WO2013121509A1 - ボツリオコッカス・ブラウニーの単細胞単離方法及び単細胞培養方法 - Google Patents

ボツリオコッカス・ブラウニーの単細胞単離方法及び単細胞培養方法 Download PDF

Info

Publication number
WO2013121509A1
WO2013121509A1 PCT/JP2012/053300 JP2012053300W WO2013121509A1 WO 2013121509 A1 WO2013121509 A1 WO 2013121509A1 JP 2012053300 W JP2012053300 W JP 2012053300W WO 2013121509 A1 WO2013121509 A1 WO 2013121509A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
medium
single cells
brownie
botriococcus
Prior art date
Application number
PCT/JP2012/053300
Other languages
English (en)
French (fr)
Inventor
武 大濱
朋人 山崎
▲衒▼宣 朴
孔凡涛
侯利▲園▼
Original Assignee
公立大学法人高知工科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人高知工科大学 filed Critical 公立大学法人高知工科大学
Priority to PCT/JP2012/053300 priority Critical patent/WO2013121509A1/ja
Publication of WO2013121509A1 publication Critical patent/WO2013121509A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor

Definitions

  • the present invention relates to a single cell isolation method and a single cell culture method of Botriococcus brownie.
  • Botriococcus brownie (scientific name: Botryococcus braunii) is known as a kind of green algae that attracts attention by secreting hydrocarbons by photosynthesis.
  • This Botriococcus brownie forms a thick extracellular matrix with secreted hydrocarbons and similarly secreted macromolecular hydrocarbons and polysaccharides, and cells are embedded in this extracellular matrix. By connecting a plurality of cells, they form a bunches of 10-100 cells and live.
  • the method for cultivating Botriococcus brownie described in Patent Document 1 is a method in which Botriococcus brownie forming a colony is placed in an inorganic medium such as CHU medium, JM medium, MDM medium, and artificial light is intermittently applied. By irradiating at a rate of ⁇ 15 hours, an attempt is made to efficiently culture Botriococcus brownies having the ability to produce hydrocarbons.
  • Non-Patent Document 1 describes a single cell isolation method of Botriococcus brownie that enables isolation of single cells of Botriococcus brownie from the extracellular matrix. Yes.
  • Botriococcus brownie is placed in 2 ⁇ modified Eno.A medium, and glycerin is added to this medium so that the concentration is 25%.
  • a single cell of Botriococcus brownie is isolated from the inside.
  • Non-Patent Document 1 has a problem that the reagent used for the isolation of single cells is only glycerin and the selection range of the reagent is narrow. Furthermore, single cells isolated by the single cell isolation method of Non-Patent Document 1 are cultured using a condition medium, but they are not a culture method that is easy to die early and enables a high survival rate.
  • the object of the present invention is to provide a single cell isolation method of Botriococcus brownie that can expand the range of selection of a reagent for isolating single cells from the extracellular matrix of Botriococcus brownie. It is to provide a brownie single cell culture method.
  • the invention according to claim 1 has been made to solve the above-mentioned problems of the prior art, and in a medium for culturing Botryococcus braunii, xylitol, erythritol, sorbitol, mannitol, glucose
  • a single cell of Botriococcus brownie characterized in that single cells are isolated from the extracellular matrix of said Botriococcus brownie by adding at least one selected from the group of sucrose and glycidyl ether It relates to an isolation method.
  • the invention according to claim 2 is characterized in that the xylitol, erythritol, sorbitol, mannitol, glucose, sucrose, and glycidyl ether are added in an amount of 12% (wt / vol) or more.
  • -It is related with the single cell isolation method of brownie.
  • a single cell isolated from the extracellular matrix of Botryococcus braunii is placed in a medium, and the medium is selected from the group of sorbitol, glycerin, xylitol and sodium chloride.
  • the present invention relates to a method for single-cell culture of Botriococcus brownie, which comprises adding at least one of the above.
  • the invention according to claim 4 relates to the method for single-cell culture of Botriococcus brownie according to claim 3, wherein 0.1 M to 0.8 M of sorbitol, glycerin, xylitol, and sodium chloride is added.
  • the invention according to claim 5 is characterized by culturing single cells isolated from the extracellular matrix of Botriococcus brownie in a high-density state of 10 7 cells / mL or more. 4.
  • the invention according to claim 6 is characterized in that single cells isolated from the extracellular matrix of Botryococcus braunii are cultured in a high density state of 10 7 cells / mL or more.
  • the present invention relates to a method for cultivating Botriococcus brownies.
  • the single cell isolation method of Botriococcus brownie according to claim 1 is a group of xylitol, erythritol, sorbitol, mannitol, glucose, sucrose, and glycidyl ether in a medium for culturing Botryococcus brownie.
  • the single cell isolation method of Botriococcus brownie of the invention according to claim 2 is characterized in that the xylitol, erythritol, sorbitol, mannitol, glucose, sucrose, glycidyl ether is added by 12% (wt / vol) or more, Single cells can be isolated with high efficiency.
  • the single cell culture method of Botriococcus brownie of the invention according to claim 3 is a method in which a single cell isolated from the extracellular matrix of Botriococcus brownie is placed in a medium, and sorbitol, glycerin, xylitol, chloride is added to the medium. By adding at least one selected from the group of sodium, it is possible to improve the survival rate of single cells isolated from the extracellular matrix of Botulococcus brownie.
  • the single cell culture method of Botriococcus brownie according to the invention of claim 4 is characterized in that 0.1 M to 0.8 M of sorbitol, glycerin, xylitol and sodium chloride are added to the extracellular matrix of Botriococcus brownie.
  • the survival rate of single cells isolated from the inside can be further improved.
  • the single-cell culture method for Botriococcus brownie according to the invention of claim 5 is a method for culturing single cells isolated from the extracellular matrix of Botriococcus brownie in a high-density state of 10 7 cells / mL or more. This creates an environment similar to the formation of colonies in the extracellular matrix, further improving the viability of single cells isolated from Botriococcus brownie extracellular matrix. Can do.
  • the single-cell culture method for Botriococcus brownie according to the invention of claim 6 comprises culturing single cells isolated from the extracellular matrix of Botriococcus brownie in a high-density state of 10 7 cells / mL or more. This creates an environment similar to the formation of colonies in the extracellular matrix and improves the survival rate of single cells isolated from the extracellular matrix of Botriococcus brownie. it can.
  • the single cell isolation method of Botulococcus brownie according to the present invention is selected from the group consisting of xylitol, erythritol, sorbitol, mannitol, glucose, sucrose, and glycidyl ether in a medium for cultivating Botryococcus braunii.
  • Botryococcus braunii is a kind of green algae that secretes hydrocarbons by photosynthesis. This Botriococcus brownie forms a thick extracellular matrix together with secreted hydrocarbons and similarly secreted polysaccharides, and cells are embedded in this extracellular matrix. , Living by forming a cluster of grape bunches consisting of 10-100 cells.
