WO2013121595A1 - 法線検出方法、法線検出装置および法線検出機能を備えた加工機 - Google Patents

法線検出方法、法線検出装置および法線検出機能を備えた加工機 Download PDF

Info

Publication number
WO2013121595A1
WO2013121595A1 PCT/JP2012/054853 JP2012054853W WO2013121595A1 WO 2013121595 A1 WO2013121595 A1 WO 2013121595A1 JP 2012054853 W JP2012054853 W JP 2012054853W WO 2013121595 A1 WO2013121595 A1 WO 2013121595A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
vector
measured
measurement position
normal
Prior art date
Application number
PCT/JP2012/054853
Other languages
English (en)
French (fr)
Inventor
善仁 藤田
中村 幹夫
裕文 家永
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP12868552.6A priority Critical patent/EP2827098B1/en
Priority to US14/375,693 priority patent/US10132624B2/en
Publication of WO2013121595A1 publication Critical patent/WO2013121595A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/16Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring distance of clearance between spaced objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to a normal detection method using a distance detector, a normal detection device, and a processing machine having a normal detection function.
  • a convex portion is formed on the surface of the main wing by projecting the mechanically connected parts from the surface of the main wing, or A recess may be formed on the surface of the main wing due to the deep mounting hole of the mechanical coupling component.
  • These convex and concave portions on the surface of the main wing affect the aerodynamic performance of the airplane. Therefore, drilling for passing mechanically connected parts to the main wing, which is the work piece, is performed at an accurate processing position, an accurate processing direction, and an accurate processing amount so that convex portions and concave portions are minimized.
  • the processing direction is mainly an angle orthogonal to the workpiece, and it is necessary to obtain a normal vector on the processing target surface.
  • Patent Document 1 As a normal detection method for obtaining a normal vector on a surface to be processed, and Patent Document 2 as a processing machine having a normal detection function.
  • the normal detection method of Patent Document 1 is a normal detection jig in which an inner cylinder and an outer cylinder are coaxially fitted, and the outer cylinder is circumferentially rotated and axially movable with respect to the inner cylinder.
  • Two opposing contact sensors of a plurality of contact sensors installed radially on one end side of the cylinder come into contact with the object to be measured, and are installed on the two opposing protruding tip faces on one end of the outer cylinder.
  • This is a method for obtaining a normal vector on the surface to be measured of the object to be measured by bringing the two contact sensors into contact with the object to be measured.
  • the two contact sensors facing the inner cylinder detect the object to be measured, and the two contact sensors installed at the tip of the outer cylinder detect the object to be measured. You have to search for it. Therefore, it takes time to make the axial direction of the normal detection jig coincide with the normal vector on the surface to be measured. Also, with the normal detection method of Patent Document 1, it is difficult to automatically control the attitude of the normal detection jig.
  • the processing machine equipped with the normal detection function of Patent Document 2 is provided with a drilling tool provided with a processing jig provided with two non-contact sensors on one end side and a motor-driven height adjustment mechanism on the other end side. Machine.
  • the two non-contact sensors are arranged so as to be symmetrical with respect to the drilling tool, and the height adjusting mechanism is arranged so as to be aligned with the two non-contact sensors and the tool.
  • the present invention has been made in view of the above problems, and the normal vector on the surface to be measured is accurately obtained from the distance measured by the distance detector so that it is not necessary to search for the normal vector on the surface to be measured.
  • the purpose is to calculate.
  • one or a plurality of distance detectors are used to measure a plurality of distances to the object to be measured, and the object to be measured is obtained from the obtained measurement result.
  • the normal detection method for obtaining a normal vector on the surface to be measured a plurality of measurement positions at which the distance detector measures the distance to the object to be measured, and the distance detector at the plurality of measurement positions are obtained by the distance detector.
  • a plurality of measurement points on the measurement surface at the plurality of measurement positions are represented by three-dimensional coordinates from a plurality of measurement results, and any first measurement position of the plurality of measurement positions by the distance detector
  • a first vector is a straight line connecting the first measurement point measured at the second measurement point measured at a second measurement position different from the first measurement position on the three-dimensional axis, and the first vector One measurement point and first measurement position
  • a straight line connecting a third measurement point measured at a third measurement position different from the second measurement position on a three-dimensional axis is a second vector, and the first vector and the second vector
  • the normal vector on the surface to be measured is obtained by the outer product of.
  • the area of a triangle formed by three points of the first measurement position, the second measurement position, and the third measurement position is maximized.
  • the first measurement position, the second measurement position, and the third measurement position are selected.
  • the distance detector is radially arranged in eight locations including the first measurement position, the second measurement position, and the third measurement position. It arrange
  • a normal detection method according to a fourth invention for solving the above-described problems is characterized in that a non-contact sensor is used as the distance detector.
  • a normal detection device for solving the above-mentioned problem is provided with one or a plurality of distance detectors for measuring the distance to the object to be measured, and the distance detector for measuring the distance to the object to be measured. Representing a plurality of measurement points on the surface to be measured at the plurality of measurement positions from a plurality of measurement positions and a plurality of measurement results obtained by the distance detector at the plurality of measurement positions in three-dimensional coordinates, A first measurement point measured at an arbitrary first measurement position among the plurality of measurement positions by the distance detector, and a second measurement measured at a second measurement position different from the first measurement position A third line that is measured at a third measurement position different from the first measurement point and the first measurement position and the second measurement position is a straight line connecting the points on the three-dimensional axis as the first vector.
  • a second straight line connecting the measurement points on the 3D axis A calculation means for calculating a normal vector on the surface to be measured by an outer product of the first vector and the second vector, and calculating a machining vector passing through a set point of the machining position from the normal vector; It has the normal-line detection mechanism which has these.
  • a processing machine having a normal detection function according to a sixth invention that solves the above-described problem is a normal detection device according to the fifth invention, and calculates the attitude of the normal detection device and the processing tool by the calculation means. And a three-dimensional attitude control means for three-dimensionally controlling the processed vector.
  • the normal vector is calculated from the different first vector and the second vector that are not parallel, so that the normal vector can be obtained with high accuracy. Further, since the normal vector on the measured surface can be calculated from the measurement distance obtained by the distance detector, when the normal detection method according to the present invention is applied to a processing machine or the like, the processing tool of the processing machine It is easy to automatically control the attitude of the machine, etc., and shorten the work time for controlling the attitude of the processing tool etc. of the processing machine so that the processing direction of the processing machine matches the normal vector on the surface to be measured Can do.
