WO2013121734A1 - 多重モード弾性波素子 - Google Patents

多重モード弾性波素子 Download PDF

Info

Publication number
WO2013121734A1
WO2013121734A1 PCT/JP2013/000609 JP2013000609W WO2013121734A1 WO 2013121734 A1 WO2013121734 A1 WO 2013121734A1 JP 2013000609 W JP2013000609 W JP 2013000609W WO 2013121734 A1 WO2013121734 A1 WO 2013121734A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
idt
finger pitch
electrode finger
idt electrode
Prior art date
Application number
PCT/JP2013/000609
Other languages
English (en)
French (fr)
Inventor
禎也 小松
城二 藤原
哲也 鶴成
中村 弘幸
和紀 西村
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/112,547 priority Critical patent/US9473107B2/en
Priority to CN201380001627.2A priority patent/CN103597743B/zh
Priority to JP2013540155A priority patent/JP5716096B2/ja
Publication of WO2013121734A1 publication Critical patent/WO2013121734A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0028Balance-unbalance or balance-balance networks using surface acoustic wave devices
    • H03H9/008Balance-unbalance or balance-balance networks using surface acoustic wave devices having three acoustic tracks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14576Transducers whereby only the last fingers have different characteristics with respect to the other fingers, e.g. different shape, thickness or material, split finger
    • H03H9/14582Transducers whereby only the last fingers have different characteristics with respect to the other fingers, e.g. different shape, thickness or material, split finger the last fingers having a different pitch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14588Horizontally-split transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6436Coupled resonator filters having one acoustic track only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • H03H9/0576Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including surface acoustic wave [SAW] devices

