WO2013121694A1 - 移動体位置測定システム、中央処理部及びそれらに用いる質問制御方法 - Google Patents

移動体位置測定システム、中央処理部及びそれらに用いる質問制御方法 Download PDF

Info

Publication number
WO2013121694A1
WO2013121694A1 PCT/JP2013/000227 JP2013000227W WO2013121694A1 WO 2013121694 A1 WO2013121694 A1 WO 2013121694A1 JP 2013000227 W JP2013000227 W JP 2013000227W WO 2013121694 A1 WO2013121694 A1 WO 2013121694A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
question
ssr
mode
signal
Prior art date
Application number
PCT/JP2013/000227
Other languages
English (en)
French (fr)
Inventor
正明 北島
佐藤 毅
天平 近藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to KR1020147022471A priority Critical patent/KR101690848B1/ko
Priority to JP2014500066A priority patent/JP5958528B2/ja
Publication of WO2013121694A1 publication Critical patent/WO2013121694A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]

Definitions

  • the present invention relates to a mobile body position measurement system, a central processing unit, and a question control method used for them, and more particularly to an aircraft measurement system (multi-lateration system) and a transmission control method for a transmission station used in the system.
  • aircraft measurement system multi-lateration system
  • transmission control method for a transmission station used in the system.
  • the multilateration system receives SSR (Secondary Surveillance Radar) mode A / C response, SSR mode S response, acquisition or extended squitter signal transmitted by the aircraft at four or more receiving stations on the ground.
  • SSR Secondary Surveillance Radar
  • the system collects these data in a central processing unit through a communication line, and measures the geometric position of the aircraft from the reception time of each receiving station in the central processing unit (see, for example, Patent Document 1).
  • the SSR mode A is a mode for acquiring aircraft identification information
  • the SSR mode C is a mode for acquiring atmospheric pressure altitude information
  • the SSR mode S is for acquiring unique address information of the aircraft and individually asking questions.
  • the SSR mode A / C is a method for asking a common question for all aircraft
  • the SSR mode S is a method for allowing questions and responses individually for all or specific aircraft.
  • Multi-lateration systems may have a transmitting station.
  • this transmitting station the same question as the SSR mode A / C question and the SSR mode S individual question performed by the SSR device can be transmitted.
  • the system itself can recognize the transmission time. Therefore, it is possible to detect the round trip time from transmission to reception.
  • multi-lateration it can be used to improve the accuracy of position measurement.
  • an omnidirectional or wide-directional antenna is used as an antenna, so that a large number of SSR mode A / C responses are received, and SSR mode A / C responses are superimposed (Garble There are many problems that the response signal cannot be decoded.
  • aircraft to be monitored are both SSR mode S aircraft and SSR mode A / C aircraft, and ICAO (International Civil Aviation Organization: In the International Civil Aviation Convention / Annex 10 (ICAO ANNEX 10, Vol4amendment 85, 6.6.3) issued by the International Civil Aviation Organization, there is a provision to limit the transponder occupation rate to 2% or less.
  • ICAO International Civil Aviation Organization: In the International Civil Aviation Convention / Annex 10 (ICAO ANNEX 10, Vol4amendment 85, 6.6.3) issued by the International Civil Aviation Organization, there is a provision to limit the transponder occupation rate to 2% or less.
  • a transmission procedure is used in which transmission is performed within a predetermined time (for example, at intervals of 1 second) from the order of reception.
  • a predetermined time for example, at intervals of 1 second
  • the SICA mode S question and the SSR mode A / C question may not satisfy the above-mentioned rule that the ICAO transponder occupation ratio is 2% or less.
  • the object of the present invention is to solve the above-mentioned problems, and to efficiently detect the SSR mode S response and the SSR mode A / C response, and to improve the reliability and safety of the multilateration system.
  • Another object of the present invention is to provide a mobile body position measurement system, a central processing unit, and a question control method used for them.
  • a mobile body position measurement system includes a plurality of receiving stations that receive response signals from mobile bodies that exist in a monitoring area, and a position of the mobile body based on reception times of the response signals at the plurality of receiving stations.
  • a mobile unit position measuring system that measures a geometric position of the mobile unit from reception times of the plurality of receiving stations in the central processing unit, Including at least one transmission / reception station that transmits an interrogation signal to the mobile body; The transmission / reception station limits the transmission coverage of the interrogation signal to the coverage range of the question and response in the SSR (Secondary Survival Radar) mode A / C in which a common question is asked to all mobile units.
  • SSR Secondary Survival Radar
  • the central processing unit measures the position of the mobile unit based on a plurality of receiving stations that receive response signals from the mobile unit existing in the monitoring area and the reception times of the response signals at the plurality of receiving stations.
  • a central processing unit that is used in a mobile body position measurement system that measures a geometric position of the mobile body from reception times of the plurality of receiving stations in the central processing unit, At least one transmission / reception station that transmits an interrogation signal to the mobile body is arranged in the mobile body position measurement system, In the transmission / reception station, the transmission coverage of the question signal is limited to the coverage range of the question and response of SSR (Secondary Surveillance Radar) mode A / C in which a common question is asked to all mobile units.
  • SSR mode S individual questions in a method that allows questions and responses individually, Means is provided for controlling the transmitting and receiving stations so that the SSR mode S individual question is preferentially performed from a mobile body having high importance in control.
  • the question control method determines a position of the mobile unit based on a plurality of receiving stations that receive response signals from a mobile unit existing in a monitoring area, and reception times of the response signals at the plurality of receiving stations.
  • a question processing method used in a mobile body position measurement system that measures a geometric position of the mobile body from reception times of the plurality of receiving stations in the central processing section.
  • At least one transmission / reception station that transmits an interrogation signal to the mobile body is arranged in the mobile body position measurement system, In the transmission / reception station, the transmission coverage of the question signal is limited to the coverage range of the question and response of SSR (Secondary Surveillance Radar) mode A / C in which a common question is asked to all mobile units.
  • SSR mode S individual questions in a method that allows questions and responses individually,
  • the central processing unit executes a process of controlling the transmitting and receiving stations so that the SSR mode S individual question is preferentially performed from a mobile body having high importance in control.
  • the present invention is configured and operated as described above, the SSR mode S response and the SSR mode A / C response can be detected efficiently and reliably, so that the reliability and safety of the multilateration system can be obtained. The effect that can be improved is obtained.
  • the moving body position measurement system according to the present invention relates to an aircraft position measurement system [MLAT (Multilatation): multilateration system].
  • MLAT Multilatation
  • the position of a moving body such as an aircraft or a vehicle in an airport can be measured.
  • the moving body is described as an aircraft.
  • the present invention relates to an aircraft position measurement system (multi-lateration system), and a question control method and a question control program of a transmission / reception station used in the system, and in particular, interrogated from an SSR (Secondary Surveillance Radar).
  • SSR Secondary Surveillance Radar
  • the response signal from the aircraft, the response signal from the aircraft queried from the multilateration system, or the SSR acquisition or extended squitter signal is received at four or more receiving stations or transmitting / receiving stations, and this received signal is centrally processed.
  • the present invention relates to a multi-lateration system that measures the position of the aircraft in the department.
  • the present invention provides an SSR mode A / C machine detection method, a transmission control method, and a program for reliably detecting an SSR mode A / C machine for an aircraft existing in a monitored airspace in the multilateration system described above. It is.
  • SSR mode A / C and SSR mode S it is the same as that of the description about the aircraft position measuring system relevant to this invention mentioned above.
  • the present invention uses an SSR mode A / C interrogation method using a whisper shout transmission method in order to solve the problem that the existing SSR device cannot be connected to a transmitting / receiving station located at a remote location.
  • the SSR mode A / C machine can be easily detected.
  • the present invention has a function of processing an SSR mode A / C question and response using a whisper shout transmission method for an aircraft to be monitored.
  • FIG. 1 is a block diagram showing a configuration example of an aircraft position measurement system according to the present invention.
  • an aircraft position measurement system according to the present invention includes transmission / reception stations 1-1 to 1-5 and a central processing unit 2, and the transmission / reception stations 1-1 to 1-5 and the central processing unit 2 Connected via communication lines 4-1 to 4-5.
  • the transmission / reception stations 1-1 to 1-5 limit the question coverage to the coverage range of the SSR mode A / C question and response by the transmission control method of the present invention.
  • the present invention also performs the SSR mode S individual question with the transmission pattern as shown in FIG.
  • the central processing unit 2 sends a transmission control signal to the transmitting / receiving stations 1-1 to 1-5 via the communication lines 4-1 to 4-5, and all the transmitting / receiving stations 1-1 to 1-5 are simultaneously performed in the monitoring coverage area. Rather than asking a question, a means for selecting a transmitting / receiving station suitable for the question is provided.
  • SSR mode A / C questions provide a means for questioning SSR mode A / C aircraft using the whisper-shout transmission method implemented in the existing Aircraft Collision Prevention System (ACAS: Airborne Collation Avidance System). To do.
  • ACAS Aircraft Collision Prevention System
  • the transmitting / receiving stations 1-1 to 1-5 perform SSR mode A / C questions 7-1 to 7-5 at the specified transmission time in the order of the transmitting / receiving stations specified by the transmission control by the central processing unit 2.
  • a means for reliably detecting the SSR mode A / C machine is provided.
  • a means for performing transmission control so as to satisfy the above ICAO transponder occupation ratio of 2% or less.
  • the present invention can reliably detect the SSR mode S response and the SSR mode A / C response led by the multi-lateration system, thereby improving the reliability and safety of the multi-lateration system. be able to.
  • the multilateration system includes a plurality of transmission / reception stations 1-1 to 1-5, a central processing unit 2, and communication lines 4-1 to 4-5.