  • the first measurement position, the second measurement position, and the third measurement position so that the area of a triangle formed by three points is maximized. Since the measurement position, the second measurement position, and the third measurement position are selected and the first measurement position, the second measurement position, and the third measurement position are separated from each other, the first measurement position obtained by the distance detector is used. The accuracy of the normal vector calculated from the measurement distances at the first measurement position, the second measurement position, and the third measurement position is improved.
  • the normal detection method by using eight distance detectors installed radially, it is possible to measure at eight locations simultaneously, and a part of distance detection by holes, end faces, etc.
  • the normal vector can be obtained from the measurement distance obtained by another distance detector capable of performing effective measurement even when the instrument cannot perform effective measurement.
  • the normal vector is calculated from the first vector and the second vector that are not parallel to each other, so that the normal vector can be obtained with high accuracy. Further, since the normal vector on the measured surface can be calculated from the measurement distance obtained by the distance detector, when the normal detection device according to the present invention is applied to a processing machine or the like, the processing tool of the processing machine It is easy to automatically control the attitude of the machine, etc., and shorten the work time for controlling the attitude of the processing tool etc. of the processing machine so that the processing direction of the processing machine matches the normal vector on the surface to be measured Can do.
  • the normal vector on the surface to be measured is calculated by the normal detection device according to the fifth aspect of the invention, and is adjusted to the calculated normal vector. Since the posture of the processing tool is controlled by the three-dimensional posture control means, the processing tool can be accurately and quickly matched with the normal vector, and processing in the correct normal direction can be performed.
  • FIG. 3 is a conceptual diagram illustrating measurement by a distance detector according to Embodiment 1.
  • FIG. FIG. 6 is a plan view showing the arrangement of distance detectors in the processing jig according to the first embodiment (showing the direction of arrow II in FIG. 3). It is a side view which shows the III direction arrow of FIG. It is a top view which shows the processing jig which attached the parallel jig concerning Example 1 (showing the IV direction arrow in FIG. 5). It is a side view which shows the V direction arrow of FIG. It is a top view (showing the VI direction arrow in FIG. 7) which shows the processing jig
  • FIG. 1 It is a side view which shows the VII direction arrow of FIG. It is the schematic which shows an example of selection which comprises the triangle of the largest area by arrangement
  • FIG. It is the schematic which shows an example of selection which comprises the triangle of the 2nd largest area by arrangement
  • FIG. It is the schematic which shows an example of selection which comprises the triangle of the 3rd largest area by arrangement
  • FIG. It is the schematic which shows an example of selection which comprises the triangle of the 4th largest area by arrangement
  • FIG. It is the schematic which shows an example of selection which comprises the triangle of the 5th largest area by arrangement
  • a processing jig 10 having a normal detection mechanism is attached to a processing machine (not shown) to enable processing from the normal direction of the measured surface 21 of the measured object 20 to be processed.
  • the processing jig 10 includes a non-contact sensor 30 that measures the distance to the object to be measured 20, and a normal vector on the surface to be measured 21 from the measurement distance L obtained by the non-contact sensor 30.
  • Calculation means (not shown) for calculating Vn and machining vector Vm, and three-dimensional attitude control means (not shown) for controlling the attitude of the processing jig 10 in a three-dimensional manner together with a processing machine (not shown) in the direction calculated by the calculation means.
  • non-contact sensors 30a, 30b, 30c, 30d, 30e, 30f, 30g, and 30h are radially installed on the processing-side front end surface 11 of the processing jig 10.
  • the processing jig 10 is installed in the parallel jig 40 (FIGS. 4 and 5) for correcting the Z direction in the non-contact sensors 30a to 30h installed in the processing jig 10, and the processing jig 10.
  • a machining-side tip hole 12 to which the tilt jig 50 (FIGS. 6 and 7) for correcting the X and Y directions in the non-contact sensors 30a to 30h can be attached and detached is provided.
  • the Z direction is a measurement direction of the non-contact sensors 30a to 30h
  • the X direction is an arbitrary direction orthogonal to the Z direction
  • the Y direction is a direction orthogonal to the Z direction and the X direction.
  • the processing-side tip hole 12 is also used as a hole through which a processing part of a processing machine (not shown) passes during processing.
  • the parallel jig 40 is a jig for correcting the Z direction in the non-contact sensors 30a to 30h, and is fitted into the processing side tip hole 12 of the processing jig 10 as shown in FIGS. It has a mounting cylindrical portion 41 and a Z-direction correction surface 42 for correcting the Z-direction in the non-contact sensors 30a to 30h.
  • the mounting cylindrical portion 41 of the parallel jig 40 is inserted into the processing-side tip hole 12 of the processing jig 10 and the parallel jig 40 is fixed to the processing jig 10, the Z direction correction surface 42 is formed on the processing jig 10.
  • the Z-direction correction surface 42 is wide enough to allow the eight non-contact sensors 30a to 30h to measure the distance to the Z-direction correction surface 42. .
  • the tilt jig 50 is a jig for correcting the X direction and the Y direction in the non-contact sensors 30a to 30h. As shown in FIGS. 6 and 7, the tilt jig 50 is formed in the processing-side tip hole 12 of the processing jig 10. It has a fitting cylindrical portion 51 to be fitted, and an XY direction correction surface 52 for correcting the Z direction in the non-contact sensors 30a to 30h.
  • the XY direction correction surface 52 is arbitrary with respect to the machining-side tip surface 11 of the machining jig 10.
  • the central portion 53 of the XY direction correction surface 52 is positioned at an arbitrary distance ⁇ xy from the processing side tip surface 11 of the processing jig 10. Since the X and Y directions of the eight non-contact sensors 30a to 30h are corrected, the XY direction correction surface 52 is wide enough that the eight non-contact sensors 30a to 30h can measure the distance to the XY direction correction surface 52. .
  • a convex portion (not shown) is provided on the outer wall surface of the mounting cylindrical portion 51 of the tilt jig 50, and a first concave portion (not shown) is provided on the inner wall surface of the processing-side tip hole 12 of the processing jig 10.
  • the XY direction correction surface 52 can be attached so as to be parallel to the X direction.
  • a second concave portion (not shown) is provided on the inner wall surface of the machining-side tip hole 12 at a position different from the first concave portion by 90 degrees in the circumferential direction, and the convex portion of the mounting cylindrical portion 51 of the tilt jig 50 and the processing jig are provided.
  • the second recesses of the ten processing-side tip holes 12 can be engaged so that the XY direction correction surface 52 is parallel to the Y direction.
  • the parallel jig 40 is attached to the processing jig 10, and the distance to the Z direction correction surface 42 of the parallel jig 40 is measured by the eight non-contact sensors 30a to 30h.
  • the parallel jig 40 and the Z direction correction surface 42 are formed so that the Z direction correction surface 42 of the parallel jig 40 is at an arbitrary distance ⁇ z from the processing side tip surface 11 of the processing jig 10. Attached. Therefore, by comparing with the measured distances Lza to Lzh to the Z direction correction surface 42 obtained by the non-contact sensors 30a to 30h, it is possible to correct the Z direction in the eight non-contact sensors 30a to 30h.