  • Botriococcus brownies include, for example, fresh water lakes (including ponds, swamps, etc.), lake water surfaces such as brackish water lakes, plankton nets (mesh: about 1 ⁇ m to 100 ⁇ m, preferably about 10 ⁇ m to 20 ⁇ m), etc. It can be collected by pulling so that the plankton net does not sink, but it is not particularly limited as long as it is a sample containing Botriococcus brownie.
  • the sample After treating the sample with available chlorine as described above, it may be used as it is, but by separating the algal bodies by filtration or centrifugation, etc., and repeating the operation of suspending in the culture solution or buffer solution, etc. It is preferable to remove effective chlorine by washing.
  • Examples of the medium for cultivating Botriococcus brownie prepared in this way include inorganic media such as CHU medium, JM medium, and MDM modified medium, but are not limited thereto. Any medium may be used as long as it is suitable for culturing.
  • Reagents added to the medium to isolate single cells from the extracellular matrix of Botriococcus brownie can include xylitol, erythritol, sorbitol, mannitol, glucose, sucrose, glycidyl ether, from these groups You may use what mixed at least 1 or more selected. Further, when the reagent is added to the medium so as to be 12% (wt / vol) or more, preferably 24% (wt / vol) or more, all cells forming a colony in the extracellular matrix Of the number, 10-50% of single cells can be isolated from within the extracellular matrix.
  • the single cells isolated from the extracellular matrix of Botriococcus brownie as described above can be cultured by the single cell culture method of Botriococcus brownie according to the embodiment of the present invention.
  • the method for single-cell culture of Botriococcus brownie is a method in which single cells isolated by the single-cell isolation method of Botriococcus brownie are 10 7 cells / mL or more in the medium. By culturing in a high density state, the survival rate of single cells can be improved.
  • the single cell isolated from the extracellular matrix of Botulococcus brownie by the Botriococcus brownie single cell isolation method is placed in the medium, and the medium contains sorbitol, glycerin, xylitol, sodium chloride.
  • the single cell can be cultured by adding at least one selected from the group. In this case, when sorbitol, glycerin, xylitol and sodium chloride are added at 0.1 M to 0.8 M, preferably 0.2 M to 0.8 M, more preferably 0.4 M to 0.8 M to the medium, single cell survival is achieved. The rate can be improved.
  • Example 1 First, a sample containing Botriococcus brownie is collected from lake water or the like, and this sample is suspended in effective chlorine water to sterilize microorganisms other than Botriococcus brownie. Next, the sterilized sample is washed by repeating the operation of suspending it in the CHU medium to remove effective chlorine, and Botriococcus brownie is prepared. And the erythritol as said reagent was melt
  • Example 2 A medium was prepared by dissolving erythritol as the reagent in CHU13 medium to 24% (wt / vol). The other points were prepared in the same manner as in Example 1.
  • Example 3 A medium was prepared by dissolving xylitol as the reagent in CHU13 medium to 12% (wt / vol). The other points were prepared in the same manner as in Example 1.
  • Example 4 A medium was prepared by dissolving xylitol as the reagent in CHU13 medium so as to be 24% (wt / vol). The other points were prepared in the same manner as in Example 1.
  • Example 5 Sorbitol as the reagent was dissolved in CHU13 medium so as to be 24% (wt / vol) to prepare a medium. The other points were prepared in the same manner as in Example 1.
  • Example 6 Mannitol as the reagent was dissolved in CHU13 medium so as to be 24% (wt / vol) to prepare a medium. The other points were prepared in the same manner as in Example 1.
  • Example 7 Glucose as the reagent was dissolved in CHU13 medium so as to be saturated, and a medium was prepared. The other points were prepared in the same manner as in Example 1.
  • Example 8 Sucrose as the reagent was dissolved in CHU13 medium so as to be saturated, and a medium was prepared. The other points were prepared in the same manner as in Example 1.
  • Example 9 A medium was prepared by dissolving glycidyl ether as the reagent in CHU13 medium so as to be saturated. The other points were prepared in the same manner as in Example 1.
  • Example 1 Ethylene glycol was dissolved in CHU13 medium to 12% (wt / vol) to prepare a medium. The other points were prepared in the same manner as in Example 1.
  • Comparative Example 2 Ethylene glycol was dissolved in CHU13 medium to 24% (wt / vol) to prepare a medium. The other points were prepared in the same manner as in Example 1.
  • Comparative Example 3 A medium was prepared by dissolving 2,3-butanediol in CHU13 medium to 12% (wt / vol). The other points were prepared in the same manner as in Example 1.
  • Comparative Example 4 A medium was prepared by dissolving 2,3-butanediol in CHU13 medium to 24% (wt / vol). The other points were prepared in the same manner as in Example 1.
  • “++++++” in Table 1 indicates that the number of released single cells is 40% to 50% of the total number of cells in the extracellular matrix that had formed a colony before release, and “++++” , 30% to 40%, “++” means 20% to 30%, “++” means 10% to 20%, and “+” means 10%. % To 20%, and “-” indicates 0%.
  • Botriococcus brownie single cells taken out in the above examples were placed in a CHU13 medium in a densely packed state of 2.05 ⁇ 10 7 cells / mL and left for 2 weeks. Thereafter, the number of surviving single cells was counted with a microscope to calculate the survival rate of single cells.
  • Example 11 In the coexistence of a botulinum botriococcus brownie in the form of a colony, single cells of the botulococcus brownie taken out in the above example were placed in a CHU13 medium in a densely packed state of 2.06 ⁇ 10 7 cells / mL. Left for 2 weeks.
  • Example 12 Condition medium obtained by culturing colony Botriococcus brownie in CHU13 medium until reaching the stationary phase is placed in CHU13 medium in half volume, and in this medium, single cells of Botriococcus brownie taken out in the above example are placed. It was put in a densely packed state of 2.35 ⁇ 10 7 cells / mL and left for 2 weeks. Thereafter, the number of surviving single cells was counted with a microscope to calculate the survival rate of single cells.
  • Example 13 A condition medium obtained by culturing colony Botriococcus brownie in CHU13 medium until reaching a stationary phase is put in CHU13 medium in the same volume, and 2 single cells of Botriococcus brownie taken out in the above example are added to this medium. It was put in a densely packed state of 35 ⁇ 10 7 cells / mL and left for 2 weeks. Thereafter, the number of surviving single cells was counted with a microscope to calculate the survival rate of single cells.
  • Example 14 In a CHU13 medium in which 0.1 molar sorbitol was dissolved, single cells of Botriococcus brownie taken out in the above example were densely packed at a high density of 2.11 ⁇ 10 7 cells / mL, Left for 2 weeks. Thereafter, the number of surviving single cells was counted with a microscope to calculate the survival rate of single cells.
  • Example 15 In a CHU13 medium in which 0.2 molar sorbitol was dissolved, single cells of Botriococcus brownie taken out in the above example were densely packed at a high density of 2.01 ⁇ 10 7 cells / mL, Left for 2 weeks. The state of the single cell culture is shown in FIG.