Definitions

  • the present invention relates to a multimode acoustic wave element mainly used in mobile communication equipment and the like.
  • communication devices such as mobile phones have been remarkably reduced in size and weight.
  • an elastic wave device such as a surface acoustic wave device or a boundary acoustic wave device that can be miniaturized is used.
  • communication systems such as CDMA (Code Division Multiple Access) that transmit and receive simultaneously have increased rapidly, and demand for duplexers has increased rapidly. Furthermore, in recent years, many duplexers in which the receiving end operates in a balanced manner have been used.
  • a multi-mode acoustic wave device having an unbalance-balance conversion function is used as a filter on the receiving side of the duplexer. Furthermore, with changes in mobile communication systems, duplexer requirements are becoming stricter. That is, there is a need for a multimode acoustic wave device having a passband characteristic that is broader, closer to a rectangle, and excellent in steepness as compared with the prior art.
  • Patent Document 1 to Patent Document 3 are known.
  • Patent Document 1 discloses a technique for providing a change pattern in the electrode period of a reflector in order to achieve both suppression of spurious and steepness for a multimode acoustic wave element having three IDT electrodes.
  • Patent Document 2 discloses a technique of using a plurality of reflector groups having different periods as reflectors in order to suppress spurious near the passband and obtain good attenuation characteristics for a multimode acoustic wave element having three IDT electrodes. Is disclosed.
  • Patent Document 3 discloses a technique in which a narrow pitch portion at the boundary portion of an IDT electrode is devised in order to improve the steepness in the vicinity of the pass band for a multimode acoustic wave element having five IDT electrodes. That is, when the narrow pitch portion at the boundary portion of the IDT electrode is sequentially set as the first to fourth narrow pitch portions, the electrode finger pitch of the first narrow pitch portion is smaller than the electrode finger pitch of the second narrow pitch portion, The electrode finger pitch of the fourth narrow pitch portion is made smaller than the electrode finger pitch of the third narrow pitch portion. With this configuration, the displacement distribution excited by the elastic wave is controlled.
  • JP 2003-258595 A Japanese Patent Application Laid-Open No. 2001-332954 International Publication No. 2009/001651
  • the present invention provides a multimode acoustic wave device having a more rectangular and steep attenuation characteristic.
  • the first multimode acoustic wave device includes a piezoelectric substrate, first and second reflectors, a first IDT electrode, a second IDT electrode, a third IDT electrode, and a fourth IDT.
  • An electrode and a fifth IDT electrode are disposed on the piezoelectric substrate.
  • the first to fifth IDT electrodes are arranged between the first and second reflectors in order from the side closer to the first reflector along the propagation direction of the elastic wave.
  • the electrode finger pitch average of the first IDT electrode and the electrode finger pitch average of the fifth IDT electrode are smaller than both the electrode finger pitch average of the second IDT electrode and the electrode finger pitch average of the fourth IDT electrode.
  • the second multimode acoustic wave device includes a piezoelectric substrate, first and second reflectors, a first IDT electrode, a second IDT electrode, a third IDT electrode, and a fourth IDT.
  • the first and second reflectors and the first to fifth IDT electrodes are disposed on the piezoelectric substrate.
  • the first to fifth IDT electrodes are arranged between the first and second reflectors in order from the side closer to the first reflector along the propagation direction of the elastic wave.
  • Each of the first to fifth IDT electrodes has a constant pitch region in which the electrode finger pitch is substantially equal.
  • the electrode finger pitch in the constant pitch area of the first IDT electrode, the electrode finger pitch in the constant pitch area of the third IDT electrode, and the electrode finger pitch in the constant pitch area of the fifth IDT electrode are the second This is smaller than either the electrode finger pitch in the constant pitch region of the IDT electrode or the electrode finger pitch in the constant pitch region of the fourth IDT electrode.
  • the displacement distribution of the standing wave of the elastic wave can be concentrated on the reflector side from the arrangement region of the second and fourth IDT electrodes.
  • the characteristics are affected by the reflector. Therefore, using a reflector, high-order longitudinal mode resonance can be suppressed at a frequency near the low band side of the pass band, and a steep attenuation characteristic can be obtained.
  • FIG. 1 is a schematic top view of a multimode acoustic wave device according to an embodiment of the present invention.
  • FIG. 2A is an explanatory diagram of electrode finger pitch definition of the multimode acoustic wave device shown in FIG.
  • FIG. 2B is an explanatory diagram of electrode finger pitch definition of the multimode acoustic wave device shown in FIG. 1.
  • FIG. 3 is an explanatory diagram of the electrode finger pitch of the multimode acoustic wave device shown in FIG.
  • FIG. 4A is a schematic top view of a multimode acoustic wave device of a comparative example.
  • FIG. 4B is an explanatory diagram of electrode finger pitches of the multimode acoustic wave device shown in FIG. 4A.
  • FIG. 5 is a characteristic comparison diagram between the multimode acoustic wave device shown in FIG. 3 and the multimode acoustic wave device shown in FIG. 4B.
  • FIG. 6 is a schematic top view of still another multimode acoustic wave device according to the embodiment of the present invention.
  • FIG. 7 is a characteristic diagram of the multimode acoustic wave device shown in FIG.
  • IDT-IDT mode in which displacement distribution is concentrated in the adjacent portion of two IDT electrodes adjacent to the zeroth-order resonance mode.
  • filter passband a resonance mode in which displacement distribution is concentrated in the adjacent portion of two IDT electrodes adjacent to the zeroth-order resonance mode.
  • higher-order longitudinal mode resonances such as the second-order mode and the fourth-order mode are present in the low-frequency side near the passband. For this reason, it is difficult to obtain steepness on the low side of the pass band of the filter. In order to obtain a filter having a steep characteristic at the low-frequency side of the pass band, it is necessary to sufficiently weaken these higher-order longitudinal mode resonances to the extent that they do not couple with the 0th-order mode resonances.
  • FIG. 1 is a diagram showing the structure of a multimode acoustic wave device 100 according to Embodiment 1 of the present invention.
  • the multimode acoustic wave element is, for example, a Double Mode SAW element, and is an acoustic wave element that forms a desired band-pass characteristic by exciting an elastic wave in a plurality of modes.
  • the multimode acoustic wave device 100 includes a piezoelectric substrate 101, a first reflector 102, a second reflector 108 (hereinafter referred to as reflectors 102 and 108), a first IDT electrode 103, and a second IDT.
  • the electrode 104, the third IDT electrode 105, the fourth IDT electrode 106, and the fifth IDT electrode 107 (hereinafter referred to as IDT electrodes 103 to 107) are provided.
  • the reflectors 102 and 108 and the IDT electrodes 103 to 107 are disposed on the piezoelectric substrate 101.
  • the IDT electrodes 103 to 107 are sequentially arranged between the reflector 102 and the reflector 108 along the elastic wave propagation direction from the side closer to the reflector 102. That is, the IDT electrode 103 is closest to the reflector 102 and the IDT electrode 107 is closest to the reflector 108.
  • the piezoelectric substrate 101 is made of lithium tantalate or lithium niobate.
  • Each of the IDT electrodes 103 to 107 is composed of a pair of comb electrodes (interdigital transducer electrodes).
  • the reflectors 102 and 108 and the IDT electrodes 103 to 107 are made of, for example, a single metal made of aluminum, copper, silver, gold, titanium, tungsten, molybdenum, platinum, or chromium, or an alloy containing these as a main component. Yes. Or it has the structure which laminated
  • the multimode acoustic wave element 100 excites, as a main wave, a surface acoustic wave such as an SH (Shear Horizontal) wave or a Rayleigh wave.