  • the transmitting / receiving stations 1-1 to 1-5 do not have to be all transmitting / receiving stations, and a combination of a transmitting station and a receiving station, a combination of a transmitting / receiving station, a transmitting station, and a receiving station can be considered.
  • the transmitting / receiving stations 1-1 to 1-5 perform synchronization using time synchronization from a GPS (Global Positioning System) satellite 6. Further, the transmitting / receiving stations 1-1 to 1-5 transmit the SSR mode A / C response, the mode S response, the capture or extended squitter signals 7-1 to 7-5 from the aircraft 5 to the omnidirectional or wide directional antennas. And after decoding the signal, a time stamp of the arrival time of the received signal is given and transmitted as response data to the central processing unit 2 using the communication lines 4-1 to 4-5.
  • GPS Global Positioning System
  • Any one of the transmission / reception stations 1-1 to 1-5 which is selected and controlled, receives a whisper in response to a transmission control instruction from the central processing unit 2 via the communication lines 4-1 to 4-5.
  • the SSR modes A / C questions 3-1 to 3-5 are made by the shout transmission method, and the transmitting / receiving stations 1-1 to 1-5 are respectively connected to the SSR modes for the SSR modes A / C questions 3-1 to 3-5.
  • a / C response signals 7-1 to 7-5 are received.
  • FIG. 2 is a block diagram showing a configuration example of the transmitting / receiving stations 1-1 to 1-5 in FIG. 1
  • FIG. 3 is a block diagram showing a configuration example of the central processing unit 2 in FIG.
  • the transmission / reception stations 1-1 to 1-5 are represented as transmission / reception station 1
  • each of the transmission / reception stations 1-1 to 1-5 has the same configuration as that of the transmission / reception station 1.
  • the transmission / reception station 1 includes a GPS antenna 8, a GPS receiver 9, an antenna 10, a receiver 11, a transmitter 20, and a signal processor 21.
  • the transmission unit 20 includes a circulator 12, a synthesizer 13, variable attenuators 14-1 to 14-2, an RF pulse selector switch 15, a transmission controller 16, a modulation pulse generator 17, and a power amplifier 18. And an oscillator 19.
  • the central processing unit 2 includes a transmission / reception information collection unit 22, a target position positioning unit 23, a target information analysis unit 24, a target information generation unit 25, a transmission control information generation unit 26, and a target tracking unit 27. And a target priority determination unit 28.
  • the transmission / reception stations 1-1 to 1-5 each have a GPS antenna 8 and a GPS receiver 9 for receiving a time synchronization signal from the GPS satellite 6, and the transmission / reception stations 1-1 to 1-5 installed separately. Synchronize time between.
  • the omnidirectional or wide-directional antenna 10 is used to receive an SSR mode A / C response, an SSR mode S response, an acquisition or extended squitter signal 7-1 to 7-5 from the aircraft 5, and an SSR mode A / C. Ask questions 3-1 to 3-5.
  • the receiving unit 11 performs reception processing of the SSR mode A / C response, the SSR mode S response, the capture or extended squitter signals 7-1 to 7-5, converts them into received video signals, and sends them to the signal processing unit 21.
  • the signal processing unit 21 decodes the signal
  • the time stamp of the arrival time of the received signal is given together with the decoded data, and the response data is sent to the central processing unit 2 using the communication lines 4-1 to 4-5. Send out as
  • the central processing unit 2 receives and processes the response data by the communication unit 22, performs target positioning by the target position positioning unit 23 based on the received response data, and then performs a target information analysis unit based on the positioning data.
  • the information in the response data is analyzed.
  • the target information generation unit 25 receives the analysis data from the target information analysis unit 24, edits the target position measurement information for external output, and outputs it to the outside (for example, an air traffic control system).
  • the target priority order measurement unit 28 receives the analysis data from the target information analysis unit 24, and determines the target priority order to determine the transmission / reception station to which the SSR mode A / C question should be made based on preset parameters. To do.
  • the target tracking unit 27 performs tracking processing based on the positioning data from the target position positioning unit 23 and the rank data from the target priority determination unit 28.
  • the question control information generation unit 26 transmits / receives an SSR mode A / C question based on the positioning data from the target position positioning unit 23, the predicted positioning value from the target tracking unit 27, and the ranking data from the target priority determination unit 28. And the transmission timing are scheduled, and the transmission time is determined.
  • the question control information generating unit 26 schedules the transmission timing of the SSR mode S individual question in parallel with the above processing.
  • the determination and scheduling in the question control information generating unit 26 can be performed by the target tracking unit 27.
  • the question control information generation unit 26 generates and edits the question control information from the above determination and scheduling results, and transmits and receives the transmission / reception stations 1-1 to 1 through the communication unit 22 and the communication lines 4-1 to 4-5. At -5, the inquiry control information scheduled for transmission timing is transmitted.
  • the signal processing unit 21 and the transmission unit 20 of the transmission / reception stations 1-1 to 1-5 Based on the inquiry control information from the central processing unit 2, the signal processing unit 21 and the transmission unit 20 of the transmission / reception stations 1-1 to 1-5 perform the SSR mode A / C inquiry in the whisper shout transmission method according to the transmission timing scheduling. I do.
  • the signal processing unit 21 and the transmission unit 20 of the transmission / reception stations 1-1 to 1-5 also perform SSR mode S individual questions.
  • the transmission / reception stations 1-1 to 1-5 perform reception processing of response signals to this question, and repeat the above processing.
  • the transmission unit 20 generates a high frequency excitation signal for transmission by the oscillator 19, performs pulse modulation and power amplification of the RF transmission signal by the power amplifier 18, and sends the RF transmission signal to the RF pulse changeover switch 15. Further, the transmission controller 16 generates various signals necessary for the SSR mode A / C question by whisper shout transmission at the transmission time based on the transmission control information data from the signal processing unit 21, and the SSR mode S individual question After generating various signals necessary for the control, the variable attenuators 14-1 to 14-2, the RF pulse change-over switch 15, and the modulation pulse generator 17 are controlled.
  • the transmitting / receiving stations 1-1 to 1-5 perform synchronization using a time synchronization signal from the GPS satellite 6.
  • a time synchronization signal from the GPS satellite 6.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2010-230448
  • the transmitting / receiving stations 1-1 to 1-5 receive the SSR mode A / C response, the SSR mode S response, the acquisition or the extended squitter signals 7-1 to 7-5 from the aircraft 5 with omnidirectionality or wide directivity. After performing reception processing and signal decoding processing on the received signal via the aerial line 10, a time stamp of the arrival time of the received signal is given, and the communication lines 4-1 to 4-5 are used as response data in the center The data is sent to the processing unit 2.
  • the central processing unit 2 performs the reception process of the response data described above in the communication unit 22, and the arrival time difference of each receiving station (from the arrival time stamp given to the response data in the target position positioning unit 23 (TDOA: Time Difference Of Arrival) is calculated, and the positioning of the aircraft 5 is calculated.
  • TDOA Time Difference Of Arrival
  • the TDOA between the two antennas mathematically corresponds to a three-dimensional hyperboloid, and the position of the aircraft is on that plane. If an aircraft signal can be detected by four or more antennas, the position of the aircraft can be obtained in three dimensions by calculating the intersection of hyperbolic curves.
  • the positioning data of the aircraft 5 positioned by the target position positioning unit 23 is sent to the target information analysis unit 24, the question control information generation unit 26, and the target tracking unit 27.
  • the target information analysis unit 24 analyzes information in the positioning data and analyzes various target information (mode S address, mode A code, altitude, aircraft movement information, etc.).
  • the target information generation unit 25 receives the analysis data from the target information analysis unit 24, edits the target position measurement information for external output, and outputs it to the outside (for example, an air traffic control system).
  • a communication protocol function for connecting to an external system.
  • the target priority measurement unit 28 receives the analysis data from the target information analysis unit 24 and the predicted positioning value from the target tracking unit 27, and should make an SSR mode A / C question based on various preset parameters. In order to determine a transmitting / receiving station, a target priority order and a transmitting / receiving station to which a question (transmission) is made are determined.
  • the target tracking unit 27 performs a tracking process based on the positioning data from the target position positioning unit 23 and the rank data for which the priority order is determined from the target priority determination unit 28.
  • the question control information generation unit 26 determines the order of transmission / reception stations of the SSR mode A / C question based on the rank data for which the priority is determined from the target priority determination unit 28, and schedules transmission timing. Determine the transmission time.
  • the question control information generating unit 26 schedules the transmission timing of the SSR mode S individual question in parallel with the above processing.
  • the question control information generator 26 A scheduling of transmission timing (transmission time) is performed, transmission times of SSR mode A / C questions and SSR mode S individual questions for each aircraft are determined, and question control information generated based on them is transmitted.
  • FIG. 5 shows an example of a transmission pattern.
  • a question is asked at a repetition frequency of a fixed period determined by the maximum detection coverage distance, and the SSR mode A / C question interval is set at a fixed period.
  • the SSR mode S individual question transmission timing is scheduled.
  • the question control information generation unit 26 transmits the generated question control information to the transmission / reception stations 1-1 to 1-5 via the communication unit 22 and the communication lines 4-1 to 4-5. Send control information sequentially.
  • the transmission / reception stations 1-1 to 1-5 receive the question control information from the transmission control information generation unit 26 via the transmission / reception information collection unit 22 and the communication lines 4-1 to 4-5, Based on the information, the SSR mode A / C question and the SSR mode S individual question are performed by the whisper shout transmission method according to the scheduling of the transmission timing. Next, the transmitting / receiving stations 1-1 to 1-5 perform reception processing of response signals to this question by the reception unit 11 and the signal processing unit 21, and repeat the above processing.