  • Example 16 In a CHU13 medium in which 0.4 molar concentration of sorbitol was dissolved, single cells of Botriococcus brownie taken out in the above example were densely packed at a high density of 2.08 ⁇ 10 7 cells / mL, Left for 2 weeks. The state of the single cell culture is shown in FIG. Thereafter, the number of surviving single cells was counted with a microscope to calculate the survival rate of single cells.
  • Example 17 In a CHU13 medium in which 0.8 molar concentration of sorbitol was dissolved, single cells of Botriococcus brownie taken out in the above example were densely packed at a high density of 1.91 ⁇ 10 7 cells / mL, Left for 2 weeks. The state of the single cell culture is shown in FIG. Thereafter, the number of surviving single cells was counted with a microscope to calculate the survival rate of single cells.
  • Example 18 In a CHU13 medium in which 0.1 molar glycerin was dissolved, single cells of Botriococcus brownie taken out in the above example were densely packed at a high density of 1.96 ⁇ 10 7 cells / mL, Left for 2 weeks.
  • Example 19 In a CHU13 medium in which 0.2 mol of glycerin was dissolved, single cells of Botriococcus brownie taken out in the above example were densely packed at a high density of 1.96 ⁇ 10 7 cells / mL, Left for 2 weeks. Thereafter, the number of surviving single cells was counted with a microscope to calculate the survival rate of single cells.
  • Example 20 In a CHU13 medium in which 0.4 mol concentration of glycerin was dissolved, single cells of Botriococcus brownie taken out in the above example were densely packed at a high density of 2.02 ⁇ 10 7 cells / mL, Left for 2 weeks. Thereafter, the number of surviving single cells was counted with a microscope to calculate the survival rate of single cells.
  • Example 21 In a CHU13 medium in which 0.8 molar concentration of glycerin was dissolved, single cells of Botriococcus brownie taken out in the above example were densely packed at a high density of 1.93 ⁇ 10 7 cells / mL, Left for 2 weeks.
  • Example 22 In a CHU13 medium in which 0.1 molar concentration of xylitol was dissolved, single cells of Botriococcus brownie taken out in the above example were densely packed at a high density of 1.98 ⁇ 10 7 cells / mL, Left for 2 weeks. Thereafter, the number of surviving single cells was counted with a microscope to calculate the survival rate of single cells.
  • Example 23 In a CHU13 medium in which 0.2 molar concentration of xylitol was dissolved, single cells of Botriococcus brownie taken out in the above example were densely packed at a density of 2.14 ⁇ 10 7 cells / mL, Left for 2 weeks. Thereafter, the number of surviving single cells was counted with a microscope to calculate the survival rate of single cells.
  • Example 24 In a CHU13 medium in which 0.4 molar concentration of xylitol is dissolved, single cells of Botriococcus brownie taken out in the above-mentioned example are densely packed at a high density of 1.68 ⁇ 10 7 cells / mL, Left for 2 weeks.
  • Example 25 In a CHU13 medium in which 0.8 molar concentration of xylitol was dissolved, single cells of Botriococcus brownie taken out in the above example were densely packed at a high density of 1.90 ⁇ 10 7 cells / mL, Left for 2 weeks. Thereafter, the number of surviving single cells was counted with a microscope to calculate the survival rate of single cells.
  • Botriococcus brownie single cells taken out in the above example were put in a dense density of 1.69 ⁇ 10 7 cells / mL in CHU13 medium in which 0.1 molar sodium chloride was dissolved.
  • Example 27 A single cell of Botriococcus brownie taken out in the above example was densely packed at a high density of 1.99 ⁇ 10 7 cells / mL in CHU13 medium in which 0.2 molar sodium chloride was dissolved. Left for 2 weeks. Thereafter, the number of surviving single cells was counted with a microscope to calculate the survival rate of single cells.
  • Example 28 A single cell of Botriococcus brownie taken out in the above example was densely packed at a high density of 1.79 ⁇ 10 7 cells / mL in CHU13 medium in which 0.4 molar sodium chloride was dissolved.
  • Example 29 A single cell of Botriococcus brownie taken out in the above example was densely packed at a high density of 1.88 ⁇ 10 7 cells / mL in CHU13 medium in which 0.8 molar sodium chloride was dissolved. Left for 2 weeks. Thereafter, the number of surviving single cells was counted with a microscope to calculate the survival rate of single cells.
  • Example 30 The same procedure as in Example 14 was performed, except that single cells were made to have a low density of 5.2 ⁇ 10 5 cells / mL.
  • Example 31 Example 15 was the same as Example 15 except that single cells were made to have a low density of 6.08 ⁇ 10 5 cells / mL.
  • Example 32 Example 17 was the same as Example 17 except that single cells were made to have a low density of 6.72 ⁇ 10 5 cells / mL.
  • Example 33 The procedure was the same as in Example 29 except that the density of single cells was reduced to 5.2 ⁇ 10 5 cells / mL.
  • Example 21 was the same as Example 21 except that single cells were made to have a low density of 6.4 ⁇ 10 5 cells / mL.
  • Example 35 Example 23 was the same as Example 23 except that single cells were made to have a low density of 6.16 ⁇ 10 5 cells / mL.
  • Example 36 Example 25 was the same as Example 25 except that single cells were made to have a low density of 6.24 ⁇ 10 5 cells / mL.
  • Example 37 The same procedure as in Example 27 was performed, except that single cells were reduced to a density of 7.04 ⁇ 10 5 cells / mL.
  • Example 38 The same procedure as in Example 29 was performed, except that single cells were made to have a low density of 7.28 ⁇ 10 5 cells / mL.
  • Example 31 was the same as Example 31 except that single cells were made to have a low density of 5.92 ⁇ 10 5 cells / mL.
  • Example 33 was the same as Example 33 except that the single cells were made to have a low density of 6.32 ⁇ 10 5 cells / mL.
  • Example 41 The same procedure as in Example 35 was performed, except that single cells were reduced to a low density of 4.96 ⁇ 10 5 cells / mL.
  • Example 37 was the same as Example 37 except that the single cells were made to have a low density of 5.12 ⁇ 10 5 cells / mL.
  • Example 43 Example 39 was the same as Example 39 except that single cells were made to have a low density of 5.12 ⁇ 10 5 cells / mL.
  • Example 44 Example 41 was the same as Example 41 except that single cells were made to have a low density of 5.12 ⁇ 10 5 cells / mL.
  • Example 45 Example 43 was the same as Example 43 except that single cells were made to have a low density of 4.88 ⁇ 10 5 cells / mL.
  • Example 10 was the same as Example 10 except that single cells were made to have a low density of 6.88 ⁇ 10 5 cells / mL.
  • Example 11 was the same as Example 11 except that single cells were made to have a low density of 5.92 ⁇ 10 5 cells / mL.
  • Example 12 was the same as Example 12 except that single cells were made to have a low density of 6.4 ⁇ 10 5 cells / mL.
  • Example 13 was the same as Example 13 except that single cells were made to have a low density of 5.36 ⁇ 10 5 cells / mL.
  • Table 2 shows the survival rate of the single cells of Examples 10 to 45 and Comparative Examples 5 to 8.
  • “mixed” indicates a case where the isolated single-bottom Botriococcus brownie and the colony-shaped Botriococcus brownie are cultured in a state where they coexist in the medium.
  • Examples 30 to 45 about 5% to 30% of single cells survive after 2 weeks. Therefore, in order to improve the survival rate of single cells, sorbitol, glycerin, xylitol, sodium chloride It can be seen that it is effective to add to the CHU13 medium. In Examples 38 to 45, it is confirmed that the larger the amount of the reagent, the better the single cell viability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