  • a surface acoustic wave such as an SH (Shear Horizontal) wave or a Rayleigh wave.
  • 1 schematically shows the reflectors 102 and 108 and the IDT electrodes 103 to 107, and the number of comb electrodes is not limited to that shown in FIG.
  • the electrode finger pitch P is defined by the distance between the centers of the electrode fingers 21 and 22 adjacent to each other in the elastic wave propagation direction.
  • the reflector 102 is composed of, for example, 74 electrode fingers, and the electrode finger pitch average defined by the distance between the centers of the electrode fingers is 2.055 ⁇ m.
  • the reflector 108 is also composed of 74 electrode fingers, and the electrode finger pitch average is 2.055 ⁇ m.
  • the electrode finger pitch average is obtained by dividing the sum of the electrode finger pitch dimensions by the number of electrode fingers minus one.
  • the IDT electrode 103 is composed of 35 (17.5 pairs) electrode fingers, and the electrode finger pitch average is 1.936 ⁇ m.
  • the IDT electrode 104 is composed of 35 (17.5 pairs) electrode fingers, and the electrode finger pitch average is 2.005 ⁇ m.
  • the IDT electrode 105 is composed of 58 (29 pairs) electrode fingers, and the average electrode finger pitch is 1.946 ⁇ m.
  • the IDT electrode 106 is composed of 35 (17.5 pairs) electrode fingers, and the electrode finger pitch average is 2.005 ⁇ m.
  • the IDT electrode 107 is composed of 35 (17.5 pairs) electrode fingers, and the average electrode finger pitch is 1.936 ⁇ m.
  • the IDT electrode 105 is divided into two regions at the center in the propagation direction, and comb electrodes are arranged so that the phases differ by 180 degrees in these two regions.
  • the electrode finger pitch average of the IDT electrode 103 and the electrode finger pitch average of the IDT electrode 107 are smaller than both the electrode finger pitch average of the IDT electrode 104 and the electrode finger pitch average of the IDT electrode 106.
  • the displacement distribution of the standing wave of the elastic wave can be concentrated on the IDT electrode arrangement regions 103 and 107 closer to the reflectors 102 and 108 than the IDT electrodes 104 and 106 arrangement region.
  • the characteristics are affected by the reflectors 102 and 108.
  • the multimode acoustic wave element 100 can suppress high-order longitudinal mode resonance at a frequency near the low band side of the passband using the reflectors 102 and 108, and has a steep attenuation characteristic. Obtainable. That is, high-order longitudinal mode resonance can be suppressed, and filter characteristics with excellent steepness near the low frequency side of the pass band can be obtained.
  • the electrode finger pitch average of the IDT electrode 105 is desirably smaller than both the electrode finger pitch average of the IDT electrode 104 and the electrode finger pitch average of the IDT electrode 106.
  • the displacement distribution of the low standing wave of the elastic wave can be concentrated on the arrangement region of the IDT electrode 105 which is the central portion from the arrangement region of the IDT electrodes 104 and 106, and the insertion loss on the high band side of the pass band is reduced. can do.
  • the electrode finger pitch average of the IDT electrode 103, the electrode finger pitch average of the IDT electrode 105, and the electrode finger pitch average of the IDT electrode 107 are either the electrode finger pitch average of the IDT electrode 104 or the electrode finger pitch average of the IDT electrode 106. Is preferably small. With this configuration, the displacement distribution of the standing wave is concentrated on the side close to the reflectors 102 and 108, and a filter having a steep characteristic on the low band side of the passband without impairing the insertion loss using the reflectors 102 and 108. Can be made. It is more preferable that the electrode finger pitch average of the IDT electrode 103 and the electrode finger pitch average of the IDT electrode 107 are smaller than the electrode finger pitch average of the IDT electrode 105. With this configuration, the characteristics are more easily affected by the reflectors 102 and 108, and the effect of obtaining a rectangular filter characteristic with excellent attenuation characteristics is enhanced. That is, it becomes easy to realize steep characteristics.
  • the ratio value Pr1 / Pi2 of the electrode finger pitch average Pr1 of the reflector 102 and the electrode finger pitch average Pi2 of the IDT electrode 104 is preferably 1.02 or more and 1.035 or less.
  • the value Pr2 / Pi4 of the electrode finger pitch average Pr2 of the reflector 108 and the electrode finger pitch average Pi4 of the IDT electrode 106 is preferably 1.02 or more and 1.035 or less. If Pr1 / Pi2 or Pr2 / Pi4 is smaller than 1.02, a phenomenon that the insertion loss of the filter increases on the low frequency side of the pass band occurs. If Pr1 / Pi2 or Pr2 / Pi4 is greater than 1.035, suppression of higher-order longitudinal mode resonance is insufficient, and the steepness near the low band side of the passband is lowered.
  • FIG. 3 is a diagram showing the electrode finger pitch configuration of the multimode acoustic wave device 100 in more detail. That is, FIG. 3 shows in detail how the electrode finger pitch is in each part.
  • the horizontal axis in FIG. 3 is a gap number between the left and right electrode fingers of the reflector 102 located on the left side in FIG. 1 (hereinafter referred to as an electrode finger pitch number) is 1, and the left
  • the numbers assigned to the gaps between the electrode fingers are shown in order from right to left. That is, FIG. 3 shows the electrode finger pitch at each of the numbers assigned to the gaps of the electrode fingers in sequence up to the reflector 102, the IDT electrode 103, the IDT electrode 104, the IDT electrode 105, the IDT electrode 106, the IDT electrode 107, and the reflector 108. ( ⁇ m) is shown on the vertical axis. 3 indicates the boundary between the reflector and the IDT electrode or the boundary between the IDT electrode and the IDT electrode, and for convenience, indicates which range is the position of which reflector or IDT electrode.
  • the electrode finger pitch is set so as to have a maximum value of 2.095 ⁇ m and a minimum value of 1.987 ⁇ m in the region relatively close to the IDT electrode 103 or the IDT electrode 107. Has been. In the region relatively far from the IDT electrode 103 or the IDT electrode 107, the electrode finger pitch is set to be substantially constant at 2.058 ⁇ m.
  • the electrode finger pitch average of the IDT electrode 103, the electrode finger pitch average of the IDT electrode 105, and the electrode finger pitch average of the IDT electrode 107 are the electrode finger pitch average of the IDT electrode 104 and the electrode finger pitch average of the IDT electrode 106. Smaller than any of the above.
  • the change rate of the electrode finger pitch of the adjacent gap in the region relatively close to the IDT electrode 103 or IDT electrode 107 in the reflectors 102 and 108 is changed to the adjacent region in the region relatively far from the IDT electrode 103 or IDT electrode 107. It is preferable to increase the rate of change of the electrode finger pitch in the gap. As a result, high-order longitudinal mode resonance can be suppressed, and filter characteristics with excellent steepness on the low pass band side can be realized.
  • each of the reflectors 102 and 108 is divided into three or more regions, each region has an equal electrode finger pitch, and the average electrode finger pitch in each region is It may be set differently. That is, it is preferable that the reflectors 102 and 108 each have at least three types of electrode finger pitches.
  • the IDT electrodes 103 to 07 have regions where the electrode finger pitches are substantially equal. That is, the electrode finger pitch is substantially constant in that region (constant pitch region).
  • the dimension of the electrode finger pitch in the constant pitch area is 1.980 ⁇ m for the IDT electrode 103, 2.094 ⁇ m for the IDT electrode 104, 1.985 ⁇ m for the IDT electrode 105, 2.094 ⁇ m for the IDT electrode 106, and 1.94 ⁇ m for the IDT electrode 107. 980 ⁇ m.
  • the electrode finger pitch of the constant pitch region of the IDT electrode 103, the electrode finger pitch of the constant pitch region of the IDT electrode 105, and the electrode finger pitch of the constant pitch region of the IDT electrode 107 are the electrode finger pitch of the constant pitch region of the IDT electrode 104.