  • the whisper shout transmission method transmits four pulses (S, P1, P3, P4) of the transmission waveform shown in FIG. 4A.
  • the S pulse and the P1, P3, P4 pulses (P1, P3, P4 have transmission power).
  • WS coverage transmission power level ratio
  • P pulse transmission power level ratio
  • the ring-shaped width of the transmission coverage (WS coverage) in FIG. The range that can be detected is determined.
  • transmission waveform transmission 1 shows a transmission waveform in the shortest short-distance coverage area
  • no S pulse is transmitted in order to detect the short distance.
  • Transmission waveform transmissions 2,..., Transmission N-1, and transmission N perform a whisper shout transmission scheme by transmitting a difference in transmission power between the S pulse and the P pulse.
  • Transmission N of the transmission waveform shows the case of the maximum detection coverage, but since the ring width area of the transmission coverage is the largest, there is a high probability that there are a plurality of aircraft in the coverage, so the central processing unit 2 SSR mode A / C response superposition by controlling the transmission of the question signal, such as setting the transmission power level ratio (WS coverage) between the S pulse and the P pulse to be small by controlling the question control information data from Control for avoiding the state and improving the target detection rate is also performed.
  • WS coverage transmission power level ratio
  • FIG. 6 shows an example of the arrangement of the transmission / reception stations of the multilateration system.
  • the distance between the transmission / reception stations and the aircraft as shown in FIGS. 7 and 8 is the shortest.
  • a / C response superposition (gabulu fruit) state such as the selection method of the transmission / reception station that executes the inquiry from the transmission / reception station, or when multiple aircraft are in the WS coverage area, A method of selecting a transmission / reception station whose position is in the vertical direction with respect to the WS covered circle can be considered.
  • a transmission / reception station A is selected when x> y
  • a transmission / reception station B is selected when x ⁇ y.
  • the transmission / reception station A is selected.
  • the transmission / reception station B is selected because x2 ⁇ y2, and in the case of the aircraft T3, the transmission / reception station B is selected. Will be.
  • the transmission unit 20 generates an excitation signal for transmission by the oscillator 19, and performs pulse modulation and power amplification of the RF transmission signal by the power amplifier 18 under the control of the modulation pulse generator 17, thereby generating an RF pulse.
  • An RF transmission pulse signal is sent to the changeover switch 15.
  • the RF pulse change-over switch 15 controls the transmission controller 16 based on the transmission control from the signal processing unit 21, and separates the S pulse and the P1, P3, and P4 pulses by the pulse switching gate signal of the transmission controller 16. S pulses are sent to the variable attenuator 14-1, and P1, P3, and P4 pulses are sent to the variable attenuator 14-2.
  • the variable attenuators 14-1 to 14-2 control the transmission power levels of the S pulse and the P pulse for the whisper shout transmission method.
  • the control for determining the attenuation amount of the variable attenuators 14-1 to 14-2 is determined by being controlled by the transmission controller 16. Thereafter, the separated S pulse and P pulse are synthesized by the synthesizer 13 so as to have the transmission waveform shown in FIG. 4A, and the transmission RF pulse signal is sent to the antenna 10 via the circulator 12 for switching the RF transmission / reception signal. .
  • the transmission controller 16 generates various signals necessary for whisper shout transmission at the transmission time based on the transmission control information data from the signal processing unit 21, variable attenuators 14-1 to 14-2, RF pulse changeover switches 15 and the modulation pulse generator 17 are controlled.
  • the RF pulse changeover switch 15 is controlled by the transmission controller 16 so as to supply the RF transmission signal only to the variable attenuator 14-1.
  • the variable attenuator 14-1 is controlled by the transmission controller 16 so that the attenuation amount becomes 0 dB. Thereafter, the RF transmission signal of the SSR mode S individual question is sent to the antenna 10 via the synthesizer 13 and the circulator 12.
  • the multilateration system has the following problems. (1) Since a non-directional or wide-directional antenna is used, there is no method for reliably detecting an SSR mode A / C machine. (2) In order to reduce the effects of radio wave interference on the existing SSR, etc., the transponder occupancy rate is set in the International Civil Aviation Convention / Annex 10 (ICAO ANNEX 10 Vol4amendment 85 6.6.3) issued by ICAO. There is a regulation to keep it below 2%. This is because the transponder occupancy rate must be kept below 2% when there are a large number of aircraft in the surveillance airspace of the multilateration system. There is a possibility that it cannot be carried out within a certain period of time. For this reason, the target detection rate may decrease in the air traffic control operation, and the reliability and safety of the multilateration system may be reduced.
  • IICAO ANNEX 10 Vol4amendment 85 6.6.3 International Civil Aviation Convention / Annex 10
  • the received data rate is the same as the data rate of the existing SSR (received) / 4 seconds (in the case of an airport monitoring radar) or 1 Time (reception) / 10 seconds (in the case of airway surveillance radar), it is possible to obtain a reception signal of 1 time (reception) / 1 second by the transmission function, and the data rate can be improved.
  • the detection rate of a target with a low detection rate can be improved according to the state of radio wave propagation.
  • the present invention achieves the SSR mode A / C interrogation method using the Whisper Shout transmission method for the aircraft to be monitored in order to achieve the above-described transmission function purpose. It is possible to detect an aircraft having only the mode A / C function.
  • the reliability and safety of the multi-lateration system can be improved by providing a question control method in which SSR mode S individual questions are preferentially given from aircraft having high importance in air traffic control.
  • Appendix 1 It is composed of a plurality of receiving stations that receive response signals from a mobile unit existing in a monitoring area, and a central processing unit that measures the position of the mobile unit based on the reception times of the response signals at the plurality of receiving stations.
  • a central processing unit used in a mobile body position measurement system that measures a geometric position of the mobile body from reception times of the plurality of receiving stations in the central processing unit,
  • the mobile body position measurement system at least one transmission / reception station that transmits an interrogation signal to the mobile body is arranged,
  • the transmission coverage of the question signal is limited to the coverage range of the question and response of SSR (Secondary Surveillance Radar) mode A / C in which a common question is asked to all mobile units.
  • SSR Secondary Surveillance Radar
  • SSR mode of the method that allows questions and responses to be individually made S individual questions, Means for controlling the transmitting / receiving station to preferentially perform the SSR mode S individual question from a mobile body having high importance in control; Causing the transmitting / receiving station to process an SSR mode A / C question and response using a whisper shout transmission method implemented in an ACAS (Airborne Collision Avidance System) for a mobile object to be monitored; A central processing unit.
  • ACAS Airborne Collision Avidance System
  • [Appendix 2] Means for selecting a transmission / reception station suitable for transmission of the interrogation signal, and means for transmitting an interrogation control signal to the selected transmission / reception station, The transmission / reception station transmits the interrogation signal to the mobile body in the monitoring area based on the interrogation control signal, thereby preventing all transmission / reception stations from transmitting the interrogation signal at the same time.
  • the central processing unit according to 1.
  • Appendix 3 The central processing unit according to appendix 2, wherein the transmission / reception station transmits the inquiry signal of the SSR mode A / C at a designated transmission time in the order of the transmission / reception station designated by the inquiry control signal. .
  • Appendix 5 Any one of appendix 1 to appendix 4, wherein the mobile body position measurement system is at least one of an MLAT (Multilatation) system and a WAM [Wide Area MLAT (Multilatation)] system used in a wide area. Central processing unit according to crab.
  • MLAT Multilatation
  • WAM Wide Area MLAT (Multilatation)
  • Appendix 6 It is composed of a plurality of receiving stations that receive response signals from a mobile unit existing in a monitoring area, and a central processing unit that measures the position of the mobile unit based on the reception times of the response signals at the plurality of receiving stations.
  • a transmission control method used in a mobile body position measurement system that measures a geometric position of the mobile body from reception times of the plurality of receiving stations in the central processing unit, At least one transmission / reception station that transmits an interrogation signal to the mobile body is arranged in the mobile body position measurement system, In the transmission / reception station, the transmission coverage of the question signal is limited to the coverage range of the question and response of SSR (Secondary Surveillance Radar) mode A / C in which a common question is asked to all mobile units.
  • SSR Secondary Surveillance Radar
  • SSR mode S individual questions in a method that allows questions and responses individually
  • the central processing unit executes a process of controlling the transmitting and receiving stations so that the SSR mode S individual question is preferentially performed from a mobile body having high importance in control
  • the transmission / reception station processes an SSR mode A / C question and a response using a whisper shout transmission method implemented in an ACAS (Airborne Collation Aviationance System) for a mobile object to be monitored.
  • ACAS Airborne Collation Aviationance System
  • the central processing unit performs a process of selecting a transmission / reception station suitable for transmission of the interrogation signal, and a process of transmitting an interrogation transmission control signal to the selected transmission / reception station, The central processing unit prevents the transmission / reception station from transmitting the interrogation signal at the same time by transmitting the interrogation signal to the mobile body in the monitored airspace based on the interrogation control signal.
  • the transmission / reception station transmits the SSR mode A / C interrogation signal at the designated transmission time in the order of the transmission / reception stations designated by the interrogation control signal from the central processing unit.
  • the SSR mode A / C interrogation signal is transmitted from the transmission / reception station in an optimal positional relationship with the mobile body by control based on the interrogation control signal from the central processing unit.
  • Appendix 10 Any one of appendix 6 to appendix 9, wherein the mobile position measurement system is at least one of an MLAT (Multilatation) system and a WAM [Wide Area MLAT (Multilatation)] system used in a wide area. The question control method described in Crab.
  • MLAT Multilatation
  • WAM Wide Area MLAT (Multilatation)
  • the present invention can be applied to an MLAT (Multilatation) system and a WAM [Wide Area MLAT (Multilatation)] system.

Abstract

 移動体位置測定システムは、移動体(航空機5)に質問信号を送信する少なくとも1以上の送受信局(1-1~1-5)を含み、送受信局は、質問信号の送信覆域を、全ての移動体に対して共通の質問を行う方式のSSRモードA/Cの質問及び応答の覆域範囲に制限するとともに、個別に質問及び応答を可能とする方式のSSRモードS個別質問を行い、中央処理部(2)は、管制上において重要度の高い移動体から優先的にSSRモードS個別質問を行うよう送受信局を制御する手段を有する。これにより、マルチラテレーションシステムの信頼性及び安全性を向上させることが可能な移動体位置測定システムを提供する。

Description

移動体位置測定システム、中央処理部及びそれらに用いる質問制御方法
 本発明は移動体位置測定システム、中央処理部及びそれらに用いる質問制御方法に関し、特に航空機測定システム(マルチラテレーションシステム)及び当該システムに用いられる送信局の送信制御方法に関する。
 マルチラテレーションシステムは、航空機が送信するSSR(SSR:Secondary Surveillance Radar:二次監視レーダ)モードA/C応答、SSRモードS応答、捕捉または拡張スキッタ信号を地上の4局以上の受信局で受信し、それらのデータを通信回線を通じて中央処理部に集め、中央処理部にて各受信局の受信時刻から航空機の幾何学的位置を計測するシステムである(例えば、特許文献1参照)。
 ここで、SSRモードAは航空機の識別情報を取得するモードであり、SSRモードCは気圧高度情報を取得するモードであり、SSRモードSは航空機の固有アドレス情報を取得して個別に質問するためのモードある。また、SSRモードA/Cは全ての航空機に対して共通の質問を行う方式であり、SSRモードSは全てあるいは特定の航空機に対して個別に質問、応答を可能としている方式である。
 マルチラテレーションシステムには、送信局を具備する場合もある。この送信局では、SSR装置が行うSSRモードA/C質問及びSSRモードS個別質問と同じ質問を送信することができる。これにより、SSRモードA/C応答のみの航空機の探知を可能とすると同時に、送信時刻をシステム自身が認識することができるため、送信から受信までの往復の時間を検出することができ、能動的マルチラテレーションとして位置測位の精度向上に利用することができる。
 完全受動型マルチラテレーションシステムでは、空中線として無指向性もしくは広指向性の空中線を使用するため、多数のSSRモードA/C応答を受信してしまい、SSRモードA/C応答が重畳(ガーブル・フルーツ状態)となり、応答信号の解読ができないという問題等が多数発生する。
 また同時に、SSRモードA/C応答を検出するためには、別々に、航空機に対して複数回質問されるモードA質問及びモードC質問に対応する複数回の応答信号を一つにまとめるための相関処理を行うために、既設SSRの送信タイミングと同期をとる必要がある。
 しかしながら、既設SSRと遠隔地に置かれた送受信局とを連接することは、連接するための高額な経費が必要となり、現実的には困難であり、簡易に連接することができない。
 マルチラテレーションシステムが、目標(航空機)に対してモードS個別質問(送信)を行うためには、初期探知により航空機モードSアドレス(固有アドレス情報)の取得が必要であり、初期探知した目標から順番にモードS個別質問を実施する。
 尚、既設SSR等への電波干渉等の影響を抑えるために、ICAO(International Civil Aviation Organization:国際民間航空機関)が発行している国際民間航空条約・第10附属書(ICAO ANNEX 10 Vol4amendment85 6.6.3)において、トランスポンダ占有率を2%以下に抑える規定がある。
 これは、マルチラテレーションシステムの監視空域に多数の航空機が存在した場合において、トランスポンダ占有率を2%以下に抑えるために、監視空域に存在する全ての航空機に対して、必要な情報を得るためのSSRモードS個別質問を実施できない、もしくは必要な情報を取得するのに充分な質問をできない可能性がある。このため、航空管制運用において、マルチラテレーションシステムの信頼性と安全性の低下を招く可能性がある。
 上記のマルチラテレーションを用いた技術としては、空港面探知レーダによる空港面監視を、マルチラテレーションの情報を統合することで補完する技術(例えば、特許文献2参照)、受信局で受信される信号のみでモードA応答か、モードC応答かを判別する技術(例えば、特許文献3参照)、GPS(Global Positioning System)衛星から到来する信号に基づいて複数の受信局同士の高精度の時刻同期を行う技術(例えば、特許文献4参照)等がある。
特開2009-300146号公報 特開2007-333427号公報 特開2011-112465号公報 特開2010-230448号公報
 上述した本発明に関連する航空機位置測定システムでは、無指向性もしくは広指向性の空中線を使用するマルチラテレーションシステムの場合、監視空域に存在する航空機に対するSSRモードA/C質問に対して多くのSSRモードA/C応答信号を受信するため、重畳(ガーブル・フルーツ状態)が発生し、SSRモードA/C応答信号を送受信局または受信局で解読できないという問題がある。
 また、本発明に関連する航空機位置測定システムでは、マルチラテレーションシステムの場合、監視対象となる航空機としてはSSRモードS機、SSRモードA/C機の両方であり、ICAO(International Civil Aviation Organization:国際民間航空機関)が発行している国際民間航空条約・第10附属書(ICAO ANNEX 10 Vol4amendment85 6.6.3)において、トランスポンダ占有率を2%以下に抑える規定がある。
 上記のように、マルチラテレーションシステムにおいて送信局を具備する場合、受信した順番から単純に一定時間内(例えば、1秒間隔)に送信を行う送信手順が用いられる。この送信手順では、SSRモードS質問及びSSRモードA/C質問において、前述のICAOのトランスポンダ占有率2%以下という規定を満足させることができない場合が発生する可能性がある。
 また、トランスポンダ占有率2%以下を満足させるために単純に送信を制限してしまうと、航空管制上において、マルチラテレーションシステムの信頼性及び安全性を低下させる可能性がある。尚、上記の特許文献1~4に記載の技術では、マルチラテレーションシステムにおいて送信局を具備する場合に関する技術ではないため、これらの課題を解決することはできない。
 そこで、本発明の目的は上記の問題点を解消し、効率的にSSRモードS応答及びSSRモードA/C応答を確実に探知することができ、マルチラテレーションシステムの信頼性及び安全性を向上させることができる移動体位置測定システム、中央処理部及びそれらに用いる質問制御方法を提供することにある。
 本発明による移動体位置測定システムは、監視領域に存在する移動体からの応答信号を受信する複数の受信局と、前記複数の受信局における前記応答信号の受信時刻を基に前記移動体の位置を測位する中央処理部とから構成され、前記中央処理部にて前記複数の受信局の受信時刻から前記移動体の幾何学的位置を計測する移動体位置測定システムであって、
 前記移動体に質問信号を送信する少なくとも1以上の送受信局を含み、
 前記送受信局は、前記質問信号の送信覆域を、全ての移動体に対して共通の質問を行う方式のSSR(Secondary Surveillance Radar)モードA/Cの質問及び応答の覆域範囲に制限するとともに、個別に質問及び応答を可能とする方式のSSRモードS個別質問を行い、
 前記中央処理部は、管制上において重要度の高い移動体から優先的に前記SSRモードS個別質問を行うよう前記送受信局を制御する手段を備えている。
 本発明による中央処理部は、監視領域に存在する移動体からの応答信号を受信する複数の受信局と、前記複数の受信局における前記応答信号の受信時刻を基に前記移動体の位置を測位する中央処理部とから構成され、前記中央処理部にて前記複数の受信局の受信時刻から前記移動体の幾何学的位置を計測する移動体位置測定システムに用いる中央処理部であって、
 前記移動体位置測定システムに、前記移動体に質問信号を送信する少なくとも1以上の送受信局を配置し、
 前記送受信局において、前記質問信号の送信覆域を、全ての移動体に対して共通の質問を行う方式のSSR(Secondary Surveillance Radar)モードA/Cの質問及び応答の覆域範囲に制限するとともに、個別に質問及び応答を可能とする方式のSSRモードS個別質問を行わせ、
 管制上において重要度の高い移動体から優先的に前記SSRモードS個別質問を行うよう前記送受信局を制御する手段を備えている。
 本発明による質問制御方法は、監視領域に存在する移動体からの応答信号を受信する複数の受信局と、前記複数の受信局における前記応答信号の受信時刻を基に前記移動体の位置を測位する中央処理部とから構成され、前記中央処理部にて前記複数の受信局の受信時刻から前記移動体の幾何学的位置を計測する移動体位置測定システムに用いる質問制御方法であって、
 前記移動体位置測定システムに、前記移動体に質問信号を送信する少なくとも1以上の送受信局を配置し、
 前記送受信局において、前記質問信号の送信覆域を、全ての移動体に対して共通の質問を行う方式のSSR(Secondary Surveillance Radar)モードA/Cの質問及び応答の覆域範囲に制限するとともに、個別に質問及び応答を可能とする方式のSSRモードS個別質問を行わせ、
 前記中央処理部が、管制上において重要度の高い移動体から優先的に前記SSRモードS個別質問を行うよう前記送受信局を制御する処理を実行している。
 本発明は、上記のような構成及び動作とすることで、効率的にSSRモードS応答及びSSRモードA/C応答を確実に探知することができるため、マルチラテレーションシステムの信頼性及び安全性を向上させることができるという効果が得られる。
本発明による航空機位置測定システムの構成例を示すブロック図である。 図1の送受信局の構成例を示すブロック図である。 図1の中央処理部の構成例を示すブロック図である。 本発明の実施の形態におけるウイスパーシャウト送信順番の一例を示す図である。 本発明の実施の形態における送信覆域(WS覆域)のリング状の幅の一例を示す図である。 本発明の実施の形態における送信パターンを示す図である。 本発明の実施の形態における送受信局の配置例を示す図である。 本発明の実施の形態における2台の送受信局を配置した場合を示す図である。 本発明の実施の形態における質問を実行する送受信局の選択方式を示す図である。
 次に、本発明の実施の形態について図面を参照して説明する。まず、本発明による移動体位置測定システムの概要について説明する。本発明による移動体位置測定システムは、航空機位置測定システム[MLAT(Multilateration):マルチラテレーションシステム]に関するものである。航空機位置測定システムでは、航空機や空港内の車両等の移動体の位置を測定することができるが、以下の説明では、移動体を航空機として説明する。
 本発明は、航空機位置測定システム(マルチラテレーションシステム)、当該システムに用いられる送受信局の質問制御方式及び質問制御プログラムに係り、特にSSR(Secondary Surveillance Radar:二次監視レーダ)装置から質問された航空機からの応答信号、またはマルチラテレーションシステムから質問された航空機からの応答信号、もしくはSSR捕捉または拡張スキッタ信号を4局以上の受信局または送受信局で受信処理を行い、この受信信号を中央処理部で当該航空機の位置測定を行うマルチラテレーションシステムに関する。
 本発明は、上記のマルチラテレーションシステムにおいて、監視空域に存在する航空機に対するSSRモードA/C機を確実に検出するためのSSRモードA/C機検出方式、送信制御方式及びプログラムを提供するものである。尚、SSRモードA/C、SSRモードSについては、上述した本発明に関連する航空機位置測定システムについての説明と同様である。
 本発明は、上記の既設SSR装置と遠隔地に置かれた送受信局とを連接することができないという問題を解決するために、ウイスパーシャウト送信方式を利用したSSRモードA/C質問方式を用いることで、簡易にSSRモードA/C機を探知可能とすることができる。
 つまり、本発明は、上記の問題を解決するために、監視対象となっている航空機に対して、ウイスパーシャウト送信方式を利用したSSRモードA/C質問と応答とを処理する機能を具備すると同時に、航空管制上において重要度の高い航空機から優先的にSSRモードS個別質問を行う質問制御方式とを提供することにより、航空機の探知を確実に行うことが可能となるため、マルチラテレーションシステムの信頼性と安全性との向上を図ることができる。
 図1は本発明による航空機位置測定システムの構成例を示すブロック図である。図1において、本発明による航空機位置測定システムは、送受信局1-1~1-5と、中央処理部2とから構成され、送受信局1-1~1-5と中央処理部2とは、通信回線4-1~4-5にて接続されている。
 本発明は、送受信局1-1~1-5において、質問覆域を本発明の送信制御方式により、SSRモードA/C質問、応答の覆域範囲に制限し、SSRモードA/C応答の重畳(ガーブル・フルーツ状態)の発生を低減して、確実にSSRモードA/C応答を検出解読する方式を提供する。また、本発明は、図5に示す一例のような送信パターンでSSRモードS個別質問をも合わせて行う。
 中央処理部2は、送信制御信号を通信回線4-1~4-5経由で送受信局1-1~1-5に送り、監視覆域内で全ての送受信局1-1~1-5が同時に質問するのではなく、質問に適した送受信局を選択する手段を提供する。
 また、SSRモードA/C質問は、既存の航空機衝突防止システム(ACAS:Airborne Collision Avoidance System)で実施されているウイスパーシャウト(whisper-shout)送信方式によるSSRモードA/C機に対する質問手段を提供する。
 送受信局1-1~1-5は、中央処理部2による送信制御で指定される送受信局の順番で、指定された送信時刻にSSRモードA/C質問7-1~7-5を行うことにより、確実にSSRモードA/C機を探知する手段を提供する。
 また、SSRモードA/C機についても、上述したICAOのトランスポンダ占有率2%以下の規定を満足させるように送信制御を行う手段を提供する。
 これにより、本発明は、マルチラテレーションシステム主導で効率的にSSRモードS応答及びSSRモードA/C応答を確実に探知することができるため、マルチラテレーションシステムの信頼性及び安全性を向上させることができる。
 次に、本発明の実施の形態について、図1を参照して説明する。本発明の実施の形態によるマルチラテレーションシステムは、図1に示すように、複数の送受信局1-1~1-5と、中央処理部2と、通信回線4-1~4-5とからなる。尚、送受信局1-1~1-5は、全てを送受信局にする必要はなく、送信局と受信局との組み合わせ、送受信局と送信局と受信局との組み合わせ等も考えられる。
 送受信局1-1~1-5は、GPS(Global Positioning System)衛星6からの時刻同期を用いた同期を行う。また、送受信局1-1~1-5は、航空機5からのSSRモードA/C応答、モードS応答、捕捉または拡張スキッタ信号7-1~7-5を無指向性もしくは広指向性の空中線にて受信し、信号解読した後に受信信号の到着した時刻のタイムスタンプを付与して、通信回線4-1~4-5を用いて中央処理部2に応答データとして送信する。
 送受信局1-1~1-5のうちの選択制御されたいずれかの1局は、通信回線4-1~4-5を経由した中央処理部2からの送信制御信号による送信制御指示でウイスパーシャウト送信方式にてSSRモードA/C質問3-1~3-5を行い、送受信局1-1~1-5各々は、このSSRモードA/C質問3-1~3-5に対するSSRモードA/C応答信号7-1~7-5の受信処理を行う。
 図2は図1の送受信局1-1~1-5の構成例を示すブロック図であり、図3は図1の中央処理部2の構成例を示すブロック図である。図2においては、送受信局1-1~1-5を送受信局1として表記しており、送受信局1-1~1-5各々は送受信局1と同様の構成となっている。
 図2において、送受信局1は、GPS空中線8と、GPS受信機9と、空中線10と、受信部11と、送信部20と、信号処理部21とを具備している。送信部20は、サーキュレータ12と、合成器13と、可変減衰器14-1~14-2と、RFパルス切替スイッチ15と、送信制御器16と、変調パルス発生器17と、電力増幅器18と、発振器19とを備えている。
 図3において、中央処理部2は、送受信情報収集部22と、目標位置測位部23と、目標情報解析部24と、目標情報生成部25と、送信制御情報生成部26と、目標追尾部27と、目標優先順位判定部28とを具備している。
 送受信局1-1~1-5は、GPS衛星6からの時刻同期信号を受信するGPS空中線8とGPS受信機9とを有し、離れて設置された各送受信局1-1~1-5間の時刻同期を行う。
 また、無指向性もしくは広指向性の空中線10は、航空機5からのSSRモードA/C応答、SSRモードS応答、捕捉または拡張スキッタ信号7-1~7-5の受信及びSSRモードA/C質問3-1~3-5を行う。
 受信部11は、SSRモードA/C応答、SSRモードS応答、捕捉または拡張スキッタ信号7-1~7-5の受信処理を行い、受信ビデオ信号に変換し、信号処理部21に送る。次に、信号処理部21にて信号解読した後、解読データとともに、受信信号が到着した時刻のタイムスタンプを付与し、通信回線4-1~4-5を用い、中央処理部2に応答データとして送出する。
 中央処理部2は、上記の応答データを通信部22で受信処理し、その受信した応答データを基に目標位置測位部23にて目標測位を行った後、測位データを基に目標情報解析部24にて応答データ内の情報解析を行う。目標情報生成部25は、目標情報解析部24からの解析データを入力し、外部出力用に目標位置測定情報を編集して外部(例えば、航空管制システム等)に出力する。
 目標優先順位測定部28は、目標情報解析部24からの解析データを入力し、予め設定されたパラメータに基づいてSSRモードA/C質問を行うべき送受信局を決定するために目標優先順位を決定する。
 目標追尾部27は、目標位置測位部23からの測位データ及び目標優先順位判定部28からの順位データに基づいて追尾処理を行う。質問制御情報生成部26は、目標位置測位部23からの測位データ、目標追尾部27からの測位予想値、目標優先順位判定部28からの順位データを基にSSRモードA/C質問の送受信局の順番を決定するとともに、送信タイミングのスケジューリングを行い、送信時刻の決定を行う。また、質問制御情報生成部26は、上記の処理と並行して、SSRモードS個別質問の送信タイミングのスケジューリングを行う。尚、質問制御情報生成部26における上記の決定やスケジューリングは、目標追尾部27にて行うことも可能である。
 質問制御情報生成部26は、上記の決定やスケジューリングの結果から質問制御情報の生成、編集を行い、通信部22、通信回線4-1~4-5を経由して送受信局1-1~1-5に、送信タイミングをスケジューリングした質問制御情報を送出する。
 送受信局1-1~1-5の信号処理部21及び送信部20は、中央処理部2からの質問制御情報に基づき、送信タイミングのスケジューリング通りにウイスパーシャウト送信方式にてSSRモードA/C質問を行う。また、送受信局1-1~1-5の信号処理部21及び送信部20は、上記の処理と併せて、SSRモードS個別質問も行う。次に、送受信局1-1~1-5は、この質問に対する応答信号の受信処理を行い、上記の処理を繰り返し行う。
 送信部20は、発振器19にて送信のための高周波励振信号を発生させ、電力増幅器18にてRF送信信号のパルス変調と電力増幅を行い、RFパルス切替スイッチ15にRF送信信号を送り出す。また、送信制御器16は、信号処理部21からの送信制御情報データに基づき、送信時刻にウイスパーシャウト送信によるSSRモードA/C質問に必要な各種信号を生成し、また、SSRモードS個別質問に必要な各種信号を生成した後、可変減衰器14-1~14-2、RFパルス切替スイッチ15、及び変調パルス発生器17の制御を行う。
 送受信局1-1~1-5は、GPS衛星6からの時刻同期信号を用いて同期を行う。GPS衛星6を用いた時刻同期に関しては、特許文献3(特開2010-230448号公報)に記載の技術があり、この技術を用いることで精度良く同期を取ることが可能である。
 また、送受信局1-1~1-5は、航空機5からのSSRモードA/C応答、SSRモードS応答、捕捉または拡張スキッタ信号7-1~7-5を無指向性もしくは広指向性の空中線10を経由して、その受信信号に対する受信処理、信号解読処理を行った後、受信信号の到着時刻のタイムスタンプを付与し、応答データとして通信回線4-1~4-5を用いて中央処理部2に送出する。
 中央処理部2は、通信部22にて上述した応答データの受信処理を行い、目標位置測位部23にて上記の応答データに付与された到着時刻のタイムスタンプから各受信局の到着時刻差(TDOA:Time Difference Of Arrival)を算出し、航空機5の位置測位計算を行う。
 2つの空中線間のTDOAは、数学的には3次元の双曲面に対応し、航空機の位置はその面上にあることとなる。4台以上の空中線で航空機の信号を検出することができれば、双曲線の交点を計算することで、航空機の位置を3次元で求めることができる。
 目標位置測位部23にて位置測位した航空機5の測位データは、目標情報解析部24と質問制御情報生成部26と目標追尾部27とに送られる。
 目標情報解析部24は、測位データ内の情報解析を行い、各種目標情報(モードSアドレス、モードAコード、高度、航空機動態情報等)の解析を行う。
 目標情報生成部25は、目標情報解析部24からの解析データを入力し、外部出力用に目標位置測定情報を編集して外部(例えば、航空管制システム等)に出力するためのメッセージ生成機能と外部のシステムと連接するための通信プロトコル機能とを有する。
 目標優先順位測定部28は、目標情報解析部24からの解析データと目標追尾部27からの測位予想値とを入力し、予め設定された各種パラメータに基づいてSSRモードA/C質問を行うべき送受信局を決定するために目標優先順位と質問(送信)を行う送受信局とを決定する。
 目標追尾部27は、目標位置測位部23からの測位データと目標優先順位判定部28からの優先順位が決定された順位データとに基づいて追尾処理を行う。質問制御情報生成部26は、目標優先順位判定部28からの優先順位が決定された順位データを基にSSRモードA/C質問の送受信局の順番を決定するとともに、送信タイミングのスケジューリングを行い、送信時刻の決定を行う。また、質問制御情報生成部26は、上記の処理と並行して、SSRモードS個別質問の送信タイミングのスケジューリングを行う。
 また、国際民間航空条約・第10附属書(ICAO ANNEX 10 Vol4amendment85 6.6.3)に記載されているトランスポンダ占有率を2%以下に抑えるようにするために、質問制御情報生成部26は、送信タイミング(送信時刻)のスケジューリング計画を実施し、それぞれの航空機に対するSSRモードA/C質問、SSRモードS個別質問の送信時刻の決定を行い、それらを基に生成した質問制御情報を送出する。
 図5に送信パターンの一例を示すが、SSRモードA/C質問は、最大探知覆域距離で決定される一定周期の繰り返し周波数で質問を行い、一定周期のSSRモードA/C質問間隔の間にSSRモードS個別質問の送信タイミングのスケジューリングを行う。
 質問制御情報生成部26は、生成した質問制御情報を通信部22と通信回線4-1~4-5とを経由して送受信局1-1~1-5に、送信タイミングがスケジューリングされた質問制御情報を順次送出する。
 送受信局1-1~1-5は、送受信情報収集部22と通信回線4-1~4-5とを経由して、送信制御情報生成部26からの質問制御情報を受信すると、その質問制御情報に基づき、送信タイミングのスケジューリング通りにウイスパーシャウト送信方式にてSSRモードA/C質問とSSRモードS個別質問とを行う。次に、送受信局1-1~1-5は、この質問に対する応答信号の受信処理を受信部11と信号処理部21とで行い、上記の処理を繰り返し行う。
 ウイスパーシャウト送信方式は、図4Aに示す送信波形の4つのパルス(S,P1,P3,P4)を送信するが、SパルスとP1,P3,P4パルス(P1,P3,P4は、送信電力が同じ電力レベルで送信する:以下、Pパルスとする)との送信電力レベル比(WS覆域)を制御することで、図4Bの送信覆域(WS覆域)のリング状の幅(航空機を探知できる範囲)を決定している。
 また、送信波形の送信1は、最短近距離覆域の送信波形を示しているが、近距離を探知するため、Sパルスは送信しない。送信波形の送信2、・・・・、送信N-1、送信Nは、SパルスとPパルスとに送信電力の差をつけて送信することで、ウイスパーシャウト送信方式を行う。
 送信波形の送信Nは、最大探知覆域の場合を示しているが、送信覆域のリング幅の面積が一番広いため、覆域内に航空機が複数存在する確率が高いため、中央処理部2からの質問制御情報データの制御により、SパルスとPパルスとの送信電力レベル比(WS覆域)を小さく設定する等、質問信号の送信を制御することで、SSRモードA/C応答の重畳状態を回避し、目標検出率の向上を図る制御も行われる。
 図4A及び図4Bはウイスパーシャウト送信順番の一例を示しているが、SSRモードA/C質問の基本動作は、近距離覆域の送信1から送信2、・・・・、送信N-1の順番に内側から最大覆域の送信Nの順番を切り返した質問を行う。また、SSRモードA/C質問は、送受信局1-1~1-5の5局が同時に質問する必要がないため、中央処理部2からの送信制御情報データに基づく制御により、航空機に対して最適な位置関係にある送受信局からSSRモードA/C質問を行う。
 例えば、図6は、マルチラテレーションシステムの送受信局の配置の一例を示しているが、この配置例において、図7及び図8に示すような送受信局と航空機との間の距離が一番近い送受信局から質問を実行する送受信局の選択方式や、複数の航空機がWS覆域内に在空する場合等、SSRモードA/C応答の重畳(ガブール・フルーツ)状態を回避するために、航空機の位置がWS覆域円と鉛直方向の送受信局を選択する方式等が考えられる。
 送受信局が2局以上存在する場合において、図7に示すように、送信局の送信覆域が重複している覆域内に存在する航空機に対して質問を行う場合、送受信局A及びBの2局から質問をすると、国際民間航空条約・第10附属書(ANNEX 10)において、トランスポンダ占有率を2%以下に抑える規定を満足できないことが想定される。また、同一航空機に対して送信覆域が重なる2局から質問することは、マルチラテレーションシステムとしては不要である。
 このため、図8に示す「質問を実行する送受信局の選択方式」に記載したように、送受信局A及びBと覆域内の航空機との位置関係から質問する送受信局を選択する方式がある。
 この方式では、図8において、質問を実行する航空機T1~T3について、航空機T1~T3各々から送受信局Aまでの距離(y1~y3)と、航空機T1~T3各々から送受信局Bまでの距離(x1~x3)とを比較し、x>yの場合に送受信局Aを選択し、x≦yの場合に送受信局Bを選択する方式である。
 図8において、航空機T1の場合はx1>y1なので送受信局Aを選択し、航空機T2の場合はx2<y2なので送受信局Bを選択し、航空機T3の場合はx3<y3なので送受信局Bを選択することとなる。
 送信部20は、発振器19にて送信のための励振信号を発生させ、電力増幅器18にて、変調パルス発生器17からの制御により、RF送信信号のパルス変調と電力増幅とを行い、RFパルス切替スイッチ15にRF送信パルス信号を送出する。
 RFパルス切替スイッチ15は、信号処理部21からの送信制御に基づいて送信制御器16の制御を行い、送信制御器16のパルス切り替えゲート信号によりSパルスとP1,P3,P4パルスとを分離して可変減衰器14-1にSパルスを送出し、可変減衰器14-2にP1,P3,P4パルスを送出する。可変減衰器14-1~14-2は、ウイスパーシャウト送信方式のためにSパルスとPパルスとの送信電力レベルの制御を行う。
 次に、可変減衰器14-1~14-2の減衰量を決定する制御は、送信制御器16から制御されて決定される。その後に、分離されたSパルスとPパルスとを合成器13にて図4Aに示す送信波形となるように合成し、RF送受信信号を切り替えるサーキュレータ12経由で空中線10に送信RFパルス信号が送られる。
 また、送信制御器16は、信号処理部21からの送信制御情報データにより、送信時刻にウイスパーシャウト送信に必要な各種信号を生成し、可変減衰器14-1~14-2、RFパルス切替スイッチ15、及び変調パルス発生器17の制御を行う。
 SSRモードS個別質問の場合は、RFパルス切替スイッチ15が、可変減衰器14-1のみにRF送信信号を供給するように送信制御器16から制御される。また、可変減衰器14-1は、減衰量が0dBとなるように送信制御器16から制御される。その後に、SSRモードS個別質問のRF送信信号は、合成器13とサーキュレータ12とを経由して空中線10に送られる。
 マルチラテレーションシステムには、次のような問題点がある。
 (1)無指向性もしくは広指向性の空中線を使うため、SSRモードA/C機を確実に探知する手法がない。
 (2)既設SSR等への電波干渉等の影響を抑えるために、ICAOが発行している国際民間航空条約・第10附属書(ICAO ANNEX 10 Vol4amendment85 6.6.3)において、トランスポンダ占有率を2%以下に抑える規定がある。これは、マルチラテレーションシステムの監視空域に多数の航空機が存在した場合において、トランスポンダ占有率を2%以下に抑える必要があり、監視空域に存在する全ての航空機に対してSSRモードS個別質問を一定時間内に実施できない可能性がある。このため、航空管制運用において目標検出率が低下する可能性があり、マルチラテレーションシステムの信頼性と安全性との低下を招く可能性がある。
 本発明の手段を用いたマルチラテレーションシステムにおける効果は、次の6つが考えられる。
 (1)完全受動型マルチラテレーションシステムの場合、既設SSRの質問タイミングと同期をとる手段がないため、SSRモードA/C応答を確実に検出する方法がないが、上記の送信機能によりSSRモードA/C機能のみの航空機の検出が可能となる。
 (2)既設SSR応答を受信した場合(スキッタ機能を具備しない航空機の場合)は、受信データレートが既設SSRのデータレートと同じ1回(受信)/4秒(空港監視レーダの場合)または1回(受信)/10秒(航空路監視レーダの場合)となるため、当該送信機能により1回(受信)/1秒の受信信号を得ることが可能となり、データレートを向上させることができる。
 (3)電波伝搬の状況により検出率の悪い目標の検出率を向上させることができる。
 (4)航空機内部に登録されている航空機動態情報(選択高度、気圧補正高度、マック数、指示対気高度、真対地速度、ロール角、真トラック角等)を必要な時に、リアルタイムに取得することが可能となる。
 (5)既設SSRの覆域の下にある進入経路の低高度の航空機を探知することが可能となる。
 (6)送信することで、測距機能が可能となるため、完全受動型マルチラテレーションシステムの測位に比べて測位精度を向上させることが可能となる。
 特に、本発明は、前述の送信機能の目的を達成するために、監視対象となっている航空機に対して、ウイスパーシャウト送信方式を用いたSSRモードA/C質問方式を実施することにより、SSRモードA/C機能のみの航空機の探知が可能となる。また、航空管制上において重要度の高い航空機から優先的にSSRモードS個別質問を行う質問制御方式を提供することにより、マルチラテレーションシステムの信頼性と安全性とを向上させることができる。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 上記の実施の形態の一部又は全部は、以下の付記のようにも記載され得るが、以下の記載に限定されない。
 [付記1]
 監視領域に存在する移動体からの応答信号を受信する複数の受信局と、前記複数の受信局における前記応答信号の受信時刻を基に前記移動体の位置を測位する中央処理部とから構成され、前記中央処理部にて前記複数の受信局の受信時刻から前記移動体の幾何学的位置を計測する移動体位置測定システムに用いる中央処理部であって、
 前記移動体位置測定システムに、前記移動体に質問信号を送信する少なくとも1以上の送受信局を配置し、
 前記送受信局において、前記質問信号の送信覆域を、全ての移動体に対して共通の質問を行う方式のSSR(Secondary Surveillance Radar)モードA/Cの質問及び応答の覆域範囲に制限するとともに、個別に質問及び応答を可能とする方式のSSRモードS個別質問を行わせ、
 管制上において重要度の高い移動体から優先的に前記SSRモードS個別質問を行うよう前記送受信局を制御する手段を有し、
 前記送受信局に、監視対象となっている移動体に対して、ACAS(Airborne Collision Avoidance System)で実施されているウイスパーシャウト送信方式を利用したSSRモードA/C質問と応答とを処理させることを特徴とする中央処理部。
 [付記2]
 前記質問信号の送信に適した送受信局を選択する手段と、その選択した送受信局に質問制御信号を送出する手段とを含み、
 前記送受信局が前記質問制御信号に基づいて前記監視領域内の移動体に前記質問信号を送信することで、全ての送受信局が同時に前記質問信号を送信するのを抑止することを特徴とする付記1に記載の中央処理部。
 [付記3]
 前記送受信局に、前記質問制御信号で指定される送受信局の順番で、指定された送信時刻に前記SSRモードA/Cの質問信号を送信させることを特徴とする付記2に記載の中央処理部。
 [付記4]
 前記送受信局において、前記質問制御信号に基づく制御により、前記移動体に対して最適な位置関係にある送信装置から前記SSRモードA/Cの質問信号を送信させることを特徴とする付記2または付記3に記載の中央処理部。
 [付記5]
 前記移動体位置測定システムが、少なくともMLAT(Multilateration:マルチラテレーション)システム及び広域で用いられるWAM[Wide Area MLAT(Multilateration)]システムのいずれかであることを特徴とする付記1から付記4のいずれかに記載の中央処理部。
 [付記6]
 監視領域に存在する移動体からの応答信号を受信する複数の受信局と、前記複数の受信局における前記応答信号の受信時刻を基に前記移動体の位置を測位する中央処理部とから構成され、前記中央処理部にて前記複数の受信局の受信時刻から前記移動体の幾何学的位置を計測する移動体位置測定システムに用いる送信制御方法であって、
 前記移動体位置測定システムに、前記移動体に質問信号を送信する少なくとも1以上の送受信局を配置し、
 前記送受信局において、前記質問信号の送信覆域を、全ての移動体に対して共通の質問を行う方式のSSR(Secondary Surveillance Radar)モードA/Cの質問及び応答の覆域範囲に制限するとともに、個別に質問及び応答を可能とする方式のSSRモードS個別質問を行わせ、
 前記中央処理部が、管制上において重要度の高い移動体から優先的に前記SSRモードS個別質問を行うよう前記送受信局を制御する処理を実行し、
 前記送受信局が、監視対象となっている移動体に対して、ACAS(Airborne Collision Avoidance System)で実施されているウイスパーシャウト送信方式を利用したSSRモードA/C質問と応答とを処理することを特徴とする質問制御方法。
 [付記7]
 前記中央処理部が、前記質問信号の送信に適した送受信局を選択する処理と、その選択した送受信局に質問送信制御信号を送出する処理とを実行し、
 前記中央処理部は、前記送受信局が前記質問制御信号に基づいて前記監視空域内の移動体に前記質問信号を送信することで、全ての送受信局が同時に前記質問信号を送信するのを抑止することを特徴とする付記6に記載の質問制御方法。
 [付記8]
 前記送受信局において、前記中央処理部からの前記質問制御信号で指定される送受信局の順番で、指定された送信時刻に前記SSRモードA/Cの質問信号を送信させることを特徴とする付記7に記載の質問制御方法。
 [付記9]
 前記送受信局において、前記中央処理部からの前記質問制御信号に基づく制御により、前記移動体に対して最適な位置関係にある送受信局から前記SSRモードA/Cの質問信号を送信させることを特徴とする付記7または付記8に記載の質問制御方法。
 [付記10]
 前記移動体位置測定システムが、少なくともMLAT(Multilateration:マルチラテレーション)システム及び広域で用いられるWAM[Wide Area MLAT(Multilateration)]システムのいずれかであることを特徴とする付記6から付記9のいずれかに記載の質問制御方法。
 この出願は、2012年2月15日に出願された日本出願特願2012-030051を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、MLAT(Multilateration:マルチラテレーション)システムやWAM[Wide Area MLAT(Multilateration)]システムに適用可能である。
   1-1~1-5 送受信局
          2 中央処理部
   3-1~3-5 SSRモードA/C質問
   4-1~4-5 通信回線
          5 航空機
          6 GPS衛星
   7-1~7-5 SSRモードA/C応答、SSRモードS応答、捕捉または拡張スキッタ信号
          8 GPS空中線
          9 GPS受信機
         10 空中線
         11 受信部
         12 サーキュレータ
         13 合成器
 14-1~14-2 可変減衰器
         15 RFパルス切替スイッチ
         16 送信制御器
         17 変調パルス発生器
         18 電力増幅器
         19 発振器
         22 通信部
         23 目標位置測位部
         24 目標情報解析部
         25 目標情報生成部
         26 送信制御情報生成部
         27 目標追尾部
         28 目標優先順位判定部

Claims (8)


  1.  移動体に質問信号を送信する少なくとも1以上の送受信局を含み、
     前記送受信局は、前記質問信号の送信覆域を、全ての移動体に対して共通の質問を行う方式のSSR(Secondary Surveillance Radar)モードA/Cの質問及び応答の覆域範囲に制限するとともに、個別に質問及び応答を可能とする方式のSSRモードS個別質問を行い、
     中央処理部は、管制上において重要度の高い移動体から優先的に前記SSRモードS個別質問を行うよう前記送信装置を制御する手段を有することを特徴とする移動体位置測定システム。
  2.  前記送受信局は、監視対象となっている移動体に対して、ACAS(Airborne Collision Avoidance System)で実施されているウイスパーシャウト送信方式を利用したSSRモードA/C質問と応答とを処理する手段を含むことを特徴とする請求項1記載の移動体位置測定システム。
  3.  前記中央処理部は、前記質問信号の送信に適した送受信局を選択する手段と、その選択した送受信局に質問制御信号を送出する手段とを含み、
     前記中央処理部は、前記送受信局が前記質問制御信号に基づいて前記監視領域内の移動体に前記質問信号を送信することで、全ての送受信局が同時に前記質問信号を送信するのを抑止することを特徴とする請求項1または請求項2記載の移動体位置測定システム。
  4.  前記送受信局は、前記中央処理部からの前記質問制御信号で指定される送受信局の順番で、指定された送信時刻に前記SSRモードA/Cの質問信号を送信することを特徴とする請求項3記載の移動体位置測定システム。
  5.  前記送受信局は、前記中央処理部からの前記質問制御信号に基づく制御により、前記移動体に対して最適な位置関係にある送受信局から前記SSRモードA/Cの質問信号を送信することを特徴とする請求項3または請求項4記載の移動体位置測定システム。
  6.  少なくともMLAT(Multilateration:マルチラテレーション)システム及び広域で用いられるWAM[Wide Area MLAT(Multilateration)]システムのいずれかであることを特徴とする請求項1から請求項5のいずれか記載の移動体位置測定システム。

  7.  移動体位置測定システムに、移動体に質問信号を送信する少なくとも1以上の送受信局を配置し、
     前記送受信局において、前記質問信号の送信覆域を、全ての移動体に対して共通の質問を行う方式のSSR(Secondary Surveillance Radar)モードA/Cの質問及び応答の覆域範囲に制限するとともに、個別に質問及び応答を可能とする方式のSSRモードS個別質問を行わせ、
     管制上において重要度の高い移動体から優先的に前記SSRモードS個別質問を行うよう前記送受信局を制御する手段を有することを特徴とする中央処理部。

  8.  移動体位置測定システムに、移動体に質問信号を送信する少なくとも1以上の送受信局を配置し、
     前記送受信局において、前記質問信号の送信覆域を、全ての移動体に対して共通の質問を行う方式のSSR(Secondary Surveillance Radar)モードA/Cの質問及び応答の覆域範囲に制限するとともに、個別に質問及び応答を可能とする方式のSSRモードS個別質問を行わせ、
     前記中央処理部が、管制上において重要度の高い移動体から優先的に前記SSRモードS個別質問を行うよう前記送受信局を制御する処理を実行することを特徴とする質問制御方法。
PCT/JP2013/000227 2012-02-15 2013-01-18 移動体位置測定システム、中央処理部及びそれらに用いる質問制御方法 WO2013121694A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147022471A KR101690848B1 (ko) 2012-02-15 2013-01-18 이동체 위치 측정 시스템, 중앙 처리부 및 이들에 사용되는 질문 제어 방법
JP2014500066A JP5958528B2 (ja) 2012-02-15 2013-01-18 移動体位置測定システム、中央処理部及びそれらに用いる質問制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-030051 2012-02-15
JP2012030051 2012-02-15

Publications (1)

Publication Number Publication Date
WO2013121694A1 true WO2013121694A1 (ja) 2013-08-22

Family

ID=48983836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000227 WO2013121694A1 (ja) 2012-02-15 2013-01-18 移動体位置測定システム、中央処理部及びそれらに用いる質問制御方法

Country Status (4)

Country Link
JP (1) JP5958528B2 (ja)
KR (1) KR101690848B1 (ja)
MY (1) MY172432A (ja)
WO (1) WO2013121694A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104035066A (zh) * 2014-03-13 2014-09-10 中国民用航空总局第二研究所 基于无源多点定位技术的目标运动-静止状态判断方法
JP2014199214A (ja) * 2013-03-29 2014-10-23 株式会社東芝 二次監視レーダ装置、及びレーダシステム
CN104821104A (zh) * 2015-04-15 2015-08-05 中国民用航空总局第二研究所 一种民航用多点定位的询问方法及多点定位询问系统
CN107038900A (zh) * 2017-04-25 2017-08-11 西安航空学院 一种通用航空低空监视与服务系统
JP2017215165A (ja) * 2016-05-30 2017-12-07 日本電気株式会社 Ads−b通報取得装置及び方法
JP2018538529A (ja) * 2015-11-11 2018-12-27 レオナルド・エムダブリュ・リミテッドLeonardo MW Ltd レーダシステム及び方法
JP7356681B2 (ja) 2019-09-20 2023-10-05 日本無線株式会社 質問信号送信システム及び質問信号送信方法
JP7425709B2 (ja) 2019-11-25 2024-01-31 タレス 近接レーダとのモードsレーダのii/si識別コードにおける競合を検出するための方法及びかかる方法を実装する二次レーダ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022056371A1 (en) * 2020-09-11 2022-03-17 Aviation Communication & Surveillance Systems, Llc Systems and methods for adaptive whisper-shout for enhanced degarble capability
KR102501708B1 (ko) * 2020-10-23 2023-02-21 주식회사 우리별 전송시각 기능을 가지는 질문기를 이용한 비행체 위치 파악 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256272A (ja) * 1985-05-09 1986-11-13 Unyusho Senpaku Gijutsu Kenkyusho Ssr方式による航空機識別装置
JPH075255A (ja) * 1993-05-31 1995-01-10 Nec Corp Ssrモードsシステムにおける質問制御方法
US20020063653A1 (en) * 2000-08-31 2002-05-30 Honeywell International, Inc. Method for reducing transmit power for traffic alert and collision avoidance systems and airborne collision avoidance systems
JP2009300146A (ja) * 2008-06-11 2009-12-24 Nec Corp 航空機位置測定システム、信号種類判定方法およびセンタ局ならびにプログラム
JP2010211517A (ja) * 2009-03-10 2010-09-24 Toshiba Corp 質問信号送信方法
JP2010230448A (ja) * 2009-03-26 2010-10-14 Nec Corp 航空機位置測定システム、受信局、航空機位置測定方法およびプログラム
JP2011209211A (ja) * 2010-03-30 2011-10-20 Nec Corp マルチラテレーションシステム、マルチラテレーション受信局の信号処理方法、及びその処理プログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4694420B2 (ja) 2006-06-12 2011-06-08 三菱電機株式会社 空港面監視装置
JP2008249391A (ja) * 2007-03-29 2008-10-16 Nec Corp Ssrモードsにおけるパーシャル検出航空機の監視方法及び装置
JP5463875B2 (ja) 2009-11-25 2014-04-09 日本電気株式会社 航空機位置測定システム、該システムに用いられる応答信号判別方法及び応答信号判別プログラム
JP5444202B2 (ja) * 2010-12-08 2014-03-19 株式会社東芝 送信装置
JP5678652B2 (ja) * 2010-12-27 2015-03-04 日本電気株式会社 航空機位置測定システム、受信局、データ量削減方法およびプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256272A (ja) * 1985-05-09 1986-11-13 Unyusho Senpaku Gijutsu Kenkyusho Ssr方式による航空機識別装置
JPH075255A (ja) * 1993-05-31 1995-01-10 Nec Corp Ssrモードsシステムにおける質問制御方法
US20020063653A1 (en) * 2000-08-31 2002-05-30 Honeywell International, Inc. Method for reducing transmit power for traffic alert and collision avoidance systems and airborne collision avoidance systems
JP2009300146A (ja) * 2008-06-11 2009-12-24 Nec Corp 航空機位置測定システム、信号種類判定方法およびセンタ局ならびにプログラム
JP2010211517A (ja) * 2009-03-10 2010-09-24 Toshiba Corp 質問信号送信方法
JP2010230448A (ja) * 2009-03-26 2010-10-14 Nec Corp 航空機位置測定システム、受信局、航空機位置測定方法およびプログラム
JP2011209211A (ja) * 2010-03-30 2011-10-20 Nec Corp マルチラテレーションシステム、マルチラテレーション受信局の信号処理方法、及びその処理プログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKASHI YOSHIDA: "Radar engineering revised edition", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, 1 October 1996 (1996-10-01), pages 227 - 233 *
YOSHIO HASHIDA ET AL.: "Secondary Surveillance Radar for Air Traffic Control - SSR Mode S", TOSHIBA REVIEW, vol. 59, no. 2, February 2004 (2004-02-01), pages 58 - 61, Retrieved from the Internet <URL:http://www.toshiba.co.jp/tech/review/2004/02/index-j.htm> *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199214A (ja) * 2013-03-29 2014-10-23 株式会社東芝 二次監視レーダ装置、及びレーダシステム
CN104035066A (zh) * 2014-03-13 2014-09-10 中国民用航空总局第二研究所 基于无源多点定位技术的目标运动-静止状态判断方法
CN104821104A (zh) * 2015-04-15 2015-08-05 中国民用航空总局第二研究所 一种民航用多点定位的询问方法及多点定位询问系统
JP2018538529A (ja) * 2015-11-11 2018-12-27 レオナルド・エムダブリュ・リミテッドLeonardo MW Ltd レーダシステム及び方法
JP2022031853A (ja) * 2015-11-11 2022-02-22 レオナルド・ユーケー・リミテッド レーダシステム及び方法
JP7027310B2 (ja) 2015-11-11 2022-03-01 レオナルド・ユーケー・リミテッド レーダシステム及び方法
JP7238081B2 (ja) 2015-11-11 2023-03-13 レオナルド・ユーケー・リミテッド レーダシステム及び方法
JP2017215165A (ja) * 2016-05-30 2017-12-07 日本電気株式会社 Ads−b通報取得装置及び方法
CN107038900A (zh) * 2017-04-25 2017-08-11 西安航空学院 一种通用航空低空监视与服务系统
JP7356681B2 (ja) 2019-09-20 2023-10-05 日本無線株式会社 質問信号送信システム及び質問信号送信方法
JP7425709B2 (ja) 2019-11-25 2024-01-31 タレス 近接レーダとのモードsレーダのii/si識別コードにおける競合を検出するための方法及びかかる方法を実装する二次レーダ

Also Published As

Publication number Publication date
KR101690848B1 (ko) 2016-12-28
JP5958528B2 (ja) 2016-08-02
JPWO2013121694A1 (ja) 2015-05-11
KR20140121838A (ko) 2014-10-16
MY172432A (en) 2019-11-25

Similar Documents

Publication Publication Date Title
JP5958528B2 (ja) 移動体位置測定システム、中央処理部及びそれらに用いる質問制御方法
EP2548041B1 (en) Systems and methods for short baseline, low cost determination of airborne aircraft location
US6094169A (en) Multilateration auto-calibration and position error correction
US8130135B2 (en) Bi-static radar processing for ADS-B sensors
US6809679B2 (en) Surveillance system and method for aircraft approach and landing
US3895382A (en) Method and apparatus for measuring passively range and bearing
CN104134373A (zh) 用于ads-b验证和导航的使用到达角测量的装置、系统和方法
ZA200209868B (en) Vehicle surveillance system.
KR20030041128A (ko) 항공기의 밀집된 환경용 디지털 수신 시스템
WO2010138696A1 (en) System and method for passive range-aided multilateration using time lag of arrival (tloa) measurements
KR101635871B1 (ko) 이동체 위치 측정 시스템, 중앙국 및 그들에 이용되는 질문 제어 방법 및, 그 프로그램이 저장된 기억 매체
JPH09288175A (ja) 空港面航空機識別方式
Lai et al. ADS-B based collision avoidance radar for unmanned aerial vehicles
KR20170024323A (ko) 다변측정 감시시스템용 질문송신장치
JP5892233B2 (ja) 移動体位置測定システム、中央局及びそれらに用いる質問制御方法並びにそのプログラム
CN110058223B (zh) 一种基于航管应答信号的单站无源定位方法
JP3042469B2 (ja) 航空機監視システム
JP7356681B2 (ja) 質問信号送信システム及び質問信号送信方法
JPS61256272A (ja) Ssr方式による航空機識別装置
CN113030946B (zh) 二次雷达探测方法、装置、设备、系统、介质及程序产品
JP2024037268A (ja) なりすまし検出システム
Wei et al. The Implementation of Interrogator for Multilateration System
Wu Alternative terminal navigation based on modified airport multilateration system
Bojda Air traffic surveillance method using an existing network of DME navigation system
JP2023036375A (ja) 航空管制無線システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500066

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147022471

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749056

Country of ref document: EP

Kind code of ref document: A1