WO2018105132A1 - 確率共振を通じた振動エネルギーハーベスタ及びこれを用いた振動エネルギーハーベスティングシステム - Google Patents
確率共振を通じた振動エネルギーハーベスタ及びこれを用いた振動エネルギーハーベスティングシステム Download PDFInfo
- Publication number
- WO2018105132A1 WO2018105132A1 PCT/JP2017/002192 JP2017002192W WO2018105132A1 WO 2018105132 A1 WO2018105132 A1 WO 2018105132A1 JP 2017002192 W JP2017002192 W JP 2017002192W WO 2018105132 A1 WO2018105132 A1 WO 2018105132A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vibration energy
- vibration
- cantilever
- energy harvesting
- harvesting system
- Prior art date
Links
- 238000003306 harvesting Methods 0.000 title claims abstract description 70
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 48
- 229910052710 silicon Inorganic materials 0.000 claims description 48
- 239000010703 silicon Substances 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 38
- 230000000737 periodic effect Effects 0.000 claims description 24
- 230000008569 process Effects 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 13
- 238000003860 storage Methods 0.000 claims description 6
- 239000012212 insulator Substances 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 230000007613 environmental effect Effects 0.000 description 25
- 238000005530 etching Methods 0.000 description 18
- 238000006073 displacement reaction Methods 0.000 description 15
- 238000010248 power generation Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 8
- 238000004088 simulation Methods 0.000 description 8
- 241001124569 Lycaenidae Species 0.000 description 6
- 230000005284 excitation Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005674 electromagnetic induction Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 229920000131 polyvinylidene Polymers 0.000 description 2
- 238000005036 potential barrier Methods 0.000 description 2
- 238000005381 potential energy Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000708 deep reactive-ion etching Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/18—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
- H02N2/186—Vibration harvesters
- H02N2/188—Vibration harvesters adapted for resonant operation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/18—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
- H10N30/304—Beam type
- H10N30/306—Cantilevers
Definitions
- the present invention relates to a vibration energy harvester and a vibration energy harvesting system using the vibration energy harvester. More specifically, the present invention relates to a vibration energy harvester through stochastic resonance that enables downsizing and high power generation, and the same. It relates to a vibration energy harvesting system.
- Energy harvesting is a method of obtaining power from environmental energy sources such as solar energy, thermal energy and vibration energy instead of batteries.
- environmental energy sources such as solar energy, thermal energy and vibration energy instead of batteries.
- solar energy cannot be acquired in a dark environment, and thermal energy cannot be acquired in a cold environment.
- vibration energy is not affected by changes in the environment such as temperature, so that it can be used as an energy source that is robust to changes in the environment. Therefore, more research is concentrated on energy harvesting using vibration energy.
- the electromagnetic induction type requires a large magnet and therefore tends to increase the volume of the structure.
- the voltage generated by electromagnetic induction is proportional to the coil area and the relative speed of the coil and permanent magnet, the energy generated is drastically reduced when the applied vibration frequency is low or the vibration energy harvester is made small.
- the electrostatic type has an advantage in conformity with the MEMS process, but controls the gap between the two electrodes so that the gap between the two electrodes is small but does not contact each other. There are difficulties.
- the piezoelectric type has an advantage that the energy density is about three times larger than the two types described above.
- a cantilever having a piezoelectric film is often used for piezoelectric vibration energy harvesting.
- the peripheral vibration frequency is very low compared to the resonance frequency of the standard energy harvester imposed by the strength of the harvester.
- the environmental vibration frequency deviates from the resonance frequency of the energy harvester due to the design of the narrow band operating frequency, the electro-mechanical conversion efficiency immediately decreases.
- vibration frequency band existing in the environment is approximately 100 Hz or less
- an energy harvesting technique capable of converting vibration in a relatively low frequency band into electric energy is required.
- a vibration energy harvesting technique capable of generating power over a wide range of environmental vibration frequencies is required.
- An object of one embodiment of the present invention is to provide a vibration energy harvester and a vibration energy harvesting system having high power generation efficiency using vibration energy existing in the environment.
- One embodiment of the present invention provides an energy harvesting technique that can convert vibrations in a relatively low frequency band into electrical energy as a vibration frequency band of about 100 Hz or less present in the environment, Providing a vibration energy harvesting technique capable of generating power even with respect to the frequency of environmental vibrations and / or providing a vibration energy harvesting technique with high power generation efficiency using vibration energy existing in the environment For the purpose.
- An object of one embodiment of the present invention is to provide a vibration energy harvester and a vibration energy harvesting system that can be used as a stand-alone power supply source for a wireless sensor.
- a vibration energy harvester has a fixed one end and a free end, a vertical cantilever extending from the one end in a vertical direction, and the other end of the cantilever. And a free-standing end of the cantilever beam can reciprocate between two equilibrium positions.
- a vibration energy harvesting system has a fixed end and a free end, a vertical cantilever extending in the vertical direction from the one end, and the other of the cantilever.
- a plurality of cantilever structures composed of a vibrator coupled to an end, and a stochastic resonance by applying a periodic vibration and a random vibration, and the free end of the cantilever reciprocates between two equilibrium positions. Can do.
- a vibration energy harvester and a vibration energy harvesting system that can be used as an independent power supply source for a wireless sensor.
- a non-linear vibration energy harvesting system in which a plurality of cantilever structures for vibration energy harvesting are integrated on a single substrate in an array structure and can be implemented in a compact and compact manner. Can be provided.
- FIG. 1 illustrates a vibration energy harvester 100 through stochastic resonance according to a first embodiment of the present invention.
- the simulation result when the environmental noise vibration and the periodic force are respectively applied to the vibration energy harvester 100 illustrated in FIG. 1B ((a) and (b)) and when both are applied (c) is shown.
- FIG. 3 shows a vibration energy harvester 100 actually manufactured according to the first embodiment of the present invention and an experimental environment for measuring energy.
- FIG. 3 shows a vibration energy harvester 100 actually manufactured according to the first embodiment of the present invention and an experimental environment for measuring energy.
- Fig. 3 shows a vibration energy harvester 100 fabricated as shown in Figs. 3a and 3b and experimental results obtained through the experimental environment.
- FIG. 2 illustrates a vibration energy harvester 100 according to an embodiment of the present invention that further includes a conversion element.
- 1 illustrates a vibration energy harvesting system 200 according to an embodiment of the present invention.
- FIG. 6a a cross section along the cut line C-C 'is illustrated.
- 6 illustrates a manufacturing process of a vibration energy harvesting system 200 according to an embodiment of the present invention.
- the structure of the vibration energy harvesting system 200 by one Embodiment of this invention which further contains an electrical storage element is illustrated.
- vibration existing in the environment has a low frequency and a wide frequency band as a frequency band of about 1 Hz to 50 Hz.
- the embodiment of the present invention provides a vibration energy harvester having a structure that can be reduced in size without reducing power generation efficiency by utilizing vibration having a frequency band of approximately 1 Hz to 50 Hz that exists in the environment.
- the vibration energy harvester uses a stochastic resonance phenomenon so that the resonance frequency band of the energy harvester is widened and operates in a low frequency band.
- the stochastic resonance is a phenomenon that behaves similar to resonance by going back and forth between two equilibrium states. If stochastic resonance occurs, the amplitude of the bistable vibration can increase.
- the potential system of the energy harvester is a double-well type potential system, periodic vibration, that is, periodic force. force) is applied, and random vibration is applied.
- the random vibration may be an environmental noise vibration.
- FIG. 1a illustrates a stochastic resonance cycle.
- a potential state A of an oscillator due to a change in potential well B is illustrated.
- the double well potential of the oscillator has a symmetric (1) configuration when no external force is applied.
- the potential well B of the form (1) the potential state A of the vibrator is located in one of the two wells.
- potential barrier height between the two potential wells becomes low and the potential well B has the form (2).
- the vibrator is excited by the random vibration, and the vibrator moves to the other of the two potential wells.
- the potential well B has the form (3). If such a cycle in which the vibrator moves between two potential wells is periodically repeated, stochastic resonance occurs.
- the potential state of the vibrator reciprocates between two wells at a resonance point (resonant point).
- various methods may be used, such as using a permanent magnet.
- a permanent magnet When manufacturing a double well type potential system using a permanent magnet, the manufacturing process is relatively complicated and it is difficult to reduce the size of the apparatus. The reason why it is difficult to reduce the size is that permanent magnets are easily affected by reverse magnetization, and it is difficult to secure sufficient magnetism to make the potential system of the device a double well potential system.
- a vibration energy harvester having a double well type potential system without using a permanent magnet is provided.
- a vibrator and a cantilever beam are vertically installed as weights, and the cantilever has two equilibrium points according to the weight of the tip.
- a vertical bistable cantilever structure as illustrated in FIG. 1B is used for constructing a double well type potential system.
- Such a vertical bistable cantilever has a simple structure to manufacture and can be miniaturized.
- FIG. 1b illustrates a vibration energy harvester 100 through stochastic resonance according to an embodiment of the present invention.
- a vibration energy harvester 100 according to an embodiment of the present invention has a fixed one end and a free end, and a vertical cantilever 130 extending vertically from the one end.
- a vibrator 120 coupled to the other end of the cantilever, and the stochastic resonance by applying a periodic vibration and a random vibration so that the free end of the cantilever is between two equilibrium positions. You can make a round trip.
- a vibration energy harvester 100 according to an embodiment of the present invention may be referred to as a cantilever structure 100.
- the vibration energy harvester 100 has a vertical bistable cantilever structure.
- v and u indicate horizontal displacement (vertical displacement) and vertical displacement (vertical displacement) of the vibrator 120, respectively, and s indicates a distance from the support portion 110 of the cantilever beam 130
- vp and up represents horizontal displacement and vertical displacement at a point 131 where the distance from the support portion 110 to the beam 130 is s
- x and y represent horizontal displacement and vertical displacement of the support portion 110, respectively
- Mt represents the transducer 120.
- Mass Tip mass; tip mass
- the second derivative of the vertical vibration y is additionally taken into account. By taking into account vertical and horizontal vibrations, vibrations in all directions can be simulated.
- the kinetic energy (Kinetic energy) T of the cantilever structure of the vibration energy harvester 100 as illustrated in FIG. 1b can be defined as Equation 1.