(課題)ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単細胞を単離する試薬の選択の幅を広げることができるボツリオコッカス・ブラウニーの単細胞単離方法を提供する。 (解決手段)ボツリオコッカス・ブラウニー(Botryococcus braunii)を培養する培地に、キシリトール、エリスリトール、ソルビトール、マンニトール、グルコース、スクロース、グリシジルエーテルの群から選択される少なくとも1つを添加することにより、前記ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単細胞を単離する。

Description

ボツリオコッカス・ブラウニーの単細胞単離方法及び単細胞培養方法
 本発明は、ボツリオコッカス・ブラウニーの単細胞単離方法及び単細胞培養方法に関する。
 従来から、ボツリオコッカス・ブラウニー(学名:Botryococcus braunii )は、光合成によって炭化水素を分泌することで注目される緑藻の一種として知られている。このボツリオコッカス・ブラウニーは、分泌された炭化水素と、同様に分泌される高分子炭化水素や多糖類とともに厚い細胞外マトリックスを形成し、この細胞外マトリックスの中に細胞が埋め込まれ、このマトリックスが複数繋がることにより、10-100個の細胞からなるブドウ房状の群体を形成して生活している。
 このようなボツリオコッカス・ブラウニーを効率的に培養する方法として、特許文献1に記載されたものが知られている。特許文献1に記載のボツリオコッカス・ブラウニーの培養方法は、CHU培地、JM培地、MDM培地などの無機培地に群体を形成しているボツリオコッカス・ブラウニーを入れ、人工光を間欠的に5~15時間の割合で照射することにより、炭化水素を産生する能力を有するボツリオコッカス・ブラウニーを効率的に培養しようとするものである。
 ここで、特許文献1に記載のボツリオコッカス・ブラウニーは、細胞外マトリックスの中に細胞が埋もれた状態すなわち群体となっているので、細胞外マトリックスが障壁となり遺伝子導入やプロトプラスト化処理等が困難であった。
 このような問題点を解消するために、細胞外マトリックスの中からボツリオコッカス・ブラウニーの単細胞を単離できるようにしたボツリオコッカス・ブラウニーの単細胞単離方法が非特許文献1に記載されている。この非特許文献1に記載の単細胞単離方法は、ボツリオコッカス・ブラウニーを2×modified Eno.A medium に入れ、この培地にグリセリンを25%となるように添加することにより、細胞外マトリックスの中からボツリオコッカス・ブラウニーの単細胞を単離するものである。
 しかしながら、非特許文献1に記載の単細胞単離方法では、単細胞の単離に用いられている試薬はグリセリンのみであり、試薬の選択の幅が狭いという問題があった。
 さらに、非特許文献1の単細胞単離方法によって単離された単細胞は、condition mediumを用いて培養されているが、早期に死滅しやすく高い生存率を可能にする培養方法ではなかった。
特開平09-234055号公報
榎本平他「重油生産藻類Botryococcus brauniiから高生存率な細胞単離・培養法法の開発と単一細胞からの遺伝子PCR検出」p216-217
 そこで、本発明の課題は、ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単細胞を単離する試薬の選択の幅を広げることができるボツリオコッカス・ブラウニーの単細胞単離方法及びボツリオコッカス・ブラウニーの単細胞培養方法を提供することである。
 請求項1に係る発明は、上記した従来技術の問題点を解決すべくなされたものであって、ボツリオコッカス・ブラウニー(Botryococcus braunii)を培養する培地に、キシリトール、エリスリトール、ソルビトール、マンニトール、グルコース、スクロース、グリシジルエーテルの群から選択される少なくとも1つを添加することにより、前記ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単細胞を単離することを特徴とするボツリオコッカス・ブラウニーの単細胞単離方法に関する。
 請求項2に係る発明は、前記キシリトール、エリスリトール、ソルビトール、マンニトール、グルコース、スクロース、グリシジルエーテルは、12%(wt/vol)以上を添加することを特徴とする請求項1に記載のボツリオコッカス・ブラウニーの単細胞単離方法に関する。
 請求項3に係る発明は、ボツリオコッカス・ブラウニー(Botryococcus braunii)の細胞外マトリックスの中から単離された単細胞を培地に入れ、その培地にソルビトール、グリセリン、キシリトール、塩化ナトリウムの群から選択される少なくとも1つを添加することを特徴とするボツリオコッカス・ブラウニーの単細胞培養方法に関する。
 請求項4に係る発明は、前記ソルビトール、グリセリン、キシリトール、塩化ナトリウムは、0.1M~0.8M添加することを特徴とする請求項3に記載のボツリオコッカス・ブラウニーの単細胞培養方法に関する。
 請求項5に係る発明は、ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単離された単細胞を、10 cell/mL以上の高密度な状態で培養することを特徴とする請求項3又は4に記載のボツリオコッカス・ブラウニーの単細胞培養方法に関する。
 請求項6に係る発明は、ボツリオコッカス・ブラウニー(Botryococcus braunii)の細胞外マトリックスの中から単離された単細胞を、10 cell/mL以上の高密度な状態で培養することを特徴とするボツリオコッカス・ブラウニーの単細胞培養方法に関する。
 請求項1に係る発明のボツリオコッカス・ブラウニーの単細胞単離方法は、ボツリオコッカス・ブラウニー(Botryococcus braunii)を培養する培地に、キシリトール、エリスリトール、ソルビトール、マンニトール、グルコース、スクロース、グリシジルエーテルの群から選択される少なくとも1つを添加することにより、前記ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単細胞を単離することにより、ボツリオコッカス・ブラウニーの単細胞を単離する試薬として、キシリトール、エリスリトール、ソルビトール、マンニトール、グルコース、スクロース、グリシジルエーテルのいずれも用いることができるので、試薬の選択の幅を広げることができる。
 請求項2に係る発明のボツリオコッカス・ブラウニーの単細胞単離方法は、前記キシリトール、エリスリトール、ソルビトール、マンニトール、グルコース、スクロース、グリシジルエーテルは、12%(wt/vol)以上を添加することにより、高効率で単細胞を単離することができる。
 請求項3に係る発明のボツリオコッカス・ブラウニーの単細胞培養方法は、ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単離された単細胞を培地に入れ、その培地にソルビトール、グリセリン、キシリトール、塩化ナトリウムの群から選択される少なくとも1つを添加することにより、ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単離された単細胞の生存率を向上させることができる。