  • the electrode finger pitch in the constant pitch region of the IDT electrode 106 is smaller.
  • This configuration also concentrates the displacement distribution of the standing wave on the side closer to the reflectors 102 and 108, and realizes a steep characteristic on the low band side of the passband without damaging the insertion loss using the reflectors 102 and 108. Contribute to. Therefore, in addition to the above-described relationship between the average electrode finger pitches of the IDT electrodes, the size relationship of the electrode finger pitch in the constant pitch region may be set.
  • the electrode finger pitch in the constant pitch region of the IDT electrode 104 and the electrode finger pitch in the constant pitch region of the IDT electrode 106 are the electrode finger pitch in the constant pitch region of the reflector 102 and the electrode finger pitch in the constant pitch region of the reflector 108. It is preferably larger than the pitch. With this configuration, it is possible to reduce the low-pass attenuation of the pass band.
  • the electrode finger pitch between adjacent comb electrodes between two adjacent IDT electrodes is plotted on the alternate long and short dash line in FIG. Specifically, the electrode finger pitch between adjacent comb electrodes of IDT electrode 103 and IDT electrode 104 is 2.030 ⁇ m, and the electrode finger pitch between adjacent comb electrodes of IDT electrode 104 and IDT electrode 105 is 1.924 ⁇ m, IDT. The electrode finger pitch between adjacent comb electrodes of the electrode 105 and the IDT electrode 106 is 1.924 ⁇ m, and the electrode finger pitch between adjacent comb electrodes of the IDT electrode 106 and the IDT electrode 107 is 2.030 ⁇ m.
  • the minimum electrode finger pitch in the IDT electrode 103 is 1.752 ⁇ m
  • the minimum electrode finger pitch in the IDT electrode 104 is 1.796 ⁇ m
  • the minimum electrode finger pitch in the IDT electrode 105 is 1.690 ⁇ m
  • the minimum in the IDT electrode 106 The electrode finger pitch is 1.796 ⁇ m
  • the minimum electrode finger pitch in the IDT electrode 107 is 1.752 ⁇ m.
  • the electrode finger pitch between adjacent comb electrodes between two adjacent IDT electrodes is set larger than the minimum electrode finger pitch of each of the IDT electrode 103 to the IDT electrode 107.
  • FIG. 5 is a schematic top view of the multimode acoustic wave device 50.
  • the illustration of the piezoelectric substrate is omitted.
  • FIG. 4B is an explanatory diagram of the electrode finger pitch of the multimode acoustic wave device 50.
  • the electrode finger pitch in the reflectors 52 and 58 is constant at 2.058 ⁇ m.
  • the electrode finger pitch average of the first IDT electrode 53 is 1.958 ⁇ m
  • the electrode finger pitch average of the second IDT electrode 54 is 1.921 ⁇ m
  • the electrode finger pitch average of the third IDT electrode 55 is 1.965 ⁇ m
  • the fourth The electrode finger pitch average of the IDT electrode 56 is 1.921 ⁇ m
  • the electrode finger pitch average of the fifth IDT electrode 57 is 1.958 ⁇ m. That is, the electrode finger pitch average of the IDT electrode 53 and the electrode finger pitch average of the IDT electrode 57 are larger than the electrode finger pitch average of the IDT electrode 54 and the electrode finger pitch average of the IDT electrode 56.
  • the electrode finger pitch average of the IDT electrode 55 is larger than the electrode finger pitch average of the IDT electrode 54 and the electrode finger pitch average of the IDT electrode 56.
  • a curve (a) indicated by a solid line indicates the filter characteristics of the multimode acoustic wave element 100
  • a curve (b) indicated by a broken line indicates the filter characteristics of the multimode acoustic wave element 50.
  • the multimode acoustic wave device 100 has a very steep attenuation characteristic on the low pass band side.
  • the configuration of the multimode acoustic wave element 50 is disclosed in Patent Document 3.
  • the minimum electrode finger pitch at the boundary portion between the IDT electrode 53 and the IDT electrode 54 and the minimum electrode finger pitch at the boundary portion between the IDT electrode 56 and the IDT electrode 57 are the IDT electrode 54 and the IDT electrode 55. It is disclosed that a steep characteristic can be obtained at a low frequency in the passband if the pitch is smaller than both the minimum electrode finger pitch at the boundary portion and the minimum electrode finger pitch at the boundary portion between the IDT electrode 55 and the IDT electrode 56. Yes. However, the multimode acoustic wave device 100 has a further excellent effect.
  • the five-electrode type multimode elastic wave device 100 has been described as an example of the multimode elastic wave device.
  • a multimode elastic wave device having five or more electrodes such as a seven-electrode type multimode elastic wave device is used. If the electrode configuration described above is applied, the effect is obtained.
  • a 7-electrode type multi-mode acoustic wave element having first to seventh IDT electrodes in order in the propagation direction of the acoustic wave so as to be sandwiched between the first and second reflectors is assumed.
  • the first IDT electrode is adjacent to the first reflector
  • the seventh IDT electrode is adjacent to the second reflector.
  • the electrode finger pitch average of the first IDT electrode and the electrode finger pitch average of the seventh IDT electrode are smaller than both the electrode finger pitch average of the second IDT electrode and the sixth electrode finger pitch average.
  • the characteristics are affected by the reflector.
  • the seven-electrode multimode acoustic wave element can suppress high-order longitudinal mode resonance at a frequency near the low band side of the passband using a reflector, and has a steep attenuation characteristic. Obtainable.
  • n an odd number of 5 or more.
  • the first IDT electrode is adjacent to the first reflector, and the nth IDT electrode is adjacent to the second reflector.
  • the electrode finger pitch average of the first IDT electrode and the electrode finger pitch average of the nth IDT electrode are determined by either the electrode finger pitch average of the second IDT electrode or the n ⁇ 1th electrode finger pitch average. It can be set small.
  • FIG. 6 is a diagram showing a configuration of a cascade connection type multimode acoustic wave device according to the present embodiment.
  • the piezoelectric substrate is omitted.
  • FIG. 7 shows the characteristics of the multimode acoustic wave device shown in FIG.
  • the five-electrode first multimode acoustic wave element 200 and the five-electrode second multimode acoustic wave element 300 are cascade-connected.
  • the first multimode acoustic wave element 200 is connected to the input terminal 11, and the second multimode acoustic wave element 300 is connected to the output terminals 12 and 13 and configured to perform a balance operation.
  • One of the first multimode elastic wave element 200 and the second multimode elastic wave element 300 is the multimode elastic wave element 100 described above, and the other is, for example, the multimode elastic wave element 50.
  • curve (a) has a steep attenuation characteristic on the low pass band side.
  • This curve shows the characteristics of the multimode acoustic wave device 100.
  • Curve (b) shows the characteristics of the multimode acoustic wave element 50, and has a relatively gentle slope attenuation characteristic on the low pass band side.
  • the attenuation pole may be set so as to substantially match the jump (side lobe) of the attenuation characteristic of the curve (a).
  • the attenuation pole near 917 MHz is about 40 dB in the curve (a), but near 917 MHz in the curve (c) in which the filter characteristics of the first multimode acoustic wave element 200 and the second multimode acoustic wave element 300 are cascade-connected. Is attenuated by about 77 dB.
  • the multimode acoustic wave element according to the present invention has a more rectangular and steep attenuation characteristic, it is particularly useful as a filter having excellent attenuation characteristics on the low pass band side used for applications such as a reception filter of an antenna duplexer. is there.
  • Multimode acoustic wave element 101 Piezoelectric substrate 52, 102 First reflector (reflector) 58,108 Second reflector (reflector) 53,103 First IDT electrode (IDT electrode) 54, 104 Second IDT electrode (IDT electrode) 55,105 Third IDT electrode (IDT electrode) 56, 106 Fourth IDT electrode (IDT electrode) 57,107 Fifth IDT electrode (IDT electrode) 200 First multimode elastic wave device 300 Second multimode elastic wave device