- ⁇ is the density of the cantilever 130
- A is the cross-sectional area of the beam 130
- L is the length of the beam 130
- x is the horizontal displacement of the support 110
- y is the support 110.
- It is the moment of inertia of the vibrator 120
- ⁇ is the slope of the vibrator 120
- the dot is the time derivative (time-derivative). means.
- the position potential energy ( ⁇ : position potential energy) of the same system can be defined as Equation (2).
- E is the Young's modulus (Young130 Modulus) of the beam 130
- k is the curvature of the beam 130
- g is the gravitational acceleration.
- Equation (3) the equation of motion of the system can be obtained as Equation (3).
- N 1 ⁇ N 9 are constants
- N (t) shows the environmental noise vibration as random vibration.
- FIG. 2 shows the simulation results when the environmental noise vibration and the periodic force are applied to the vibration energy harvester 100 illustrated in FIG. 1B ((a) and (b)) and when both are applied (c).
- the mass of the transducer 120 must be greater than the mass at which the beam 130 begins to buckling.
- the range of equilibria position is set between 1 mm and 50 mm.
- the mass of the vibrator 120 and the thickness of the cantilever 130 were set to 7.2 g and 100 ⁇ m, respectively.
- three numerical simulations are executed, and the simulation results are shown in FIGS. 2 (a) to 2 (c), respectively. At this time, parameters set for the simulation are shown in Table 1.
- FIG. 2A shows the displacement v of the vibrator 120 over time when only the environmental noise vibration is applied to the vibration energy harvester 100 according to the embodiment of the present invention
- FIG. 2C shows the displacement v of the vibrator 120 over time when both the environmental noise vibration and the periodic force are applied to the vibration energy harvester 100 according to the embodiment of the present invention.
- the vibrator 120 of the beam 130 moves in only one equilibrium position direction. I understand that. In contrast, when both periodic force and environmental noise vibration are applied to the vertical bistable cantilever, the vibrator 120 of the beam 130 reciprocates between two equilibrium positions, greatly increasing the vibration of the beam 130. Can be made. Therefore, it can be confirmed that the amplitude of the vibrator 120 has increased by a factor of two (20 mm or more).
- FIG. 3a and 3b show a vibration energy harvester 100 fabricated according to an embodiment of the present invention and an experimental environment 150 for measuring energy.
- the vibration energy harvester 100 manufactured according to the embodiment of the present invention was designed and manufactured to use stochastic resonance.
- a vibration energy harvester 100 fabricated in this way is shown in FIG. 3a.
- Table 2 shows the standards of the vibration energy harvester 100 manufactured for this experiment.
- the vibration energy harvester 100 shown in FIG. 3A manufactured for this experiment was manufactured considering the vertical vibration mode of the actual vibration generator.
- the vibrator 120 of the vibration energy harvester 100 shown in FIG. 3a was manufactured in a triangular-prism type. When the vibrator 120 is manufactured in a rectangular type, there is a tendency to rotate by applying vertical vibration.
- the beam 130 and the vibrator 120 were respectively made of stainless steel and carbon steel.
- the vibration energy harvester 100 and the laser sensor 180 were installed on the vibration generator 160. Power can be supplied to the vibration generator 160 through the configuration indicated by the reference numeral 170.
- the amplitude of the beam 130 was measured at a height of 20 mm from the surface of the vibration generator 160 via the laser sensor 180.
- the frequency of the periodic force and the environmental noise vibration is 1 Hz each.
- the direction of the periodic force and the environmental noise vibration is the vertical direction.
- FIG. 4 shows the experimental results obtained through the vibration energy harvester 100 and the experimental environment 150 manufactured as shown in FIGS. 3a and 3b.
- FIG. 4A shows the displacement v over time when only the periodic force is applied to the vibration energy harvester 100 shown in FIG. 3A
- FIG. 4B shows the vibration energy shown in FIG. 3A.
- the displacement v with time when only environmental noise vibration is applied to the harvester 100 is shown.
- FIG. 4C shows the displacement v over time when both the environmental noise vibration and the periodic force are applied to the vibration energy harvester 100 shown in FIG. 3A.
- the disturbance is because the light from the laser sensor 180 is blocked by the vibrator 120.
- the point measured via the laser sensor 180 can be set to a point lower than the height of 20 mm from the support part 110.
- the vibrator 120 has two equilibrium positions. It was confirmed that it could vibrate to move back and forth. From these results, it can be confirmed that stochastic resonance occurs in the vibration energy harvester according to the embodiment of the present invention.
- the vibration energy harvester 100 according to the embodiment of the present invention that has been described in detail above is an energy harvester that can generate power even when the frequency of environmental vibration is low (generally 100 Hz or less) and the frequency distribution of environmental vibration is wide. .
- the vibration energy harvester 100 according to the embodiment of the present invention is designed as a double well type potential system, and the mutual movement between the two wells of the vibrator is promoted through the input of random noise, which causes a large vibrator amplitude. it can. Therefore, if the vibration energy harvester 100 according to the embodiment of the present invention is used, random noise vibration can be efficiently used as input through stochastic resonance.
- the vibration energy harvester 100 according to the embodiment of the present invention manufactured in the experiment of FIGS. 3a and 3b is manufactured on a millimeter (mm) scale, but according to the embodiment of the present invention, a micro-electromechanical system (MEMS) process is performed. Through, for example, the vibration energy harvester 100 can be miniaturized on a microscale.
- MEMS micro-electromechanical system
- the vibration energy harvester 100 for harvesting energy from low-frequency vibration existing in a wide-band environment has been examined in detail.
- a conversion element may be attached to the vibration energy harvester 100 so that electric energy can be generated using energy acquired through the vibration energy harvester 100.
- FIG. 5 illustrates a vibration energy harvester 100 according to an embodiment of the present invention that further includes a conversion element 140.
- the conversion element 140 according to the embodiment of the present invention is an element that converts the kinetic energy of the cantilever 130 whose amplitude is expanded through stochastic resonance into electric energy. Such a conversion element 140 can generate electrical energy by using a stress caused by bending of the cantilever 130 via a pendulum motion.
- the conversion element 140 may be attached to the cantilever 130 in a region near the fixed end where the stress is most greatly generated during the pendulum movement of the cantilever 130. At this time, the conversion element 140 may be a piezo-electric element. Piezo-electric film may be attached to the metal cantilever 130 to form the conversion element 140.
- a piezoelectric film can be formed through sputtering.
- an organometallic coating pyrolysis method that can be used in a silicon process (see FIG.
- An inexpensive and stable piezoelectric film can be formed on the cantilever 130 using the MOD method.
- the conversion element 140 may be formed of a polymer film such as PVDF (Polyvinylidene® Fluoride) or PVDF-TrFE (Polyvinylidene® Fluoride® Trifluorethylene).
- the embodiment of the present invention provides a vibration energy harvesting system 200 in which the vibration energy harvester 100 according to the embodiment of the present invention is manufactured in a plurality of arrays.
- FIG. 6a illustrates a vibration energy harvesting system 200 according to an embodiment of the invention.
- FIG. 6b illustrates a cross section along the cut line C-C 'in the energy harvesting system 200 shown in FIG. 6a.
- the vibration energy harvesting system 200 according to the embodiment of the present invention illustrated in FIG. 6a may be manufactured according to a manufacturing process using an SOI (Siliconon Insulator) substrate illustrated in FIG. 7 described below.
- SOI Siliconon Insulator
- the vibration energy harvesting system 200 according to the embodiment of the present invention forms the vibrator 120 (head) so that the cantilever 130 has a double well type potential system. It can be designed and fabricated so that the mass of the structure is equally distributed to both the upper silicon 213 and the lower silicon 211.
- the upper silicon 213 is made to have the same mass in both the upper silicon 213 and the lower silicon 211 in the structure of the vibrator 120.
- a metal film 244 may be deposited thereon. At this time, the metal layer 244 may be formed through a metal deposition method, for example, through a physical shadow mask 242.
- FIG. 6a illustrates a vibration energy harvesting system 200 that includes three identically shaped harvesters 100-1, 100-2, 100-3 in an array, but with a final integrated micropower chip (power chip). On the top, a larger number of harvesters 100-1, 100-2, 100-3 can be integrated.
- the length of the cantilever 130 and / or the shape of the vibrator 120 included in each of the harvesters 100-1, 100-2, 100-3 may be variously formed. According to the manufacturing process illustrated in FIG. 7, a plurality of harvesters having various sizes and / or shapes can be simultaneously manufactured on one substrate 210.
- the vibration energy harvesting system 200 according to the embodiment formed thereby is capable of stochastic resonance in the vertical direction in the drawing of FIG.
- the vibration energy harvesting system 200 in the vibration of a low wideband frequency band and the random noise existing in the environment.
- the vibration energy harvesting system 200 includes a cantilever beam 130-1, included in the harvesters 100-1, 100-2, 100-3, as illustrated in FIG. 6a.
- the extension direction of 130-2 and 130-3 may be installed vertically so as to coincide with the direction of gravity, and may be installed so as to utilize the horizontal vibration of the vibrators 120-1, 120-2, 120-3.
- the horizontal vibrations of the vibrators 120-1, 120-2, and 120-3 illustrate that the vibrator moves in a front-rear direction with respect to a plane that forms the substrate 210.
- the direction of the cutoff line C-C ' can be parallel / coincident with the direction of gravity.
- FIG. 7 illustrates a manufacturing process of a vibration energy harvesting system 200 according to an embodiment of the present invention.
- the substrate 210 may be an SOI (Silicon on Insulator) substrate.
- the substrate 210 may have a sandwich structure of silicon (Si) / silicon oxide (SiO 2 ) / silicon (Si).
- the upper silicon 213 may be formed of single crystal silicon (Si), and may be formed with a thickness of approximately 25 to 30 ⁇ m.
- the lower silicon 211 may be formed of single crystal silicon (Si), and may be formed to be approximately 500 ⁇ m or less. According to the embodiment, the thickness of the lower silicon 211 may be formed larger than the thickness of the upper silicon 213.
- the intermediate layer 212 may be formed of silicon oxide (SiO 2 ), and may be formed with a thickness of approximately 1 to 2 ⁇ m.
- the upper silicon 213 has a region corresponding to the vibrator 120 so as to form a part of the vibrator 120 that is a head of the cantilever 130.