 請求項4に係る発明のボツリオコッカス・ブラウニーの単細胞培養方法は、前記ソルビトール、グリセリン、キシリトール、塩化ナトリウムは、0.1M~0.8M添加することにより、ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単離された単細胞の生存率をさらに向上させることができる。
 請求項5に係る発明のボツリオコッカス・ブラウニーの単細胞培養方法は、ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単離された単細胞を、10 cell/mL以上の高密度な状態で培養することにより、細胞外マトリックスの中で群体を形成している状態と類似の環境が作り出され、ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単離された単細胞の生存率をさらに向上させることができる。
 請求項6に係る発明のボツリオコッカス・ブラウニーの単細胞培養方法は、ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単離された単細胞を、10 cell/mL以上の高密度な状態で培養することにより、細胞外マトリックスの中で群体を形成している状態と類似の環境が作り出され、ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単離された単細胞の生存率を向上させることができる。
本発明の実施形態のボツリオコッカス・ブラウニーの単細胞単離方法による単細胞放出の様子を示す光学顕微鏡写真(×300)である。 本発明の実施形態のボツリオコッカス・ブラウニーの単細胞培養方法による単細胞培養の様子を示す光学顕微鏡写真(×300)である。
 以下、本発明の実施形態のボツリオコッカス・ブラウニーの単細胞単離方法及びボツリオコッカス・ブラウニーの単細胞培養方法について詳細に説明する。
 本発明に係るボツリオコッカス・ブラウニーの単細胞単離方法は、ボツリオコッカス・ブラウニー(Botryococcus braunii)を培養する培地に、キシリトール、エリスリトール、ソルビトール、マンニトール、グルコース、スクロース、グリシジルエーテルの群から選択される少なくとも1つを添加することにより、前記ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単細胞を単離するものである。
 ボツリオコッカス・ブラウニー(Botryococcus braunii)は、光合成によって炭化水素を分泌する緑藻の一種である。このボツリオコッカス・ブラウニーは、分泌された炭化水素と、同様に分泌された多糖類とともに厚い細胞外マトリックスを形成し、この細胞外マトリックスの中に細胞が埋め込まれ、このマトリックスが複数繋がることにより、10-100個の細胞からなるブドウ房状の群体を形成して生活している。
 このようなボツリオコッカス・ブラウニーは、例えば、淡水湖(池、沼等を含む)、汽水湖等の湖水表面から、プランクトンネット(網目:1μm~100μm程度、好ましくは10μm~20μm程度)等を用いてプランクトンネットが沈まない様に引くことで採取できるが、ボツリオコッカス・ブラウニーを含有するサンプルであれば特に制限されるものではない。
 この様にして採取されたサンプルからボツリオコッカス・ブラウニーを分離するためには、上記サンプルに有効塩素を作用させ、ボツリオコッカス・ブラウニー以外の微生物を殺菌する。
 上記のようにしてサンプルを有効塩素で処理した後に、これをそのまま用いてもよいが、藻体を濾過又は遠心分離等により分離し、培養液又は緩衝液に懸濁する操作を繰り返すことなどによって洗浄することにより、有効塩素を除去することが好ましい。
 このようにして調製されたボツリオコッカス・ブラウニーを培養する培地としては、CHU培地、JM培地、MDM改変培地などの無機培地を挙げることができるが、これらに限定されず、ボツリオコッカス・ブラウニーの培養に適した培地であればいずれでもよい。
 ボツリオコッカス・ブラウニーの細胞外マトリックスから単細胞を単離するために前記培地に添加する試薬は、キシリトール、エリスリトール、ソルビトール、マンニトール、グルコース、スクロース、グリシジルエーテルを挙げることができるが、これらの群から選択される少なくとも1つ以上を混合したものを用いてもよい。また、前記試薬は、12%(wt/vol)以上、好ましくは、24%(wt/vol)以上となるように前記培地に添加すると、細胞外マトリックスの中で群体を形成している全細胞数のうち10~50%の単細胞を細胞外マトリックスの中から単離することができる。
 上記のようにボツリオコッカス・ブラウニーの細胞外マトリックスから単離された単細胞は、本発明の実施形態のボツリオコッカス・ブラウニーの単細胞培養方法により、培養することができる。
 具体的には、本発明の実施形態のボツリオコッカス・ブラウニーの単細胞培養方法は、前記ボツリオコッカス・ブラウニーの単細胞単離方法により単離された単細胞を前記培地において10 cell/mL以上の高密度な状態で培養することにより、単細胞の生存率を向上させることができる。
 また、前記ボツリオコッカス・ブラウニーの単細胞単離方法により、ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単離された単細胞を前記培地に入れ、その培地にソルビトール、グリセリン、キシリトール、塩化ナトリウムの群から選択される少なくとも1つを添加して前記単細胞を培養することができる。
 この場合、ソルビトール、グリセリン、キシリトール、塩化ナトリウムは、0.1M~0.8M、好ましくは、0.2M~0.8M、より好ましくは、0.4M~0.8Mを前記培地に添加すると、単細胞の生存率を向上させることができる。
 以下、本発明のボツリオコッカス・ブラウニーの単細胞単離方法を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 まず、湖水等からボツリオコッカス・ブラウニーを含むサンプルを採取し、このサンプルを有効塩素水に懸濁させてボツリオコッカス・ブラウニー以外の微生物を殺菌する。次に、殺菌されたサンプルをCHU培地に懸濁する操作を繰り返すことにより洗浄して有効塩素を除去し、ボツリオコッカス・ブラウニーを調製する。そして、前記試薬としてのエリトリトールをCHU13培地に12%(wt/vol)となるように溶解して培地を調製した。その後、調製された培地に群体状のボツリオコッカス・ブラウニーを懸濁し、室温で15分放置した。
(実施例2)
 前記試薬としてのエリトリトールをCHU13培地に24%(wt/vol)となるように溶解して培地を調製した。その他の点は、実施例1と同様の方法で調製した。
(実施例3)
 前記試薬としてのキシリトールをCHU13培地に12%(wt/vol)となるように溶解して培地を調製した。その他の点は、実施例1と同様の方法で調製した。
(実施例4)
 前記試薬としてのキシリトールをCHU13培地に24%(wt/vol)となるように溶解して培地を調製した。その他の点は、実施例1と同様の方法で調製した。
(実施例5)
 前記試薬としてのソルビトールをCHU13培地に24%(wt/vol)となるように溶解して培地を調製した。その他の点は、実施例1と同様の方法で調製した。
(実施例6)
 前記試薬としてのマンニトールをCHU13培地に24%(wt/vol)となるように溶解して培地を調製した。その他の点は、実施例1と同様の方法で調製した。