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 多重モード弾性波素子は、一対の反射器とその間に配置された第1~第5のIDT電極を有する。この構成において、第1のIDT電極の電極指ピッチ平均と第5のIDT電極の電極指ピッチ平均とが、第2のIDT電極の電極指ピッチ平均と第4のIDT電極の電極指ピッチ平均のいずれよりも小さい。

Description

多重モード弾性波素子
 本発明は、主として移動体通信機器等において使用される多重モード弾性波素子に関する。
 近年の技術的進歩により、携帯電話等の通信装置は目覚しく小型化、軽量化されている。このような通信装置に用いられるフィルタとしては、小型化が可能な弾性表面波装置や弾性境界波装置などの弾性波装置が用いられている。また、移動体通信システムとしてはCDMA(Code Division Multiple Access)等の同時送受信する通信システムが急増しデュプレクサの需要が急増している。さらに近年、受信端が平衡動作するデュプレクサが多く使用されるようになってきている。
 これらの状況によって、デュプレクサの受信側のフィルタとして不平衡-平衡変換機能を有する多重モード弾性波素子が使用されている。さらには移動通信システムの変化に伴い、デュプレクサの要求仕様がより厳しくなっている。すなわち、従来に比して広帯域でより矩形に近く、急峻性に優れた通過帯域特性を持つ多重モード弾性波素子が必要となっている。
 なお、この出願の発明に関する先行技術としては、例えば、特許文献1から特許文献3に開示された技術が知られている。
 特許文献1には3つのIDT電極を有する多重モード弾性波素子に対し、スプリアスの抑制と急峻性を両立するために反射器の電極周期に変化パターンを持たせる技術が開示されている。
 特許文献2には3つのIDT電極を有する多重モード弾性波素子に対し、通過帯域近傍のスプリアスを抑制し、良好な減衰特性を得るために、反射器として周期の異なる反射器群を複数用いる技術が開示されている。
 特許文献3には5つのIDT電極を有する多重モード弾性波素子に対し、通過帯域近傍の急峻性を向上するために、IDT電極の境界部の狭ピッチ部を工夫した技術が開示されている。すなわち、IDT電極の境界部の狭ピッチ部を順に第1から第4の狭ピッチ部としたとき、第2の狭ピッチ部の電極指ピッチより第1の狭ピッチ部の電極指ピッチが小さく、第3の狭ピッチ部の電極指ピッチより第4の狭ピッチ部の電極指ピッチが小さくされている。この構成により、弾性波の励振する変位分布が制御される。
特開2003-258595号公報 特開2001-332954号公報 国際公開第2009/001651号
 本発明は、より矩形で急峻な減衰特性を有する多重モード弾性波素子を提供する。
 本発明における第1の多重モード弾性波素子は、圧電基板と、第1、第2反射器と第1のIDT電極と、第2のIDT電極と、第3のIDT電極と、第4のIDT電極と、第5のIDT電極とを有する。第1、第2反射器と第1~第5のIDT電極は圧電基板の上に配置されている。第1~第5のIDT電極は第1、第2反射器の間に弾性波の伝播方向に沿って、第1反射器に近い側から順に配置されている。第1のIDT電極の電極指ピッチ平均と第5のIDT電極の電極指ピッチ平均は、第2のIDT電極の電極指ピッチ平均と第4のIDT電極の電極指ピッチ平均のいずれよりも小さい。
 本発明における第2の多重モード弾性波素子は、圧電基板と、第1、第2反射器と第1のIDT電極と、第2のIDT電極と、第3のIDT電極と、第4のIDT電極と、第5のIDT電極とを有する。第1、第2反射器と第1~第5のIDT電極は圧電基板の上に配置されている。第1~第5のIDT電極は第1、第2反射器の間に弾性波の伝播方向に沿って、第1反射器に近い側から順に配置されている。第1から第5のIDT電極はそれぞれ電極指ピッチが実質的に等しいピッチ一定領域を有している。そして、第1のIDT電極のピッチ一定領域の電極指ピッチと、第3のIDT電極のピッチ一定領域の電極指ピッチと、第5のIDT電極のピッチ一定領域の電極指ピッチとは、第2のIDT電極のピッチ一定領域の電極指ピッチと、第4のIDT電極のピッチ一定領域の電極指ピッチとのいずれより小さい。
 このいずれかの構成により、弾性波の定在波の変位分布を第2、第4のIDT電極の配置領域より反射器側に集中させることができる。その結果、特性が反射器の影響を受ける。そのため、反射器を用いて、通過帯域の低域側近傍の周波数において高次の縦モード共振を抑制することができ急峻な減衰特性を得ることができる。
図1は本発明の実施の形態における多重モード弾性波素子の上面模式図である。 図2Aは図1に示す多重モード弾性波素子の電極指ピッチ定義の説明図である。 図2Bは図1に示す多重モード弾性波素子の電極指ピッチ定義の説明図である。 図3は図1に示す多重モード弾性波素子の電極指ピッチの説明図である。 図4Aは比較例の多重モード弾性波素子の上面模式図である。 図4Bは図4Aに示す多重モード弾性波素子の電極指ピッチの説明図である。 図5は図3に示す多重モード弾性波素子と、図4Bに示す多重モード弾性波素子との特性比較図である。 図6は本発明の実施の形態におけるさらに他の多重モード弾性波素子の上面模式図である。 図7は図6に示す多重モード弾性波素子の特性図である。
 本発明の実施の形態の説明に先立ち、従来の構成における課題を説明する。従来の5つのIDT電極を有する5電極型の多重モード弾性波素子においては、0次の共振モードと隣り合う2つのIDT電極の隣接部に変位分布が集中するIDT-IDTモードといわれる共振モードが結合してフィルタの通過帯域が形成される。同時に2次モード、4次モードなどの高次の縦モード共振が通過帯域近傍の低域側周波数に存在する。そのため、フィルタの通過帯域の低域側の急峻性が得られにくい。通過帯域の低域側周波数において急峻な特性を有するフィルタを得るためには、0次モード共振と結合しない程度にこれらの高次の縦モード共振を十分弱くする必要がある。
 以下、本発明の実施の形態における弾性波装置について図面を参照しながら説明する。図1は本発明の実施の形態1における多重モード弾性波素子100の構造を示す図である。なお、多重モード弾性波素子とは、例えばDouble Mode SAW素子のことであり、複数のモードによる弾性波を励振させることで、所望の帯域通過特性を形成する弾性波素子のことである。
 多重モード弾性波素子100は、圧電基板101と、第1反射器102と、第2反射器108(以下、反射器102、108と称す)と、第1のIDT電極103と、第2のIDT電極104と、第3のIDT電極105と、第4のIDT電極106と、第5のIDT電極107(以下、IDT電極103~107と称す)とを有する。反射器102、108およびIDT電極103~107は圧電基板101の上に配置されている。IDT電極103~107は、反射器102と、反射器108との間に弾性波の伝播方向に沿って、反射器102に近い側から順に配置されている。すなわち、IDT電極103が反射器102に最も近く、IDT電極107が反射器108に最も近い。
 圧電基板101はタンタル酸リチウム或いはニオブ酸リチウムなどで形成されている。IDT電極103~107はそれぞれ、一対の櫛電極(インターディジタルトランスデューサ電極)から構成されている。反射器102、108やIDT電極103~107は、例えば、アルミニウム、銅、銀、金、チタン、タングステン、モリブデン、白金、またはクロムからなる単体金属、若しくはこれらを主成分とする合金で構成されている。またはこれらを積層した構造を有する。この構成により、多重モード弾性波素子100は、主要波として、例えばSH(Shear Horizontal)波やレイリー波等の弾性表面波を励振させる。なお図1では反射器102、108、IDT電極103~107を模式的に示しており、櫛電極の本数は図1に限定されない。
 図2Aに示すように、電極指ピッチPは弾性波の伝播方向に隣り合う電極指21、22の中心間距離で定義される。実測する際には、図2Bに示す様に、電極指ピッチPは隣り合う電極指21、22の一方の端同士の距離P1と他方の端の距離P2の加重平均P=(P1+P2)/2で求めることができる。
 反射器102は例えば、74本の電極指より構成され、電極指の中心間距離で定義される電極指ピッチ平均は2.055μmである。反射器108もまた74本の電極指より構成され電極指ピッチ平均は2.055μmである。なお電極指ピッチ平均は、電極指ピッチ寸法の総和を電極指本数-1で除して求められる。
 IDT電極103は35本(17.5対)の電極指より構成され、電極指ピッチ平均は1.936μmである。IDT電極104は35本(17.5対)の電極指より構成され、電極指ピッチ平均は2.005μmである。IDT電極105は58本(29対)の電極指より構成され、電極指ピッチ平均は1.946μmである。IDT電極106は35本(17.5対)の電極指より構成され、電極指ピッチ平均は2.005μmである。IDT電極107は35本(17.5対)の電極指より構成され、電極指ピッチ平均は1.936μmである。IDT電極105は伝播方向の中央部で2つの領域に分割され、この2つの領域で位相が180度異なるよう櫛電極が配設されている。
 このように、IDT電極103の電極指ピッチ平均と、IDT電極107の電極指ピッチ平均は、IDT電極104の電極指ピッチ平均と、IDT電極106の電極指ピッチ平均のいずれよりも小さい。この構成により、弾性波の定在波の変位分布をIDT電極104、106の配置領域より反射器102、108側であるIDT電極の配置領域103、107に集中させることができる。これにより特性が反射器102、108の影響を受ける。このような構成により、多重モード弾性波素子100は、反射器102、108を用いて、通過帯域の低域側近傍の周波数において高次の縦モード共振を抑制することができ急峻な減衰特性を得ることができる。すなわち、高次の縦モード共振を抑圧でき、通過帯域の低域側近傍の急峻性の優れたフィルタ特性を得ることができる。
 また、IDT電極105の電極指ピッチ平均は、IDT電極104の電極指ピッチ平均とIDT電極106の電極指ピッチ平均のいずれよりも小さいことが望ましい。これにより、弾性波の低在波の変位分布をIDT電極104、106の配置領域より中央部であるIDT電極105の配置領域に集中させることができ、通過帯域の高域側の挿入損失を低減することができる。
 したがって、IDT電極103の電極指ピッチ平均とIDT電極105の電極指ピッチ平均とIDT電極107の電極指ピッチ平均は、IDT電極104の電極指ピッチ平均とIDT電極106の電極指ピッチ平均のいずれよりも小さいことが好ましい。この構成により、反射器102、108に近い側に定在波の変位分布を集中させ、反射器102、108を用いて挿入損失を損なわず通過帯域の低域側において急峻な特性を有するフィルタを作製できる。なお、IDT電極103の電極指ピッチ平均とIDT電極107の電極指ピッチ平均がIDT電極105の電極指ピッチ平均より小さいことがさらに好ましい。この構成によって特性が反射器102、108の影響をより受け易くなり、矩形で減衰特性の優れたフィルタ特性を得る効果が高くなる。すなわち急峻な特性を実現しやすくなる。
