be carried out by the state machine 4 or the host 3. This mapping is stored in the RAM and accessed by the state machine 4 when it receives the message indicating the type of event from the input decoder 5.
- the state machine may initiate or terminate a connection with a peer device if a long press is detected.
- the state machine 4 may pass an action to the host 3 to take an action based on the whether a short, medium or long press or edge trigger event has been detected.
- the message may instruct the host device to perform an action on the remote peer (e.g. to play a media file, to enter a low power mode, to switch off).
- state machine 4 may pass an action to the output encoder 6 to give an output to the user as will be described below.
- the input decoder 5 detects if/when the pulse duration passes the duration t1.
- an output 228 is generated and a message communicating this output 228 is sent via the state machine 4 to the output encoder 6.
- the input decoder 5 also detects if/when the pulse duration passes the duration t2.
- an output 239 is generated and a message communicating this output 239 is sent via the state machine 4 to output encoder 6. >n of output encoder 6 is now described with reference to Figs 3a-3d.
- the output decoder 6 When the output decoder 6 receives a message communicating an output 228, 239, it generates an output signal on an output pin of the device.
- the output signal is a pulse train waveform.
- the pulse train waveform is defined by a number of parameters, including duration of an on state tp1 and duration of an off state tp2 (see Fig. 3a), number of repetitions of the on-off period np (see Fig. 3b), time after which a pulse train should be repeated tt (see Fig 3b) and number of repetitions of a pulse train nt (see Fig 3d).
- the RAM stores sets of parameters for a number of pulse train waveforms.
- the output decoder 6 selects a set of parameters according to which output it received from the input encoder 5, and generates a pulse train waveform according to that set of parameters on an output pin of the device.
- the set of parameters is selected according to a mapping of parameter sets to outputs received from the input decoder 5, which stored in the RAM.
- the pulse train waveform can be used to drive an indicator device (e.g. an LED).
- the pulse train waveform thus provides information to the user regarding which event (short, medium or long press) has been triggered by their input to the button.
- Figure 4 shows a representation of the input and output pins provided to the device in accordance with this embodiment of the invention.
- the device is provided with two input pins 41 for receiving input pulses. The user may provide input on either of these pins. For example, each pin may be connected to one of two buttons on an input device.
- the input decoder then identifies eight kinds of events: short, medium or long press or edge trigger events on the first pin, and short, medium or long press or edge trigger events on the second pin. Eight possible actions may then be performed in response to an input from a user.
- the device is provided with three digital output pins 42. The output pattern may be output on any of the pins.
- the pin selected to receive the output may depend on which output pattern is to be output, or the pin may be selected based on other criteria or data available to the device. Different pulse train waveforms may be provided to each output pin, or two different outputs may correspond to the same pulse train waveform output to a different pin in each case.
- the pins may be connected to different indicator devices, e.g. different LEDs. s also provided with an output pin suitable for outputting pulse-width modulated wave forms, for example for producing audio output.
- a pulse-width modulated waveform may be mapped to a particular output in the place of a digital output pulse train waveform parameter set as discussed above with reference to Figs. 3a- 3d.
- Figure 5 shows a block diagram representing the start-up process of the device and in particular indicates how the device loads or accepts as input the stored parameters t1 , t2, the parameters associated with the pulse train waveforms, the mapping of events registered by the input decoder to actions performed by the state machine or passed to the host, and the mapping of output actions received by the output encoder to sets of parameters used to generate pulse train waveforms.
- the behavior will depend on whether a valid configuration of the above-listed parameters is available or not (available here means whether the configuration is pre-programmed into the OTP memory or not).
- PowerUp 51 is when the device is powered up for the first time (i.e. when the battery is installed) or the chip is reset. If there is no valid configuration available in the OTP memory, the device will start in a Direct Test Mode (DTM) 52. If the OTP contains valid configuration (which is copied from OTP to RAM and verified) the device is started in an operating mode 55 in which the configuration is available in OTP/RAM memory.
- DTM Direct Test Mode
- DTM mode the device will initialize the DTM module and enable the UART waiting for DTM commands/Events.
- the device receives a disable
- Configuration mode is where the device receives the configuration generated.
- the configuration data have a setting indicating whether it should be stored in RAM only or if it also should be programmed into the OTP memory. This setting also defines the next mode.
- the device enters a further operating mode 54 in which the configuration is available in RAM only.
- the device programs the configuration into the OTP memory and then enters the operating mode (5) 55. This permanently disables the DTM mode.
- the operating modes 54, 55 are where the main application is started.
- the two operating modes 54, 55 behave the same way except that in the further operating mode 54 in which the configuration is available in RAM only we have the possibility of going back to DTM mode 52 (by resetting the chip) and entering configuration mode 53, replacing the existing configuration.
- the UART 7 When in the operating mode 55 in which the configuration is available in OTP/RAM memory, the UART 7 will be turned off.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- User Interface Of Digital Computer (AREA)
- Selective Calling Equipment (AREA)
- Input From Keyboards Or The Like (AREA)
- Dc Digital Transmission (AREA)
Abstract
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13707905.9A EP2817724B8 (fr) | 2012-02-22 | 2013-02-22 | Décodeur d'entrée |
KR1020147026157A KR20140135767A (ko) | 2012-02-22 | 2013-02-22 | 입력 디코더 |
CN201380010176.9A CN104335195A (zh) | 2012-02-22 | 2013-02-22 | 输入解码器 |
US14/380,216 US20150022382A1 (en) | 2012-02-22 | 2013-02-22 | Input decoder |
JP2014558210A JP2015515766A (ja) | 2012-02-22 | 2013-02-22 | 入力デコーダ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1203018.5 | 2012-02-22 | ||
GBGB1203018.5A GB201203018D0 (en) | 2012-02-22 | 2012-02-22 | Input controller |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2013124676A2 true WO2013124676A2 (fr) | 2013-08-29 |
WO2013124676A3 WO2013124676A3 (fr) | 2014-01-03 |
WO2013124676A9 WO2013124676A9 (fr) | 2014-10-02 |
Family
ID=45939989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2013/050446 WO2013124676A2 (fr) | 2012-02-22 | 2013-02-22 | Décodeur d'entrée |
Country Status (8)
Country | Link |
---|---|
US (1) | US20150022382A1 (fr) |
EP (3) | EP3046034A1 (fr) |
JP (1) | JP2015515766A (fr) |
KR (1) | KR20140135767A (fr) |
CN (1) | CN104335195A (fr) |
GB (2) | GB201203018D0 (fr) |
TW (3) | TWI566098B (fr) |
WO (1) | WO2013124676A2 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102201616B1 (ko) * | 2014-02-23 | 2021-01-12 | 삼성전자주식회사 | 전자 장치 간의 장치 검색 방법 |
CN106489109A (zh) * | 2016-09-21 | 2017-03-08 | 深圳市汇顶科技股份有限公司 | 一种单片机系统和用于单片机系统的复位方法 |
CN106527221A (zh) * | 2016-09-29 | 2017-03-22 | 四川九洲电器集团有限责任公司 | 智能开关、具有智能开关的ZigBee模块及操作方法 |
TWI667882B (zh) * | 2018-11-07 | 2019-08-01 | 台達電子工業股份有限公司 | 控制裝置及方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010033629A1 (en) * | 2000-03-06 | 2001-10-25 | Masahiro Ito | Interface apparatus and method for receiving serially-transmitted data |
US20100277104A1 (en) * | 2009-01-29 | 2010-11-04 | Ixys Corporation | 1-wire communication protocol and interface circuit |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3643161A (en) * | 1967-12-13 | 1972-02-15 | Gates Radio Co | Pulse duration modulation transmitter |
GB1320895A (en) * | 1969-07-02 | 1973-06-20 | Post Office | Data storage systems |
US4058805A (en) * | 1975-06-16 | 1977-11-15 | Comdial Corporation | Digital multitone generator for telephone dialing |
US4202038A (en) * | 1977-08-10 | 1980-05-06 | Stig Anders Petersson | Method of effecting one of several different circuit connections |
US4542354A (en) * | 1983-08-01 | 1985-09-17 | Robinton Products, Inc. | Delta-sigma pulse modulator with offset compensation |
US4959831A (en) * | 1989-07-31 | 1990-09-25 | Chrysler Corporation | Single wire bus smart keypad controller system |
US5218290A (en) * | 1991-01-31 | 1993-06-08 | John Fluke Mfg. Co., Inc. | Multi-function, multi-mode switch for an instrument |
US6029090A (en) * | 1997-01-27 | 2000-02-22 | Herbst; Ewa | Multi-functional electrical stimulation system |
GB2364856A (en) * | 2000-07-14 | 2002-02-06 | Nokia Mobile Phones Ltd | Mobile device with multi-function key |
US6760675B1 (en) * | 2001-07-19 | 2004-07-06 | Itt Manufacturing Enterprises, Inc. | Adjustable high current and high voltage pulse generator |
US20050062619A1 (en) * | 2003-09-23 | 2005-03-24 | Jellicoe Roger J. | Keypad for an electronic device |
KR100520150B1 (en) * | 2003-12-01 | 2005-10-10 | Ultra wide band pulse train generator | |
JP4274365B2 (ja) * | 2004-02-24 | 2009-06-03 | クラリオン株式会社 | 電話番号入力装置、電話番号入力装置の制御方法、制御プログラム及び記録媒体 |
US7817140B2 (en) * | 2004-08-31 | 2010-10-19 | Research In Motion Limited | Handheld electronic device with text disambiguation |
US8041062B2 (en) * | 2005-03-28 | 2011-10-18 | Sound Id | Personal sound system including multi-mode ear level module with priority logic |
US20080032681A1 (en) * | 2006-08-01 | 2008-02-07 | Sony Ericsson Mobile Communications Ab | Click-hold Operations of Mobile Device Input Keys |
JP5348871B2 (ja) * | 2007-01-16 | 2013-11-20 | 京セラ株式会社 | 携帯端末装置 |
US7786901B2 (en) * | 2007-04-03 | 2010-08-31 | Motorola, Inc. | Key press registration in an electronic device with moveable housings |
US8223126B2 (en) * | 2007-04-17 | 2012-07-17 | Nokia Corporation | Apparatuses and methods for facilitating user designation of device functions |
CN101779441B (zh) * | 2007-08-10 | 2014-05-14 | 京瓷株式会社 | 移动终端 |
JP4697712B2 (ja) * | 2007-08-31 | 2011-06-08 | シャープ株式会社 | 無声通話機能付情報通信端末 |
CN101930295B (zh) * | 2009-06-24 | 2012-11-07 | 宏达国际电子股份有限公司 | 动态调整长按延迟时间的方法及其电子装置 |
TWI397713B (zh) * | 2010-06-14 | 2013-06-01 | Univ Nat Pingtung Sci & Tech | 利用模糊運算法之gnss之訊號擷取方法 |
US8410819B2 (en) * | 2010-12-29 | 2013-04-02 | Stmicroelectronics, Inc. | Programmable pulse width discriminator |
TWM413280U (en) * | 2011-02-22 | 2011-10-01 | Univ Hungkuang | Wireless controlling system, wireless controlling apparatus |
-
2012
- 2012-02-22 GB GBGB1203018.5A patent/GB201203018D0/en not_active Ceased
-
2013
- 2013-02-22 GB GB1303204.0A patent/GB2501364B/en not_active Expired - Fee Related
- 2013-02-22 TW TW102106155A patent/TWI566098B/zh not_active IP Right Cessation
- 2013-02-22 EP EP16157012.2A patent/EP3046034A1/fr not_active Withdrawn
- 2013-02-22 TW TW105138243A patent/TW201709071A/zh unknown
- 2013-02-22 CN CN201380010176.9A patent/CN104335195A/zh active Pending
- 2013-02-22 US US14/380,216 patent/US20150022382A1/en not_active Abandoned
- 2013-02-22 KR KR1020147026157A patent/KR20140135767A/ko not_active Application Discontinuation
- 2013-02-22 EP EP13707905.9A patent/EP2817724B8/fr not_active Not-in-force
- 2013-02-22 WO PCT/GB2013/050446 patent/WO2013124676A2/fr active Application Filing
- 2013-02-22 EP EP16157006.4A patent/EP3048537A1/fr not_active Withdrawn
- 2013-02-22 TW TW105138244A patent/TW201709072A/zh unknown
- 2013-02-22 JP JP2014558210A patent/JP2015515766A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010033629A1 (en) * | 2000-03-06 | 2001-10-25 | Masahiro Ito | Interface apparatus and method for receiving serially-transmitted data |
US20100277104A1 (en) * | 2009-01-29 | 2010-11-04 | Ixys Corporation | 1-wire communication protocol and interface circuit |
Also Published As
Publication number | Publication date |
---|---|
CN104335195A (zh) | 2015-02-04 |
WO2013124676A3 (fr) | 2014-01-03 |
GB201303204D0 (en) | 2013-04-10 |
TW201709072A (zh) | 2017-03-01 |
TW201709071A (zh) | 2017-03-01 |
JP2015515766A (ja) | 2015-05-28 |
KR20140135767A (ko) | 2014-11-26 |
EP2817724A2 (fr) | 2014-12-31 |
EP2817724B8 (fr) | 2016-05-25 |
GB2501364B (en) | 2016-04-13 |
EP3048537A1 (fr) | 2016-07-27 |
EP2817724B1 (fr) | 2016-04-13 |
GB2501364A (en) | 2013-10-23 |
GB201203018D0 (en) | 2012-04-04 |
WO2013124676A9 (fr) | 2014-10-02 |
TWI566098B (zh) | 2017-01-11 |
US20150022382A1 (en) | 2015-01-22 |
TW201403325A (zh) | 2014-01-16 |
EP3046034A1 (fr) | 2016-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2817724B1 (fr) | Décodeur d'entrée | |
CN104698950B (zh) | 一种外围设备控制方法、微控制器、上位机及系统 | |
US11016548B2 (en) | Single chip system and reset method for single chip system | |
US9111005B1 (en) | Systems and methods for configuring and controlling variable pressure and variable displacement sensor operations for information handling systems | |
JP2011500116A5 (fr) | ||
JP2012525080A5 (fr) | ||
CN105045386A (zh) | 睡眠状态监控方法及终端、空调器系统 | |
US20090283600A1 (en) | Automatic detection of an enabled interface of a card reader | |
US8274466B2 (en) | System and method for providing bias voltages to pad logic of an LCD controller | |
CN105100875B (zh) | 一种多媒体信息录制的控制方法及装置 | |
JP6504715B2 (ja) | 自動構成を伴う集積デバイス | |
US8406076B2 (en) | FRDY pull-up resistor activation | |
GB2516726A (en) | Input decoder | |
US20100185797A1 (en) | Keyboard-mouse switch and switching method thereof | |
US8954717B2 (en) | System capable of booting through a universal serial bus device and method thereof | |
CN103324186A (zh) | 一种遥控器的自动测试系统及其控制方法 | |
CN101957736A (zh) | 电子阅读装置和电子阅读装置的控制方法 | |
CN105446903A (zh) | 一种信息处理方法及电子设备 | |
TWI322355B (en) | Driverless signal generating apparatus and control method thereof | |
TW201443594A (zh) | 智慧型可程序控制裝置 | |
CN202453810U (zh) | 无线电子装置对码方式的检测装置 | |
KR101627411B1 (ko) | 스마트 기기 및 이를 제어하는 방법 | |
CN115834970A (zh) | 光感模块控制方法、装置、显示设备及存储介质 | |
JP2006185163A (ja) | デジタル電子製品を制御するための方法および装置 | |
JP2016194856A (ja) | プログラマブルデバイスのコンフィグレーション制御方法およびプログラマブルデバイスを有する制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14380216 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2014558210 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013707905 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147026157 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13707905 Country of ref document: EP Kind code of ref document: A2 |