  • the installation positions of the eight non-contact sensors 30a to 30h in the Z direction with respect to the processing jig 10 can be accurately grasped, and the relative positions by assembling the eight non-contact sensors 30a to 30h to the processing jig 10 or the like.
  • the Z-direction distance measurement by the non-contact sensors 30a to 30h can be accurately performed.
  • the tilt jig 50 is attached to the processing jig 10 so that the XY direction correction surface 52 is parallel to the Y direction, and the distance to the XY direction correction surface 52 of the tilt jig 50 is set by eight non-contact sensors 30a to 30h. taking measurement.
  • the XY direction correction surface 52 is at an arbitrary angle ⁇ with respect to the processing side tip surface 11 of the processing jig 10, and the center portion of the XY direction correction surface is at an arbitrary distance ⁇ xy from the processing tip surface 11 of the processing jig 10.
  • An inclination jig 50 and an XY direction correction surface 51 are formed on the surface and assembled with the processing jig 10.
  • correction in the X direction in the eight non-contact sensors 30a to 30h can be performed. That is, the installation positions Xa to Xh of the eight non-contact sensors 30a to 30h in the X direction with respect to the processing jig 10 can be accurately grasped, and the eight non-contact sensors 30a to 30h are assembled to the processing jig 10. Relative errors due to can be corrected, and distance measurement in the X direction can be accurately performed by the non-contact sensors 30a to 30h.
  • the tilt jig 50 is attached to the processing jig 10 so that the XY direction correction surface 52 is parallel to the X direction, and the distance to the XY direction correction surface 52 of the tilt jig 50 is set by eight non-contact sensors 30a to 30h. taking measurement.
  • the tilting jig 50 is formed so that the XY direction correction surface 52 is at an arbitrary angle ⁇ and the center of the XY direction correction surface is at an arbitrary distance ⁇ xy from the processing tip surface 11 of the processing jig 10. And assembled. Therefore, by calculating from the measurement distances Lya to Lyh obtained by the non-contact sensors 30a to 30h, correction in the Y direction in the eight non-contact sensors 30a to 30h can be performed.
  • the installation positions Ya to Yh of the eight non-contact sensors 30a to 30h in the Y direction with respect to the processing jig 10 can be accurately grasped, and the eight non-contact sensors 30a to 30h are assembled to the processing jig 10.
  • the relative error due to can be corrected, and the distance measurement in the Y direction by the non-contact sensors 30a to 30h can be accurately performed.
  • Three normal vectors Vn are selected from eight non-contact sensors 30a to 30h installed on the processing jig 10, and a measurement distance La obtained by a selected combination of non-contact sensors 30a, 30d, and 30f, which will be described later.
  • Ld, Lf and the selected combination of non-contact sensors 30a, 30d, 30f installed positions (first measurement position, second measurement position, third measurement position) Pa (Xa, Ya), Pd (Xd , Yd) and Pf (Xf, Yf).
  • the eight non-contact sensors 30a to 30h installed on the processing jig 10 there are fifty-six combinations for selecting three, and five are classified according to the area of the triangle formed by each combination.
  • the triangle with the largest area is the eight ways for selecting the non-contact sensors 30a, 30d, 30f and the like
  • the triangle with the second largest area is the eight ways for selecting the non-contact sensors 30a, 30c, 30g and the like.
  • the triangle with the third largest area is selected from the non-contact sensors 30a, 30b, 30f, etc.
  • the triangle with the fourth largest area is selected from the non-contact sensors 30a, 30b, 30g, etc.
  • There are sixteen ways to select the non-contact sensors 30a, 30b, 30h, etc. which are the triangles with the smallest area.
  • Measured distances La to Lh to the measured object 20 measured by the eight non-contact sensors 30a to 30h are not all effective. This is due to the case where holes are opened at the measurement points Qa to Qh of the object to be measured 20 or the case where the measurement points Qa to Qh are off the end of the object to be measured 20.
  • the effective measurement distances La to Lh are less than the necessary number, the necessary number of effective measurement distances La to Lh is obtained by slightly moving the processing jig 10 and performing measurement with the non-contact sensors 30a to 30h. To satisfy.
  • the non-contact sensors 30a to 30h used for the calculation of normal detection are made by three non-contact sensors 30 selected from the non-contact sensors 30a to 30h from which the measurement distances La to Lh which are effective measurement results are obtained. Select to maximize the area.
  • Measurement points (first measurement point, second measurement point, third measurement point) Qa, Qd, Qf on the surface to be measured 21 measured by the selected combination of non-contact sensors 30a, 30d, 30f, Measurement positions obtained by the installation positions Pa (Xa, Ya), Pd (Xd, Yd), Pf (Xf, Yf) of the non-contact sensors 30a, 30d, 30f and the non-contact sensors 30a, 30d, 30f. From La, Ld, and Lf, it is expressed in three-dimensional coordinates.
  • Measurement point Qa (Xa, Ya, Za) Measurement point Qd: (Xd, Yd, Zd) Measurement point Qf: (Xf, Yf, Zf)
  • a vector (first first) connecting the measurement points Qa and Qd measured by any two non-contact sensors 30a, 30d Vector) Vad and vector (second vector) Vaf connecting measurement point Qa and measurement point Qf measured by any two non-contact sensors 30a, 30f are calculated.
  • s and t are arbitrary real numbers.
  • the vector Vn that is the outer product of the vector Vad and the vector Vaf is calculated.
  • the vector Vn is a direction vector orthogonal to the vector Vad and the vector Vaf, and indicates a normal vector on the measured surface 21.
  • u is an arbitrary real number.
  • the machining vector Vm passing through the set point Rm (Xm, Ym, Zm) of the machining location is calculated from the calculated normal vector Vn.
  • v is an arbitrary real number.
  • the attitude of the processing jig 10 is controlled by the three-dimensional attitude control means so that the center axis of the processing jig 10 coincides with the calculated processing vector Vm.
  • the measurement distances La, Ld, and Lf obtained by the opposing non-contact sensors 30a, 30d, and 30f have the same value.
  • the normal vector Vn on the surface to be measured 21 is obtained with high accuracy, and the normal vector Vn is obtained by calculating the orientation of the processing tool 10 and the processing tool of the processing machine (not shown). It is possible to match and perform processing in the correct normal direction.
  • the measurement distances Lb, Le, Lg obtained by the non-contact sensors 30b, 30e, 30g and the selected combination A normal vector V′n is calculated from the installation positions Pb (Xb, Yb), Pe (Xe, Ye), and Pg (Xg, Yg) of the non-contact sensors 30 b, 30 e, 30 g, and a plurality of normal vectors Vn and V By taking the average of 'n, the normal vector Vn on the measured surface 21 can be obtained with higher accuracy.
  • the normal vector Vn on the surface 21 to be measured is obtained with higher accuracy by repeating the normal detection method and the three-dimensional attitude control work of the present embodiment a plurality of times, and the processing jig 10 and a processing machine (not shown) are obtained.
  • the processing tool can be matched with the normal vector Vn calculated with higher accuracy.
  • the X, Y, and Z directions of the eight non-contact sensors 30a to 30h attached to the processing jig 10 are corrected.
  • correction in the X direction, Y direction, and Z direction as in this embodiment is not necessary.
  • the normal vector Vn may be calculated from a plurality of measurement results measured at a plurality of measurement positions by one non-contact sensor 30, and the contact sensor is used as a distance detector.
  • the normal vector Vn may be calculated from the measurement result using.
  • the normal vector Vn is obtained using the processing jig 10 having the normal detection mechanism, but the present invention is not limited to this.
  • the normal detection may be performed without using the processing jig 10 by providing the processing machine with a distance detector, a calculation unit, and a three-dimensional attitude control unit.
  • the normal detection method according to the present invention can detect a normal vector on a target surface with high accuracy and in a short time, and is extremely useful for drilling processing for drilling an aircraft main wing or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Drilling And Boring (AREA)