 また、反射器102の電極指ピッチ平均Pr1とIDT電極104の電極指ピッチ平均Pi2との比の値Pr1/Pi2は、1.02以上、1.035以下であることが好ましい。同様に反射器108の電極指ピッチ平均Pr2とIDT電極106の電極指ピッチ平均Pi4との比の値Pr2/Pi4は、1.02以上、1.035以下であることが好ましい。Pr1/Pi2またはPr2/Pi4が1.02より小さいと通過帯域の低周波側においてフィルタの挿入損失が増加してしまう現象が生じる。Pr1/Pi2またはPr2/Pi4が1.035より大きいと高次の縦モード共振の抑圧が不十分であり、通過帯域の低域側近傍の急峻性が低下する。
 図3は多重モード弾性波素子100の電極指ピッチ構成をさらに詳細に示した図である。すなわち、図3は、各部位で電極指ピッチがどのようになっているかを詳細に示している。
 図3の横軸は図1において左側に位置する反射器102の左端の電極指とその右隣の電極指の電極指間の間隙の番号(以下、電極指ピッチ番号という)を1とし、左から右へ順に電極指間の間隙に付与した番号を示している。すなわち、図3は、反射器102、IDT電極103、IDT電極104、IDT電極105、IDT電極106、IDT電極107、反射器108まで順次電極指の間隙に付与された番号の各々における電極指ピッチ(μm)を縦軸に示している。図3中の一点鎖線は反射器とIDT電極の境界または、IDT電極とIDT電極の境界を示し、便宜上、どの範囲がどの反射器またはIDT電極の位置かを符号で示している。
 図3から判るように反射器102、108において、IDT電極103またはIDT電極107に比較的近い領域で最大値2.095μm、最小値1.987μmの極大、極小を持つように電極指ピッチが設定されている。また、IDT電極103またはIDT電極107から比較的遠い領域では2.058μmでほぼ一定に電極指ピッチが設定されている。
 前述のように、IDT電極103の電極指ピッチ平均とIDT電極105の電極指ピッチ平均とIDT電極107の電極指ピッチ平均は、IDT電極104の電極指ピッチ平均とIDT電極106の電極指ピッチ平均のいずれよりも小さい。この構成において、反射器102、108におけるIDT電極103またはIDT電極107に比較的近い領域での隣り合う間隙の電極指ピッチの変化率をIDT電極103またはIDT電極107に比較的遠い領域での隣り合う間隙の電極指ピッチの変化率より高めることが好ましい。これにより高次の縦モード共振を抑制でき、通過帯域低域側の急峻性に優れたフィルタ特性を実現することができる。
 なお、電極指ピッチの変化率を変えるには、反射器102、108をそれぞれ3つ以上の領域に分け、それぞれの領域では等ピッチの電極指ピッチを有し、各領域の電極指ピッチ平均が異なるように設定しても良い。すなわち、反射器102、108がそれぞれ少なくとも3種類の電極指ピッチを有することが好ましい。
 また、図3に示すように、IDT電極103から07は、電極指ピッチがほぼ等しい領域を有している。すなわちその領域(ピッチ一定領域)では電極指ピッチが実質的に一定である。ピッチ一定領域での電極指ピッチの寸法は、IDT電極103では1.980μm、IDT電極104では2.094μm、IDT電極105では1.985μm、IDT電極106では2.094μm、IDT電極107では1.980μmである。
 すなわち、IDT電極103のピッチ一定領域の電極指ピッチとIDT電極105のピッチ一定領域の電極指ピッチとIDT電極107のピッチ一定領域の電極指ピッチは、IDT電極104のピッチ一定領域の電極指ピッチとIDT電極106のピッチ一定領域の電極指ピッチのいずれよりも小さい。この構成も、反射器102、108に近い側に定在波の変位分布を集中させ、反射器102、108を用いて挿入損失を損なわず通過帯域の低域側において急峻な特性を実現することに寄与する。したがって、先に説明した、IDT電極の電極指ピッチ平均の大小関係とは別にピッチ一定領域の電極指ピッチの大小関係を設定してもよい。
 さらに、IDT電極104のピッチ一定領域の電極指ピッチとIDT電極106のピッチ一定領域の電極指ピッチとが、反射器102のピッチ一定領域の電極指ピッチと反射器108のピッチ一定領域の電極指ピッチより大きいことが好ましい。この構成によって、通過帯域の低域側減衰量を小さくすることができる。
 なお、隣り合う2つのIDT電極の間で隣接する櫛電極同士の電極指ピッチは図3の一点鎖線上にプロットされている。具体的には、IDT電極103とIDT電極104の隣接する櫛電極同士の電極指ピッチは2.030μm、IDT電極104とIDT電極105の隣接する櫛電極同士の電極指ピッチは1.924μm、IDT電極105とIDT電極106の隣接する櫛電極同士の電極指ピッチは1.924μm、IDT電極106とIDT電極107の隣接する櫛電極同士の電極指ピッチは2.030μmである。そして、IDT電極103内の最小電極指ピッチが1.752μm、IDT電極104内の最小電極指ピッチが1.796μm、IDT電極105内の最小電極指ピッチが1.690μm、IDT電極106内の最小電極指ピッチが1.796μm、IDT電極107内の最小電極指ピッチが1.752μmである。
 このように、隣り合う2つのIDT電極の間で隣接する櫛電極同士の電極指ピッチは、IDT電極103からIDT電極107のそれぞれの最小電極指ピッチより大きく設定されていることが好ましい。この構成により耐電力性が向上する。このような効果は、多重モード弾性波素子100においてもっとも破壊されやすい2つのIDT電極が隣接した電極指への変位分布の集中が緩和されるためと考えられる。
 次に、以上説明した構成による効果を説明する。なお、比較例として、図4A、図4Bに示す構成の5電極型の多重モード弾性波素子50の特性と合わせて、図5に多重モード弾性波素子100のフィルタ特性を示す。図4Aは多重モード弾性波素子50の上面模式図である。なお圧電基板の図示は省略している。図4Bは多重モード弾性波素子50の電極指ピッチの説明図である。
 反射器52、58における電極指ピッチは2.058μmで一定である。第1のIDT電極53の電極指ピッチ平均は1.958μm、第2のIDT電極54の電極指ピッチ平均は1.921μm、第3のIDT電極55の電極指ピッチ平均は1.965μm、第4のIDT電極56の電極指ピッチ平均は1.921μm、第5のIDT電極57の電極指ピッチ平均は1.958μmである。すなわち、IDT電極53の電極指ピッチ平均とIDT電極57の電極指ピッチ平均は、IDT電極54の電極指ピッチ平均とIDT電極56の電極指ピッチ平均より大きい。またIDT電極55の電極指ピッチ平均はIDT電極54の電極指ピッチ平均とIDT電極56の電極指ピッチ平均より大きい。
 図5において、実線で示す曲線(a)は多重モード弾性波素子100のフィルタ特性を示し、破線で示す曲線(b)は多重モード弾性波素子50のフィルタ特性を示している。図5より、通過帯域低域側において多重モード弾性波素子100は非常に急峻な減衰特性を有することがわかる。
 なお多重モード弾性波素子50の構成は特許文献3に開示されている。特許文献3においては、IDT電極53とIDT電極54との境界部の最小電極指ピッチと、IDT電極56とIDT電極57の境界部の最小電極指ピッチとが、IDT電極54とIDT電極55との境界部の最小電極指ピッチと、IDT電極55とIDT電極56との境界部の最小電極指ピッチのいずれよりも小さければ通過帯域低域側周波数において急峻な特性が得られることが開示されている。しかしながら、多重モード弾性波素子100はさらに優れた効果を示している。
 本実施の形態では、多重モード弾性波素子の一例として5電極型の多重モード弾性波素子100について説明したが、例えば7電極型の多重モード弾性波素子など5電極以上の多重モード弾性波素子に、以上説明した電極構成を適用すれば効果を奏する。
 例えば、第1、第2反射器に挟まれるように弾性波の伝播方向に順に第1~第7のIDT電極を有する7電極型の多重モード弾性波素子を想定する。第1のIDT電極は第1反射器に隣接し、第7のIDT電極は第2反射器に隣接している。この構成において、第1のIDT電極の電極指ピッチ平均と第7のIDT電極の電極指ピッチ平均を、第2のIDT電極の電極指ピッチ平均と第6の電極指ピッチ平均のいずれよりも小さく設定する。この構成により弾性波の定在波の変位分布を第2、第6のIDT電極の配置領域より反射器側である第1、第7のIDT電極の配置領域に集中させることができる。その結果、特性が反射器の影響を受ける。このような構成により、7電極型の多重モード弾性波素子は、反射器を用いて、通過帯域の低域側近傍の周波数において高次の縦モード共振を抑制することができ急峻な減衰特性を得ることができる。
 IDT電極が7つ以上の奇数個の場合も同様である。すなわち、第1、第2反射器に挟まれるように弾性波の伝播方向に順に第1~第nのIDT電極を有する多重モード弾性波素子を想定する。nは5以上の奇数である。第1のIDT電極は第1反射器に隣接し、第nのIDT電極は第2反射器に隣接している。この構成において、第1のIDT電極の電極指ピッチ平均と第nのIDT電極の電極指ピッチ平均を、第2のIDT電極の電極指ピッチ平均と第n-1の電極指ピッチ平均のいずれより小さく設定すればよい。
 次に、多重モード弾性波素子100を含む2つの多重モード弾性波素子を縦続接続する場合について、図6、図7を参照しながら説明する。図6は本実施の形態における縦続接続型多重モード弾性波素子の構成を示す図である。なお図6では圧電基板は省略している。図7は図6に示す多重モード弾性波素子の特性を示している。
 5電極型の第1多重モード弾性波素子200と5電極型の第2多重モード弾性波素子300とは縦続接続されている。第1多重モード弾性波素子200は入力端子11に接続され、第2多重モード弾性波素子300は出力端子12、13に接続されバランス動作するように構成されている。第1多重モード弾性波素子200と第2多重モード弾性波素子300のうち、一方は前述の多重モード弾性波素子100であり、他方は例えば、多重モード弾性波素子50である。
 図7において、曲線(a)は通過帯域低域側で急峻な減衰特性を有している。この曲線は多重モード弾性波素子100の特性を示している。また曲線(b)は多重モード弾性波素子50の特性であり、通過帯域低域側で比較的緩やかなスロープの減衰特性を有している。この場合、曲線(b)に示すように、減衰極が曲線(a)の減衰特性の跳かえり(サイドローブ)にほぼ合うように設定すると良い。
 このように設定することで低ロスかつ通過帯域低域側の減衰特性良好なフィルタ特性が得られる。すなわち、917MHz付近の減衰極は曲線(a)では40dB程度であるが、第1多重モード弾性波素子200のフィルタ特性と第2多重モード弾性波素子300を縦続接続した曲線(c)では917MHz付近で77dB程度減衰している。
 本発明に係る多重モード弾性波素子は、より矩形で急峻な減衰特性を有するので、特にアンテナ共用器の受信フィルタなどの用途に用いられる通過帯域低域側の減衰特性に優れたフィルタとして有用である。
11  入力端子
12,13  出力端子
21,22  電極指
50,100  多重モード弾性波素子
101  圧電基板
52,102  第1反射器(反射器)
58,108  第2反射器(反射器)
53,103  第1のIDT電極(IDT電極)
54,104  第2のIDT電極(IDT電極)
55,105  第3のIDT電極(IDT電極)
56,106  第4のIDT電極(IDT電極)
57,107  第5のIDT電極(IDT電極)
200  第1多重モード弾性波素子
300  第2多重モード弾性波素子

Claims (16)

  1. 圧電基板と、
    前記圧電基板の上に配置された第1、第2反射器と、
    前記圧電基板の上にあって前記第1、第2反射器の間に弾性波の伝播方向に沿って、前記第1反射器に近い側から順に配置された第1のIDT電極と、第2のIDT電極と、第3のIDT電極と、第4のIDT電極と、第5のIDT電極と、を備え、
    前記第1のIDT電極の電極指ピッチ平均と前記第5のIDT電極の電極指ピッチ平均は、前記第2のIDT電極の電極指ピッチ平均と前記第4のIDT電極の電極指ピッチ平均のいずれよりも小さい、
    多重モード弾性波素子。
  2. 前記第3のIDT電極の電極指ピッチ平均は、前記第2のIDT電極の電極指ピッチ平均と前記第4のIDT電極の電極指ピッチ平均のいずれよりも小さい、
    請求項1記載の多重モード弾性波素子。
  3. 前記第1反射器における、前記第1のIDT電極に近い第1領域での隣り合う間隙の電極指ピッチの変化率は、前記第1領域よりも前記第1のIDT電極から遠い第2領域での隣り合う間隙の電極指ピッチの変化率より大きく、
    前記第2反射器における、前記第5のIDT電極に近い第3領域での隣り合う間隙の電極指ピッチの変化率は、前記第3領域よりも前記第5のIDT電極から遠い第4領域での隣り合う間隙の電極指ピッチの変化率より大きい、
    請求項2記載の多重モード弾性波素子。
  4. 前記第1、第2反射器の電極指ピッチがそれぞれ前記第1、第5のIDT電極に近い領域で極大、極小を有する、
    請求項2記載の多重モード弾性波素子。
  5. 前記第3のIDT電極の電極指ピッチ平均は前記第1のIDT電極の電極指ピッチ平均と前記第5のIDT電極の電極指ピッチ平均のいずれよりも大きい、
    請求項1記載の多重モード弾性波素子。
  6. 前記第1反射器の電極指ピッチ平均と前記第2のIDT電極の電極指ピッチ平均の比の値、及び前記第2反射器の電極指ピッチ平均と前記第4のIDT電極の電極指ピッチ平均の比の値は、1.02以上、1.035以下である、
    請求項1記載の多重モード弾性波素子。
  7. 前記第1、第2反射器がそれぞれ少なくとも3種類の電極指ピッチを有する、
    請求項1記載の多重モード弾性波素子。
  8. 前記第1~第5のIDT電極において、隣り合う2つのIDT電極の間で隣接する櫛電極同士の電極指ピッチは、前記第1~第5のIDT電極のそれぞれの最小電極指ピッチより大きい、
    請求項1記載の多重モード弾性波素子。
  9. 前記第1から第5のIDT電極はそれぞれ電極指ピッチが実質的に等しいピッチ一定領域を有し、
    前記第1のIDT電極の前記ピッチ一定領域の電極指ピッチと、前記第3のIDT電極の前記ピッチ一定領域の電極指ピッチと、前記第5のIDT電極の前記ピッチ一定領域の電極指ピッチとは、前記第2のIDT電極の前記ピッチ一定領域の電極指ピッチと、前記第4のIDT電極の前記ピッチ一定領域の電極指ピッチとのいずれより小さい、
    請求項1記載の多重モード弾性波素子。
  10. 圧電基板と、
    前記圧電基板の上に配置された第1、第2反射器と、
    前記圧電基板の上にあって前記第1、第2反射器の間に弾性波の伝播方向に沿って、前記第1反射器に近い側から順に配置された第1のIDT電極と、第2のIDT電極と、第3のIDT電極と、第4のIDT電極と、第5のIDT電極と、を備え、
    前記第1から第5のIDT電極はそれぞれ電極指ピッチが実質的に等しいピッチ一定領域を有し、
    前記第1のIDT電極の前記ピッチ一定領域の電極指ピッチと、前記第3のIDT電極の前記ピッチ一定領域の電極指ピッチと、前記第5のIDT電極の前記ピッチ一定領域の電極指ピッチとは、前記第2のIDT電極の前記ピッチ一定領域の電極指ピッチと、前記第4のIDT電極の前記ピッチ一定領域の電極指ピッチとのいずれより小さい、
    多重モード弾性波素子。
  11. 前記第1、第2反射器はそれぞれ電極指ピッチが実質的に等しいピッチ一定領域を有し、
    前記第2のIDT電極の前記ピッチ一定領域の電極指ピッチと前記第4のIDT電極の前記ピッチ一定領域の電極指ピッチとは、前記第1、第2反射器の前記ピッチ一定領域の電極指ピッチのいずれよりより大きい、
    請求項10記載の多重モード弾性波素子。
  12. 前記第1反射器の電極指ピッチ平均と前記第2のIDT電極の電極指ピッチ平均の比の値、若しくは前記第2反射器の電極指ピッチ平均と前記第4のIDT電極の電極指ピッチ平均の比の値は、1.02以上、1.035以下である、
    請求項10記載の多重モード弾性波素子。
  13. 前記第1、第2反射器の電極指ピッチがそれぞれ前記第1、第5のIDT電極に近い領域で極大、極小を有する、
    請求項10記載の多重モード弾性波素子。
  14. 前記第1、第2反射器がそれぞれ少なくとも3種類の電極指ピッチを有する、
    請求項10記載の多重モード弾性波素子。
  15. 前記第1~第5のIDT電極において、隣り合う2つのIDT電極の間で隣接する櫛電極同士の電極指ピッチは、前記第1~第5のIDT電極のそれぞれの最小電極指ピッチより大きい、
    請求項10記載の多重モード弾性波素子。
  16. 圧電基板と、
    前記圧電基板の上に配置された第1、第2反射器と、
    前記圧電基板の上にあって前記第1、第2反射器の間に弾性波の伝播方向に沿って、前記第1反射器に近い側から順に配置された第1~第nのIDT電極と、を備え、
    nは7以上の奇数であり、
    前記第1のIDT電極の電極指ピッチ平均と前記第nのIDT電極の電極指ピッチ平均は、前記第2のIDT電極の電極指ピッチ平均と前記第n-1のIDT電極の電極指ピッチ平均のいずれよりも小さい、
    多重モード弾性波素子。
PCT/JP2013/000609 2012-02-15 2013-02-05 多重モード弾性波素子 WO2013121734A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/112,547 US9473107B2 (en) 2012-02-15 2013-02-05 Multimode elastic wave device
CN201380001627.2A CN103597743B (zh) 2012-02-15 2013-02-05 多模式弹性波元件
JP2013540155A JP5716096B2 (ja) 2012-02-15 2013-02-05 多重モード弾性波素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-030274 2012-02-15
JP2012030274 2012-02-15