(実施例7)
 前記試薬としてのグルコースをCHU13培地に飽和となるように溶解して培地を調製した。その他の点は、実施例1と同様の方法で調製した。
(実施例8)
 前記試薬としてのスクロースをCHU13培地に飽和となるように溶解して培地を調製した。その他の点は、実施例1と同様の方法で調製した。
(実施例9)
 前記試薬としてのグリシジルエーテルをCHU13培地に飽和となるように溶解して培地を調製した。その他の点は、実施例1と同様の方法で調製した。
(比較例1)
 エチレングリコールをCHU13培地に12%(wt/vol)となるように溶解して培地を調製した。その他の点は、実施例1と同様の方法で調製した。
(比較例2)
 エチレングリコールをCHU13培地に24%(wt/vol)となるように溶解して培地を調製した。その他の点は、実施例1と同様の方法で調製した。
(比較例3)
 2、3-ブタンジオールをCHU13培地に12%(wt/vol)となるように溶解して培地を調製した。その他の点は、実施例1と同様の方法で調製した。
(比較例4)
 2、3-ブタンジオールをCHU13培地に24%(wt/vol)となるように溶解して培地を調製した。その他の点は、実施例1と同様の方法で調製した。
(単細胞の単離評価)
 上記実施例1~9と上記比較例1~4において、図1に示すように、前記調製された培地の培養液中に前記単細胞が遊離してきたのを顕微鏡観察により確認し、十分な数の単細胞が得られた時点で、20 micro Mの網目を持つナイロン布等を用いて濾過し、ろ液中に単細胞化したボツリオコッカス・ブラウニー(単細胞の大きさは約10 micro M)を集め、群体状のボツリオコッカス・ブラウニーをナイロン布上に集めた。その後、ろ液内の単細胞を、例えば0.45 micor Mの孔を持つメンブレンフィルター上に穏やかな吸引濾過によって集め、CHU13培地を使って単細胞表面に付着している試薬を十分に洗い流した。そして、細胞外マトリックスの中で群体を形成していた遊離前の全細胞数のうち遊離した単細胞の数を数え、その結果を表1に示した。
 表1中の「+++++」は、細胞外マトリックスの中で群体を形成していた遊離前の全細胞数のうち遊離した単細胞の数が40%~50%であることを示し、「++++」は、30%~40%であることを示し、「+++」は、20%~30%であることを示し、「++」は、10%~20%であることを示し、「+」は、10%~20%であることを示し、「-」は、0%であることを示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~実施例9では、群体を形成しているボツリオコッカス・ブラウニーの細胞外マトリックスの中から単細胞が単離されたことが確認された。比較例1~比較例4では、群体を形成しているボツリオコッカス・ブラウニーの細胞外マトリックスの中から単細胞が全く単離されていないことが確認された。このため、ボツリオコッカス・ブラウニーの細胞外マトリックスから単細胞を単離するための試薬としては、エリトリトール、キシリトール、ソルビトール、マンニトール、グルコース、スクロース、グリシジルエーテルが有効であることが分かる。
 また、実施例1~4では、試薬の量を多くした方が、より多くの単細胞が単離されることが確認される。
 次に、本発明のボツリオコッカス・ブラウニーの単細胞培養方法を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。
(実施例10)
 上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を2.05×10cell/mLの高密度に密集させた状態でCHU13培地に入れ、2週間放置した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例11)
 群体状のボツリオコッカス・ブラウニーの共存下で、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を2.06×10cell/mLの高密度に密集させた状態でCHU13培地に入れ、2週間放置した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例12)
 群体状のボツリオコッカス・ブラウニーをCHU13培地で定常期に達するまで培養したCondition mediumを体積で半分だけCHU13培地に入れ、この培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を2.35×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例13)
 群体状のボツリオコッカス・ブラウニーをCHU13培地で定常期に達するまで培養したCondition mediumを同じ体積だけCHU13培地に入れ、この培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を2.35×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例14)
 0.1モル濃度のソルビトールを溶解させたCHU13培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を2.11×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例15)
 0.2モル濃度のソルビトールを溶解させたCHU13培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を2.01×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その単細胞培養の様子を図2(a)に示した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例16)
 0.4モル濃度のソルビトールを溶解させたCHU13培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を2.08×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その単細胞培養の様子を図2(b)に示した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例17)
 0.8モル濃度のソルビトールを溶解させたCHU13培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を1.91×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その単細胞培養の様子を図2(c)に示した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例18)
 0.1モル濃度のグリセリンを溶解させたCHU13培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を1.96×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例19)