Abstract

 一つまたは複数の距離検出器(30)を用いて被測定物(20)までの距離を測定し、得られた測定結果(L)から前記被測定物(20)の被測定面(21)における法線ベクトル(Vn)を求める法線検出方法であって、前記距離検出器(30)によって第一の測定位置(Pa)で測定する第一の測定点(Qa)と、前記第一の測定位置(Pa)と異なる第二の測定位置(Pd)で測定する第二の測定点(Qd)とを、三次元軸上で繋いだ直線を第一のベクトル(Vad)とし、前記第一の測定点(Qa)と、前記第一の測定位置(Pa)および前記第二の測定位置(Pd)と異なる第三の測定位置(Pf)で測定する第三の測定点(Qf)とを三次元軸上で繋いだ直線を第二のベクトル(Vaf)とし、前記第一のベクトル(Vad)と前記第二のベクトル(Vaf)との外積によって前記被測定面(21)における法線ベクトル(Vn)を求める方法。

Description

法線検出方法、法線検出装置および法線検出機能を備えた加工機
 本発明は、距離検出器を用いた法線検出方法、法線検出装置および法線検出機能を備えた加工機に関する。
 機械加工では、設計図面通りおよび加工設定通りに加工を施すことが重要であり、そのためには被加工物に対する加工位置、加工方向および加工量を正確に把握することが必要である。
 例えば、航空機の機体などのように多くの構成部品をリベットやファスナーなどの機械的結合部品によって機械的に結合して成る構造物においては、各構成部品に機械的結合部品を通すための穴明け加工を正確な加工位置、加工方向および加工量で施す必要がある。
 航空機の一構成部品である主翼と骨格部品等を機械的結合部品などによって機械的に結合する際、主翼の表面から機械的結合部品が突出することで主翼表面に凸部が形成される、または機械的結合部品の取付け穴が深いことで主翼表面に凹部が形成されることがある。これら主翼の表面の凸部および凹部は飛行機の空力性能に影響する。よって、凸部および凹部が最小限となるように、被加工物である主翼に対して、機械的結合部品を通すための穴明け加工を正確な加工位置かつ正確な加工方向かつ正確な加工量で行う。ここで、加工方向とは主に被加工物に対して直交する角度であり、加工対象面における法線ベクトルを求める必要がある。
特開昭61-269002号公報 特開平8-71823号公報
 加工対象面における法線ベクトルを求める法線検出方法として特許文献1があり、法線検出機能を備えた加工機として特許文献2がある。
 特許文献1の法線検出方法は、内筒と外筒が同軸上に嵌合されて成り、内筒に対して外筒が周方向回転および軸方向可動である法線検出治具において、内筒の一端側先端面に放射状に設置した複数の接触センサーのうち対向する二つの接触センサーが被測定物に接触し、外筒の一端側にある突出した対向する二つの先端面に設置した対向する二つの接触センサーが被測定物に接触することで、被測定物の被測定面における法線ベクトルを求める方法である。
 これは、法線検出治具の軸方向が被測定面における法線ベクトルと同一であるかを判別する方法である。つまり、内筒の対向する二つの接触センサーが被測定物を検知し、且つ外筒の先端に設置した二つの接触センサーが被測定物を検知するような法線検出治具の軸方向を手探りで模索しなければならない。よって、法線検出治具の軸方向を被測定面における法線ベクトルと一致させる作業には時間が掛かってしまう。また、特許文献1の法線検出方法では、法線検出治具の姿勢を自動制御することは困難である。
 特許文献2の法線検出機能を備えた加工機は、一端側に二つの非接触センサーを設置し、他端側にモータ駆動の高さ調整機構を設けた加工治具を備えた穴明け加工機である。二つの非接触センサーを穴明け加工具に対して対称となるように配置し、高さ調整機構を二つの非接触センサーおよび加工具と一列に並ぶように配置する。二つの非接触センサーによる測定距離が同一となるように高さ調整機構によって調整することで、加工対象面に対する加工機の角度を直角にする。
 これは、二つの非接触センサーおよび高さ調整機構が並ぶ一方向に対する直角度を検出する装置である。よって、当該方向とは異なる方向に対する直角度は検出できないので、加工対象面における法線ベクトルを高精度に求めるには不十分である。
 本発明は、上記のような問題に鑑みてなされたもので、被測定面における法線ベクトルを模索する必要がないように、距離検出器による測定距離から被測定面における法線ベクトルを高精度に算出することを目的とする。
 上記課題を解決する第一の発明に係る法線検出方法は、一つまたは複数の距離検出器を用いて被測定物までの複数の距離を測定し、得られた測定結果から前記被測定物の被測定面における法線ベクトルを求める法線検出方法において、前記距離検出器が前記被測定物までの距離を測定する複数の測定位置と、これら複数の測定位置において前記距離検出器によって得られた複数の測定結果とから前記複数の測定位置における前記被測定面上の複数の測定点を三次元座標で表し、前記距離検出器によって前記複数の測定位置のうちの任意の第一の測定位置で測定する第一の測定点と、前記第一の測定位置と異なる第二の測定位置で測定する第二の測定点とを三次元軸上で繋いだ直線を第一のベクトルとし、前記第一の測定点と、第一の測定位置および前記第二の測定位置と異なる第三の測定位置で測定する第三の測定点とを三次元軸上で繋いだ直線を第二のベクトルとし、前記第一のベクトルと前記第二のベクトルとの外積によって前記被測定面における法線ベクトルを求めることを特徴とする。
 上記課題を解決する第二の発明に係る法線検出方法は、前記第一の測定位置と前記第二の測定位置と前記第三の測定位置の三点で作られる三角形の面積が最大となるように、前記第一の測定位置、前記第二の測定位置および前記第三の測定位置を選定したことを特徴とする。
 上記課題を解決する第三の発明に係る法線検出方法は、前記距離検出器を、前記第一の測定位置、前記第二の測定位置および前記第三の測定位置を含む八か所に放射状となるように配置したことを特徴とする。
 上記課題を解決する第四の発明に係る法線検出方法は、前記距離検出器として非接触センサーを用いたことを特徴とする。
 上記課題を解決する第五の発明に係る法線検出装置は、被測定物までの距離を測定する一つまたは複数の距離検出器と、前記距離検出器が前記被測定物までの距離を測定する複数の測定位置と、これら複数の測定位置において前記距離検出器によって得られた複数の測定結果とから前記複数の測定位置における前記被測定面上の複数の測定点を三次元座標で表し、前記距離検出器によって前記複数の測定位置のうちの任意の第一の測定位置で測定する第一の測定点と、前記第一の測定位置と異なる第二の測定位置で測定する第二の測定点とを三次元軸上で繋いだ直線を第一のベクトルとし、前記第一の測定点と、第一の測定位置および前記第二の測定位置と異なる第三の測定位置で測定する第三の測定点とを三次元軸上で繋いだ直線を第二のベクトルとし、前記第一のベクトルと前記第二のベクトルの外積によって前記被測定面における法線ベクトルを算出し、この法線ベクトルから加工箇所の設定点を通る加工用ベクトルを算出する演算手段とを有する法線検出機構を備えたことを特徴とする。
 上記課題を解決する第六の発明に係る法線検出機能を備えた加工機は、第五の発明に係る法線検出装置と、当該法線検出装置および加工具の姿勢を前記演算手段によって算出された加工用ベクトルへ三次元的に制御する三次元姿勢制御手段とを有することを特徴とする。
 第一の発明に係る法線検出方法によれば、平行でない異なる第一のベクトルと第二のベクトルから法線ベクトルを算出しているので、法線ベクトルを高精度に求めることができる。また、距離検出器によって得られる測定距離から被測定面における法線ベクトルを算出することができるので、本発明に係る法線検出方法を加工機等に適用した場合には、加工機の加工具等の姿勢を自動制御することが容易になり、加工機の加工方向等を被測定面における法線ベクトルと一致させるように加工機の加工具等の姿勢を制御する作業時間の短縮を図ることができる。
 第二の発明に係る法線検出方法によれば、第一の測定位置、第二の測定位置および第三の測定位置の三点で作られる三角形の面積が最大となるように、第一の測定位置、第二の測定位置および第三の測定位置を選定し、第一の測定位置、第二の測定位置および第三の測定位置が互いに離れるようにしたので、距離検出器によって得られる第一の測定位置、第二の測定位置および第三の測定位置での測定距離から算出する法線ベクトルの精度が向上する。
 第三の発明に係る法線検出方法によれば、放射状に設置した八個の距離検出器を用いることで、八か所同時の測定が可能になり、穴や端面等によって一部の距離検出器が有効な測定を行えない場合にも有効な測定を行える他の距離検出器によって得られる測定距離から法線ベクトルを求めることができる。
 第四の発明に係る法線検出方法によれば、距離検出器として非接触センサーを用いることで、接触センサーを被測定物に接触させるための動作がなくなるので、被測定面における法線ベクトルを求める作業時間を短縮できる。
 第五の発明に係る法線検出装置によれば、平行でない異なる第一のベクトルと第二のベクトルから法線ベクトルを算出しているので、法線ベクトルを高精度に求めることができる。また、距離検出器によって得られる測定距離から被測定面における法線ベクトルを算出することができるので、本発明に係る法線検出装置を加工機等に適用した場合には、加工機の加工具等の姿勢を自動制御することが容易になり、加工機の加工方向等を被測定面における法線ベクトルと一致させるように加工機の加工具等の姿勢を制御する作業時間の短縮を図ることができる。
 第六の発明に係る法線検出機能を備えた加工機によれば、第五の発明に係る法線検出装置によって被測定面における法線ベクトルを算出し、この算出した法線ベクトルに合わせて三次元姿勢制御手段により加工具の姿勢を制御するので、加工具を正確かつ迅速に法線ベクトルに一致させることができ、正確な法線方向の加工を行うことができる。
実施例1に係る距離検出器による測定を示す概念図である。 実施例1に係る加工治具における距離検出器の配置を示す平面図(図3におけるII方向矢視を示す)である。 図2のIII方向矢視を示す側面図である。 実施例1に係る平行治具を取付けた加工治具を示す平面図(図5におけるIV方向矢視を示す)である。 図4のV方向矢視を示す側面図である。 実施例1に係る傾斜治具を取付けた加工治具を示す平面図(図7におけるVI方向矢視を示す)である。 図6のVII方向矢視を示す側面図である。 実施例1に係る加工治具における距離検出器の配置で、最大面積の三角形を成す選定の一例を示す概略図である。 実施例1に係る加工治具における距離検出器の配置で、二番目に大きい面積の三角形を成す選定の一例を示す概略図である。 実施例1に係る加工治具における距離検出器の配置で、三番目に大きい面積の三角形を成す選定の一例を示す概略図である。 実施例1に係る加工治具における距離検出器の配置で、四番目に大きい面積の三角形を成す選定の一例を示す概略図である。 実施例1に係る加工治具における距離検出器の配置で、五番目に大きい面積の三角形を成す選定の一例を示す概略図である。
 以下に、本発明に係る法線検出方法の実施例について、添付図面を参照しながら詳細に説明する。もちろん、本発明は以下の実施例に限定されず、本発明の趣旨を逸脱しない範囲で、各種変更が可能であることは言うまでもない。
 本発明の実施例1に係る法線検出方法について、図1乃至図8を参照して説明する。
 本実施例では、図示しない加工機に法線検出機構を備えた加工治具10を取付け、被加工物である被測定物20の被測定面21における法線方向からの加工を可能にする。
 図1および図2に示すように、加工治具10は、被測定物20までの距離を測定する非接触センサー30、非接触センサー30によって得られる測定距離Lから被測定面21における法線ベクトルVnおよび加工用ベクトルVmを算出する図示しない演算手段、演算手段によって算出された方向へ加工治具10の姿勢を図示しない加工機と共に三次元的に制御する図示しない三次元姿勢制御手段を有する。本実施例の加工治具10では、加工治具10の加工側先端面11に八個の非接触センサー30a、30b、30c、30d、30e、30f、30g、30hを放射状に設置する。
 また、加工治具10は、加工治具10に設置した非接触センサー30a~30hにおけるZ方向の補正を行うための平行治具40(図4および図5)、および加工治具10に設置した非接触センサー30a~30hにおけるX方向およびY方向の補正を行うための傾斜治具50(図6および図7)を取付け外し可能な加工側先端孔12を有する。ここで、Z方向は非接触センサー30a~30hの測定方向であり、X方向はZ方向に直交する任意の方向であり、Y方向はZ方向かつX方向に直交する方向である。なお、加工側先端孔12は、加工の際に図示しない加工機の加工部位を通す孔としても用いられる。
 平行治具40は、非接触センサー30a~30hにおけるZ方向の補正を行うための治具であり、図4および図5に示すように、加工治具10の加工側先端孔12に嵌合する取付け円筒部41を有し、非接触センサー30a~30hにおけるZ方向の補正を行うためのZ方向補正面42を有する。平行治具40の取付け円筒部41を加工治具10の加工側先端孔12に挿し込み、加工治具10に対して平行治具40を固定すると、Z方向補正面42は加工治具10の加工側先端面11と平行すなわち非接触センサー30a~30hの測定方向であるZ方向に対して直交し、且つ加工治具10の加工側先端面11から任意の距離δzに位置する。なお、八個の非接触センサー30a~30hにおけるZ方向の補正を行うので、Z方向補正面42は八個の非接触センサー30a~30hがZ方向補正面42までの距離を測定できる程度に広い。
 傾斜治具50は、非接触センサー30a~30hにおけるX方向およびY方向の補正を行うための治具であり、図6および図7に示すように、加工治具10の加工側先端孔12に嵌合する取付け円筒部51を有し、非接触センサー30a~30hにおけるZ方向の補正を行うためのXY方向補正面52を有する。取付け円筒部51を加工側先端孔12に挿し込み、加工治具10に対して傾斜治具50を固定すると、XY方向補正面52は加工治具10の加工側先端面11に対して任意の角度θを成し、且つXY方向補正面52の中心部53が加工治具10の加工側先端面11から任意の距離δxyに位置する。なお、八個の非接触センサー30a~30hにおけるXY方向の補正を行うので、XY方向補正面52は八個の非接触センサー30a~30hがXY方向補正面52までの距離を測定できる程度に広い。
 傾斜治具50の取付け円筒部51の外壁面に図示しない凸部を設け、加工治具10の加工側先端孔12の内壁面に図示しない第一の凹部を設け、傾斜治具50の取付け円筒部51の凸部と加工治具10の加工側先端孔12の第一の凹部が係合することでXY方向補正面52がX方向と平行になるように取付けることができ、加工治具10の加工側先端孔12の内壁面に第一の凹部とは円周方向に90度異なる位置に図示しない第二の凹部を設け、傾斜治具50の取付け円筒部51の凸部と加工治具10の加工側先端孔12の第二の凹部が係合することでXY方向補正面52がY方向と平行になるように取付けることができる。
 まず、加工治具10と平行治具40を用いた、加工治具10に設置した非接触センサー30a~30hにおけるZ方向の補正について図5を参照して説明する。
 平行治具40を加工治具10に取付け、八個の非接触センサー30a~30hによって平行治具40のZ方向補正面42までの距離を測定する。平行治具40のZ方向補正面42が加工治具10の加工側先端面11から任意の距離δzとなるように平行治具40およびZ方向補正面42を形成し、加工治具10と組付けている。よって、非接触センサー30a~30hによって得られるZ方向補正面42までの測定距離Lza~Lzhと比較することで、八個の非接触センサー30a~30hにおけるZ方向の補正を行うことができる。つまり、加工治具10に対する八個の非接触センサー30a~30hのZ方向における設置位置を正確に把握でき、八個の非接触センサー30a~30hの加工治具10への組付け等による相対的な誤差を補正し、非接触センサー30a~30hによるZ方向の距離測定を正確に行うことができる。
 次いで、加工治具10と傾斜治具50を用いた、加工治具10に設置した非接触センサー30a~30hにおけるX方向の補正について図7を参照して説明する。
 傾斜治具50をXY方向補正面52がY方向と平行になるように加工治具10に取付け、八個の非接触センサー30a~30hによって傾斜治具50のXY方向補正面52までの距離を測定する。XY方向補正面52が加工治具10の加工側先端面11に対して任意の角度θ、且つXY方向補正面の中心部が加工治具10の加工先端面11から任意の距離δxyとなるように傾斜治具50およびXY方向補正面51を形成し、加工治具10と組付けている。よって、非接触センサー30a~30hによって得られる測定距離Lxa~Lxhから算出することで、八個の非接触センサー30a~30hにおけるX方向の補正を行うことができる。つまり、加工治具10に対する八個の非接触センサー30a~30hのX方向における設置位置Xa~Xhを正確に把握でき、八個の非接触センサー30a~30hの加工治具10への組付け等による相対的な誤差を補正し、非接触センサー30a~30hによるX方向の距離測定を正確に行うことができる。
 次いで、加工治具10と傾斜治具50を用いた、加工治具10に設置した非接触センサー30a~30hにおけるY方向の補正について図7を参照して説明する。
 傾斜治具50をXY方向補正面52がX方向と平行となるように加工治具10に取付け、八個の非接触センサー30a~30hによって傾斜治具50のXY方向補正面52までの距離を測定する。XY方向補正面52が任意の角度θ、且つXY方向補正面の中心部が加工治具10の加工先端面11から任意の距離δxyとなるように傾斜治具50を形成し、加工治具10と組付けている。よって、非接触センサー30a~30hによって得られる測定距離Lya~Lyhから算出することで、八個の非接触センサー30a~30hにおけるY方向の補正を行うことができる。つまり、加工治具10に対する八個の非接触センサー30a~30hのY方向における設置位置Ya~Yhを正確に把握でき、八個の非接触センサー30a~30hの加工治具10への組付け等による相対的な誤差を補正し、非接触センサー30a~30hによるY方向の距離測定を正確に行うことができる。
 次いで、加工治具10を用いた、被測定面21における法線ベクトルVnを求める法線検出方法について図1を参照して説明する。
 法線ベクトルVnは、加工治具10に設置した八個の非接触センサー30a~30hから三個を選定し、後述する選定された組み合わせの非接触センサー30a、30d、30fによって得られる測定距離La、Ld、Lfおよび選定された組み合わせの非接触センサー30a、30d、30fの設置位置(第一の測定位置、第二の測定位置、第三の測定位置)Pa(Xa、Ya)、Pd(Xd、Yd)、Pf(Xf、Yf)から算出して求める。
 加工治具10に設置した八個の非接触センサー30a~30hを用いて、被測定物20までの測定距離La~Lhを測定する。加工治具10に設置した八個の非接触センサー30a~30hにおいて、三個を選定する組み合わせは五十六通りあり、それぞれの組み合わせで作られる三角形の面積で分類すると五通りである。
 例えば、最大面積の三角形となるのは非接触センサー30a、30d、30fなどを選定する八通り、二番目に大きい面積の三角形となるのは非接触センサー30a、30c、30gなどを選定する八通り、三番目に大きい面積の三角形となるのは非接触センサー30a、30b、30fなどを選定する十六通り、四番目に大きい面積の三角形となるのは非接触センサー30a、30b、30gなどを選定する十六通り、最小面積の三角形となるのは非接触センサー30a、30b、30hなどを選定する八通りである。
 八個の非接触センサー30a~30hによって測定した被測定物20までの測定距離La~Lhが、すべて有効であるとは限らない。これは、被測定物20の測定点Qa~Qhに穴が開いている場合、または測定点Qa~Qhが被測定物20の端部から外れている場合などによる。しかし、必ずしも全ての非接触センサー30a~30hによる測定結果である測定距離La~Lhが得られる必要はなく、有効な測定距離La~Lhが必要数に満たせば良い。有効な測定距離La~Lhが必要数に満たない場合は、加工治具10を僅かに平行移動させて非接触センサー30a~30hによる測定を行うことで、有効な測定距離La~Lhが必要数を満たすようにする。
 法線検出の演算に使用する非接触センサー30a~30hは、有効な測定結果である測定距離La~Lhが得られた非接触センサー30a~30hから選定した三個の非接触センサー30によって作られる面積が最大となるように選定する。
 選定された組み合わせの非接触センサー30a、30d、30fによって測定する被測定面21上の測定点(第一の測定点、第二の測定点、第三の測定点)Qa、Qd、Qfを、非接触センサー30a、30d、30fのXY方向の設置位置Pa(Xa、Ya)、Pd(Xd、Yd)、Pf(Xf、Yf)、および非接触センサー30a、30d、30fによって得られた測定距離La、Ld、Lfから、三次元座標で表す。
 測定点Qa:(Xa、Ya、Za)
 測定点Qd:(Xd、Yd、Zd)
 測定点Qf:(Xf、Yf、Zf)
 三次元座標を基に、選定された組み合わせの非接触センサー30a、30d、30fのうち、任意の二つの非接触センサー30a、30dによって測定した測定点Qaと測定点Qdを結ぶベクトル(第一のベクトル)Vad、および任意の二つの非接触センサー30a、30fによって測定した測定点Qaと測定点Qfを結ぶベクトル(第二のベクトル)Vafを算出する。
Figure JPOXMLDOC01-appb-M000001
 ここで、sおよびtは任意の実数である。
 ベクトルVadとベクトルVafの外積であるベクトルVnを算出する。ベクトルVnはベクトルVadおよびベクトルVafに直交する方向ベクトルであり、被測定面21における法線ベクトルを示す。
Figure JPOXMLDOC01-appb-M000002
 ここで、uは任意の実数である。
 算出した法線ベクトルVnから加工箇所の設定点Rm(Xm、Ym、Zm)を通る加工用ベクトルVmを算出する。
Figure JPOXMLDOC01-appb-M000003
 ここで、vは任意の実数である。
 加工治具10の中心軸を求めた加工用ベクトルVmと一致するように、三次元姿勢制御手段によって加工治具10の姿勢を制御する。このとき、対向する非接触センサー30a、30d、30fによって得られる測定距離La、Ld、Lfは同じ値となる。
 以上の法線検出方法および三次元姿勢制御によって、被測定面21における法線ベクトルVnを高精度に求め、加工治具10および図示しない加工機の加工具の向きを算出した法線ベクトルVnに一致させ、正確な法線方向の加工を行うことができる。
 また、選定された組み合わせの非接触センサー30a、30d、30fによって得られる測定距離La、Ld、Lfおよび選定された組み合わせの非接触センサー30a、30d、30fの設置位置Pa(Xa、Ya)、Pd(Xd、Yd)、Pf(Xf、Yf)によって法線ベクトルVnを算出するだけでなく、例えば、非接触センサー30b、30e、30gによって得られる測定距離Lb、Le、Lgおよび選定された組み合わせの非接触センサー30b、30e、30gの設置位置Pb(Xb、Yb)、Pe(Xe、Ye)、Pg(Xg、Yg)によって法線ベクトルV´nを算出し、複数の法線ベクトルVnとV´nの平均を取ることで、被測定面21における法線ベクトルVnをより高精度に求めることもできる。
 なお、本実施例の法線検出方法および三次元姿勢制御の作業を複数回繰り返すことで、被測定面21における法線ベクトルVnをより高精度に求め、加工治具10および図示しない加工機の加工具をより高精度に算出した法線ベクトルVnに一致させることができる。
 法線検出は非接触センサー30a~30hによって得られる測定距離La~Lhの影響を受けるので、非接触センサー30a~30hによる正確な測定が必要である。よって、本実施例では加工治具10に取付けた八個の非接触センサー30a~30hのX方向、Y方向およびZ方向の補正を行った。もちろん、非接触センサー30による正確な測定および設置が予め可能であれば、本実施例のようなX方向、Y方向およびZ方向の補正は必要ない。
 本実施例では距離検出器として八個の非接触センサー30a~30hを放射状に設置して法線検出を行ったが、本発明はこれに限定されない。例えば、非接触センサー30を可動式とすることで、一個の非接触センサー30によって複数の測定位置で測定した複数の測定結果から法線ベクトルVnを算出しても良く、距離検出器として接触センサーを用いた測定結果から法線ベクトルVnを算出しても良い。
 また、本実施例では法線検出機構を備えた加工治具10を用いて法線ベクトルVnを求めたが、本発明はこれに限定されない。例えば、加工機に距離検出器、演算手段および三次元姿勢制御手段を設けることで、加工治具10を用いずに法線検出を行っても良い。
 本発明に係る法線検出方法は、対象面における法線ベクトルを高精度かつ短時間で検出することが可能であり、航空機主翼等に穴明けを行う穴明け加工等に極めて有益である。
10 加工治具
11 加工側先端面
12 加工側先端孔
20 被測定物
21 被測定面
30 非接触センサー
40 平行治具
41 取付け円筒部
42 Z方向補正面
50 傾斜治具
51 取付け円筒部
52 XY方向補正面
53 中心部

Claims (6)

  1.  一つまたは複数の距離検出器を用いて被測定物までの複数の距離を測定し、得られた測定結果から前記被測定物の被測定面における法線ベクトルを求める法線検出方法において、
     前記距離検出器が前記被測定物までの距離を測定する複数の測定位置と、これら複数の測定位置において前記距離検出器によって得られた複数の測定結果とから前記複数の測定位置における前記被測定面上の複数の測定点を三次元座標で表し、
     前記距離検出器によって前記複数の測定位置のうちの任意の第一の測定位置で測定する第一の測定点と、前記第一の測定位置と異なる第二の測定位置で測定する第二の測定点とを三次元軸上で繋いだ直線を第一のベクトルとし、
     前記第一の測定点と、第一の測定位置および前記第二の測定位置と異なる第三の測定位置で測定する第三の測定点とを三次元軸上で繋いだ直線を第二のベクトルとし、
     前記第一のベクトルと前記第二のベクトルとの外積によって前記被測定面における法線ベクトルを求めることを特徴とする法線検出方法。
  2.  前記第一の測定位置と前記第二の測定位置と前記第三の測定位置の三点で作られる三角形の面積が最大となるように、前記第一の測定位置、前記第二の測定位置および前記第三の測定位置を選定したことを特徴とする請求項1に記載の法線検出方法。
  3.  前記距離検出器を、前記第一の測定位置、前記第二の測定位置および前記第三の測定位置を含む八か所に放射状となるように配置したことを特徴とする請求項1または請求項2に記載の法線検出方法。
  4.  前記距離検出器として非接触センサーを用いたことを特徴とする請求項1乃至請求項3に記載の法線検出方法。
  5.  被測定物までの距離を測定する一つまたは複数の距離検出器と、
     前記距離検出器が前記被測定物までの距離を測定する複数の測定位置と、これら複数の測定位置において前記距離検出器によって得られた複数の測定結果とから前記複数の測定位置における前記被測定面上の複数の測定点を三次元座標で表し、前記距離検出器によって前記複数の測定位置のうちの任意の第一の測定位置で測定する第一の測定点と、前記第一の測定位置と異なる第二の測定位置で測定する第二の測定点とを三次元軸上で繋いだ直線を第一のベクトルとし、前記第一の測定点と、第一の測定位置および前記第二の測定位置と異なる第三の測定位置で測定する第三の測定点とを三次元軸上で繋いだ直線を第二のベクトルとし、前記第一のベクトルと前記第二のベクトルの外積によって前記被測定面における法線ベクトルを算出し、この法線ベクトルから加工箇所の設定点を通る加工用ベクトルを算出する演算手段と
     を有することを特徴とする法線検出装置。
  6.  請求項5に記載の法線検出装置と、
     当該法線検出装置および加工具の姿勢を前記演算手段によって算出された加工用ベクトルへ三次元的に制御する三次元姿勢制御手段と
     を有することを特徴とする法線検出機能を備えた加工機。
PCT/JP2012/054853 2012-02-15 2012-02-28 法線検出方法、法線検出装置および法線検出機能を備えた加工機 WO2013121595A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12868552.6A EP2827098B1 (en) 2012-02-15 2012-02-28 Normal detection method, normal detection device, and machining machine provided with normal detection function
US14/375,693 US10132624B2 (en) 2012-02-15 2012-02-28 Normal detection method, normal detection device, and machining machine provided with normal detection function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012030413A JP5881455B2 (ja) 2012-02-15 2012-02-15 法線検出方法、法線検出装置および法線検出機能を備えた加工機
JP2012-030413 2012-02-15

Publications (1)

Publication Number Publication Date
WO2013121595A1 true WO2013121595A1 (ja) 2013-08-22

Family

ID=48983746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054853 WO2013121595A1 (ja) 2012-02-15 2012-02-28 法線検出方法、法線検出装置および法線検出機能を備えた加工機

Country Status (4)

Country Link
US (1) US10132624B2 (ja)
EP (1) EP2827098B1 (ja)
JP (1) JP5881455B2 (ja)
WO (1) WO2013121595A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111044279A (zh) * 2020-01-08 2020-04-21 福建闽高电力股份有限公司 三维矢量刀闸开关检测方法
CN112904315A (zh) * 2021-01-12 2021-06-04 广州广电研究院有限公司 一种激光雷达点云数据的校正方法、装置和介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6004954B2 (ja) 2013-01-18 2016-10-12 三菱重工業株式会社 法線検出装置、加工装置、及び法線検出方法
JP6775342B2 (ja) 2016-07-19 2020-10-28 株式会社トプコン レーザ遠隔測長器
JP6807628B2 (ja) 2016-09-30 2021-01-06 株式会社トプコン 測定装置及び測定方法
PL3367333T3 (pl) * 2017-02-28 2022-05-02 Phenospex B.V. Sposób charakteryzowania obiektu

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269002A (ja) 1985-05-23 1986-11-28 Mitsubishi Heavy Ind Ltd 法線検出方法
WO1990014924A1 (en) * 1989-05-30 1990-12-13 Fanuc Ltd Digitizing controller
JPH04241603A (ja) * 1991-01-14 1992-08-28 Fanuc Ltd 非接触デジタイジング方法
JPH07294237A (ja) * 1994-04-22 1995-11-10 Mitsutoyo Corp 三次元測定機を用いた孔形状の測定方法
JPH0871823A (ja) 1994-09-05 1996-03-19 Mitsubishi Heavy Ind Ltd 孔明け装置
JP2001099641A (ja) * 1999-09-30 2001-04-13 Pentel Corp 表面形状測定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4532368B2 (ja) * 2005-07-28 2010-08-25 東洋ゴム工業株式会社 製造途中の空気入りタイヤの検査方法および検査装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269002A (ja) 1985-05-23 1986-11-28 Mitsubishi Heavy Ind Ltd 法線検出方法
WO1990014924A1 (en) * 1989-05-30 1990-12-13 Fanuc Ltd Digitizing controller
JPH04241603A (ja) * 1991-01-14 1992-08-28 Fanuc Ltd 非接触デジタイジング方法
JPH07294237A (ja) * 1994-04-22 1995-11-10 Mitsutoyo Corp 三次元測定機を用いた孔形状の測定方法
JPH0871823A (ja) 1994-09-05 1996-03-19 Mitsubishi Heavy Ind Ltd 孔明け装置
JP2001099641A (ja) * 1999-09-30 2001-04-13 Pentel Corp 表面形状測定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111044279A (zh) * 2020-01-08 2020-04-21 福建闽高电力股份有限公司 三维矢量刀闸开关检测方法
CN112904315A (zh) * 2021-01-12 2021-06-04 广州广电研究院有限公司 一种激光雷达点云数据的校正方法、装置和介质
CN112904315B (zh) * 2021-01-12 2024-04-26 广州广电研究院有限公司 一种激光雷达点云数据的校正方法、装置和介质

Also Published As

Publication number Publication date
EP2827098B1 (en) 2019-09-04
JP2013167508A (ja) 2013-08-29
US20150019164A1 (en) 2015-01-15
EP2827098A1 (en) 2015-01-21
EP2827098A4 (en) 2015-12-30
US10132624B2 (en) 2018-11-20
JP5881455B2 (ja) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5936039B2 (ja) 法線検出方法、法線検出装置および法線検出機能を備えた加工機
JP5881455B2 (ja) 法線検出方法、法線検出装置および法線検出機能を備えた加工機
JP4275632B2 (ja) パラレルメカニズム機構のキャリブレーション方法、キャリブレーションの検証方法、キャリブレーションの検証プログラム、データ採取方法及び空間位置補正における補正データ採取方法
US9266241B2 (en) Robotic work object cell calibration system
CN104822492A (zh) 用于测量工件的工具机和方法
US7036236B1 (en) Method for certifying and calibrating multi-axis positioning coordinate measuring machines
EP3584533A1 (en) Coordinate measurement system
CN108871229B (zh) 一种滚珠螺母螺旋内滚道曲面及外径的测量方法
US8485017B1 (en) Robotic work object cell calibration system
CN106168468A (zh) 孔检测系统和方法
JP2015093346A5 (ja) 工作機械の加工検査ワークを用いた機上計測方法
US7637023B2 (en) Threaded stud position measurement adapter
KR102228835B1 (ko) 산업용 로봇의 측정 시스템 및 방법
JP6924953B2 (ja) 形状測定装置及び形状測定方法
CN108458710A (zh) 位姿测量方法
US6289595B1 (en) Method and device for measuring workpieces having internal and/or external screw thread or similar grooves
KR20090070194A (ko) 원통 내면에 오일 그루브를 가공하는 가공툴의 위치보정용센싱장치 및 이를 이용한 가공툴의 위치보정방법
JP7343349B2 (ja) ロボット、測定用治具、およびツール先端位置の決定方法
CN109945839B (zh) 一种对接工件的姿态测量方法
JP6742846B2 (ja) ポジションゲージ、芯出し装置及び芯出し方法
US20160096245A1 (en) Orthogonal Positioning Instrument, System, And Method For Automatic Machines
CN111879233A (zh) 测量设备
US20170003124A1 (en) Device and method for measuring measurement objects
CN111506015A (zh) 用于确定机床表面形状的方法
CN112809037B (zh) 一种用于在曲面结构上钻孔的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868552

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012868552

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14375693

Country of ref document: US