- a one-pattern mask 221 is formed.
- the first pattern mask 221 may be formed of aluminum (Al).
- a part of the upper silicon 213 in the remaining region where the first pattern mask 221 is not formed can be etched.
- the etching of the upper silicon 213 may be performed by a plasma etching process, an ICP etching (Inductive / Coupled / plasma / Etching) process, an RIE etching (Reactive / Ion / Etching) process, a dry etching (Dry / Etching) process, and the like.
- the upper-side mass structure 224 for constituting the vibrator 120 can be formed.
- the thickness of the upper silicon 213 is 30 ⁇ m
- the upper silicon 213 can be etched to a thickness of 20 ⁇ m in the remaining region where the first pattern mask 221 is not formed. That is, after etching, the remaining upper silicon 213 may have a thickness of 10 ⁇ m.
- the upper silicon 213 is partially etched to form the window region W. This is to remove the upper silicon 213 arranged in the direction opposite to the cantilever direction so that the upper-side mass structure 224 corresponding to the cantilever vibrator can be freely moved by an external force.
- a window region W may be formed on the upper silicon 213 through a second pattern mask (not shown).
- the upper silicon 213 in the region 226 corresponding to the cantilever can be additionally removed so that the thickness of the upper silicon 213 becomes 5 ⁇ m.
- Such a window region W can be formed using a dry etching process, an RIE process, a DRIE (DEEP-RIE) process, an ICP process, or the like.
- Etching of the upper silicon 213 as illustrated in FIGS. 7B and 7C may be performed through a vertical etching method.
- the term “vertical” indicates the vertical direction with reference to the drawing of FIG.
- a part of the lower silicon 211 can be etched.
- a third pattern mask 222 is formed in a region corresponding to the vibrator 120 in the lower silicon 211 so as to constitute the remaining part of the vibrator 120 that is the head of the cantilever 130.
- the third pattern mask 222 may be formed of a silicon nitride film (SiN).
- the third pattern mask 222 may be formed through an LPCVD (low pressure chemical vapor deposition) process. By etching the lower silicon 211 through photolithography using the third pattern mask 222 as a mask, a lower-side mass structure 223 for configuring the vibrator 120 may be formed.
- the etching of the lower silicon 211 is performed by a wet etching process, an anisotropic etching process, a deep etching process using bulk micromachining, or the like. Also good.
- the etching process of the lower silicon 211 may be performed, for example, such that the etching inclined surface forms a predetermined inclination angle ⁇ that is not perpendicular to the horizontal plane. In FIG. 7C, the inclination angle may be, for example, 54.7 degrees.
- the etching of the lower silicon 211 can be stopped by the intermediate layer 212.
- the inclination angle ⁇ can be determined so that the upper-side mass and the lower-side mass constituting the vibrator 120 are the same in consideration of the thickness of the upper / lower silicon 211, 213 and the manufacturing process.
- the third pattern mask 222 may be formed not only in the lower part of the area constituting the vibrator but also in the lower part of the area where the support part 110 of the cantilever 130 is formed.
- the etching for the lower silicon 211 is not performed in the vertical direction but proceeds in an inclined manner, so that the third pattern mask 222 is formed to be narrower than the width of the vibrator 120. Can be done.
- the intermediate layer 212 in the region excluding the region of the vibrator 120 and the region of the support portion 110 is partially etched. Etching of the intermediate layer 212 can be performed via wet etching.
- the upper-side mass structure 224 and the lower-side mass structure 223 may be designed to have the same mass.
- the thickness and shape of the upper-side mass structure 224 may be different from the size, thickness, and / or shape of the lower-side mass structure 223. As illustrated in FIG.
- a metal film 244 is added to the upper part of the upper-side mass structure 224, and the total mass of the upper-side mass structure 224 and the metal film 244 is reduced to the lower-side mass structure. It may be designed the same as H.223. Thereby, the region 226 constituting the cantilever 130 can be configured to vibrate up and down by an external force. In the embodiment, the first pattern mask 221 and the third pattern mask 222 may be removed simultaneously or separately.
- a piezoelectric material layer 241 is formed as a conversion element 140 in part of a region corresponding to the cantilever 130.
- the piezoelectric material layer 241 may be formed on the upper side through a sputter process.
- the piezoelectric material layer 241 may be formed through an organic metal coating pyrolysis (MOD: Metal-Organic-deposition) process.
- MOD Metal-Organic-deposition
- a fourth pattern mask (not shown) may be used to form the piezoelectric material layer 241.
- the fourth pattern mask may be formed in a region other than the region where the piezoelectric material layer 241 has to be formed.
- the piezoelectric material layer 241 may be formed of PZT (lead zirconate titanate) or AIN (aluminum nitride).
- a metal layer 244 is formed on the upper part of the upper mass structure 224.
- the metal electrode layer 245 may be formed on the piezoelectric material layer 241 so that electricity generated from the piezoelectric material layer 241 can be collected.
- the metal layer 244 and / or the metal electrode layer 245 may be formed using a physical stencil mask 242 in which a pattern 243 is formed according to these shapes.
- the mask may be a silicon shadow mask (Si-Shadow Mask).
- the metal layer 244 and / or the metal electrode layer 245 may be directly formed on the upper mass structure 224 and the piezoelectric material layer 241 through the pattern 243 by vapor deposition.
- FIG. 7 illustrates a cross section of one vibration energy harvester 100 region included in the vibration energy harvesting system 200 manufactured as described above.
- the numerical values, materials, shapes and / or structures mentioned above are merely examples, and the vibration energy harvesting system 200 may be manufactured with various numerical values, materials, shapes and / or structures according to embodiments.
- a vibration energy harvesting system 200 has a fixed end and a free end, and a vertical cantilever extending vertically from the one end. 130 and a plurality of cantilever structures 100 composed of the vibrator 120 coupled to the other end of the cantilever, and is stochastically resonated by application of periodic vibration and random vibration.
- the free end can reciprocate between the two equilibrium positions.
- the vibration energy harvesting system 200 may include at least one vibration energy harvester 100 according to the embodiment of the present invention.
- a cantilever structure constituting the vibration energy harvester 100 may be formed on one substrate 210.
- the cantilever structure included in the vibration energy harvester system 200 may be formed such that the length of the cantilever 130 is different from at least one other.
- the cantilever structure included in the vibration energy harvester system 200 may be formed such that the shape of the vibrator 120 coupled to the tip of the cantilever 130 is different from at least one of the other.
- the vibration energy harvesting system 200 includes a plurality of cantilever structures formed in various lengths and shapes, and the plurality of cantilever structures are arranged in an array to form a single silicon chip ( (Silicon chip).
- the vibration energy harvesting system 200 according to the embodiment of the present invention may indicate a silicon chip formed by integrating a plurality of cantilever structures. At this time, such a silicon chip can be manufactured to a size of about 2 to 3 cm 2 .
- the conversion element 140 is formed on the beam 130.
- the vibration energy harvesting system 200 can provide a micro-scale energy harvesting system while maintaining output performance corresponding to a millimeter-scale energy harvester.
- FIG. 8 illustrates a vibration energy harvesting system 200 according to an embodiment of the present invention that further includes a power storage element 260.
- a vibration energy harvesting system 200 of the present invention may further include a power storage element 260 for storing electrical energy converted from the vibration energy harvester array 111.
- the power storage element 260 may be formed on the same chip 250 as the vibration energy harvester array 111.
- the vibration energy harvesting system 200 is independent for various applications, for example, wireless sensors. It can be used as a power supply source.
- the environmental vibration that can be used by the vibration energy harvester 100 and the system 200 according to the embodiment of the present invention may be a person walking, a car running, a bridge fluctuation, and the like.
- the vibration energy harvester and system that can achieve small size and high efficiency using the environmental vibration described above according to the embodiment of the present invention can be used as a self-supporting power source for a wireless sensor or the like.
- the method of expanding the resonance frequency by tuning changes the resonance frequency by bending the cantilever, so that the adjustable resonance frequency band is still narrow and includes the problem of the narrow resonance frequency band as it is. Further, a complicated frequency control device is required for tuning, and the control device consumes electric power, so that the power generation efficiency is also lowered.
- the embodiment of the present invention uses stochastic resonance using random vibration due to noise.
- a random energy vibration caused by noise is used. Since the noise vibration has a wide frequency band, it is possible to provide a vibration energy harvester and system capable of generating power in a wide band existing in the environment.
- vibration having a pattern similar to noise vibration can be used for input. Therefore, it is very likely that vibration energy harvesters and systems in real environments according to embodiments of the present invention can be utilized.
- the vibration energy harvester and system of the present invention can efficiently use random vibration input using stochastic resonance.
- the vibration frequency that is universally present in the environment, such as the rotation of automobile tires, the movement of people, and vibrations generated by structures such as bridges, is about 1 Hz to 50 Hz.
- the vibration due to the random excitation force having a wide frequency band ranging from at least 1 Hz to 50 Hz is used for increasing the amplitude and generating efficiency at the time of vibration energy harvesting. We were able to.
- the vibration energy harvester 100 according to the embodiment of the present invention is a vertically fixed type and can be easily downsized, it can be used as a self-supporting power source for a fine wireless sensor.
- the vibration energy harvester 100 and the system 200 according to the embodiment of the present invention are free from battery life and wiring, can be freely arranged, and can reduce the operation burden.
- the vibration energy harvester 100 and system 200 according to embodiments of the present invention can help to promote sensor penetration.
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
- Micromachines (AREA)
Abstract
本発明は、固定された一端及び自由端である他端を有し、前記一端から鉛直方向へ延びた垂直片持ち梁と、前記片持ち梁の前記他端に結合された振動子と、を含み、周期的振動及びランダム振動の印加により確率共振し、前記片持ち梁の前記自由端が2つの平衡位置の間を往復する振動エネルギーハーベスタ及びこれを含む振動エネルギーハーベスティングシステムである。
Description
本発明は、振動エネルギーハーベスタ及びこれを用いた振動エネルギーハーベスティングシステムに関するもので、より詳しくは、小型化が可能でかつ高出力発電を可能にする確率共振を通じた振動エネルギーハーベスタ及びこれを用いた振動エネルギーハーベスティングシステムに関する。
最近、ウェアラブルデバイス(wearable device)及びモノのインターネット(IOT:Internet of Things)市場が大きくなっており、これらの分野だけでなく、多様な分野でワイヤレスセンサの需要が急激に増えている。現在、ワイヤレスセンサの動力源として主にバッテリが使われている。しかし、バッテリの問題点として、充電が必要な点及び小型化が難しい点がある。このような状況で、センサのための電力供給の問題を解消するために、環境中に存在する動力源を電気エネルギーに変換するエネルギーハーベスティング(energy harvesting)に対する研究が注目されている。
エネルギーハーベスティングとは、バッテリーの代わりに太陽エネルギー、熱エネルギー及び振動エネルギーのような環境エネルギー源から電力を獲得する方法である。しかし、太陽エネルギーは暗い環境では獲得が不可能であり、熱エネルギーは寒冷な環境では獲得が不可能である。一方、環境中に振動さえ存在すれば、振動エネルギーは温度などの環境の変化に影響を受けないので、環境の変化にロバスト(robust)なエネルギー源として利用可能である。ゆえに、振動エネルギーを利用したエネルギーハーベスティングにさらに多くの研究が集中している。
振動エネルギー(vibrational energy)を電気エネルギー(electrical energy)に変換するのには三つのタイプがある。第1に、電磁誘導(electromagnetic induction)タイプは大きい磁石を必要とするので、構造の体積が大きくなる傾向がある。また、電磁誘導により発生する電圧がコイルの面積及びコイルと永久磁石の相対速度に比例するため、与えられる振動周波数が低かったり、振動エネルギーハーベスタを小型に製作する場合、生み出されるエネルギーが急激に低下してしまう問題点がある。第2に、静電(electrostatic)タイプは、MEMSプロセスに適合した長所があるが、二つの電極間のギャップ(gap)が小さいながらも互いに接触しないように前記二つの電極間のギャップを制御するのに困難がある。第3に、圧電(piezo)タイプは、エネルギー密度が前述した二つのタイプに比べて三倍ほど大きいという長所がある。
今までの研究で、圧電振動エネルギーハーベスティングのために圧電フィルム(piezo film)を有するカンチレバー(cantilever)がよく利用された。しかし、カンチレバーに圧電フィルムを使用するには二つの大きな問題点がある。一つ目は、ハーベスタの強度により賦される標準エネルギーハーベスタの共振周波数(resonance frequency)に比べて周辺振動周波数が非常に低いという点である。二つ目は、狭帯動作周波数の設計によって環境振動周波数がエネルギーハーベスタの共振周波数から外れれば直ちに機電変換(electro-mechanical conversion)効率が減少するという点である。
このような問題点を勘案すると、環境中に存在する振動周波数帯はおおむね100Hz以下であるため、相対的に低い周波数帯の振動を電気エネルギーに変換することができるエネルギーハーベスティングの技法が要求される。また、広範囲な環境振動の周波数に対しても発電可能な振動エネルギーハーベスティングの技法が要求される。また、環境中に存在する振動エネルギーを利用して発電効率が高い振動エネルギーハーベスティングの技法に対する必要性が引き起こっている。
本発明の一実施形態は、環境中に存在する振動エネルギーを利用して発電効率が高い振動エネルギーハーベスタ及び振動エネルギーハーベスティングシステムを提供することを目的とする。
本発明の一実施形態は、環境中に存在する約100Hz以下の振動周波数帯として相対的に低い周波数帯の振動を電気エネルギーに変換することができるエネルギーハーベスティングの技法を提供すること、広範囲な環境振動の周波数に対しても発電可能な振動エネルギーハーベスティングの技法を提供すること、及び/又は、環境中に存在する振動エネルギーを利用して発電効率が高い振動エネルギーハーベスティングの技法を提供することを目的とする。
本発明の一実施形態は、ワイヤレスセンサに対する自立電力供給源として使用することができる振動エネルギーハーベスタ及び振動エネルギーハーベスティングシステムを提供することを目的とする。
本発明の一実施形態による振動エネルギーハーベスタは、固定された一端及び自由端である他端を有し、前記一端から鉛直方向へ延びた垂直片持ち梁と、前記片持ち梁の前記他端に結合した振動子と、を含み、周期的振動及びランダム振動の印加により確率共振し、前記片持ち梁の前記自由端が2つの平衡位置の間を往復することができる。
本発明の一実施形態による振動エネルギーハーベスティングシステムは、固定された一端及び自由端である他端を有し、前記一端から鉛直方向へ延びた垂直片持ち梁と、前記片持ち梁の前記他端に結合した振動子と、から構成されたカンチレバー構造を複数含み、周期的振動及びランダム振動の印加により確率共振し、前記片持ち梁の前記自由端が2つの平衡位置の間を往復することができる。
本発明の一実施形態によれば、環境中に存在する振動エネルギーを利用して発電効率が高い振動エネルギーハーベスタ及び振動エネルギーハーベスティングシステムを提供することができる。
また、本発明の一実施形態によれば、ワイヤレスセンサに対する自立電力供給源として使用することができる振動エネルギーハーベスタ及び振動エネルギーハーベスティングシステムを提供することができる。
また、本発明の一実施形態によれば、確率共振を通じて広い低周波数帯において発電効率が高い振動エネルギーハーベスタ及びハーベスティングシステムを提供することができる。
また、本発明の一実施形態によれば、複数個の振動エネルギーハーベスティングのためのカンチレバー構造がアレイ構造で単一基板上に統合され、コンパクトでかつ小型に具現可能な非線形振動エネルギーハーベスティングシステムを提供することができる。
後述する本発明に対する詳細な説明は、本発明を実施することができる特定の実施形態を例示として示す添付の図面を参照する。これらの実施形態は、当業者が本発明を実施するのに十分なように詳しく説明する。本発明の多様な実施形態は互いに異なるが、相互に排他的である必要はないことが理解されなければならない。例えば、ここに記載されている特定の形状、構造及び特性は、一実施形態に関連して本発明の精神及び範囲を外れないながらも、他の実施形態で具現されてもよい。また、それぞれの開示された実施形態内の個別の構成要素の位置又は配置は、本発明の精神及び範囲を外れないながらも、変更されてもよいことが理解されなければならない。したがって、後述する詳細な説明は、限定的な意味として取ろうとするのではなく、本発明の範囲は、適切に説明されるならば、その請求項が主張するのと均等なすべての範囲とともに、添付された請求項によってのみ限定される。図面において類似の参照符号は様々な側面にわたって同一もしくは類似の機能を指し示す。
一般的に、環境中に存在する振動は、1Hz~50Hz程度の周波数帯として低い周波数でかつ広い周波数帯域を持つ。本発明の実施形態は、環境中に存在するおおむね1Hz~50Hz程度の周波数帯を持つ振動を利用し、発電効率を減少させることなく小型化が可能な構造を持つ振動エネルギーハーベスタを提供する。
本発明の実施形態による振動エネルギーハーベスタは、エネルギーハーベスタの共振周波数帯を広域化しかつ低い周波数帯でも動作するように確率共振(stochastic resonance)現象を利用する。確率共振は、通常の共振現象とは異なり、2つの平衡状態を行き来することで共振と似た振る舞いをする現象である。確率共振が起きれば、双安定振動の振幅が増加し得る。確率共振の発生条件として、三つの条件が満たされなければならない:エネルギーハーベスタのポテンシャル系が二重井戸型ポテンシャル(double-well potential)系であること、周期的な振動、すなわち、周期力(periodic force)が印加されること、及びランダム(random)振動が加えられることである。ここで、ランダム振動は環境ノイズ振動(environmental noise vibration)であり得る。
図1aは、確率共振のサイクルを例示する。図1aにおいて、ポテンシャル井戸Bの変化による、例えば、振動子(oscillator)のポテンシャル状態Aが例示される。図1aに例示されたように、振動子の二重井戸型ポテンシャルは、いかなる外力も印加されない時、対称的な(1)形態を有する。(1)形態のポテンシャル井戸Bにおいて、振動子のポテンシャル状態Aは2つの井戸のいずれか一つの井戸に位置する。周期力が振動子に印加されると、2つのポテンシャル井戸間のポテンシャル障壁高さ(potential barrier height)が低くなってポテンシャル井戸Bは(2)形態を有する。ランダム振動により振動子が励起(excite)され、振動子が2つのポテンシャル井戸のもう一方に移動することになる。ポテンシャル井戸Bは(3)の形態を有する。2つのポテンシャル井戸間を振動子が移動するこのようなサイクルが周期的に繰り返されれば確率共振が発生する。振動子のポテンシャル状態は、共振点(resonant point)において、2つの井戸間を往復することになるわけである。
図1aに例示されたような二重井戸型ポテンシャル系を持つ装置を設計するために、永久磁石(permanent magnet)を用いるなど、多様な方法が用いられ得る。永久磁石を用いて二重井戸型ポテンシャル系を製作する場合、製造工程が相対的に複雑で装置の小型化が困難である。小型化が困難な理由は、永久磁石は逆磁化の影響を受けやすく、装置のポテンシャル系を二重井戸型ポテンシャル系にするために十分な磁気を確保することが困難なためである。
本発明の実施形態においては、永久磁石を使用せずに二重井戸型ポテンシャル系を持つ振動エネルギーハーベスタを提供する。本発明の実施形態においては、重りとして振動子及び片持ち梁(cantilever beam)を垂直に設置し、先端の重みにより片持ち梁が2つの平衡点を持つように設計した。
本発明の実施形態において、二重井戸型ポテンシャル系構築のために、図1bに例示されたような垂直双安定カンチレバー(vertical bi-stable cantilever)構造を用いる。このような垂直双安定カンチレバーは、製造するのに構造が単純で、かつ、小型化が可能である。
図1bは、本発明の実施形態による確率共振を通じた振動エネルギーハーベスタ100を例示する。図1bに例示されたように、本発明の実施形態による振動エネルギーハーベスタ100は、固定された一端及び自由端である他端を有し、前記一端から鉛直方向へ延びた垂直片持ち梁130と、前記片持ち梁の前記他端に結合された振動子120と、を含み、周期的振動及びランダム振動の印加により確率共振して前記片持ち梁の前記自由端が2つの平衡位置の間を往復することができる。本発明の実施形態による振動エネルギーハーベスタ100は、カンチレバー構造100と指称することができる。
図1bに例示されたように、本発明の実施形態による振動エネルギーハーベスタ100は、垂直的な双安定カンチレバー構造を有する。ここで、v及びuはそれぞれ振動子120の水平変位(horizontal displacement)及び垂直変位(vertical displacement)を示し、sは片持ち梁(cantilever beam)130の支持部110からの距離を示し、vp及びupはそれぞれ支持部110から梁130の距離がsである地点131において水平変位及び垂直変位を示し、x及びyは支持部110の水平変位及び垂直変位をそれぞれ示し、そしてMtは振動子120の質量(Tip mass;先端質量)を示す。本実施形態において、水平振動に加えて垂直振動yの二階微分が追加的に考慮される。垂直振動及び水平振動を考慮することによって、すべての方向における振動をシミュレーションすることができる。
図1bに例示されたような振動エネルギーハーベスタ100のカンチレバー構造の運動エネルギー(Kinetic energy)Tは、数式1のように定義され得る。
ここで、ρは片持ち梁130の密度であり、Aは梁130の断面積であり、Lは梁130の長さであり、xは支持部110の水平変位であり、yは支持部110の垂直変位であり、Itは振動子120の慣性モーメント(moment of inertia)であり、φは振動子120の傾きであり、数式(1)においてドット(dot)は時間微分(time-derivative)を意味する。
同一のシステムの位置ポテンシャルエネルギー(Π:position potential energy)は、数式(2)のように定義され得る。
ここで、Eは梁130のヤング率(Young Modulus)であり、kは梁130の曲率であり、gは重力加速度である。
ラグランジュ方程式(Lagrange’s equation)を単純化すれば、前記システムの運動方程式は、数式(3)のように得ることができる。
ここで、N1~N9は定数であり、N(t)はランダム振動として環境ノイズ振動を示す。
図2は、図1bに例示された振動エネルギーハーベスタ100に環境ノイズ振動及び周期力をそれぞれ印加した場合((a)及び(b))及び両方とも印加した場合(c)のシミュレーション結果を示す。
図1bに例示されたような振動エネルギーハーベスタ100に対し、シミュレーションのために下記の条件でパラメータの最適化が遂行された。第1に、振動子120の質量(mass)は、梁130がバックリング(buckling)し始める質量より大きくなければならない。第2に、平衡位置(equilibrium position)の範囲は1mm~50mmの間に設定される。このような条件下で、振動子120の質量及び片持ち梁130の厚みは7.2g及び100μmにそれぞれ設定された。ここで、3つの数値的シミュレーションが実行され、シミュレーションの結果はそれぞれ図2の(a)~(c)に示される。この時、シミュレーションのために設定されたパラメータは表1の通りである。
図2の(a)は、本発明の実施形態による振動エネルギーハーベスタ100に環境ノイズ振動のみ印加される場合の時間による振動子120の変位vを示し、図2の(b)は、本発明の実施形態による振動エネルギーハーベスタ100に周期力のみ印加される場合の時間による振動子120の変位vを示す。図2の(c)は、本発明の実施形態による振動エネルギーハーベスタ100に環境ノイズ振動及び周期力の両方とも印加される場合の時間による振動子120の変位vを示す。
図2の(a)及び(b)に示されたように、環境ノイズ振動及び周期力のいずれか一つのみ印加される場合、梁130の振動子120がただ一つの平衡位置方向にだけ動くことが分かる。これと対照的に、周期力及び環境ノイズ振動の両方が垂直双安定カンチレバーに印加されると、梁130の振動子120は、2つの平衡位置の間を往復して梁130の振動を大きく増加させることができる。したがって、振動子120の振幅の大きさは、2倍(20mm以上)以上増加したことを確認することができる。
図3a及び図3bは、本発明の実施形態により製作された振動エネルギーハーベスタ100及びエネルギーを測定するための実験環境150を示す。ここで、本発明の実施形態により製作された振動エネルギーハーベスタ100は、確率共振を用いるように設計及び製作された。このように製作された振動エネルギーハーベスタ100が、図3aに示される。本実験のために製作された振動エネルギーハーベスタ100の規格は、表2の通りである。
本実験のために製作された図3aに示された振動エネルギーハーベスタ100は、実際の振動生成器の垂直振動モードを考慮して製作された。図3aに示された振動エネルギーハーベスタ100の振動子120は、三角柱(triangular prism)タイプに製作された。振動子120が四角形タイプに製作される場合、垂直振動を加えることによって回転しようとする傾向がある。本実験において、梁130と振動子120は、ステンレス鋼(stainless steel)及び炭素鋼(carbon steel)でそれぞれ製作された。図3bにおいて、振動エネルギーハーベスタ100及びレーザセンサ180は振動生成器160上に設置された。図面符号170で表示された構成を通じて振動生成器160に電力を供給することができる。梁130の振幅は、レーザセンサ180を介して振動生成器160の表面から20mmの高さにて測定された。周期力と環境ノイズ振動の周波数は、それぞれ1Hzである。周期力及び環境ノイズ振動の方向は、垂直方向である。
図4は、図3a及び図3bに示されたように製作された振動エネルギーハーベスタ100及び実験環境150を通じて獲得された実験結果を示す。
図4の(a)は、図3aに示された振動エネルギーハーベスタ100に周期力のみ印加される場合の時間による変位vを示し、図4の(b)は、図3aに示された振動エネルギーハーベスタ100に環境ノイズ振動のみ印加される場合の時間による変位vを示す。図4の(c)は、図3aに示された振動エネルギーハーベスタ100に環境ノイズ振動及び周期力の両方とも印加される場合の時間による変位vを示す。
図4の(a)及び(b)に示されたように、環境ノイズ振動及び周期力のいずれか一つのみ印加される場合、図2の(a)及び(b)に示されたシミュレーション結果と同様に、梁130の振動子120がただ一つの平衡位置方向にだけ動くことが分かる。この時、振幅はおおむね3mmの大きさである。反面、周期力及び環境ノイズ振動が垂直双安定カンチレバーに印加されると、梁130の振動子120は2つの平衡位置の間を往復することができる。すなわち、この場合、確率共振が起きたことを意味し、振動子120の振幅の大きさは10倍(30mm以上)以上増加したことを確認することができる。
図4の(c)に示されたグラフにおいて、乱れ(disturbance)は、レーザセンサ180からの光が振動子120により遮断されるためである。このような乱れを除去するために、レーザセンサ180を介して測定される地点を、支持部110から20mmの高さより低い地点に設定することができる。
図2及び図4を通じて説明されたシミュレーション及び実験結果を通じて、周期力及び環境ノイズ振動の両方とも本発明の実施形態による振動エネルギーハーベスタ100に印加される場合に、振動子120が2つの平衡位置の間を行き来するように振動し得ることを確認した。このような結果から、本発明の実施形態による振動エネルギーハーベスタにおいて確率共振が発生することを確認することができる。
以上で詳しく見てみた本発明の実施形態による振動エネルギーハーベスタ100は、環境振動の周波数が低く(一般的に100Hz以下)、環境振動の周波数分布が広範囲であっても発電可能なエネルギーハーベスタである。本発明の実施形態による振動エネルギーハーベスタ100は、二重井戸型ポテンシャル系に設計され、ランダムノイズの入力を通じて振動子の2つの井戸間の相互移動が促進され、大きい振動子の振幅を引き起こすことができる。したがって、本発明の実施形態による振動エネルギーハーベスタ100を用いれば、確率共振を通じてランダムノイズ振動を入力として効率的に利用可能である。
図3a及び図3bの実験で製作された本発明の実施形態による振動エネルギーハーベスタ100は、ミリメータ(mm)スケールで製作されたが、本発明の実施形態によればMEMS(Micro-electromechanical System)工程を通じて、例えば、マイクロスケールで、振動エネルギーハーベスタ100を小型化することができる。
以上で,広帯域にわたる環境中に存在する低周波数振動からエネルギーを収穫するための本発明の実施形態による振動エネルギーハーベスタ100について詳しく見てみた。この時、振動エネルギーハーベスタ100を通じて獲得されるエネルギーを用いて電力(electrical power)を生成できるように、変換素子(conversion element)が振動エネルギーハーベスタ100に付着され得る。
図5は、変換素子140をさらに含む本発明の実施形態による振動エネルギーハーベスタ100を例示する。本発明の実施形態による変換素子140は、確率共振を通じて振幅が拡大された片持ち梁130の運動エネルギーを電気エネルギーに変換する素子である。このような変換素子140は、振り子運動を介した片持ち梁130の屈曲による応力を利用して電気エネルギーを生成することができる。変換素子140は、片持ち梁130の振り子運動時に応力が最も大きく発生する固定端に近い領域の片持ち梁130に付着され得る。この時、変換素子140は、圧電素子(piezo-electric element)であり得る。圧電フィルム(piezo-electric film)を金属の片持ち梁130に付けて変換素子140を形成することができる。
一般的に、スパッタリング(sputtering)を通じて圧電フィルムを形成することができるが、実施形態により、圧電フィルムを片持ち梁130に付着すること以外に、シリコン工程に利用可能な有機金属塗布熱分解法(MOD法)を用いて、安価で安定した圧電フィルムを片持ち梁130に形成することができる。実施形態により、変換素子140は、PVDF(Polyvinylidene Fluoride)またはPVDF-TrFE(Polyvinylidene Fluoride Trifluoroethylene)等のようなポリマーフィルムで形成されてもよい。
確率共振を通じて本発明の実施形態による振動エネルギーハーベスタ100の片持ち梁130の振幅が増加して環境振動による電力発生が増大され得るが、圧電フィルムのような変換素子140を介した出力電力が所定のアプリケーションに使用するのに十分に大きくないかもしれない。したがって、本発明の実施形態では、発電効率を向上させるために、本発明の実施形態による振動エネルギーハーベスタ100が複数のアレイで製作された振動エネルギーハーベスティングシステム200を提供する。
図6aは、本発明の実施形態による振動エネルギーハーベスティングシステム200を例示する。図6bは、図6aに示されたエネルギーハーベスティングシステム200において、切取線C-C’に沿った断面を例示する。図6aに例示された本発明の実施形態による振動エネルギーハーベスティングシステム200は、以下で説明される図7に示されたSOI(Silicon on Insulator)基板を用いる製造過程に従って製作され得る。図7に例示されたように、本発明の実施形態による振動エネルギーハーベスティングシステム200は、片持ち梁130が二重井戸型ポテンシャル系を持つように振動子120(ヘッド(head))を形成する構造の質量が上部シリコン213と下部シリコン211の両方に同等に分配されるように設計して製作され得る。実施形態において、下部シリコン211の厚さが上部シリコン213に比べて相対的に厚いので、振動子120の構造において上部シリコン213と下部シリコン211の両方の質量を同一にするために、上部シリコン213上に金属膜244を蒸着させてもよい。この時、金属膜244は金属蒸着法を通じて形成されてもよく、例えば、物理的なシャドウマスク(shadow mask)242を通じて蒸着されてもよい。
図6aでは、アレイ状に3つの同じ形のハーベスタ100-1、100-2、100-3が含まれる振動エネルギーハーベスティングシステム200が例示されるが、最終集積化されたマイクロパワーチップ(power chip)上には、さらに多くの数のハーベスタ100-1、100-2、100-3が集積され得る。また、実施形態により、それぞれのハーベスタ100-1、100-2、100-3に含まれる片持ち梁130の長さ及び/又は振動子120の形が多様に形成され得る。図7に例示されたような製作過程によれば、多様なサイズ及び/又は形状を持つ複数のハーベスタが一つの基板210上に同時に製作可能である。これによって形成された実施形態による振動エネルギーハーベスティングシステム200は、低い広帯域周波数帯の振動と環境中に存在するランダムノイズにおいて、図6bの図面において上下方向へ確率共振が可能である。例えば、実際の使用環境において、実施形態による振動エネルギーハーベスティングシステム200は、図6aに例示されたように、ハーベスタ100-1、100-2、100-3に含まれる片持ち梁130-1、130-2、130-3の延長方向が重力方向と一致するように垂直に設置し、振動子120-1、120-2、120-3の水平方向の振動を利用するように設置され得る。図6aにおいて、振動子120-1、120-2、120-3の水平方向の振動は、振動子が基板210を形成する平面に対して前後(front-rear)方向へ動くことを例示する。ここで、切取線C-C’の方向が重力方向と平行/一致することができる。図7は、本発明の実施形態による振動エネルギーハーベスティングシステム200の製造過程を例示する。
図7の(a)に例示されたように、基板210が準備される。基板210はSOI(Silicon on Insulator)基板であってもよい。基板210は、シリコン(Si)/シリコン酸化物(SiO2)/シリコン(Si)のサンドイッチ構造を有してもよい。上部シリコン213は単結晶シリコン(Si)で形成されてもよく、おおむね25~30μmの厚みで形成されてもよい。下部シリコン211は単結晶シリコン(Si)で形成されてもよく、おおむね500μm以下で形成されてもよい。実施形態により、下部シリコン211の厚みは上部シリコン213の厚みより厚く形成され得る。中間層212は、シリコン酸化物(SiO2)で形成されてもよく、おおむね1~2μmの厚みで形成されてもよい。
図7の(b)に例示されたように、片持ち梁130のヘッド(head)である振動子120の一部を構成するように、上部シリコン213上において振動子120に対応する領域に第1パターンマスク221を形成する。第1パターンマスク221はアルミニウム(Al)で形成されてもよい。第1パターンマスク221が形成されない残りの領域の上部シリコン213の一部をエッチングすることができる。ここで、上部シリコン213のエッチングは、プラズマエッチング(plasma etching)工程、ICPエッチング(Inductively Coupled plasma Etching)工程、RIEエッチング(Reactive Ion Etching)工程及びドライエッチング(Dry Etching)工程などによって遂行され得る。これにより、振動子120を構成するための上部側質量構造224が形成され得る。この時、上部シリコン213の厚みが30μmである場合、第1パターンマスク221が形成されない残りの領域において、上部シリコン213は20μmの厚みほどエッチングされ得る。すなわち、エッチングの後、残った上部シリコン213の厚さは10μmであり得る。
図7の(c)に例示されたように、上部シリコン213を部分的にエッチングしてウインドウ領域Wが形成される。これは、片持ち梁の振動子に対応する上部側質量構造224が外力によって自由に動けるように、片持ち梁方向と逆方向へ配置される上部シリコ213を除去するためである。このようなウインドウ領域Wは、上部シリコン213上に第2パターンマスク(図示せず)を介して形成され得る。この時、片持ち梁に対応する領域226の上部シリコン213の厚みが5μmになるように追加で除去され得る。このようなウインドウ領域Wは、ドライエッチング工程、RIE工程、DRIE(DEEP-RIE)工程、ICP工程などを利用して形成され得る。図7の(b)及び(c)に例示されたような上部シリコン213のエッチングは、垂直エッチング方法を介して遂行され得る。ここで、垂直というのは、図7の図面を基準として上下方向を指し示す。
図7の(c)に例示されたように、下部シリコン211の一部がエッチングされ得る。片持ち梁130のヘッドである振動子120の残りの一部を構成するように、下部シリコン211において振動子120に対応する領域に第3パターンマスク222を形成する。第3パターンマスク222は、シリコン窒化膜(SiN)で形成されてもよい。第3パターンマスク222は、LPCVD(低圧化学気相蒸着:low pressure chemical vapor deposition)工程を介して形成されてもよい。第3パターンマスク222をマスクとしてフォトリソグラフィ(photo-lithography)を介して下部シリコン211のエッチングを遂行し、振動子120を構成するための下部側質量構造223が形成され得る。ここで、下部シリコン211のエッチングはウエットエッチング(wet ething)工程、異方性エッチング(anisotropic etchig)工程、バルクマイクロマシニング(bulk micro machining)を介したディープエッチング(deep etching)工程などによって実行されてもよい。ここで、下部シリコン211のエッチング工程は、例えばエッチング傾斜面が水平面と垂直でない所定の傾斜角θをなすように遂行され得る。図7の(c)において、前記傾斜角は、例えば54.7度を成し得る。この時、中間層212によって下部シリコン211に対するエッチングが止まり得る。この時、傾斜角θは、上/下部シリコン211、213の厚み及び製作工程などを考慮し、振動子120を構成する上部側質量と下部側質量とが同一になるように決定され得る。
図7の(c)において、第3パターンマスク222は、振動子を構成する領域の下部だけでなく片持ち梁130の支持部110を形成する領域の下部にも形成されてもよい。このように支持部110を形成する領域において下部シリコン211が厚く維持されるので、片持ち梁130の動きにも固定端で役割が安定して遂行され得る。図7の(c)に例示されたように、下部シリコン211に対するエッチングは垂直方向へ遂行されず、傾斜を成して進行されるので、第3パターンマスク222は振動子120の幅より狭く形成され得る。
図7の(d)に例示されたように、振動子120の領域及び支持部110の領域を除いた領域の中間層212が部分的にエッチングされる。中間層212のエッチングは、ウエットエッチングを介して遂行され得る。この時、振動子120の領域において、上部側質量構造224と下部側質量構造223は、互いに同一の質量を有するように設計され得る。この時、上部側質量構造224の厚み及び形状が、下部側質量構造223の大きさ、厚み及び/又は形状と異なってもよい。図7の(f)に例示されたように、実施形態により、上部側質量構造224の上部には金属膜244を追加し、上部側質量構造224及び金属膜244の総質量が下部側質量構造223と同一に設計されてもよい。これにより、片持ち梁130を構成する領域226が外力によって上下へ振動可能に構成され得る。実施形態において、第1パターンマスク221及び第3パターンマスク222が同時に、又は、別に除去されてもよい。
図7の(e)に例示されたように、片持ち梁130に該当する領域の一部に変換素子140として圧電物質層(piezo material layer)241が形成される。圧電物質層241は、上側においてスパッタ(sputter)工程を介して形成され得る。または、実施形態により、有機金属塗布熱分解(MOD:Metal Organic deposition)工程を介して圧電物質層241が形成されてもよい。この時、圧電物質層241を形成するために第4パターンマスク(図示せず)が用いられてもよい。例えば、第4パターンマスクは、圧電物質層241が形成されなければならない領域以外の領域に形成されてもよい。実施形態により、圧電物質層241は、PZT(チタン酸ジルコン酸鉛:lead zirconate titanate)又はAIN(窒化アルミニウム:Aluminum Nitride)から形成されてもよい。
図7の(f)に例示されたように、上部側質量構造224の上部に金属層244が形成される。この時、圧電物質層241上に、圧電物質層241から生成される電気を収集できるように金属電極層245が共に形成されてもよい。金属層244及び/又は金属電極層245は、これらの形状によりパターン243が形成された物理的なステンシルマスク(stencil mask)242を用いて形成されてもよい。ここで、マスクは、シリコンシャドウマスク(Si-Shadow Mask)であってもよい。金属層244及び/又は金属電極層245がパターン243を介して蒸着法で上部側質量構造224及び圧電物質層241上に直接形成されてもよい。
図7の(g)には、以上から製造された振動エネルギーハーベスティングシステム200に含まれる一つの振動エネルギーハーベスタ100領域に対する断面を例示する。
以上で言及された数値、物質、形状及び/又は構造は単に例示に過ぎず、実施形態により、多様な数値、物質、形状及び/又は構造で振動エネルギーハーベスティングシステム200が製造され得る。
図6aに例示されたように、本発明の実施形態による振動エネルギーハーベスティングシステム200は、固定された一端及び自由端である他端を有し、前記一端から鉛直方向へ延びた垂直片持ち梁130と、前記片持ち梁の前記他端に結合された振動子120と、から構成されたカンチレバー構造100を複数含み、周期的振動及びランダム振動の印加により確率共振し、前記片持ち梁の前記自由端が2つの平衡位置の間を往復することができる。
図6aに例示されたように、本発明の実施形態による振動エネルギーハーベスティングシステム200は、本発明の実施形態による振動エネルギーハーベスタ100を少なくとも一つ以上含み得る。この時、振動エネルギーハーベスタ100を構成するカンチレバー構造が一つの基板210上に形成され得る。この時、実施形態により、振動エネルギーハーベスタシステム200に含まれるカンチレバー構造は、片持ち梁130の長さが少なくとも他の一つと異なるように形成されてもよい。また、実施形態により、振動エネルギーハーベスタシステム200に含まれるカンチレバー構造は、片持ち梁130の先端に結合された振動子120の形が少なくとも他の一つと異なるように形成されてもよい。
本発明の実施形態による振動エネルギーハーベスティングシステム200は、多様な長さ及び形に形成されたカンチレバー構造を複数含み、これら複数のカンチレバー構造はアレイ(array)状に構成されて一つのシリコンチップ(Silicon chip)に集積されて形成され得る。本発明の実施形態による振動エネルギーハーベスティングシステム200は、複数のカンチレバー構造が統合されて形成されたシリコンチップを指し示すことができる。この時、このようなシリコンチップは、おおむね2~3cm2の大きさに製作され得る。
本発明の実施形態による振動エネルギーハーベスティングシステム200を介してさらに広い周波数帯の環境振動において発電できるコンパクトな構造の非線形システムを提供することができる。
図6aに例示された振動エネルギーハーベスティングシステム200に含まれたそれぞれのカンチレバー構造100-1、100-2、100-3は、梁130に変換素子140が形成されている。このようなカンチレバー構造アレイが一つのチップに集積された振動エネルギーハーベスティングシステム200を形成することによって、さらに広い周波数帯で確率共振現象を起こして持続的にさらに大きい発電効率を得ることができる。
このように、例えば、MEMS工程を用いて多様な長さ及び振動子の形態を有するシリコンカンチレバー構造アレイを製作し、MEMS工程に適用できる有機金属塗布熱分解法(MOD法)を用いて圧電フィルムを形成することによって、本発明の実施形態による振動エネルギーハーベスティングシステム200は、ミリメータ規模のエネルギーハーベスタに対応する出力性能を維持しつつ、マイクロスケールのエネルギーハーベスティングシステムを提供することができる。
図8は、蓄電素子260をさらに含む本発明の実施形態による振動エネルギーハーベスティングシステム200を例示する。以下で、図6aに例示されたように、少なくとも一つ以上の振動エネルギーハーベスタ100がアレイ状に集積されたものは、振動エネルギーハーベスタアレイ111と指称することができる。実施形態により、本発明の振動エネルギーハーベスティングシステム200は、振動エネルギーハーベスタアレイ111から変換される電気エネルギーを蓄電するため蓄電素子260をさらに含み得る。この時、図8に例示されたように、蓄電素子260は、振動エネルギーハーベスタアレイ111と同一のチップ250上に形成され得る。
このように、一つのチップ250上に振動エネルギーハーベスタアレイ111と蓄電素子260を製作することによって、本発明の実施形態による振動エネルギーハーベスティングシステム200は、多様なアプリケーション、例えばワイヤレスセンサのための自立電源供給源として使用することができる。
以上で説明された本発明の実施形態によれば、環境中に存在する広帯域の低周波数(100Hz以下)において確率共振を発生させて、発電効率が高い真空エネルギーハーベスタ及びシステムを提供することができる。
この時、本発明の実施形態による振動エネルギーハーベスタ100及びシステム200が利用できる環境振動は、人の歩き、自動車の走行、橋の揺らぎ等であり得る。
本発明の実施形態による前述した環境振動を利用し、小型及び高効率を達成できる振動エネルギーハーベスタ及びシステムは、ワイヤレスセンサ等の自立電源として用いることができる。
従来、振動エネルギーハーベスティングの技法において、狭い共振周波数帯を拡大しようとする努力があった。この場合、アレイ状にカンチレバーを配置することで多様な共振周波数を持つ振動エネルギーハーベスティングを実現した。しかし、この場合、複数のカンチレバーのうち共振振動するカンチレバーは、該共振周波数帯に一致するカンチレバーのみである。したがって、共振周波数帯を拡大するために、長さの異なる複数のカンチレバーを配列しなければならないため、素子の大きさに比べて振動エネルギーを介した発電効率が低いという問題点がある。
また、該環境中の周波数に合うように共振周波数を変化させるチューニング技法が存在する。しかし、チューニングによって共振周波数を拡大する方法は、片持ち梁を曲げて共振周波数を変化させるので、調整可能な共振周波数帯が依然として狭く、狭い共振周波数帯の問題点をそのまま含んでいる。また、チューニングのためには複雑な周波数制御装置が必要となり、制御装置が電力を消費するため、発電効率も低下する。
本発明の実施形態は、ノイズによるランダム振動を利用した確率共振を用いる。本発明の実施形態においてはノイズによるランダムノイズ振動を用い、ノイズ振動は広い周波数帯を持つので環境中に存在する広帯域において発電できる振動エネルギーハーベスタ及びシステムを提供することができる。また、ノイズ振動と類似のパターンを持つ振動も入力に使用することができる。したがって、本発明の実施形態による実際の環境における振動エネルギーハーベスタ及びシステムを利用することができる可能性が非常に高い。
特に、本発明は確率共振現象を利用するので、ランダムノイズ入力を介して2つのポテンシャル井戸間を片持ち梁が往復するように促すことによって、片持ち梁の振幅が増大し得る。したがって、本発明の振動エネルギーハーベスタ及びシステムは、確率共振を用いてランダム振動入力を効率的に利用可能である。
自動車のタイヤの回転、人の動作、橋梁等の構造物などによって発生する振動など、環境中に普遍的に存在する振動周波数は1Hzから50Hz程度である。
本発明の実施形態による振動エネルギーハーベスタ100に対する振幅評価実験において、ランダム加振力と共に印加される周期的加振力の角速度が13.3rad/s及び20.1rad/sの時、明らかな振幅の増大及び電気的出力の増加が確認された。この時、ランダム加振力の波形の計測結果のフーリエ変換結果から、ランダム加振力による振動は1Hzから50Hzの周波数帯の振動を含むことを確認することができた。
したがって、本発明の実施形態においては、確率共振現象を利用することで、少なくとも1Hzから50Hzにわたる広い周波数帯を持つランダム加振力による振動を振動エネルギーハーベスティング時に、振幅増大及び発電効率増大に利用することができた。
また、本発明の実施形態による振動エネルギーハーベスタ100は鉛直固定型であるため小型化が容易なので、微細なワイヤレスセンサの自立動力源として使用することができる。本発明の実施形態による振動エネルギーハーベスタ100及びシステム200は、バッテリーの寿命や配線から解放され、自由な配置が可能であり、運用負担を軽減することができる。本発明の実施形態による振動エネルギーハーベスタ100及びシステム200は、センサ普及を促進するのに一助となることができる。
以上で、実施形態に説明された特徴、構造、効果などは、本発明の一つの実施形態に含まれ、必ずしも一つの実施形態にのみ限定されるわけではない。さらに、各実施形態で例示された特徴、構造、効果などは、実施形態が属する分野の通常の知識を有する者によって、他の実施形態に対しても組み合わせ又は変形されて実施可能である。したがって、このような組み合わせと変形に関係した内容は、本発明の範囲に含まれるものと解釈されなければならないだろう。
また、以上において、実施形態を中心に説明したが、これは単に例示に過ぎず、本発明を限定する訳ではなく、本発明が属する分野における通常の知識を有する者であれば、本実施形態の本質的な特徴を外れない範囲で、以上に例示されない様々な変形と応用が可能であることが分かるはずである。例えば、実施形態に具体的に示された各構成要素は、変形して実施することができるものである。そして、このような変形と応用に係る相違点は、添付の特許請求の範囲において規定する本発明の範囲に含まれるものと解釈されるべきである。
Claims (21)
- 固定された一端及び自由端である他端を有し、前記一端から鉛直方向へ延びた垂直片持ち梁と、前記片持ち梁の前記他端に結合された振動子と、から構成されたカンチレバー構造を複数含み、
周期的振動及びランダム振動の印加により確率共振し、前記片持ち梁の前記自由端が2つの平衡位置の間を往復する、振動エネルギーハーベスティングシステム。 - 前記複数のカンチレバー構造のうちの少なくとも一つの片持ち梁の長さは、前記複数のカンチレバー構造のうちの少なくとも他の一つの片持ち梁の長さと異なる、請求項1に記載の振動エネルギーハーベスティングシステム。
- 前記複数のカンチレバー構造のうちの少なくとも一つの振動子の形状は、前記複数のカンチレバー構造のうちの少なくとも他の一つの振動子の形状と異なる、請求項1に記載の振動エネルギーハーベスティングシステム。
- 前記片持ち梁に形成された、前記片持ち梁の運動エネルギーを電気エネルギーに変換する変化素子をさらに含む、請求項1に記載の振動エネルギーハーベスティングシステム。
- 前記変換素子は圧電素子である、請求項2に記載の振動エネルギーハーベスティングシステム。
- 前記振動エネルギーハーベスタは、非線形双安定ポテンシャル系である、請求項1に記載の振動エネルギーハーベスティングシステム.
- 前記カンチレバー構造は、100Hz以下の周波数帯で確率共振する、請求項1に記載の振動エネルギーハーベスティングシステム。
- 前記周期的振動及びランダム振動のうちの少なくとも一つは、前記振動エネルギーハーベスティングシステムが配置された環境中に存在する、請求項1に記載の振動エネルギーハーベスティングシステム。
- 前記複数のカンチレバー構造と同一のチップに集積された蓄電素子をさらに含む、請求項1ないし8のいずれか1項に記載の振動エネルギーハーベスティングシステム。
- 前記複数のカンチレバー構造は、アレイ状で単一基板に形成される、請求項1ないし8のいずれか1項に記載の振動エネルギーハーベスティングシステム。
- 前記基板は、第1シリコン層、第2シリコン層、及び前記第1シリコン層と前記第2シリコン層との間に中間層を含むSOI(Silicon on Insulator)基板である、請求項10に記載の振動エネルギーハーベスティングシステム。
- 前記振動子は、前記第1シリコン層で形成される第1質量構造と前記第2シリコン層で形成される第2質量構造とを含んで構成される、請求項11に記載の振動エネルギーハーベスティングシステム。
- 前記第1質量構造と前記第2質量構造の質量は互いに同じである、請求項12に記載の振動エネルギーハーベスティングシステム。
- 前記振動子は、前記第1質量構造上に形成された金属膜をさらに含み、前記第2質量構造の質量は、前記第1質量構造と前記金属膜との質量の合計と同じである、請求項12に記載の振動エネルギーハーベスティングシステム。
- MEMS工程を通じて製作される、請求項1ないし8のいずれか1項に記載の振動エネルギーハーベスティングシステム。
- 固定された一端及び自由端である他端を有し、前記一端から鉛直方向へ延びた垂直片持ち梁と、
前記片持ち梁の前記他端に結合された振動子と、
を含み、
周期的振動及びランダム振動の印加により確率共振し、前記片持ち梁の前記自由端が2つの平衡位置の間を往復する、振動エネルギーハーベスタ。 - 前記片持ち梁に形成された、前記片持ち梁の運動エネルギーを電気エネルギーに変換する変換素子をさらに含む、請求項16に記載の振動エネルギーハーベスタ。
- 前記変換素子は圧電素子である、請求項16に記載の振動エネルギーハーベスタ。
- 前記振動エネルギーハーベスタは、非線形双安定ポテンシャル系である、請求項16ないし18のいずれか1項に記載の振動エネルギーハーベスタ。
- 前記振動エネルギーハーベスタは、100Mz以下の周波数帯で確率共振する、請求項16ないし18のいずれか1項に記載の振動エネルギーハーベスタ。
- 前記周期的振動及びランダム振動のうちの少なくとも一つは、前記振動エネルギーハーベスタが配置された環境中に存在する、請求項16ないし18のいずれか1項に記載の振動エネルギーハーベスタ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0168011 | 2016-12-09 | ||
KR1020160168011A KR20180066787A (ko) | 2016-12-09 | 2016-12-09 | 확률 공진을 통한 진동 에너지 수확기 및 이를 이용한 진동 에너지 수확 시스템 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018105132A1 true WO2018105132A1 (ja) | 2018-06-14 |
Family
ID=62491018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/002192 WO2018105132A1 (ja) | 2016-12-09 | 2017-01-23 | 確率共振を通じた振動エネルギーハーベスタ及びこれを用いた振動エネルギーハーベスティングシステム |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20180066787A (ja) |
WO (1) | WO2018105132A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109104123A (zh) * | 2018-10-21 | 2018-12-28 | 吉林大学 | 一种宽频域自调谐双稳态振动能量采集器及采集方法 |
CN109883581A (zh) * | 2019-03-19 | 2019-06-14 | 西安交通大学 | 一种悬臂梁式差动谐振压力传感器芯片 |
CN109921685A (zh) * | 2019-04-09 | 2019-06-21 | 清华大学深圳研究生院 | 一种基于压电效应的风能收集器 |
GB2572572A (en) * | 2018-04-03 | 2019-10-09 | 8Power Ltd | Energy harvester for harvesting energy from broadband ambient vibrations |
IT202000003967A1 (it) * | 2020-02-26 | 2021-08-26 | St Microelectronics Srl | Sistema microelettromeccanico e metodo per la fabbricazione dello stesso |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07245970A (ja) * | 1994-03-02 | 1995-09-19 | Calsonic Corp | 圧電素子発電装置 |
JP2010273408A (ja) * | 2009-05-19 | 2010-12-02 | Emprie Technology Development LLC | 電力装置、電力発生方法、電力装置の製造方法 |
WO2010151738A2 (en) * | 2009-06-26 | 2010-12-29 | Virginia Tech Intellectual Properties, Inc. | Piezomagnetoelastic structure for broadband vibration energy harvesting |
JP2011152010A (ja) * | 2010-01-25 | 2011-08-04 | Panasonic Electric Works Co Ltd | 発電デバイス |
US20120153778A1 (en) * | 2010-12-21 | 2012-06-21 | Electronics And Telecommunications Research Institute | Piezoelectric micro energy harvester and manufacturing method thereof |
WO2012153593A1 (ja) * | 2011-05-09 | 2012-11-15 | 株式会社村田製作所 | 圧電発電装置 |
WO2014141336A1 (ja) * | 2013-03-13 | 2014-09-18 | パナソニック株式会社 | 圧電変換デバイス及びそれを用いたフローセンサ |
JP2015517791A (ja) * | 2012-05-25 | 2015-06-22 | ケンブリッジ エンタープライズ リミテッド | 環境発電装置および方法 |
-
2016
- 2016-12-09 KR KR1020160168011A patent/KR20180066787A/ko not_active Application Discontinuation
-
2017
- 2017-01-23 WO PCT/JP2017/002192 patent/WO2018105132A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07245970A (ja) * | 1994-03-02 | 1995-09-19 | Calsonic Corp | 圧電素子発電装置 |
JP2010273408A (ja) * | 2009-05-19 | 2010-12-02 | Emprie Technology Development LLC | 電力装置、電力発生方法、電力装置の製造方法 |
WO2010151738A2 (en) * | 2009-06-26 | 2010-12-29 | Virginia Tech Intellectual Properties, Inc. | Piezomagnetoelastic structure for broadband vibration energy harvesting |
JP2011152010A (ja) * | 2010-01-25 | 2011-08-04 | Panasonic Electric Works Co Ltd | 発電デバイス |
US20120153778A1 (en) * | 2010-12-21 | 2012-06-21 | Electronics And Telecommunications Research Institute | Piezoelectric micro energy harvester and manufacturing method thereof |
WO2012153593A1 (ja) * | 2011-05-09 | 2012-11-15 | 株式会社村田製作所 | 圧電発電装置 |
JP2015517791A (ja) * | 2012-05-25 | 2015-06-22 | ケンブリッジ エンタープライズ リミテッド | 環境発電装置および方法 |
WO2014141336A1 (ja) * | 2013-03-13 | 2014-09-18 | パナソニック株式会社 | 圧電変換デバイス及びそれを用いたフローセンサ |
Non-Patent Citations (2)
Title |
---|
KAWANO,M ET AL.: "Design and manufacture of perpendicular bi-stable cantilever for vibrational energy harvesting on the basis of stochastic resonance", JOURNAL OF PHYSICS: CONFERENCE SERIES, vol. 660, 10 December 2015 (2015-12-10), pages 1 - 5, XP020293833, ISSN: 1742-6596 * |
SU , MENG ET AL.: "Energy harvest- power MEMS devices for future sensor network society: Stochastic resonance meets TENG device", 2016 IEEE CPMT SYMPOSIUM JAPAN (ICSJ), 29 December 2016 (2016-12-29), pages 71 - 73, XP033032792, ISBN: 978-1-5090-2037-9 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2572572A (en) * | 2018-04-03 | 2019-10-09 | 8Power Ltd | Energy harvester for harvesting energy from broadband ambient vibrations |
GB2572572B (en) * | 2018-04-03 | 2022-03-09 | 8Power Ltd | Energy harvester for harvesting energy from broadband ambient vibrations |
CN109104123A (zh) * | 2018-10-21 | 2018-12-28 | 吉林大学 | 一种宽频域自调谐双稳态振动能量采集器及采集方法 |
CN109883581A (zh) * | 2019-03-19 | 2019-06-14 | 西安交通大学 | 一种悬臂梁式差动谐振压力传感器芯片 |
CN109883581B (zh) * | 2019-03-19 | 2020-12-08 | 西安交通大学 | 一种悬臂梁式差动谐振压力传感器芯片 |
CN109921685A (zh) * | 2019-04-09 | 2019-06-21 | 清华大学深圳研究生院 | 一种基于压电效应的风能收集器 |
CN109921685B (zh) * | 2019-04-09 | 2023-12-22 | 清华大学深圳研究生院 | 一种基于压电效应的风能收集器 |
IT202000003967A1 (it) * | 2020-02-26 | 2021-08-26 | St Microelectronics Srl | Sistema microelettromeccanico e metodo per la fabbricazione dello stesso |
US11889765B2 (en) | 2020-02-26 | 2024-01-30 | Stmicroelectronics S.R.L. | Micro electro mechanical system and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20180066787A (ko) | 2018-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018105132A1 (ja) | 確率共振を通じた振動エネルギーハーベスタ及びこれを用いた振動エネルギーハーベスティングシステム | |
Saadon et al. | A review of vibration-based MEMS piezoelectric energy harvesters | |
US8154176B2 (en) | System and method for resonance frequency tuning of resonant devices | |
JP5713737B2 (ja) | ノイズを低減した力センサ | |
Yoshimura et al. | Piezoelectric vibrational energy harvester using lead-free ferroelectric BiFeO3 films | |
Chidambaram et al. | Measurement of effective piezoelectric coefficients of PZT thin films for energy harvesting application with interdigitated electrodes | |
WO2018101017A1 (ja) | 振動発電素子 | |
US8686714B2 (en) | Electromechanical transducer and a method of providing an electromechanical transducer | |
US11012006B2 (en) | Micro electromechanical system (MEMS) energy harvester with residual stress induced instability | |
KR101239636B1 (ko) | Mems 공진기, 이를 구비하는 센서 및 mems 공진기의 제조방법 | |
WO2008053835A1 (fr) | Mécanisme piézoélectrique de génération de puissance | |
Chaudhuri et al. | Design and analysis of MEMS based piezoelectric energy harvester for machine monitoring application | |
JP2015503218A (ja) | 圧電式エネルギー回収デバイス又はアクチュエータ | |
US11296671B2 (en) | MEMS frequency-tuning springs | |
EP2570770B1 (en) | Three-mass coupled oscillation technique for mechanically robust micromachined gyroscopes | |
CN111065889B (zh) | 振动陀螺仪 | |
JP6588077B2 (ja) | マイクロ電気機械的トランスデューサ、エネルギーハーベスター、およびマイクロ電気機械的変換方法 | |
KR20180111719A (ko) | 확률 공진을 통한 진동 에너지 수확기 및 이를 이용한 진동 에너지 수확 시스템 | |
Chaudhuri et al. | MEMS piezoelectric energy harvester to power wireless sensor nodes for machine monitoring application | |
Zhang et al. | Development of energy harvesting MEMS vibration device sensor with wideband response function in low-frequency domain | |
WO2018020639A1 (ja) | 発電装置と発電素子 | |
Kanda et al. | Piezoelectric MEMS Energy Harvester from Airflow at Low Flow Velocities. | |
Hampl et al. | AlN-based piezoelectric bimorph microgenerator utilizing low-level non-resonant excitation | |
Larcher et al. | Vibrational energy harvesting | |
Akmal et al. | Vibrational piezoelectric energy harvester’s performance using lead-zirconate titanate versus lead-free potassium sodium niobate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17877539 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17877539 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |