WO2013121759A1 - 圧電共振子 - Google Patents

圧電共振子 Download PDF

Info

Publication number
WO2013121759A1
WO2013121759A1 PCT/JP2013/000697 JP2013000697W WO2013121759A1 WO 2013121759 A1 WO2013121759 A1 WO 2013121759A1 JP 2013000697 W JP2013000697 W JP 2013000697W WO 2013121759 A1 WO2013121759 A1 WO 2013121759A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
piezoelectric resonator
resonance frequency
adjustment
piezoelectric
Prior art date
Application number
PCT/JP2013/000697
Other languages
English (en)
French (fr)
Inventor
勝村 英則
加賀田 博司
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/371,417 priority Critical patent/US9431994B2/en
Priority to JP2014500099A priority patent/JP6186597B2/ja
Publication of WO2013121759A1 publication Critical patent/WO2013121759A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • H02N2/188Vibration harvesters adapted for resonant operation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type
    • H10N30/306Cantilevers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H2009/02165Tuning

Definitions

  • the present invention relates to a piezoelectric resonator, and more particularly to a configuration capable of adjusting a resonance frequency.
  • a resonator having a piezoelectric body can be reduced in size by using a semiconductor process or the like, its application range such as a power generation element and various actuators has recently been expanded.
  • FIG. 24 shows a sensor module installed in the power supply line 110, and shows an example in which the power generating element 101 is used as a driving power source.
  • the power generating element 101 includes a beam portion 102 and a piezoelectric body 104 provided on the main surface of the beam portion 102 and sandwiched between an upper electrode 105 and a lower electrode 103.
  • a weight portion 106 made of a permanent magnet is attached to one end of the beam portion 102, and the beam portion 102 vibrates due to interaction with a magnetic field change around the power supply line 110 caused by an alternating current flowing through the power supply line 110.
  • the beam portion 102, the upper electrode 105, the lower electrode 103, and the piezoelectric body 104 will be defined and described as a beam. Actually, not only the beam portion 102 but also the entire beam including the upper electrode 105, the lower electrode 103, and the piezoelectric body 104 vibrates.
  • Patent Document 1 As prior art document information relating to the invention of this application, for example, Patent Document 1 and Non-Patent Document 1 are known.
  • the resonance frequency depends on the length and thickness of the beam portion 102, the weight of the weight portion 106 attached to the tip, and the like, there is a problem that the resonance frequency is likely to fluctuate due to variations in the manufacturing process.
  • the present invention is provided on a base, a first support fixed to the base, a beam fixed to the first support, a weight fixed to the beam, and the beam A drive unit and an adjustment magnet movable on the main surface of the base are provided.
  • the weight portion is formed of a magnet or a magnetic body, and the beam portion extends in a direction along the main surface of the base portion.
  • FIG. 1 is a diagram illustrating a configuration of a beam of a piezoelectric resonator according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of the piezoelectric resonator according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing measurement results of the vibration frequency applied to the piezoelectric resonator according to the first embodiment of the present invention and the voltage generated in the piezoelectric body.
  • FIG. 4 is a diagram showing a configuration of the piezoelectric resonator according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing measurement results of changes in the vibration characteristics of the beam with respect to the arrangement of the adjustment magnets according to the first embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a configuration of a beam of a piezoelectric resonator according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of the piezoelectric re
  • FIG. 6 is a diagram showing the configuration of the piezoelectric resonator according to the second embodiment of the present invention.
  • FIG. 7 is a diagram showing measurement results of the vibration frequency applied to the piezoelectric resonator and the voltage generated in the piezoelectric body according to the second embodiment of the present invention.
  • FIG. 8 is a diagram showing the configuration of the piezoelectric resonator according to the third embodiment of the present invention.
  • FIG. 9 is a diagram showing a measurement result of a change in the resonance frequency of the beam with respect to the arrangement of the adjusting magnet according to the third embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a configuration of a piezoelectric resonator according to a first modification of the present embodiment.
  • FIG. 10 is a diagram illustrating a configuration of a piezoelectric resonator according to a first modification of the present embodiment.
  • FIG. 11 is a diagram illustrating a configuration of a piezoelectric resonator according to a second modification of the present embodiment.
  • FIG. 12A is a side view showing the configuration of the beam of the piezoelectric resonator according to the fourth embodiment of the present invention.
  • FIG. 12B is a top view showing the configuration of the beam of the piezoelectric resonator according to the fourth embodiment of the present invention.
  • FIG. 13 is a diagram showing the configuration of the piezoelectric resonator according to the fourth embodiment of the present invention.
  • FIG. 14 is a diagram illustrating measurement results of the vibration frequency applied to the piezoelectric resonator and the voltage generated in the piezoelectric body according to the fourth embodiment of the present invention.
  • FIG. 12A is a side view showing the configuration of the beam of the piezoelectric resonator according to the fourth embodiment of the present invention.
  • FIG. 12B is a top view showing the configuration of the beam of the piezoelectric resonator according
  • FIG. 15 is a diagram showing a configuration of a piezoelectric resonator according to the fourth embodiment of the present invention.
  • FIG. 16 is a top view showing the configuration of the piezoelectric resonator according to the fifth embodiment of the present invention.
  • FIG. 17 is a diagram illustrating a measurement result of a change in the resonance frequency of the beam with respect to the arrangement of the adjusting magnet according to the fifth embodiment of the present invention.
  • FIG. 18 is a top view showing the configuration of the piezoelectric resonator according to the fifth embodiment of the present invention.
  • FIG. 19 is a diagram showing a measurement result of a change in the resonance frequency of the beam with respect to the arrangement of the adjusting magnet according to the fifth embodiment of the present invention.
  • FIG. 19 is a diagram showing a measurement result of a change in the resonance frequency of the beam with respect to the arrangement of the adjusting magnet according to the fifth embodiment of the present invention.
  • FIG. 20 is a diagram showing the configuration of the piezoelectric resonator according to the sixth embodiment of the present invention.
  • FIG. 21 is a diagram showing a measurement result of a change in the resonance frequency of the beam with respect to the arrangement of the adjusting magnet according to the sixth embodiment of the present invention.
  • FIG. 22 is a diagram illustrating a configuration of a piezoelectric resonator according to a third modification of the present embodiment.
  • FIG. 23 is a diagram illustrating a configuration of a piezoelectric resonator according to a fourth modification of the present embodiment.
  • FIG. 24 is a diagram illustrating the structure of a conventional power generation element.
  • FIG. 1 is a schematic configuration diagram of a beam (vibrating portion) of a piezoelectric resonator according to the first embodiment.
  • a lower electrode 3, a piezoelectric body 4, and an upper electrode 5 are laminated in order on the main surface of the beam portion 2 made of a metal substrate.
  • a weight portion 6 is fixed to at least one end of the beam portion 2.
  • the weight part 6 is comprised with the permanent magnet or the magnetic body.
  • the lower electrode 3, the piezoelectric body 4, and the upper electrode 5 form a drive unit. Also in other embodiments, the drive unit is formed by the lower electrode 3, the piezoelectric body 4, and the upper electrode 5.
  • the beam part 2 the upper electrode 5, the lower electrode 3, and the piezoelectric body 4 will be defined and explained as in the background art.
  • the beam part 2 is a stainless steel plate (SUS430) having a thickness of 0.15 mm.
  • the dimension of the stainless steel plate is 3 ⁇ 20 mm.
  • the lower electrode 3 is formed by screen-printing an Ag—Pd alloy paste on the stainless steel plate.
  • the piezoelectric body 4 is formed by printing the piezoelectric body paste on the lower electrode 3 with a metal mask.
  • the upper electrode 5 is formed by screen-printing an Ag—Pd alloy paste on the piezoelectric body 4. These are baked by holding at 875 ° C. for 2 hours in the air.
  • the thickness of the piezoelectric body 4 after firing was 20 ⁇ m, and the thicknesses of the lower electrode 3 and the upper electrode 5 were all 3 ⁇ m.
  • a neodymium permanent magnet (weight portion 6) having a weight of 0.38 g and a size of 5 ⁇ 5 ⁇ 2 mm is fixed to the distal end portion of the beam portion 2 with an adhesive.
  • the piezoelectric material used for the piezoelectric body 4 has a composition that is densely sintered at a low temperature and has excellent piezoelectric characteristics.
  • the material composition is represented by (Formula 1).
  • the piezoelectric material composition powder having the molar ratio shown in (Formula 1) was synthesized by the method. Incidentally order to densely sintered at a temperature below 900 ° C., an average particle diameter (D 50) was crushed to less than 0.5 [mu] m.
  • the piezoelectric properties of the obtained piezoelectric material were measured.
  • the mechanical coupling coefficient k p was 0.60 and the piezoelectric constant d 31 was -125 pm / V. The characteristics are shown.
  • An organic vehicle is prepared by adjusting the blending ratio of the organic binder and the solvent to, for example, 2: 8.
  • ethyl cellulose resin, acrylic resin, butyral resin or the like can be used as the organic binder, and ⁇ -terpineol, butyl carbitol, or the like can be used as the solvent.
  • This organic vehicle and the piezoelectric material pulverized powder were weighed at a weight ratio of, for example, 20:80, mixed with an appropriate amount of a dispersant, and then kneaded with a three-ball mill to prepare a piezoelectric printing paste.
  • one end of the beam portion 2 is fixed by the support portion 8, and the support portion 8 is fixed to the base portion 7.
  • the beam portion 2 is fixed by a support portion 8 so that at least one main surface of the beam portion 2 is substantially parallel to the main surface of the base portion 7.
  • the beam portion 2, the support portion 8, and the base portion 7 are separated from each other, but the same effect can be obtained even if the beam portion 2, the support portion 8, and the base portion 7 are integrally formed.
  • the support portion 8 is fixed to the base portion 7 with a bolt or the like. Then, the end of the beam portion 2 on the side where the weight portion 6 is not fixed and the support portion 8 are fixed.
  • FIG. 3 shows the results of measuring the relationship between the vibration frequency applied to the piezoelectric resonator 1 by the above method and the voltage generated in the piezoelectric body 4.
  • the vibration acceleration is controlled by a vibration generator so as to be constant at 0.1 G.
  • the generated voltage was maximum at the vibration frequency of 64.5 Hz, and the voltage (effective value) at that time was about 8V.
  • M is the weight of the beam
  • L is the length
  • E is the Young's modulus
  • I is the moment of inertia of the cross section.
  • the thickness of the beam portion 2 is set to 0.17 mm, which is obtained by adding the thickness of the metal substrate 0.15 mm and the thickness of the piezoelectric body 4 to 0.02 mm.
  • the resonance frequency fr when W was 0.38 g was calculated from (Equation 2), it was 65.0 Hz, and it was confirmed that it coincided with the measurement result shown in FIG.
  • the thicknesses of the lower electrode 3 and the upper electrode 5 are very thin with respect to the piezoelectric body 4. 3.
  • the thickness of the upper electrode 5 is not taken into consideration.
  • the adjusting magnet 10 is a neodymium permanent magnet having dimensions of 3 ⁇ 3 ⁇ 3 mm and is 15 mm away from the weight portion 6.
  • the arrangement of the adjusting magnet 10 at this time is, for example, arranged so that each magnetic pole of the adjusting magnet 10 is perpendicular to the main surface of the base portion 7, and the magnetic pole on the upper surface side of the adjusting magnet 10 and the weight portion 6. Are arranged so that the magnetic poles on the lower surface side are different from each other.
  • the arrangement of the adjusting magnet 10 at this time is, for example, arranged so that each magnetic pole of the adjusting magnet 10 is perpendicular to the main surface of the base portion 7, and the magnetic pole on the upper surface side of the adjusting magnet 10 and the weight portion 6. Are arranged so that the magnetic poles on the lower surface side thereof are of the same polarity.
  • the resonance frequency (graph (a)) when the adjustment magnet 10 is arranged in the direction in which the repulsive force is generated between the weight 6 and the weight portion 6 is 65.4 Hz, and the resonance frequency when the adjustment magnet 10 is not arranged. It is 0.9 Hz higher than 64.4 Hz in (graph (c)).
  • the resonance frequency (graph (b)) when the adjusting magnet 10 is arranged in the direction in which the attractive force is generated between the weight 6 and the weight portion 6 is 63.7 Hz, and when the adjusting magnet 10 is not arranged.
  • the resonance frequency (graph (c)) is 0.8 Hz lower than 64.4 Hz.
  • the generated voltage was about 8V and hardly changed.
  • the resonance frequency when a tensile stress is applied to the beam portion 2, the resonance frequency is increased, and when a compressive stress is applied, the resonance frequency is decreased.
  • the configuration of the piezoelectric resonator of the second embodiment is substantially the same as that of the first embodiment described with reference to FIG. The only difference is that the position of the adjusting magnet 10 is changed.
  • the position immediately below the weight portion 6 made of a permanent magnet is defined as position 0.
  • the direction toward the support portion 8 along the central axis of the beam portion 2 is minus, and the opposite direction is plus, and the adjusting magnet 10 is positioned at +2, +4, +6 mm, and at ⁇ 2, ⁇ 4, ⁇ 6 mm.
  • the resonance frequency of each of the piezoelectric resonators 1 was measured.
  • the adjustment magnet 10 is moved, the adjustment magnet is arranged so that the center axis of the beam portion 2 in the width direction and the center of the adjustment magnet 10 overlap.
  • the adjusting magnet 10 is a neodymium magnet having a size of 3 ⁇ 3 ⁇ 3 mm, and is separated from the weight portion 6 at an interval of 15 mm when arranged at position 0.
  • the line graph shown in FIG. 7 (a) shows the change in the resonance frequency when the adjusting magnet 10 is arranged at a position of ⁇ 6 to +6 mm so that the surface repelling the weight portion 6 made of a permanent magnet is upward. It is the result of having measured.
  • the arrangement of the adjustment magnet 1 at this time is such that, for example, when the lower surface side of the weight portion 6 is an N pole, the S pole and the N pole of the adjustment magnet 10 are perpendicular to the main surface of the base portion 7. While being arranged, the upper surface side of the adjusting magnet 10 is an N pole. That is, the adjustment magnet 1 and the weight 6 are arranged so that the same poles face each other.
  • the line graph shown in FIG. 7 (b) shows the resonance frequency when the adjusting magnet 10 is placed at a position of ⁇ 6 to +6 mm so that the weight portion 6 made of a permanent magnet and the surface to be attracted are upward. It is the result of measuring the change.
  • the arrangement of the adjustment magnet 1 at this time is such that, for example, when the lower surface side of the weight portion 6 is an N pole, the S pole and the N pole of the adjustment magnet 10 are perpendicular to the main surface of the base portion 7.
  • the upper surface side of the adjusting magnet 10 is an S pole. That is, the adjusting magnet 1 and the weight 6 are arranged so that the different poles face each other.
  • the adjusting magnet 10 is arranged so that the surface that adsorbs the weight portion 6 made of a permanent magnet is on the support portion 8 side, and the repelling surface is on the opposite side to the support portion 8. This is a result of measuring a change in resonance frequency when it is arranged at a position of 6 to +6 mm.
  • the adjustment magnet 1 is arranged so that the south pole and the north pole of the adjustment magnet 10 are parallel to the main surface of the base portion 7, and the position immediately below the weight portion 6 is set to 0.
  • the weight part 6 and the opposite pole are arranged on the 8 side, and the weight part 6 and the same pole are arranged on the opposite side.
  • the resonance frequency of the piezoelectric resonator 1 can be made higher or lower than when the adjusting magnet 10 is not arranged. It was found that it can be adjusted.
  • the resonance frequency changes almost linearly.
  • the resonance frequency when arranged at a position of ⁇ 4 mm is substantially equal to the resonance frequency when the adjusting magnet 10 is not arranged, and when arranged on the support unit 8 side, the resonance frequency is reduced to the low frequency side.
  • the resonance frequency changes to the high frequency side.
  • the adjusting magnet 10 is disposed at an arbitrary position on the main surface of the base portion 7 with respect to the weight portion 6 made of a permanent magnet, whereby the piezoelectric resonator 1 It can be used as a fine adjustment mechanism of resonance frequency.
  • the adjustment magnet 10 is moved along the direction in which the beam portion 2 extends.
  • the beam portion 2 is not twisted when the resonance frequency is adjusted, and the reliability of the piezoelectric resonator 1 can be improved.
  • a magnet fixing member 11 having a height of 2 mm and 4 mm is fixed on the main surface of the base portion 7 immediately below the weight portion 6 made of a permanent magnet, and further the adjusting magnet 10 is fixed on the base portion 7. I let you. In this state, the resonance frequency of the piezoelectric resonator 1 was measured.
  • the adjusting magnet 10 is even formed of a neodymium magnet having dimensions of 3 ⁇ 3 ⁇ 3 mm.
  • the distance between the adjusting magnet 10 and the weight portion 6 is 15 mm when the magnet fixing member 11 is not provided, 13 mm when the magnet fixing member 11 is 2 mm high, and 11 mm when the magnet fixing member 11 is 4 mm high. .
  • the line graph shown by (a) in FIG. 9 shows the resonance frequency when the adjusting magnet 10 is arranged on the magnet fixing member 11 in the direction in which the repulsive force is generated between the weight portion 6 made of a permanent magnet. It is the result of measuring the change.
  • the magnetic pole of the adjustment magnet 10 is perpendicular to the main surface of the base portion 7 and is arranged so that the magnetic pole on the upper surface side of the adjustment magnet 10 and the magnetic pole on the lower surface side of the weight portion 6 have the same polarity. Has been.
  • the line graph shown by (b) in FIG. 9 shows the resonance frequency when the adjusting magnet 10 is arranged on the magnet fixing member 11 in the direction in which the attractive force is generated between the weight portion 6 made of a permanent magnet. It is the result of measuring the change. At this time, the magnetic pole of the adjusting magnet 10 is perpendicular to the main surface of the base portion 7, and the magnetic pole on the upper surface side of the adjusting magnet 10 and the magnetic pole on the lower surface side of the weight portion 6 are arranged differently. Has been.
  • the x mark shown in FIG. 9 is the resonance frequency when the adjusting magnet 10 is not arranged.
  • FIG. 9 shows that the change in the resonance frequency of the present embodiment shown in FIG. 9 is very large as compared with the result shown in the second embodiment shown in FIG. 7 and is greatly influenced by the adjusting magnet 10.
  • the configuration in which the adjusting magnet 10 can be disposed at an arbitrary position in the direction perpendicular to the main surface of the base 7 with respect to the weight portion 6 made of a permanent magnet is an adjustment mechanism for the resonance frequency of the piezoelectric resonator 1. Useful.
  • the adjustment magnet 10 is arranged at an arbitrary position in the vertical direction and the horizontal direction with respect to the main surface of the base portion 7 with respect to the weight portion 6 made of a permanent magnet, whereby the resonance of the piezoelectric resonator 1 is achieved.
  • the frequency can be accurately adjusted in a larger frequency range.
  • FIG. 12 is a schematic configuration diagram of a beam (vibrating portion) of a piezoelectric resonator according to the fourth embodiment.
  • Lower electrodes 3a and 3b, piezoelectric layers 4a and 4b, and upper electrodes 5a and 5b are stacked in this order on the main surface of the beam portion 2 made of a metal substrate.
  • a weight portion 6 is fixed near the center (center portion) of the beam portion 2.
  • the weight part 6 is comprised with the permanent magnet or the magnetic body.
  • the beam portion 2 the upper electrodes 5a and 5b, the lower electrodes 3a and 3b, and the piezoelectric bodies 4a and 4b are defined and described as a beam.
  • the manufacturing method of the vibration part (beam) of the piezoelectric resonator of the present invention is the same as that of the first embodiment, and thus the description thereof is omitted.
  • the method for producing the piezoelectric layer printing paste is also the same as that in the first embodiment, and thus the description thereof is omitted.
  • both ends of the beam portion 2 are fixed by the support portions 8 a and 8 b, respectively, and the support portions 8 a and 8 b are fixed to the base portion 7. .
  • Both end portions of the beam portion 2 are fixed to the support portions 8 a and 8 b so that at least one main surface of the beam portion 2 is substantially parallel to the main surface of the base portion 7. In other words, the beam portion 2 extends in a direction along the main surface of the base portion 7.
  • the beam portion 2, the support portions 8a and 8b, and the base portion 7 are separated from each other.
  • the beam portion 2, the support portions 8a and 8b, and the base portion 7 are integrally formed, they are equivalent. Get the effect.
  • FIG. 14 shows the result of measuring the relationship between the vibration frequency applied to the piezoelectric resonator 1 and the voltage generated in the piezoelectric layers 4a and 4b. As shown in FIG. 14, the generated voltage was maximum at the vibration frequency of 321.8 Hz, and the voltage (effective value) at that time was about 1.4V.
  • the adjusting magnet 10 is a neodymium permanent magnet having a size of 5 ⁇ 5 ⁇ 1 mm, and is 5 mm away from the lower surface of the weight portion 6.
  • the vibration frequency is 320.6 Hz, which is 1.2 Hz lower than when the adjusting magnet 10 is not disposed.
  • the resonance frequency was 322.9 Hz, which was found to be 1.1 Hz higher than when the adjustment magnet 10 was not arranged. At this time, the generated voltage was about 1.4V and hardly changed.
  • the resonance frequency changes when stress is applied to the beam portion 2, in the configuration of the present embodiment, a permanent magnet fixed as the weight portion 6 to the tip end portion of the beam portion 2 and an adjustment magnet disposed immediately below the permanent magnet.
  • the adjustment magnet 10 is arranged in a plane direction with respect to the main surface of the base portion 7 and in a direction orthogonal to the longitudinal direction of the beam portion 2. The results of examining the change in the resonance frequency of the piezoelectric resonator 1 at this time will be described.
  • the resonance frequency of the piezoelectric resonator 1 was measured when the adjusting magnet 10 was placed at a position of ⁇ 5 mm.
  • the adjusting magnet 10 is a neodymium magnet having a size of 5 ⁇ 5 ⁇ 1 mm, and when arranged at the position 0, it is separated from the weight portion 6 at an interval of 5 mm, and is used for adjustment so that the surface repelling the weight portion 6 faces upward. Magnet 10 was arranged.
  • FIG. 17 shows the result of measuring the change in resonance frequency when the adjusting magnet 10 is arranged at a position of ⁇ 5 to +5 mm.
  • the x mark in a figure is a resonance frequency when the magnet 10 for adjustment is not arrange
  • the resonance frequency changes within a range of 315 to 330 Hz. Since the resonance frequency when the adjustment magnet 10 is not arranged is 321.8 Hz, this result indicates that the resonance frequency of the piezoelectric resonator 1 is changed to either the high frequency side or the low frequency side depending on the arrangement position of the adjustment magnet 10. Also means that it can be adjusted.
  • the position immediately below the weight part 6 made of a permanent magnet is defined as a reference position 0.
  • the adjusting magnet 10 was arranged at the positions of ⁇ 2.5 and ⁇ 5 mm, and the resonance frequency of the piezoelectric resonator 1 was measured at each position.
  • the adjusting magnet 10 is a neodymium magnet having a size of 5 ⁇ 5 ⁇ 1 mm, and when arranged at the position 0, it is separated from the weight portion 6 at an interval of 5 mm, and is used for adjustment so that the surface repelling the weight portion 6 faces upward. A magnet was placed.
  • FIG. 19 shows the result of measuring the change in resonance frequency when the adjusting magnet 10 is arranged at a position of ⁇ 5 to +5 mm.
  • the x mark in a figure is a resonance frequency when the magnet 10 for adjustment is not arrange
  • the resonance frequency changes linearly in the range of 319 to 322.5 Hz by arranging the adjusting magnet 10 at a position of ⁇ 5 to +5 mm.
  • the structure in which the adjusting magnet 10 is arranged at an arbitrary position in the plane direction with respect to the main surface of the base portion 7 with respect to the weight portion 6 made of a permanent magnet is the structure of the piezoelectric resonator 1. This is useful as a resonance frequency adjustment mechanism.
  • a magnet fixing member 11 having a height of 1 mm and 2 mm is fixed to the main surface of the base portion 7 immediately below the weight portion 6 made of a permanent magnet.
  • the resonance frequency of the beam portion 2 when the adjustment magnet 10 was fixed on the magnet fixing member 11 was measured.
  • the adjusting magnet 10 is a neodymium magnet having a size of 5 ⁇ 5 ⁇ 1 mm, and the distance to the weight portion 6 (the distance between the top surface of the adjusting magnet 10 and the lower surface of the weight portion 6) is 5 mm when the magnet fixing member 11 is not provided.
  • the magnet fixing member 11 having a height of 1 mm it is 4 mm
  • in the case of the magnet fixing member 11 having a height of 2 mm it is 3 mm.
  • FIG. 21 shows a result of measuring a change in resonance frequency when the adjusting magnet 10 is arranged on the magnet fixing member 11 in a direction in which a repulsive force is generated between the weight portion 6 made of a permanent magnet.
  • the adjusting magnet 10 when the adjusting magnet 10 is arranged on the magnet fixing member 11 in a direction in which a repulsive force is generated between the weight portion 6 made of a permanent magnet, the height of the magnet fixing member 11 is increased.
  • the resonance frequency changes to the lower frequency side as the distance between the weight 6 and the adjustment magnet 10 becomes smaller.
  • the structure in which the adjusting magnet 10 can be arranged at an arbitrary position in the direction perpendicular to the main surface of the base 7 with respect to the weight portion 6 made of a permanent magnet is a fine adjustment mechanism for the resonance frequency of the piezoelectric resonator 1. Useful as.
  • the adjustment magnet 10 is arranged at an arbitrary position in the vertical direction and in the horizontal direction with respect to the main surface of the base portion 7, so that the resonance of the piezoelectric resonator 1 is achieved.
  • the frequency can be accurately adjusted in a larger frequency range.
  • the base 7 and the adjusting magnet 10 are provided only on one side with respect to the beam 2, but on both sides with the beam 2 sandwiched as shown in FIGS. 10 and 22.
  • Bases 7a and 7b and adjusting magnets 10a and 10b may be provided.
  • 10 or 22 makes it possible to install a power supply line between the main surface of the base portion 7b and the beam portion 2, and the adjustment magnet 10 interferes with the power supply line. And the piezoelectric resonator 1 can be easily installed.
  • an adjustment magnet 10b similar to the adjustment magnet 10a provided on the main surface of the base portion 7a is provided on the main surface of the base portion 7b, whereby the resonance frequency is set. It becomes possible to increase the adjustment range with higher accuracy.
  • the weight portion 6 is formed of a permanent magnet.
  • a part or all of the weight portion 6 is formed of a permanent magnet, or a part or all of the weight portion 6 is made of a magnetic material (preferably iron. , Cobalt, nickel, or a ferromagnetic material thereof.
  • either the weight 6 or the adjustment magnet 10 may be formed of a magnetic material.
  • the adjustment magnet 10 is formed of a permanent magnet, but may be formed of an electromagnet or the like. Although electric power is consumed by using the electromagnet, the resonance frequency of the piezoelectric resonator 1 can be easily and precisely adjusted by freely changing the magnetic field direction and strength of the adjusting magnet 10.
  • the adjusting magnet 10 is arranged at a position where the torsional stress is generated in the beam part 2, the beam part 2 easily breaks due to fatigue when vibrated for a long time. It is preferable to arrange the magnet 10. That is, it is desirable to adjust the resonance frequency by arranging and moving the adjusting magnet 10 along the central axis of the beam portion 2.
  • the resonance frequency can be adjusted by utilizing the twist of the beam part 2.
  • the beam portion 2 can be twisted.
  • the weight portion 6 and the beam portion 2 are separated, but the same effect can be obtained even when they are formed integrally.
  • This also applies to the beam portion 2, the support portion 8 (8a, 8b), and the base portion 7 (7a, 7b), and these may be integrally formed.
  • the adjusting magnet 10 is arranged in the plane direction or the vertical direction with respect to the main surface of the beam portion 2 with the main surface of the base portion 7 as a reference.
  • the adjusting magnet 10 is disposed on the main surface of the base portion 7, it may be provided at a position where a repulsive force or an attracting force is generated with respect to the weight portion 6, and the position is limited only to the main surface of the base portion 7. Is not to be done.
  • a frame or the like may be inserted between the base portion 7 and the beam portion 2 and a magnet or the like may be provided on the frame.
  • stoppers 12, 12a for limiting the vibration amount of the beam part 2 as shown in FIGS. 12b may be provided.
  • the stoppers 12, 12 a, and 12 b are desirably elastic bodies so that they are not destroyed even when the beam portion 2 collides, and the top surfaces thereof are arranged to be at least higher than the top surface of the adjusting magnet 10.
  • the present invention is useful to use the present invention as a piezoelectric device using the resonance characteristics of a cantilever such as a vibration power generation element or an oscillator.

Abstract

 基部と、基部に固定された第1の支持部と、第1の支持部に固定された梁部と、梁部に固定された錘部と、梁部の上に設けられた駆動部と、基部の主面上を移動可能な調整用磁石とを備えている。さらに、錘部は、磁石または磁性体で形成され、梁部は、前記基部の主面に沿う方向に延在している。この構成により、製造プロセスのばらつきにより生じた共振周波数のずれを、容易に調整することができる。発電素子の製造プロセスのばらつきにより所望の共振周波数からずれた場合であっても、容易に調整可能であり、最大の効率を得ることができる。

Description

圧電共振子
 本発明は、圧電共振子に関し、特に共振周波数を調整可能な構成に関する。
 圧電体を有する共振子は、半導体プロセス等を利用することにより小型化が可能なことから、最近は発電素子や各種アクチュエータなどその応用範囲は広がってきている。
 図24は、電源供給ライン110に設置されたセンサモジュールであり、その駆動用電源として発電素子101を用いた一例を示している。
 発電素子101は、梁部102と、梁部102の主面上に設けられ、上部電極105、下部電極103で挟まれた圧電体104とで構成されている。梁部102の一端には永久磁石からなる錘部106が取り付けられ、電源供給ライン110を流れる交流電流に起因する電源供給ライン110周辺の磁界変化との相互作用により、梁部102は振動する。
 以下、梁部102と、上部電極105と、下部電極103と、圧電体104とを含めて、梁と定義して説明する。実際には梁部102だけではなく、上部電極105、下部電極103、圧電体104を含んだ梁全体が振動する。
 梁の振動により発生した歪みは、圧電体104の圧電効果により圧力に比例した電荷が現れ電圧が発生する。発生する電圧は、電源供給ライン110を流れる電流量に比例した大きさとなることから、圧電体104で発生した電圧を制御装置109で監視してその結果を無線等により送信することで、電流センサとしての役割も果たしている。この制御装置109におけるセンサ情報の蓄積、加工、送信などに要する電力を、発電素子101により生成された電力で賄われることで、電池や外部からの給電が不要なセンサモジュールを実現している。
 なお、この出願の発明に関する先行技術文献情報としては、例えば特許文献1や非特許文献1が知られている。
 しかしながら、上述した発電素子では、最大の発電効率を得るためには電源供給ライン110の交流周波数と発電素子101の共振周波数を合致させる必要がある。しかしながら、共振周波数は、梁部102の長さ、厚み、先端に取り付ける錘部106の重量などに依存するため、製造プロセスのばらつきで変動しやすいという課題があった。
米国特許第5594331号明細書
Richard White, "Demand Response: PassiveProximity Electric Sensing" Demand Response Enabling TechnologiesDevelopment Workshop, 2004年6月10日, p.1-17
 本発明は、基部と、基部に固定された第1の支持部と、第1の支持部に固定された梁部と、梁部に固定された錘部と、梁部の上に設けられた駆動部と、基部の主面上を移動可能な調整用磁石とを備えている。そして、錘部が磁石または磁性体で形成され、梁部が基部の主面に沿う方向に延在している。
 この構成によれば、製造プロセスのばらつきにより生じた共振周波数のずれを容易に調整することができる。
 発電素子の製造プロセスのばらつきにより所望の共振周波数からずれた場合であっても、容易に調整可能であり、最大の効率を得ることができる。
図1は、本発明の実施の形態1による圧電共振子の梁の構成を示す図である。 図2は、本発明の実施の形態1による圧電共振子の構成を示す図である。 図3は、本発明の実施の形態1による圧電共振子に与えられた振動周波数と、圧電体に発生した電圧の測定結果を示す図である。 図4は、本発明の実施の形態1による圧電共振子の構成を示す図である。 図5は、本発明の実施の形態1の調整用磁石の配置に対する梁の振動特性の変化の測定結果を示す図である。 図6は、本発明の実施の形態2による圧電共振子の構成を示す図である。 図7は、本発明の実施の形態2による圧電共振子に与えられた振動周波数と、圧電体に発生した電圧の測定結果を示す図である。 図8は、本発明の実施の形態3による圧電共振子の構成を示す図である。 図9は、本発明の実施の形態3の調整用磁石の配置に対する梁の共振周波数の変化の測定結果を示す図である。 図10は、本実施の形態の第1の変形例の圧電共振子の構成を示す図である。 図11は、本実施の形態の第2の変形例の圧電共振子の構成を示す図である。 図12Aは、本発明の実施の形態4による圧電共振子の梁の構成を示す側面図である。 図12Bは、本発明の実施の形態4による圧電共振子の梁の構成を示す上面図である。 図13は、本発明の実施の形態4による圧電共振子の構成を示す図である。 図14は、本発明の実施の形態4による圧電共振子に与えられた振動周波数と、圧電体に発生した電圧の測定結果を示す図である。 図15は、本発明の実施の形態4による圧電共振子の構成を示す図である。 図16は、本発明の実施の形態5による圧電共振子の構成を示す上面図である。 図17は、本発明の実施の形態5の調整用磁石の配置に対する梁の共振周波数の変化の測定結果を示す図である。 図18は、本発明の実施の形態5による圧電共振子の構成を示す上面図である。 図19は、本発明の実施の形態5の調整用磁石の配置に対する梁の共振周波数の変化の測定結果を示す図である。 図20は、本発明の実施の形態6による圧電共振子の構成を示す図である。 図21は、本発明の実施の形態6の調整用磁石の配置に対する梁の共振周波数の変化の測定結果を示す図である。 図22は、本実施の形態の第3の変形例の圧電共振子の構成を示す図である。 図23は、本実施の形態の第4の変形例の圧電共振子の構成を示す図である。 図24は、従来の発電素子の構造を説明する図である。
 以下、本発明の実施の形態について説明する。
 (実施の形態1)
 実施の形態1の圧電共振子の梁(振動部)の構成について、図1を参照しながら説明する。
 <梁部の構成>
 図1は実施の形態1による圧電共振子の梁(振動部)の構成概略図である。金属基板からなる梁部2の主面上に順に、下部電極3、圧電体4、上部電極5が積層されている。梁部2の少なくとも一方の端部には、錘部6が固定されている。錘部6は永久磁石または磁性体で構成されている。なお、下部電極3、圧電体4、上部電極5で駆動部が形成れている。他の実施の形態についても、駆動部は下部電極3、圧電体4、上部電極5で形成されている。
 以下、背景技術と同様に梁部2と、上部電極5と、下部電極3と、圧電体4とを含めて、梁と定義して説明する。
 以下、本発明の圧電共振子の、振動部(梁)の製造方法の一例を説明する。
 梁部2は、厚み0.15mmのステンレス板(SUS430)が使用されている。そして、ステンレス板の寸法は3×20mmとする。
 ステンレス板の上へ、Ag-Pd合金ペーストをスクリーン印刷することで下部電極3を形成する。そして、下部電極3の上へ圧電体印刷用ペーストをメタルマスク印刷することで圧電体4を形成する。さらに圧電体4の上へAg-Pd合金ペーストをスクリーン印刷することで上部電極5を形成する。これらを大気中において875℃で2時間保持することで焼成する。焼成後の圧電体4の厚みは20μm、下部電極3、上部電極5の厚みはいずれも3μmであった。また梁部2の先端部には重量0.38g、寸法5×5×2mmのネオジム永久磁石(錘部6)を接着剤で固定する。
 圧電体4に用いる圧電材料は、低温で緻密に焼結し、かつ圧電特性に優れた組成であることが望ましい。
 本実施の形態では、(式1)で示される材料組成とする。
 (式1)Pb1.015Zr0.44Ti0.46(Zn1/3Nb2/30.103.015
 この組成は、本出願人が提案した特許第4403967号公報に開示されている組成範囲で、優れた圧電特性を示すことで知られており、PZTのBサイトをPb(Zn1/3Nb2/3)O3で10モル%置換し、またPbサイト比を1.015とストイキオメトリーよりも過剰にしていることを特徴としている。
 純度99.9%以上の酸化鉛(PbO)、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)、酸化亜鉛(ZnO)、酸化ニオブ(Nb25)粉末を原料とし、公知の固相法により(式1)に示したモル比の圧電材料組成粉を合成した。なお900℃未満の温度で緻密に焼結させるため、平均粒子径(D50)が0.5μm未満となるまで粉砕した。
 JEITA EM-4501に記載されている方法に則り、得られた圧電材料の圧電体特性を測定したところ、機械結合係数kpは0.60、圧電定数d31は-125pm/Vと優れた圧電特性を示した。
 次に、圧電体印刷用ペーストの作製方法について説明する。有機バインダと溶剤との配合比率が、例えば2:8となるように調製して有機ビヒクルを作製する。有機バインダには例えばエチルセルロース樹脂、アクリル樹脂、ブチラール樹脂などを使用することができ、溶剤には例えばα-テルピネオール、ブチルカルビトールなどを使用することができる。この有機ビヒクルと上記圧電材料粉砕粉を例えば20:80の重量比率で秤量し、適量の分散剤とともに混合した後、三本ボールミルで混練することにより圧電体印刷用ペーストを作製した。
 上部電極5および下部電極3の形成には、市販の銀パラジウム合金(銀:パラジウム比=90:10、平均粒子径0.9μm)ペーストを用いた。
 <圧電共振子の構成>
 次に実施の形態1の圧電共振子の構成について図2を参照しながら説明する。
 図2に示すように、実施の形態1の圧電共振子1では、梁部2の一方の端部が支持部8で固定され、支持部8は基部7に固定されている。梁部2の少なくとも一つの主面は、基部7の主面と略平行となるように、梁部2は支持部8で固定されている。本実施の形態では、梁部2、支持部8、基部7はそれぞれ別体としているが、梁部2、支持部8、基部7を一体で形成しても同等の効果を得る。
 梁部2、支持部8、基部7の固定方法の一例としては、基部7に支持部8をボルトなどで固定する。そして、梁部2の錘部6が固定されていない側の端部と、支持部8を固定する。
 <動作特性の評価方法>
 次に本発明の実施の形態1の圧電共振子1の振動特性の評価方法について図2及び図3を参照しながら説明する。
 基部7を振動発生機(図示せず)に固定し、振動発生機により圧電共振子1を振動させると、圧電効果により圧電体4に電圧が発生する。振動周波数に対する下部電極3と上部電極5間の電圧変化をオシロスコープ9により測定し、発生電圧が最大となる振動周波数から、本発明の圧電共振子1の共振周波数を求めることができる。
 図3は、上記方法で圧電共振子1に与えられた振動周波数と、圧電体4に発生した電圧との関係を測定した結果である。なお振動加速度は0.1Gで一定となるよう振動発生機で制御されている。図3に示すように振動周波数64.5Hzで発生電圧は最大となり、そのときの電圧(実効値)は約8Vであった。
 先端部に重量Wの錘を有する片持ち梁の共振周波数frはレーリー法により(式2)により求められることが知られている。
Figure JPOXMLDOC01-appb-M000001
 (式2)では、Mは梁の重量、Lは長さ、Eはヤング率、Iは断面二次モーメントである。梁部2が金属のみで形成されていると仮定し、梁部2の厚みを金属基板の厚み0.15mmと圧電体4の厚み0.02mmを足した0.17mmとして、錘部6の重量Wが0.38gのときの共振周波数frを(式2)から計算すると65.0Hzとなり、図3に示した測定結果と一致することを確認した。
 なお、厳密には、下部電極3、上部電極5の厚みを考慮する必要があるが、圧電体4に対して下部電極3、上部電極5は非常に薄いので、本実施の形態では、下部電極3、上部電極5の厚みは考慮していない。
 次に図4に示すように永久磁石からなる錘部6の直下に、調整用磁石10を配置したときの共振周波数を測定した結果について説明する。調整用磁石10は寸法3×3×3mmのネオジム永久磁石で、錘部6とは15mm離れている。
 図5中に(a)で示す折れ線グラフは、錘部6との間に反発力が発生する向きに調整用磁石10を配置したときの、振動周波数と発生電圧の測定結果である。この時の調整用磁石10の配置は、例えば、調整用磁石10の各磁極を基部7の主面と垂直となるように配置するとともに、調整用磁石10の上面側の磁極と、錘部6の下面側の磁極が互いに異極となるように配置している。
 図5中の(b)で示す折れ線グラフは、錘部6との間に吸着力が発生する向きに調整用磁石10を配置したときの、振動周波数と発生電圧の測定結果である。この時の調整用磁石10の配置は、例えば、調整用磁石10の各磁極を基部7の主面と垂直となるように配置するとともに、調整用磁石10の上面側の磁極と、錘部6の下面側の磁極が互いに同極となるように配置している。
 図5中の(c)で示す折れ線グラフは、調整用磁石10を配置していないときの、振動周波数と発生電圧の測定結果である。
 図5に示す測定結果の関係から、以下のことが分かった。
 錘部6との間に反発力が発生する方向に調整用磁石10を配置したときの共振周波数(グラフ(a))は65.4Hzで、調整用磁石10を配置していない時の共振周波数(グラフ(c))の64. 4Hzよりも0.9Hz高い。
 一方、錘部6との間に吸着力が発生する方向に調整用磁石10を配置したときの共振周波数(グラフ(b))は、63.7Hzで、調整用磁石10を配置していない時の共振周波数(グラフ(c))の64. 4Hzよりもよりも0.8Hz低い。
 また、いずれの条件についても、発生電圧は約8Vでほとんど変化しなかった。
 以上の説明から明らかなように、本実施の形態では、梁部2に引っ張り応力を作用させると共振周波数が高くなり、圧縮応力を作用させると共振周波数が低くなることから、梁部2の一方の端部に永久磁石で形成される錘部6を固定し、錘部6の直下に調整用磁石10を配置させることで、共振周波数を変化させることができた。
 つまり、配置した調整用磁石10と錘部6との間で反発力および吸着力を発生させることで、梁部2に引っ張り応力および圧縮応力がはたらき、共振周波数を変化させることができた。
 (実施の形態2)
 実施の形態2では、調整用磁石10を基部7の主面上で配置位置を変えたときの、圧電共振子1の共振周波数の変化を調べた結果について説明する。
 なお、実施の形態2の圧電共振子の構成は、図4を参照しながら説明した実施の形態1と実質的に同様である。異なる点は、調整用磁石10位置を変えている点だけである。
 実施の形態2では、図6に示すとおり、永久磁石からなる錘部6の直下の位置を位置0とする。そして梁部2の中心軸に沿って支持部8に向かう方向をマイナス、その逆方向をプラスとして、+2、+4、+6mmの位置、および-2、-4、-6mmの位置に調整用磁石10を配置したときの圧電共振子1のそれぞれの共振周波数を測定した。なお、上記調整用磁石10を移動させる際、梁部2の幅方向の中心軸と、調整用磁石10の中心が重なるように調整用磁石を配置している。調整用磁石10は寸法3×3×3mmのネオジム磁石で、位置0に配置したとき錘部6とは15mmの間隔で離れている。
 図7中に(a)で示す折れ線グラフは、永久磁石からなる錘部6と反発する面が上方となるように調整用磁石10を-6~+6mmの位置に配置した時の共振周波数の変化を測定した結果である。この時の調整用磁石1の配置は、例えば、錘部6の下面側をN極とした場合、調整用磁石10のS極、N極が基部7の主面に対して垂直となるように配置するとともに、調整用磁石10の上面側をN極としている。つまり、調整用磁石1と錘6を、同極同士が対向するように配置させている。
 図7中に(b)で示す折れ線グラフは、永久磁石からなる錘部6と吸着する面が上方となるように調整用磁石10を-6~+6mmの位置に配置した時の、共振周波数の変化を測定した結果である。この時の調整用磁石1の配置は、例えば、錘部6の下面側をN極とした場合、調整用磁石10のS極、N極が基部7の主面に対して垂直となるように配置するとともに、この調整用磁石10の上面側をS極としている。つまり、調整用磁石1と錘6を異極同士が対向するように配置させている。
 図7中の(c)で示す折れ線グラフは、永久磁石からなる錘部6と吸着する面を支持部8側、反発する面を支持部8と反対側となるように調整用磁石10を-6~+6mmの位置に配置したときの、共振周波数の変化を測定した結果である。この調整用磁石1の配置は、例えば、調整用磁石10のS極、N極が基部7の主面に対して平行となるように配置するとともに、錘部6の直下を0として、支持部8側に錘部6と異極を、その反対側に錘部6と同極を配置させている。
 なお図7中に示す×印は、調整用磁石10を配置しないときの共振周波数である。
 以上の結果から、永久磁石からなる錘部6と反発する面、または吸着する面を上方にして調整用磁石10を配置した場合(図7中の(a)および(b))は、-2~+6mmの配置位置で、ほぼ直線的に共振周波数が変化することがわかった。また、+6mmの位置に調整用磁石10を配置したときの共振周波数は、調整用磁石10を配置しないときの共振周波数と、錘部6の直下(位置0mm)に調整用磁石10を配置したときの共振周波数との上下関係と、逆の関係になっていることも分かった。
 すなわち、調整用磁石10の磁極方向を変えなくても、調整用磁石10の配置を変化させることにより、調整用磁石10を配置しないときよりも圧電共振子1の共振周波数を高くしたり、低くしたり調整することが可能であることがわかった。
 また永久磁石からなる錘部6に対して吸着面、反発面を支持部8側、支持部8と反対側となるように配置した場合(図7中の(c))は、-6~0mmの配置位置で、共振周波数はほぼ直線的に変化している。-4mmの位置に配置したときの共振周波数は、調整用磁石10を配置しないときの共振周波数とほぼ等しくなり、それよりも支持部8側へ配置したときは低周波側へ、支持部8と反対側へ配置したときには高周波側へ共振周波数が変化している。
 以上の結果より、本実施の形態の構成では、永久磁石からなる錘部6に対して、調整用磁石10を基部7の主面上で任意の位置に配置することにより、圧電共振子1の共振周波数の微調整機構として活用できる。
 なお、本実施の形態では、調整用磁石10を梁部2が延在する方向に沿って移動させて配置していた。調整用磁石10を移動させて配置する時、調整用磁石10を梁部2の中心軸に沿って配置することが望ましい。梁部2の中心軸に沿って配置することで、共振周波数を調整する際に梁部2に捩れ等が発生することがなく、圧電共振子1の信頼性を高めることができる。
 (実施の形態3)
 実施の形態3では、調整用磁石10を基部7の主面に対して垂直方向に配置位置を変えたときの、圧電共振子1の共振周波数の変化を調べた結果について説明する。
 図8に示すように永久磁石からなる錘部6の直下に、高さ2mm、4mmの磁石固定部材11を基部7の主面上に固定し、さらに、基部7の上へ調整用磁石10固定させた。この状態で、圧電共振子1の共振周波数を測定した。調整用磁石10は寸法3×3×3mmのネオジム磁石で形成さえている。調整用磁石10と錘部6との距離は、磁石固定部材11がないときは15mm、高さ2mmの磁石固定部材11のときは13mm、高さ4mmの磁石固定部材11のときは11mmである。
 図9中の(a)で示す折れ線グラフは、永久磁石からなる錘部6との間に反発力が発生する向きに調整用磁石10を磁石固定部材11の上に配置したときの共振周波数の変化を測定した結果である。この時、調整用磁石10の磁極は基部7の主面に対して垂直であるとともに、調整用磁石10の上面側の磁極と錘部6の下面側の磁極とが同極になるように配置されている。
 図9中の(b)で示す折れ線グラフは、永久磁石からなる錘部6との間に吸着力が発生する向きに調整用磁石10を磁石固定部材11の上に配置したときの共振周波数の変化を測定した結果である。この時、調整用磁石10の磁極は基部7の主面に対して垂直であるとともに、調整用磁石10の上面側の磁極と錘部6の下面側の磁極とが異極になるように配置されている。
 なお、図9中に示す×印は、調整用磁石10を配置しないときの共振周波数である。
 以上の結果から、永久磁石からなる錘部6との間に反発力が発生する向きに調整用磁石10を磁石固定部材11の上に配置した場合(図9中の(a))は、磁石固定部材11の高さが高くなり、錘部6と調整用磁石10の距離が近づくと、共振周波数は高周波側へ変化することが分かった。永久磁石からなる錘部6との間に吸着力が発生する向きに調整用磁石10を磁石固定部材11の上に配置したとき(図9中の(b))は、磁石固定部材11の高さが高くなり、錘部6と調整用磁石10の距離が近づくと、共振周波数は低周波側へ大きく変化することが分かった。
 図9に示す本実施の形態の共振周波数の変化は、図7に示す実施の形態2で示した結果と比較すると非常に大きく、調整用磁石10の影響を大きく受けることがわかった。
 以上の結果より、永久磁石からなる錘部6に対して、調整用磁石10を基部7の主面に対して垂直方向の任意位置に配置できる構成は圧電共振子1の共振周波数の調整機構として有用である。
 また、永久磁石からなる錘部6に対して、調整用磁石10を基部7の主面に対して垂直方向、および水平方向の任意位置に配置する構成とすることにより、圧電共振子1の共振周波数をより大きな周波数範囲で正確に調整することができる。
 (実施の形態4)
 実施の形態4の圧電共振子の梁(振動部)の構成について、図12A、図12Bを参照しながら説明する。
 <梁部の構成>
 図12は実施の形態4による圧電共振子の梁(振動部)の構成概略図である。金属基板からなる梁部2の主面上に順に、下部電極3a,3b、圧電体層4a,4b、上部電極5a,5bが積層されている。梁部2の中央付近(中央部)に、錘部6が固定されている。錘部6は永久磁石または磁性体で構成されている。
 以下、実施の形態1と同様に梁部2と、上部電極5a、5bと、下部電極3a、3bと、圧電体4aと4bとを含めて、梁と定義して説明する。
 以下、本発明の圧電共振子の、振動部(梁)の製造方法については、実施の形態1と同様であるので説明を省略する。
 圧電体層印刷用ペーストの作製方法についても実施の形態1と同様であるので説明を省略する。
 <圧電共振子の構成>
 次に実施の形態4の圧電共振子の構成について図13を参照しながら説明する。
 図13に示すように、実施の形態4の圧電共振子1では、梁部2の両方の端部がそれぞれ支持部8a、8bで固定され、支持部8a、8bは基部7に固定されている。梁部2の少なくとも一つの主面は、基部7の主面と略平行となるように、梁部2の両方の端部は支持部8a,8bに固定されている。言い換えれば、梁部2は、基部7の主面に沿う方向に延在している。
 本実施の形態では、梁部2、支持部8a,8b、基部7はそれぞれ別体としているが、これら梁部2、支持部8a,8b、基部7を一体で形成した場合であっても同等の効果を得る。
 梁部2、支持部8、基部7の固定方法は、実施の形態1と同様であるので説明を省略する。
 <動作特性の評価方法>
 次に本発明の実施の形態4の圧電共振子1の振動特性の評価方法について図13及び図14を参照しながら説明する。
 なお、測定方法は実施の形態1と同様であるので、測定結果についてのみ、以下説明する。
 図14は、圧電共振子1に与えられた振動周波数と、圧電体層4a,4bに発生した電圧との関係を測定した結果である。図14に示すように振動周波数321.8Hzで発生電圧は最大となり、そのときの電圧(実効値)は約1.4Vであった。
 次に図15に示すように、永久磁石からなる錘部6の直下に、調整用磁石10を配置したときの共振周波数を測定した結果について説明する。調整用磁石10は寸法5×5×1mmのネオジム永久磁石で、錘部6の下面からは5mm離れている。
 錘部6との間に反発力が発生する方向に調整用磁石10を配置したとき(例えば、調整用磁石10を、調整用磁石10の天面側と錘部6の下面側の磁極を同極となるように配置した時)の、振動周波数は320.6Hzで、調整用磁石10を配置していないときよりも1.2Hz低くなる。錘部6との間に吸着力が発生するように調整用磁石10を配置した場合(調整用磁石10の天面側と錘部6の下面側の磁極を異極となるように調整用磁石10を配置した場合)、共振周波数は322.9Hzで、調整用磁石10を配置していないときよりも1.1Hz高くなることがわかった。この時、発生電圧は約1.4Vでほとんど変化しなかった。
 梁部2に応力を作用させると共振周波数が変化することから、本実施の形態の構成では、梁部2の先端部に錘部6として固定した永久磁石と、その直下に配置した調整用磁石10との間で反発力を発生させることで、梁部2に応力がはたらき、共振周波数を変化させることができた。
 (実施の形態5)
 実施の形態5では、図16、図18の調整用磁石10を、基部7の主面に対して平面方向にその配置位置を変えたときの、圧電共振子1の共振周波数の変化を調べた結果について説明する。
 実施の形態5では、図16に示すとおり、調整用磁石10を基部7の主面に対して平面方向、および梁部2の長手に対して直交方向に配置位置を変える。この時の、圧電共振子1の共振周波数の変化を調べた結果について説明する。
 永久磁石からなる錘部6の直下を位置0として、梁部2の中心軸に直交した任意の方向をプラス、その逆方向をマイナスとして、+5、+2.5mmの位置、および-2.5、-5mmの位置に調整用磁石10を配置したとき圧電共振子1の共振周波数を測定した。調整用磁石10は寸法5×5×1mmのネオジム磁石で、位置0に配置したとき錘部6とは5mmの間隔で離れており、錘部6と反発する面を上方となるように調整用磁石10を配置した。
 図17は調整用磁石10を-5~+5mmの位置に配置したときの、共振周波数の変化を測定した結果である。なお図中の×印は、調整用磁石10を配置しないときの共振周波数である。
 図17に示すように調整用磁石10を-5~+5mmの位置に配置することで、共振周波数を315~330Hzの範囲で変化することがわかった。調整用磁石10を配置していないときの共振周波数は321.8Hzであることから、この結果は、調整用磁石10の配置位置によって圧電共振子1の共振周波数を高周波側、低周波側いずれへも調整できることを意味している。
 次に図18に示すように、調整用磁石10を基部7の主面に対して平面方向、および梁部2の長手方向に沿ってその配置位置を変えたときの、圧電共振子1の共振周波数の変化を調べた。
 永久磁石からなる錘部6の直下を基準となる位置0とする。本実施の形態では図18における右方向(梁2の長手方向のうち一方の方向)に順に、+5、+2.5mmの位置、左方向(梁2の長手方向のうち他方の方向)に順に、-2.5、-5mmの位置に調整用磁石10を配置し、それぞれの位置で、圧電共振子1の共振周波数を測定した。調整用磁石10は寸法5×5×1mmのネオジム磁石で、位置0に配置したとき錘部6とは5mmの間隔で離れており、錘部6と反発する面を上方となるように調整用磁石を配置した。
 図19は調整用磁石10を-5~+5mmの位置に配置したときの、共振周波数の変化を測定した結果である。なお図中の×印は、調整用磁石10を配置しないときの共振周波数である。図19から明らかなように、調整用磁石10を-5~+5mmの位置に配置することで、共振周波数は319~322.5Hzの範囲で直線的に変化することがわかった。
 以上の説明からも明らかなように、永久磁石からなる錘部6に対して、調整用磁石10を基部7の主面に対して平面方向の任意位置に配置する構造は、圧電共振子1の共振周波数の調整機構として有用である。
 (実施の形態6)
 実施の形態6では、調整用磁石10を基部7の主面に対して垂直方向に配置位置を変えたときの、圧電共振子1の共振周波数の変化を調べた結果について説明する。
 図20のように永久磁石からなる錘部6の直下に、高さ1mm、2mmの磁石固定部材11を基部7の主面に固定している。磁石固定部材11の上へ調整用磁石10を固定したとしたときの梁部2の共振周波数を測定した。調整用磁石10は寸法5×5×1mmのネオジム磁石で、錘部6との距離(調整用磁石10の天面と錘部6の下面との距離)は磁石固定部材11がないときは5mm、高さ1mmの磁石固定部材11のときは4mm、高さ2mmの磁石固定部材11のときは3mmである。
 図21は永久磁石からなる錘部6との間に反発力が発生する向きに調整用磁石10を磁石固定部材11の上に配置したときの共振周波数の変化を測定した結果である。
 図21に示すように、永久磁石からなる錘部6との間に反発力が発生する向きに調整用磁石10を磁石固定部材11の上に配置すると、磁石固定部材11の高さが高くなり、錘部6と調整用磁石10の間隔が小さくなるほど共振周波数は低周波側へ変化する。
 以上の結果より、永久磁石からなる錘部6に対して、調整用磁石10を基部7の主面に対して垂直方向の任意位置に配置できる構造は圧電共振子1の共振周波数の微調整機構として有用である。
 また、永久磁石からなる錘部6に対して、調整用磁石10を基部7の主面に対して垂直方向、および水平方向の任意位置に配置する構造とすることにより、圧電共振子1の共振周波数をより大きな周波数範囲で正確に調整することができる。
 なお、上記実施の形態では、基部7と調整用磁石10を、梁部2に対して一面側のみに設けたが、図10や図22に示すように、梁部2を挟んで両面側に基部7a、7bと調整用磁石10a、10bを設けてもよい。図10または図22のような構成とすることで、基部7bの主面と梁部2との間に電源供給ラインを設置することが可能となり、調整用磁石10が電源供給ラインと干渉することなく容易に圧電共振子1を設置することができる。
 本発明の圧電共振子1を発電素子として使用する場合は、基部7bの主面に、基部7aの主面に設けた調整用磁石10aと同様の調整用磁石10bを設けることで、共振周波数をより高精度でかつ調整範囲を広くすることが可能となる。
 なお本実施の形態においては、錘部6を永久磁石で形成したが、錘部6の一部または全てを永久磁石で形成したり、錘部6の一部または全てを磁性体(望ましくは鉄、コバルト、ニッケル、あるいはこれらの合金である強磁性体)で形成したりしても良い。
 また、錘部6あるいは調整用磁石10のいずれか一方を磁性体で形成してもよい。
 本実施の形態においては、調整用磁石10を永久磁石で形成したが、電磁石等で形成しても良い。電磁石とすることで電力は消費するが、調整用磁石10の磁界方向、強度を自由に変化させることで、簡単かつ緻密に圧電共振子1の共振周波数を調整することができる。
 また、梁部2に捩れ応力が生じる位置に調整用磁石10を配置すると、梁部2が長時間振動すると疲労により破断しやすくなるため、梁部2に捩れ応力を生じさせない位置に、調整用磁石10を配置するのが好ましい。すなわち、調整用磁石10は、梁部2の中心軸に沿って配置、移動させることで共振周波数を調整することが望ましい。
 また、梁部2の材料を弾性体とすることで、梁部2の捩れを利用して共振周波数を調整することも可能である。その場合は、調整用磁石10を、梁部2の中心軸と直交する方向に設けることで、梁部2に対して捩れを発生させることができる。
 また上述した実施の形態では、錘部6と梁部2を別体としたが、一体として形成した場合であっても同様の効果を得ることができる。これは、梁部2と支持部8(8a、8b)、基部7(7a、7b)も同様であり、これらが一体で形成されていてもよい。
 また本実施の形態においては、調整用磁石10は圧電共振子1に対して1個使用する例を示したが、図10、図22のように梁部2の上下に配置する構成など、調整用磁石10を複数個配置してもよい。この構成によれば、より緻密に共振周波数を調整することができる。
 調整用磁石10を基部7の主面を基準として梁部2の主面に対して平面方向あるいは垂直方向に配置した実施の形態について説明した。調整用磁石10を基部7の主面上に配置しているが、錘部6に対して反発力あるいは吸着力を生じさせる位置に設ければよく、その位置は基部7の主面のみに限定されるものではない。例えば、基部7と梁部2との間に別途フレーム等を挿入しそのフレーム上に磁石等を設けても良い。
 また、錘部6に取り付けた磁石と調整用磁石10が、磁力により吸着し動かなくならないようにするため、図11、図23のように梁部2の振動量を制限するストッパー12、12a、12bを設けても良い。このストッパー12、12a、12bは、梁部2が衝突しても破壊されないように弾性体であることが望ましく、その天面は少なくとも調整用磁石10の天面より高くなるように配置する。
 本発明は振動発電素子、発振子など片持ち梁の共振特性を用いた圧電デバイスとして利用することが有用である。
 1 圧電共振子
 2,102 梁部
 3,3a,3b,103 下部電極
 4,4a,4b,104 圧電体
 5,5a,5b,105 上部電極
 6,106 錘部
 7,7a,7b,107 基部
 8,8a,8b,108 支持部
 9 オシロスコープ
 10,10a,10b 調整用磁石
 11 磁石固定部材
 12,12a,12b ストッパー
 101 発電素子
 109 制御装置
 110 電源供給ライン

Claims (9)

  1.  基部と、
     前記基部に固定された第1の支持部と、
     前記第1の支持部に固定された梁部と、
     前記梁部に固定された錘部と、
     前記梁部の上に設けられた駆動部と、
     前記基部の主面上を移動可能な調整用磁石と
    を備え、
     前記錘部は、磁石または磁性体で形成され、
     前記梁部は、前記基部の主面に沿う方向に延在している
     ことを特徴とする圧電共振子。
  2.  前記第1の支持部が、前記梁部の一方の端部に固定され、
     前記錘部が、前記梁部の他方の端部に固定されている
     ことを特徴とする請求項1に記載の圧電共振子。
  3.  前記調整用磁石は、前記梁部の中心軸に沿って移動可能とする
     ことを特徴とする請求項2に記載の圧電共振子。
  4.  更に、第2の支持部を備えた請求項1記載の圧電共振子であって、
     前記第1の支持部が、前記梁部の一端に固定され、
     前記第2の支持部が、前記梁部の他端に固定され、
     前記錘部が、前記梁部の中央部に固定されている
     ことを特徴とする請求項1に記載の圧電共振子。
  5.  前記調整用磁石は、前記錘部の下方の位置から梁部の中心軸と直交する方向に沿って移動可能とする
     ことを特徴とする請求項4に記載の圧電共振子。
  6.  前記駆動部は、下部電極と、圧電体と、上部電極とで構成され、
     前記梁部の上に、前記下部電極、前記圧電体、前記上部電極が順に積層されている
     ことを特徴とする請求項1に記載の圧電共振子。
  7.  前記調整用磁石は、電磁石で形成されている
     ことを特徴とする請求項1に記載の圧電共振子。
  8.  前記調整用磁石と前記錘部との間隔が調整可能である
     ことを特徴とする請求項1に記載の圧電共振子。
  9.  更に、ストッパーを備えた請求項1記載の圧電共振子であって、
     前記ストッパーは、前記基部の主面上に配置され、
     前記ストッパーの高さは、前記調整用磁石より高い
     ことを特徴とする請求項1記載の圧電共振子。
PCT/JP2013/000697 2012-02-16 2013-02-08 圧電共振子 WO2013121759A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/371,417 US9431994B2 (en) 2012-02-16 2013-02-08 Piezoelectric resonator including an adjusting magnet
JP2014500099A JP6186597B2 (ja) 2012-02-16 2013-02-08 圧電共振子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-031280 2012-02-16
JP2012031280 2012-02-16
JP2012-039602 2012-02-27
JP2012039602 2012-02-27

Publications (1)

Publication Number Publication Date
WO2013121759A1 true WO2013121759A1 (ja) 2013-08-22

Family

ID=48983894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000697 WO2013121759A1 (ja) 2012-02-16 2013-02-08 圧電共振子

Country Status (3)

Country Link
US (1) US9431994B2 (ja)
JP (1) JP6186597B2 (ja)
WO (1) WO2013121759A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595295A (zh) * 2013-11-20 2014-02-19 重庆大学 基于磁铁/压电的宽频带振动能量采集器
EP2857064A1 (fr) 2013-10-01 2015-04-08 Sorin CRM SAS Capsule intracorporelle autonome à récupération d'énergie par transducteur piézoélectrique
JP2015126584A (ja) * 2013-12-26 2015-07-06 株式会社京三製作所 発電機構及びセンサー
WO2015125145A1 (en) * 2014-02-20 2015-08-27 Weiss Menachem P Low frequency micro oscillator
WO2015198465A1 (ja) * 2014-06-27 2015-12-30 株式会社音力発電 発電装置
KR20160030655A (ko) * 2014-09-11 2016-03-21 한국전자통신연구원 에너지 하베스팅 소자, 그의 제조방법, 및 그를 포함하는 무선 장치
JP2016213971A (ja) * 2015-05-08 2016-12-15 株式会社日本自動車部品総合研究所 発電装置
CN107395055A (zh) * 2017-08-17 2017-11-24 浙江师范大学 一种新型车载定位跟踪系统用振动俘能器
CN107565848A (zh) * 2017-08-17 2018-01-09 浙江师范大学 一种低频车载间接激励式俘能器
JP2018129731A (ja) * 2017-02-09 2018-08-16 Tdk株式会社 振動デバイス
WO2019073766A1 (ja) * 2017-10-12 2019-04-18 富士フイルム株式会社 発電素子の製造方法、発電素子及び発電装置
KR102088245B1 (ko) * 2018-11-01 2020-03-13 인하대학교 산학협력단 에너지 하베스팅 장치
JP2020156285A (ja) * 2019-03-22 2020-09-24 株式会社ダイヘン 発電装置及び送信装置
JP7356399B2 (ja) 2020-04-20 2023-10-04 一般財団法人電力中央研究所 固有振動数を調整できる振動発電装置、及び、固有振動数を調整できる振動発電方法
JP7448207B2 (ja) 2020-03-23 2024-03-12 国立大学法人金沢大学 振動発電デバイス及び振動発電デバイスの周波数調整方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009442B (zh) * 2013-03-13 2017-06-23 住友理工株式会社 发电装置
DE112014005629B4 (de) * 2013-12-12 2023-02-09 Panasonic Intellectual Property Management Co., Ltd. Vibrations-Energie-Erzeugungs-Vorrichtung, Vibrations-Überwachungs-Vorrichtung und System
US9876445B2 (en) * 2014-09-01 2018-01-23 Samsung Electro-Mechanics Co., Ltd. Piezoelectric energy harvester and wireless switch including the same
DE102016202632A1 (de) * 2016-02-19 2017-08-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Umwandlung von mechanischer in elektrische Energie und entsprechendes Verfahren
DE102017200111B3 (de) * 2017-01-05 2018-03-15 Robert Bosch Gmbh Mikromechanische Schallwandleranordnung und entsprechendes Herstellungsverfahren
CN107317516B (zh) * 2017-08-17 2018-12-25 浙江师范大学 一种船载自供电定位跟踪装置
CN107359824B (zh) * 2017-08-17 2019-02-15 浙江师范大学 一种车载振动压电发电机
WO2019036010A1 (en) * 2017-08-17 2019-02-21 University Of Florida Research Foundation, Incorporated VOLUME WAVE VOLTAGE RESONATOR TECHNOLOGY FOR UHF AND SHF SIGNAL PROCESSING
CN108540014B (zh) * 2018-05-14 2020-03-24 中国科学院上海微系统与信息技术研究所 一种低频柔性能量采集器和自供能运动计数器
CN113992059A (zh) * 2021-10-21 2022-01-28 上海大学 一种旋转式能量采集装置及胎压监测系统
CN115059726B (zh) * 2022-02-22 2023-10-24 上海大学 一种抑制微幅振动的三稳态非线性吸振装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519357A (en) * 1974-07-11 1976-01-26 Tamura Seisakusho Kk Denwaionsano kyoshinshuhasuhenkahoho
JP2000019092A (ja) * 1998-06-30 2000-01-21 Angstrom Technology Partnership 走査プローブの力制御方法
JP2003114186A (ja) * 2001-10-03 2003-04-18 Seiko Instruments Inc 走査型プローブ顕微鏡

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594331A (en) 1995-06-07 1997-01-14 Regents Of The University Of California Microelectromechanical powerline monitoring apparatus
JP4259458B2 (ja) * 2004-11-30 2009-04-30 パナソニック電工株式会社 圧電型発電機構
DE102005000996A1 (de) * 2005-01-07 2006-07-20 Continental Teves Ag & Co. Ohg Reifenmodul sowie Luftreifen mit Reifenmodul
US7692365B2 (en) * 2005-11-23 2010-04-06 Microstrain, Inc. Slotted beam piezoelectric composite
WO2008079321A2 (en) * 2006-12-22 2008-07-03 The Regents Of The University Of California Non-contact mechanical energy harvesting device and method utilizing frequency rectification
US7928634B2 (en) * 2008-04-22 2011-04-19 Honeywell International Inc. System and method for providing a piezoelectric electromagnetic hybrid vibrating energy harvester
EP2370346B1 (en) * 2008-11-26 2017-08-23 NXP USA, Inc. Electromechanical transducer device having stress compensation layers
JP5605952B2 (ja) * 2008-11-26 2014-10-15 フリースケール セミコンダクター インコーポレイテッド 電気機械トランスデューサデバイスおよびその製造方法
KR101774301B1 (ko) * 2011-12-16 2017-09-20 한국전자통신연구원 에너지 하베스팅 소자 및 그의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519357A (en) * 1974-07-11 1976-01-26 Tamura Seisakusho Kk Denwaionsano kyoshinshuhasuhenkahoho
JP2000019092A (ja) * 1998-06-30 2000-01-21 Angstrom Technology Partnership 走査プローブの力制御方法
JP2003114186A (ja) * 2001-10-03 2003-04-18 Seiko Instruments Inc 走査型プローブ顕微鏡

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2857064A1 (fr) 2013-10-01 2015-04-08 Sorin CRM SAS Capsule intracorporelle autonome à récupération d'énergie par transducteur piézoélectrique
US9847739B2 (en) 2013-10-01 2017-12-19 Sorin Crm S.A.S. Autonomous intracorporeal capsule with energy harvesting by piezoelectric transducer
CN103595295A (zh) * 2013-11-20 2014-02-19 重庆大学 基于磁铁/压电的宽频带振动能量采集器
JP2015126584A (ja) * 2013-12-26 2015-07-06 株式会社京三製作所 発電機構及びセンサー
CN106063127A (zh) * 2014-02-20 2016-10-26 梅纳赫姆·P·韦斯 低频微振荡器
CN106063127B (zh) * 2014-02-20 2018-10-09 梅纳赫姆·P·韦斯 低频微振荡器
US9780622B2 (en) 2014-02-20 2017-10-03 Menachem P. Weiss Low frequency micro oscillator
WO2015125145A1 (en) * 2014-02-20 2015-08-27 Weiss Menachem P Low frequency micro oscillator
WO2015198465A1 (ja) * 2014-06-27 2015-12-30 株式会社音力発電 発電装置
CN106537755A (zh) * 2014-06-27 2017-03-22 音力发电株式会社 发电装置
US10381957B2 (en) 2014-06-27 2019-08-13 Soundpower Corporation Power generation device
CN106537755B (zh) * 2014-06-27 2019-06-11 音力发电株式会社 发电装置
KR20160030655A (ko) * 2014-09-11 2016-03-21 한국전자통신연구원 에너지 하베스팅 소자, 그의 제조방법, 및 그를 포함하는 무선 장치
KR102229140B1 (ko) 2014-09-11 2021-03-18 한국전자통신연구원 에너지 하베스팅 소자, 그의 제조방법, 및 그를 포함하는 무선 장치
JP2016213971A (ja) * 2015-05-08 2016-12-15 株式会社日本自動車部品総合研究所 発電装置
JP2018129731A (ja) * 2017-02-09 2018-08-16 Tdk株式会社 振動デバイス
CN107395055B (zh) * 2017-08-17 2018-11-16 浙江师范大学 一种新型车载定位跟踪系统用振动俘能器
CN107395055A (zh) * 2017-08-17 2017-11-24 浙江师范大学 一种新型车载定位跟踪系统用振动俘能器
CN107565848A (zh) * 2017-08-17 2018-01-09 浙江师范大学 一种低频车载间接激励式俘能器
JPWO2019073766A1 (ja) * 2017-10-12 2020-11-05 富士フイルム株式会社 発電素子の製造方法、発電素子及び発電装置
WO2019073766A1 (ja) * 2017-10-12 2019-04-18 富士フイルム株式会社 発電素子の製造方法、発電素子及び発電装置
JP7017578B2 (ja) 2017-10-12 2022-02-08 富士フイルム株式会社 発電素子の製造方法、発電素子及び発電装置
US11751478B2 (en) 2017-10-12 2023-09-05 Fujifilm Corporation Method of manufacturing power generation element, power generation element, and power generation apparatus
KR102088245B1 (ko) * 2018-11-01 2020-03-13 인하대학교 산학협력단 에너지 하베스팅 장치
JP2020156285A (ja) * 2019-03-22 2020-09-24 株式会社ダイヘン 発電装置及び送信装置
JP7244830B2 (ja) 2019-03-22 2023-03-23 株式会社ダイヘン 発電装置及び送信装置
JP7448207B2 (ja) 2020-03-23 2024-03-12 国立大学法人金沢大学 振動発電デバイス及び振動発電デバイスの周波数調整方法
JP7356399B2 (ja) 2020-04-20 2023-10-04 一般財団法人電力中央研究所 固有振動数を調整できる振動発電装置、及び、固有振動数を調整できる振動発電方法

Also Published As

Publication number Publication date
JPWO2013121759A1 (ja) 2015-05-11
US9431994B2 (en) 2016-08-30
JP6186597B2 (ja) 2017-08-30
US20140327339A1 (en) 2014-11-06

Similar Documents

Publication Publication Date Title
JP6186597B2 (ja) 圧電共振子
US9525365B2 (en) Power-generating device with vibration plate that applies compressive stress to the piezoelectric layer when the vibration plate does not vibrate
Todaro et al. Piezoelectric MEMS vibrational energy harvesters: Advances and outlook
Peters et al. A closed-loop wide-range tunable mechanical resonator for energy harvesting systems
Kim et al. Piezoelectric MEMS for energy harvesting
KR101774301B1 (ko) 에너지 하베스팅 소자 및 그의 제조방법
US8350394B2 (en) Energy harvester apparatus having improved efficiency
Bruno et al. Properties of piezoceramic materials in high electric field actuator applications
Ju et al. Macro fiber composite-based low frequency vibration energy harvester
Bedekar et al. Design and fabrication of bimorph transducer for optimal vibration energy harvesting
Kok et al. Fabrication and characterization of free-standing thick-film piezoelectric cantilevers for energy harvesting
Gao et al. Induced voltage of piezoelectric unimorph cantilevers of different nonpiezoelectric/piezoelectric length ratios
WO2010128864A1 (en) Energy conversion device
Vidal et al. Low-frequency vibration energy harvesting with bidomain LiNbO 3 single crystals
EP2313973A1 (en) An electromechanical transducer and a method of providing an electromechanical transducer
JP4676286B2 (ja) 単板型圧電バイモルフ素子の製造方法
US10205408B2 (en) Converter for converting energy to be recovered and electricity generator
Kanda et al. Piezoelectric MEMS with multilayered Pb (Zr, Ti) O3 thin films for energy harvesting
JP2015503218A (ja) 圧電式エネルギー回収デバイス又はアクチュエータ
WO2018105132A1 (ja) 確率共振を通じた振動エネルギーハーベスタ及びこれを用いた振動エネルギーハーベスティングシステム
Abas et al. Electrode effects of a cellulose-based electro-active paper energy harvester
CN104064670B (zh) 压电薄膜元件、压电传感器和振动发电机
CN108463893B (zh) 用于控制机电元件的方法
Doshida et al. Double-mode miniature cantilever-type ultrasonic motor using lead-free array-type multilayer piezoelectric ceramics
Uchino Multilayer technologies for piezoceramic materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500099

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14371417

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749847

Country of ref document: EP

Kind code of ref document: A1