Publications (1)

Publication Number Publication Date
WO2013121734A1 true WO2013121734A1 (ja) 2013-08-22

Family

ID=48983871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000609 WO2013121734A1 (ja) 2012-02-15 2013-02-05 多重モード弾性波素子

Country Status (4)

Country Link
US (1) US9473107B2 (ja)
JP (1) JP5716096B2 (ja)
CN (1) CN103597743B (ja)
WO (1) WO2013121734A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017225109A (ja) * 2016-06-08 2017-12-21 株式会社村田製作所 マルチプレクサおよび高周波フロントエンドモジュール

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131170A1 (ja) * 2016-01-29 2017-08-03 京セラ株式会社 弾性波共振子、弾性波フィルタ、分波器および通信装置
JP6465047B2 (ja) * 2016-02-19 2019-02-06 株式会社村田製作所 弾性波共振子、帯域通過型フィルタ及びデュプレクサ
US10148246B2 (en) * 2016-06-08 2018-12-04 Murata Manufacturing Co., Ltd. Multiplexer and radio-frequency (RF) front-end module
JP6625579B2 (ja) 2017-03-21 2019-12-25 太陽誘電株式会社 弾性波フィルタ
US11621691B2 (en) * 2018-07-16 2023-04-04 Qorvo Us, Inc. Reflective structures for surface acoustic wave devices
JP7530148B2 (ja) * 2019-01-30 2024-08-07 太陽誘電株式会社 フィルタおよびマルチプレクサ
US11437976B2 (en) 2019-05-06 2022-09-06 Skyworks Solutions, Inc. Acoustic wave filter with shunt resonator having multiple resonant frequencies
WO2021010379A1 (ja) * 2019-07-17 2021-01-21 株式会社村田製作所 弾性波フィルタおよびマルチプレクサ
US11742829B2 (en) 2019-08-28 2023-08-29 Skyworks Solutions, Inc. Multiplexer with filter having increased reflection characteristic
US11881836B2 (en) * 2019-11-25 2024-01-23 Skyworks Solutions, Inc. Cascaded resonator with different reflector pitch
US20220407496A1 (en) * 2021-06-16 2022-12-22 Skyworks Solutions, Inc. Acoustic wave devices including high density interdigitated electrodes
US20230008248A1 (en) * 2021-07-06 2023-01-12 Skyworks Solutions, Inc. Multimode longitudinally coupled surface acoustic wave resonator with modulated pitch
JP7075150B1 (ja) * 2021-08-16 2022-05-25 三安ジャパンテクノロジー株式会社 デュプレクサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035092A (ja) * 2006-07-27 2008-02-14 Kyocera Corp 弾性表面波素子及び弾性表面波装置並びに通信装置
WO2009001651A1 (ja) * 2007-06-28 2008-12-31 Kyocera Corporation 弾性表面波装置及び通信装置
WO2009131227A1 (ja) * 2008-04-25 2009-10-29 京セラ株式会社 弾性表面波装置およびそれを用いた通信装置
WO2011024876A1 (ja) * 2009-08-25 2011-03-03 京セラ株式会社 弾性表面波装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534307B2 (ja) 2000-05-24 2010-09-01 パナソニック株式会社 弾性表面波フィルタ
EP1276235A1 (en) * 2001-07-13 2003-01-15 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter and communication device using the filter
JP2003258595A (ja) 2002-02-27 2003-09-12 Fujitsu Media Device Kk 弾性表面波装置
JP2008252678A (ja) 2007-03-30 2008-10-16 Tdk Corp 縦結合共振子型弾性表面波フィルタ
KR20110089267A (ko) * 2008-10-24 2011-08-05 엡슨 토요콤 가부시키 가이샤 탄성 표면파 공진자, 탄성 표면파 발진기 및 탄성 표면파 모듈 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035092A (ja) * 2006-07-27 2008-02-14 Kyocera Corp 弾性表面波素子及び弾性表面波装置並びに通信装置
WO2009001651A1 (ja) * 2007-06-28 2008-12-31 Kyocera Corporation 弾性表面波装置及び通信装置
WO2009131227A1 (ja) * 2008-04-25 2009-10-29 京セラ株式会社 弾性表面波装置およびそれを用いた通信装置
WO2011024876A1 (ja) * 2009-08-25 2011-03-03 京セラ株式会社 弾性表面波装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017225109A (ja) * 2016-06-08 2017-12-21 株式会社村田製作所 マルチプレクサおよび高周波フロントエンドモジュール

Also Published As

Publication number Publication date
CN103597743B (zh) 2016-08-17
CN103597743A (zh) 2014-02-19
US9473107B2 (en) 2016-10-18
US20140049341A1 (en) 2014-02-20
JP5716096B2 (ja) 2015-05-13
JPWO2013121734A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5716096B2 (ja) 多重モード弾性波素子
JP5569621B2 (ja) アンテナ共用器およびラダー型フィルタとそれを搭載した電子機器
US9294071B2 (en) Antenna duplexer
US9124240B2 (en) Acoustic wave device and antenna duplexer employing the same
WO2015080278A1 (ja) 弾性波素子、分波器および通信装置
JP5333654B2 (ja) ラダー型フィルタ及びデュプレクサ
JP5397477B2 (ja) ラダー型弾性波フィルタ装置及び分波器
JP2015109574A (ja) 縦結合共振子型弾性表面波フィルタおよび通信機
WO2011099532A1 (ja) 弾性波装置
JP5281489B2 (ja) 弾性表面波デバイス
US9287849B2 (en) Elastic wave device
US10298205B2 (en) Elastic wave resonator, elastic wave filter, and duplexer
WO2019117106A1 (ja) フィルタ装置およびマルチプレクサ
JP4285472B2 (ja) 縦結合共振子型弾性表面波フィルタ
JP5796604B2 (ja) 分波装置
JP2012005114A (ja) 弾性波装置
JP2003309452A (ja) 縦結合共振子型弾性表面波フィルタ
JP4182976B2 (ja) 縦結合共振子型弾性表面波フィルタ
JP4548305B2 (ja) 二重モード弾性表面波フィルタ
JP2003179462A (ja) 縦結合共振子型弾性表面波フィルタ
JP2007124440A (ja) 弾性表面波素子片および弾性表面波デバイス
JP2006287782A (ja) トランスバーサル型sawフィルタ
JP2006261744A (ja) トランスバーサル型sawフィルタ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013540155

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749586

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14112547

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749586

Country of ref document: EP

Kind code of ref document: A1