 0.2モル濃度のグリセリンを溶解させたCHU13培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を1.96×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例20)
 0.4モル濃度のグリセリンを溶解させたCHU13培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を2.02×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例21)
 0.8モル濃度のグリセリンを溶解させたCHU13培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を1.93×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例22)
 0.1モル濃度のキシリトールを溶解させたCHU13培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を1.98×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例23)
 0.2モル濃度のキシリトールを溶解させたCHU13培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を2.14×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例24)
 0.4モル濃度のキシリトールを溶解させたCHU13培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を1.68×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例25)
 0.8モル濃度のキシリトールを溶解させたCHU13培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を1.90×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例26)
 0.1モル濃度の塩化ナトリウムを溶解させたCHU13培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を1.69×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例27)
 0.2モル濃度の塩化ナトリウムを溶解させたCHU13培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を1.99×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例28)
 0.4モル濃度の塩化ナトリウムを溶解させたCHU13培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を1.79×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例29)
 0.8モル濃度の塩化ナトリウムを溶解させたCHU13培地に、上記実施例により取り出されたボツリオコッカス・ブラウニーの単細胞を1.88×10cell/mLの高密度に密集させた状態で入れ、2週間放置した。その後、生存している単細胞の数を顕微鏡で数えて単細胞の生存率を算出した。
(実施例30)
 単細胞を5.2×10cell/mLの低密度にした点を除いて実施例14と同様とした。
(実施例31)
 単細胞を6.08×10cell/mLの低密度にした点を除いて実施例15と同様とした。
(実施例32)
 単細胞を6.72×10cell/mLの低密度にした点を除いて実施例17と同様とした。
(実施例33)
 単細胞を5.2×10cell/mLの低密度にした点を除いて実施例29と同様とした。
(実施例34)
 単細胞を6.4×10cell/mLの低密度にした点を除いて実施例21と同様とした。
(実施例35)
 単細胞を6.16×10cell/mLの低密度にした点を除いて実施例23と同様とした。
(実施例36)
 単細胞を6.24×10cell/mLの低密度にした点を除いて実施例25と同様とした。
(実施例37)
 単細胞を7.04×10cell/mLの低密度にした点を除いて実施例27と同様とした。
(実施例38)
 単細胞を7.28×10cell/mLの低密度にした点を除いて実施例29と同様とした。
(実施例39)
 単細胞を5.92×10cell/mLの低密度にした点を除いて実施例31と同様とした。
(実施例40)
 単細胞を6.32×10cell/mLの低密度にした点を除いて実施例33と同様とした。
(実施例41)
 単細胞を4.96×10cell/mLの低密度にした点を除いて実施例35と同様とした。
(実施例42)
 単細胞を5.12×10cell/mLの低密度にした点を除いて実施例37と同様とした。
(実施例43)
 単細胞を5.12×10cell/mLの低密度にした点を除いて実施例39と同様とした。
(実施例44)
 単細胞を5.12×10cell/mLの低密度にした点を除いて実施例41と同様とした。
(実施例45)
 単細胞を4.88×10cell/mLの低密度にした点を除いて実施例43と同様とした。
(比較例5)
 単細胞を6.88×10cell/mLの低密度にした点を除いて実施例10と同様とした。
(比較例6)
 単細胞を5.92×10cell/mLの低密度にした点を除いて実施例11と同様とした。
(比較例7)
 単細胞を6.4×10cell/mLの低密度にした点を除いて実施例12と同様とした。
(比較例8)
 単細胞を5.36×10cell/mLの低密度にした点を除いて実施例13と同様とした。
 上記実施例10~45と上記比較例5~8の単細胞の生存率を表2に示した。なお、表2中、「mixed」は、単離された単細胞のボツリオコッカス・ブラウニーと、群体状のボツリオコッカス・ブラウニーとが培地に共存する状態で培養した場合を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例10~29では、試薬をCHU13培地に添加したか否かに関らず、約60%~90%の単細胞が2週間後においても生存していることが確認された。
 また、実施例30~45では、約5%~30%の単細胞が2週間後においても生存していることが確認された。
 このため、ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単離された単細胞を、10 cell/mL以上の高密度な状態で培養すると、単細胞の生存率が向上することが分かる。これは、群体中では、細胞外マトリックスなどに高濃度に存在していた細胞生長に必要な因子が単細胞の高密度化に伴って上昇したためと考えられる。
 比較例5~8では、ほとんどの単細胞が死滅してしまうことが確認された。
 これに対して、実施例30~45では、約5%~30%の単細胞が2週間後においても生存しているので、単細胞の生存率を向上させるために、ソルビトール、グリセリン、キシリトール、塩化ナトリウムをCHU13培地に添加することは、有効であることが分かる。
 また、実施例38~45では、試薬の量が多い方が、単細胞の生存率が向上することが確認される。

Claims (6)

  1.  ボツリオコッカス・ブラウニー(Botryococcus braunii)を培養する培地に、キシリトール、エリスリトール、ソルビトール、マンニトール、グルコース、スクロース、グリシジルエーテルの群から選択される少なくとも1つを添加することにより、前記ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単細胞を単離することを特徴とするボツリオコッカス・ブラウニーの単細胞単離方法。
  2.  前記キシリトール、エリスリトール、ソルビトール、マンニトール、グルコース、スクロース、グリシジルエーテルは、12%(wt/vol)以上を添加することを特徴とする請求項1に記載のボツリオコッカス・ブラウニーの単細胞単離方法。
  3.  ボツリオコッカス・ブラウニー(Botryococcus braunii)の細胞外マトリックスの中から単離された単細胞を培地に入れ、その培地にソルビトール、グリセリン、キシリトール、塩化ナトリウムの群から選択される少なくとも1つを添加することを特徴とするボツリオコッカス・ブラウニーの単細胞培養方法。
  4.  前記ソルビトール、グリセリン、キシリトール、塩化ナトリウムは、0.1M~0.8M添加することを特徴とする請求項3に記載のボツリオコッカス・ブラウニーの単細胞培養方法。
  5.  ボツリオコッカス・ブラウニーの細胞外マトリックスの中から単離された単細胞を、10 cell/mL以上の高密度な状態で培養することを特徴とする請求項3又は4に記載のボツリオコッカス・ブラウニーの単細胞培養方法。
  6.  ボツリオコッカス・ブラウニー(Botryococcus braunii)の細胞外マトリックスの中から単離された単細胞を、10 cell/mL以上の高密度な状態で培養することを特徴とするボツリオコッカス・ブラウニーの単細胞培養方法。
PCT/JP2012/053300 2012-02-13 2012-02-13 ボツリオコッカス・ブラウニーの単細胞単離方法及び単細胞培養方法 WO2013121509A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053300 WO2013121509A1 (ja) 2012-02-13 2012-02-13 ボツリオコッカス・ブラウニーの単細胞単離方法及び単細胞培養方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053300 WO2013121509A1 (ja) 2012-02-13 2012-02-13 ボツリオコッカス・ブラウニーの単細胞単離方法及び単細胞培養方法

Publications (1)

Publication Number Publication Date
WO2013121509A1 true WO2013121509A1 (ja) 2013-08-22

Family

ID=48983673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053300 WO2013121509A1 (ja) 2012-02-13 2012-02-13 ボツリオコッカス・ブラウニーの単細胞単離方法及び単細胞培養方法

Country Status (1)

Country Link
WO (1) WO2013121509A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103170A (ja) * 1989-09-14 1991-04-30 Ube Ind Ltd 中空糸膜型バイオリアクター
WO2002002793A1 (fr) * 2000-07-05 2002-01-10 Japan As Represented By Secretary Of Osaka University Processus de production de glycoproteine
JP2002360114A (ja) * 2001-06-04 2002-12-17 Washi Kosan Co Ltd 細菌担体を用いた貯水循環式養殖場
US20090325218A1 (en) * 2008-06-30 2009-12-31 The Regents Of The University Of California Determination of lipid, hydrocarbon or biopolymer content in microorganisms
WO2011003024A2 (en) * 2009-07-01 2011-01-06 The Regents Of The University Of California Extraction of extracellular terpenoids from microalgae colonies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103170A (ja) * 1989-09-14 1991-04-30 Ube Ind Ltd 中空糸膜型バイオリアクター
WO2002002793A1 (fr) * 2000-07-05 2002-01-10 Japan As Represented By Secretary Of Osaka University Processus de production de glycoproteine
JP2002360114A (ja) * 2001-06-04 2002-12-17 Washi Kosan Co Ltd 細菌担体を用いた貯水循環式養殖場
US20090325218A1 (en) * 2008-06-30 2009-12-31 The Regents Of The University Of California Determination of lipid, hydrocarbon or biopolymer content in microorganisms
WO2011003024A2 (en) * 2009-07-01 2011-01-06 The Regents Of The University Of California Extraction of extracellular terpenoids from microalgae colonies

Similar Documents

Publication Publication Date Title
Leys et al. The biology of glass sponges
Kanchanatip et al. Fouling characterization and control for harvesting microalgae Arthrospira (Spirulina) maxima using a submerged, disc-type ultrafiltration membrane
US11873509B2 (en) Method for continuous culture of shrimp cells
Kate R et al. Recovery of viable cyanophages from the sediments of a eutrophic lake at decadal timescales
WO2014088010A1 (ja) 液面上での微細藻類の培養方法において、液面上の微細藻類から種藻を採取し、別の培養容器で培養を行う方法
CN103756917B (zh) 楸树内生真菌的原生质体的制备方法
KR101968823B1 (ko) 제주도 용암 해수로부터 분리된 부착성 규조류를 이용한 규조 실리카 지혈제 및 그 제조방법
CN105754927A (zh) 缢江蓠原生质体的制备方法
Alongi Extraction of protists in aquatic sediments via density gradient centrifugation
WO2013121509A1 (ja) ボツリオコッカス・ブラウニーの単細胞単離方法及び単細胞培養方法
Moens et al. Meiofauna: an inconspicuous but important player in mudflat ecology
CN115044532B (zh) 一种脉红螺胚胎细胞系的构建与鉴定方法
CN106893690B (zh) 智利江蓠原生质体的制备方法
CN110713969A (zh) 一种青蟹血细胞分群培养的方法
CN107858322B (zh) 一种海马原代细胞培养体系的建立方法
CN116590231A (zh) 一种用于肠道肿瘤细胞培养的水凝胶支架及其制备方法
JP5923821B2 (ja) 微生物の培養方法
JP5166399B2 (ja) 微生物の単離および培養のためのデバイスおよび方法
CN103404464A (zh) 一种海水养殖扇贝笼和贝壳上污损生物的生物清除方法
CN102487898B (zh) 一种珊瑚受精卵附着前的培育方法及培育装置
CN106635956B (zh) 一种中华绒螯蟹肝胰腺细胞分离及原代培养方法
CN113993990A (zh) 新钝顶螺旋藻菌株
Stewart et al. Studies on the ultrastructural morphology of Bacteroides nodosus
JP2010200620A (ja) 細胞培養膜、細胞培養キット、細胞培養膜の製造方法、及び細胞の立体培養方法
CN109880787B (zh) 一种圆叶丝粉藻原生质体的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12868691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP