WO2013118762A1 - フィンチューブ型熱交換器 - Google Patents

フィンチューブ型熱交換器 Download PDF

Info

Publication number
WO2013118762A1
WO2013118762A1 PCT/JP2013/052705 JP2013052705W WO2013118762A1 WO 2013118762 A1 WO2013118762 A1 WO 2013118762A1 JP 2013052705 W JP2013052705 W JP 2013052705W WO 2013118762 A1 WO2013118762 A1 WO 2013118762A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
tube
pipe
heat exchanger
refrigerant
Prior art date
Application number
PCT/JP2013/052705
Other languages
English (en)
French (fr)
Inventor
岡田 拓也
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2013118762A1 publication Critical patent/WO2013118762A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • F28F9/268Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators by permanent joints, e.g. by welding

Definitions

  • the present invention relates to a finned tube heat exchanger suitable for application to air heat exchangers such as air conditioners, refrigerators, heat pumps, and water heaters using CO2 refrigerant.
  • the finned tube heat exchanger applied to air heat exchangers such as air conditioners, refrigerators, heat pumps, and water heaters has a large number of fins inserted into the heat transfer tube consisting of hairpin tubes, and side plates are arranged on both sides.
  • the end of the heat transfer tube is inserted into the end of the bend tube and / or the distributor side branch tube and the header side branch tube (hereinafter, both branch tubes are simply referred to as a branch tube) and brazed. It is set as the structure.
  • the place where the strength is the weakest is that there is no restraining member on the outside, and the brazing material is difficult to turn, and the end of the hairpin tube and the end of the bend pipe and / or the branch pipe Near the brazed connection.
  • the thickness of the bend pipe and / or branch pipe it is desirable to reduce the thickness of the heat transfer pipe from the viewpoint of performance, and the part where the outer peripheral part is structurally suppressed by fins, side plates, etc. Can secure strength, but there is no outer periphery restraint in the vicinity of the brazed connection portion with the bend pipe and / or branch pipe, the end of the bend pipe and / or branch pipe is inserted into the end of the heat transfer pipe, although it is brazed, the main reason is that the brazing material does not rotate enough to the inside. The strength of the part where the brazing material rotates is maintained.
  • the design pressure is 14 MPa on the high pressure side, 8.5 MPa on the low pressure side, and several times higher than that using the HFC refrigerant on the high pressure side of 4.15 MPa, Generally, the pressure of the strength test is three times the design pressure.
  • the thickness of the heat transfer tube is increased, as shown in Patent Document 1, a reinforcing sleeve is put on the refrigerant inlet / outlet pipe, or as shown in Patent Document 2,
  • the expansion ratio of the end of the heat tube is suppressed, and the outer peripheral surface of the connection portion between the heat transfer tube and the bend tube is configured to be substantially flush with the outer peripheral surface of the close contact portion with the fin of the heat transfer tube. Is the current situation.
  • the method of increasing the thickness of the heat transfer tube is a simple and reliable method, but considering the total extension length of the heat transfer tube (copper tube) used in one heat exchanger, the material cost and The increase in weight is not negligible, and there is a problem that it directly reflects the product cost. Furthermore, when the thickness of the heat transfer tube is increased, the heat transfer performance is deteriorated and the pressure loss of the refrigerant is increased. In addition, the method of covering the reinforcing sleeve requires separate parts, and has a problem that production efficiency may be lowered due to an increase in the number of parts and assembly man-hours.
  • the method of suppressing the tube expansion rate is an effective method for ensuring the strength, but the one shown in Patent Document 2 is a relatively thin heat transfer tube having an outer diameter of about 5 ⁇ and a wall thickness of about 0.32 mm.
  • a heat transfer tube with a large outer diameter of about 8 ⁇ to secure refrigerant circulation for large equipment and reduce pressure loss, it is not enough.
  • the present invention has been made in view of such circumstances, and it is possible to ensure the strength of the connection portion between the heat transfer tube and the bend tube and / or the branch tube while reducing the thickness of the heat transfer tube as much as possible.
  • An object of the present invention is to provide a fin-tube heat exchanger that can be used.
  • the fin-tube heat exchanger of the present invention employs the following means.
  • a large number of fins are inserted into a heat transfer tube, side plates are disposed on both sides thereof, and a bend tube and / or a branch is provided at an end of the heat transfer tube.
  • a burring protruding outward is provided around the insertion hole of the side plate through which the heat transfer tube is inserted, There is no restraining member on the outside between the end of the burring and the end of the bend pipe and / or branch pipe inserted and brazed and connected to the end of the heat transfer pipe, and the brazing material is difficult to turn around.
  • the dimension is set in a range of 0 to 5 mm.
  • the burring protruding outward is provided around the insertion hole of the side plate disposed on both sides of the large number of fins, and the end of the burring; There is no restraining member on the outside between the end part of the bend pipe and / or branch pipe inserted into the end part of the heat transfer pipe and brazed, and the dimension of the part where the brazing material is difficult to turn is in the range of 0 to 5 mm.
  • the length in the tube axial direction of the connection portion between the heat transfer tube and the bend tube and / or the branch tube that decreases in strength, that is, the end portion of the burring The strength can be improved by setting the dimension between the end of the bend pipe and / or the branch pipe to a minimum range of 0 to 5 mm and reducing the pressure receiving area at the connection portion. For this reason, it is not necessary to increase the thickness of the heat transfer tube or cover it with a reinforcing sleeve, and even when using a heat transfer tube with a relatively thin thickness and a large outer diameter for large equipment, it is sufficiently strong. Therefore, it is possible to provide a fin tube type heat exchanger with high safety that is high performance, simplified, reduced in weight and reduced in cost.
  • the finned tube heat exchanger according to the above aspect may be configured as an air heat exchanger in which a medium circulating in the heat transfer tube is a CO2 refrigerant and heat exchange is performed between the CO2 refrigerant and air. Good.
  • the design pressure of 3 is used when the CO2 refrigerant is used.
  • the strength test pressure which is twice as common, can be met. Therefore, it is suitable for air heat exchangers such as air conditioners, refrigerators, heat pumps, and water heaters using CO2 refrigerant. An exchanger can be obtained.
  • the fin tube type heat exchanger according to the above aspect may have a configuration in which an outer diameter of the heat transfer tube before expansion is 8 ⁇ and a wall thickness thereof is 0.45 mm or less.
  • the outer diameter of the heat transfer tube before expansion is set to 8 ⁇ , and the thickness thereof is set to 0.45 mm or less. Therefore, the fin tube type heat exchanger for the CO2 refrigerant is suitable for the outside. A heat transfer tube with the smallest wall thickness can be used. Therefore, the low pressure loss of the fin tube type heat exchanger for CO2 refrigerant can be achieved, and high performance, light weight, and low cost can be achieved, and safety can be ensured.
  • the heat transfer tube may be a high-strength tube.
  • the heat transfer tube is a high-strength tube of JIS; H3300, alloy number C5110, a phosphorous deoxidized copper-based material widely used as a heat transfer tube (JIS; H3300, alloy number C1220)
  • JIS JIS
  • H3300 alloy number C1220
  • the length in the axial direction of the connecting portion between the heat transfer tube and the bend tube and / or the branch tube that decreases in strength that is, the end portion of the burring, the bend tube, and
  • the dimension of the part where there is no restraining member outside the end of the branch pipe and the brazing material is difficult to turn to the minimum range of 0 to 5 mm, and reducing the pressure receiving area of the connection part. Since the strength can be improved, there is no need to increase the thickness of the heat transfer tube or cover the reinforcing sleeve, and even when using a heat transfer tube with a relatively thin wall and a large outer diameter, Therefore, it is possible to provide a fin tube type heat exchanger with high safety, which is high performance, simplified, light weight, and low cost.
  • FIG. 1 It is a perspective view of the fin tube type heat exchanger concerning one embodiment of the present invention. It is an expanded sectional view of the header side branch pipe connection part of the fin tube type heat exchanger shown in FIG.
  • FIG. 1 shows a perspective view of a finned tube heat exchanger according to an embodiment of the present invention
  • FIG. 2 shows an enlarged sectional view of a header side branch pipe connecting portion.
  • the finned tube heat exchanger 1 includes a large number of heat transfer tubes 2 made of a hairpin tube of a predetermined length bent into a U shape, and a number of plates formed by punching a thin plate into which the heat transfer tubes 2 are inserted into a strip shape.
  • the heat transfer tube 2 that is a hairpin tube uses a heat transfer tube of JIS; H3300, alloy number C5110 having an outer diameter of 8 ⁇ and a wall thickness of 0.45 mm or less, and the plate fin 3 and the side plate 4 are inserted. Thereafter, the tube is expanded by a predetermined dimension so that the heat transfer tube 2, the plate fin 3 and the side plate 4 are brought into close contact with each other.
  • the plate fin 3 is formed by stamping and forming a thin plate made of an aluminum alloy into a strip shape.
  • the number of through holes with burring corresponding to the number of the heat transfer tubes 2 is formed, and the outer periphery of the heat transfer tube 2 is formed at a predetermined pitch. A large number of sheets are inserted and brought into close contact with the expansion of the heat transfer tube 2.
  • the side plates 4 are composed of steel plates or the like having a predetermined strength and are respectively disposed on both sides of the plate fins 3 disposed at a predetermined pitch, and the core portions of the heat exchangers are arranged. In addition to forming, it is responsible for the installation function when installing and installing heat exchangers.
  • the side plate 4 has the same outer shape as the plate fin 3 and the insertion holes 4A of the heat transfer tubes 2, and around each insertion hole 4A is a burring 4B of a predetermined height that is projected outward. It is set as the structure provided.
  • the vent pipe 5 connects end portions of adjacent heat transfer tubes 2 to each other, and connects a plurality of hairpin tubes in a meandering manner, thereby forming a refrigerant flow path having a predetermined length in the core portion of the heat exchanger.
  • the vent pipe 5 is made of a thicker pipe than the heat transfer pipe 2 and is inserted into the expanded pipe portion 2A provided at the end of the heat transfer pipe 2 so that refrigerant leakage does not occur. It is connected by brazing.
  • the distributor 8 is for branching and supplying the refrigerant sent through the refrigerant pipe to each of the heat transfer tubes 2 divided into a plurality of circuits, and the header 6 is provided with the heat transfer tubes 2 of each circuit. It is for joining the refrigerant
  • the branch pipe 7 is for connecting between the header 6 and the predetermined heat transfer pipe 2, and is constituted by a pipe thicker than the heat transfer pipe 2, and is provided at the end of the heat transfer pipe 2. It is inserted into the expanded pipe portion 2A and connected by brazing all around so as not to cause refrigerant leakage.
  • the branch pipe 9 connecting the distributor 8 and the predetermined heat transfer pipe 2 is also made of a thicker pipe than the heat transfer pipe 2. It is inserted into the expanded pipe portion 2A provided at the end of the heat pipe 2 and connected by brazing all around so as not to cause refrigerant leakage. The range in which the brazing material goes around is the expanded pipe portion 2A.
  • the branch pipes 7 and 9 are thicker than the heat transfer pipe 2.
  • the brazing part 7A (corresponding part of the branch pipe 9) that is inserted into the expanded pipe part 2A of the heat transfer pipe 2 and brazed is drawn so that the outer diameter becomes narrow. Therefore, the branch pipes 7 and 9 have a necessary thickness and have a sufficient strength.
  • a thick pipe is used for the bend pipe 5 to ensure strength.
  • the branch pipe 7 of the present embodiment is provided with an insertion part 7B having a smaller diameter and a part of which is inserted into the heat transfer pipe 2 at the distal end side of the brazing part 7A.
  • the branch pipe 9 is not provided with a portion corresponding to the insertion portion 7 ⁇ / b> B of the branch pipe 7.
  • the header 6 and the distributor 8 also have the necessary strength.
  • the heat transfer tube 2 and the bend tube 5 and / or the branch tubes 7 and 9 are reduced in strength because the outer peripheral portion is not restrained, the wall thickness is thin, and the brazing material is difficult to rotate.
  • the length of the connecting portion between the heat transfer tube 2 and the bend tube 5 and / or the branch tubes 7 and 9, that is, the end of the burring 4B of the side plate 4, and the bend tube 5 and / or by setting the dimension L between the ends of the branch pipes 7 and 9 (the ends of the brazed part 7A and its corresponding part) to the minimum dimension in the range of 0 to 5 mm The pressure receiving area is reduced to ensure the strength.
  • the heat transfer tube 2 and the bend tube 5 and / or The connecting part with the branch pipes 7 and 9 is provided with a burring 4B on the side plate 4, and the end part of the burring 4B and the end part of the bend pipe 5 and / or the branch pipes 7 and 9 (the brazed part 7A and its corresponding part).
  • the dimension L between the first and second ends is set to a range of 0 to 5 mm. Yes.
  • the fin-tube heat exchanger 1 having such a configuration is applied to an air heat exchanger functioning as an evaporator of an air conditioner, a refrigerator, a heat pump, a hot water heater, etc. in which the refrigerant is a CO2 refrigerant It was confirmed that the required strength was satisfied.
  • the design pressure on the low pressure side in the equipment using the CO2 refrigerant is 8.5 MPa, and the required strength is 25.5 MPa, which is three times the design pressure.
  • the refrigerant is divided from the distributor 8 on the inlet side through a branch pipe 9 for each of a plurality of circuits, and is supplied into the heat transfer pipe 2.
  • the refrigerant supplied into the heat transfer tubes 2 of each circuit exchanges heat with the air flowing outside through the plate fins 3 while flowing through the plurality of heat transfer tubes 2 connected through the bend tubes 5. Is done.
  • the refrigerant is evaporated to reach the outlets of the plurality of connected heat transfer tubes 2, becomes a gas refrigerant, is led to the header 6 on the outlet side through the branch pipe 7, and then sucked into the compressor. .
  • the internal pressure acts on the heat transfer tube 2, the bend tube 5, the branch tubes 7 and 9, the header 6 and the distributor 8 of the fin tube type heat exchanger 1.
  • the portion where the strength is the weakest is the brazed connection portion between the end of the heat transfer tube 2 which is a hairpin tube and the end of the bend tube 5 and / or the branch tubes 7 and 9 as described above, that is, the outside This is the L dimension portion of FIG.
  • the edge part of the burring 4B and the edge part of the heat exchanger tube 2 are provided.
  • the dimension L between the ends of the bend pipe 5 and / or the branch pipes 7 and 9 that are inserted and brazed is set in a range of 0 to 5 mm.
  • the design pressure (8.5 MPa) when using the CO2 refrigerant is used. 3 times the general strength test pressure can be satisfied, and therefore it has high performance suitable for application to air heat exchangers such as air conditioners, refrigerators, heat pumps, and water heaters using CO2 refrigerant, and A highly safe fin tube heat exchanger 1 that is lighter and lower in cost can be obtained.
  • the fin tube type heat exchanger for CO2 refrigerant since the outer diameter of the heat transfer tube 2 before expansion is 8 ⁇ and the wall thickness is 0.45 mm or less, the fin tube type heat exchanger for CO2 refrigerant to be applied to large equipment. As 1, a heat transfer tube 2 having an outer diameter suitable for it and a minimum thickness can be used. As a result, the low pressure loss of the fin tube type heat exchanger 1 for the CO2 refrigerant can be achieved, and its performance, weight and cost can be reduced.
  • the heat transfer tube 2 is a high-strength tube of JIS; H3300, alloy number C5110, a phosphorous deoxidized copper-based (JIS; H3300, alloy number C1220) tube widely used as the heat transfer tube 2 Compared to the above, it is possible to ensure the strength while reducing the thickness as much as possible, thereby further improving the heat exchange performance of the fin tube type heat exchanger 1 and reducing the weight.
  • this invention is not limited to the invention concerning the said embodiment, In the range which does not deviate from the summary, it can change suitably.
  • a part of the branch pipe 7 is provided with the insertion part 7B having a smaller diameter inserted into the heat transfer pipe 2 at the distal end side of the brazing part 7A.
  • the insertion part 7B is not necessarily required and may be omitted.
  • the branch pipe 9 is not provided with a portion corresponding to the insertion part 7B of the branch pipe 7, but a similar insertion part may be provided.
  • the example in which the distributor 8 is provided on the inlet side of the heat exchanger 1 and the header 6 is provided on the outlet side has been described.
  • the header may be provided on both the inlet side and the outlet side.
  • the core part of the heat exchanger 1 is made into the shape bent 90 degree

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 伝熱管の肉厚を極力薄くしながら、伝熱管とベンド管および/または枝管との接続部の外部に抑え部材がなく、ろう材が廻り難い部分の強度を確保することができるフィンチューブ型熱交換器を提供する。伝熱管(2)に多数のフィン(3)が挿通され、その両側部に側板(4)が配設されるとともに、伝熱管(2)の端部にベンド管(5)および/または枝管(7)の端部が挿入され、ろう付け接続されているフィンチューブ型熱交換器(1)において、伝熱管(2)が挿通される側板(4)の挿通穴(4A)周りに外側に向けて突出されたバーリング(4B)が設けられ、該バーリング(4B)の端部と、伝熱管(2)の端部に挿入され、ろう付け接続されるベンド管(5)および/または枝管(7)の端部との間の外部に抑え部材がなく、ろう材が廻り難い部分寸法(L)が、0~5mmの範囲に設定されている。

Description

フィンチューブ型熱交換器
 本発明は、CO2冷媒を用いた空調機、冷凍機、ヒートポンプ、給湯機等の空気熱交換器に適用して好適なフィンチューブ型熱交換器に関する。
 空調機、冷凍機、ヒートポンプ、給湯機等の空気熱交換器に適用されているフィンチューブ型熱交換器は、ヘアピンチューブからなる伝熱管に多数のフィンが挿通され、その両側部に側板が配設されるとともに、伝熱管の端部にベンド管および/またはディストリビュータ側枝管およびヘッダ側枝管(以下、両方の枝管を総称して単に枝管という。)の端部が挿入され、ろう付け接続された構成とされている。このようなフィンチューブ型熱交換器において、強度が最も弱くなる箇所は、外部に抑え部材がなく、ろう材が廻り難い、ヘアピンチューブの端部とベンド管および/または枝管の端部とのろう付け接続部分の近傍となる。
 それは、ベンド管および/または枝管については肉厚を確保できるものの、伝熱管については性能面から肉厚を薄くすることが望ましいこと、構造的に外周部がフィンや側板等で抑えられる部分については強度を確保できるが、ベンド管および/または枝管とのろう付け接続部分の近傍には外周抑えがないこと、ベンド管および/または枝管の端部を伝熱管の端部に挿入し、ろう付け接続しているが、内部まで十分にろう材が廻らないこと、等が主な理由と考えられる。ろう材が廻る箇所は強度が保たれる。
 特に、冷媒としてCO2冷媒を用いたものでは、設計圧力が高圧側で14MPa、低圧側で8.5MPaであり、高圧側が4.15MPaであるHFC冷媒を用いたものに対して数倍高く、更に強度試験の圧力はその設計圧力の3倍とすることが一般的である。このため、対応策として、例えば、伝熱管の肉厚を厚くしたり、特許文献1に示すように、冷媒の出・入口配管に補強スリーブを被せたり、あるいは特許文献2に示すように、伝熱管の端部の拡管率を抑え、伝熱管とベンド管との接続部の外周面を、伝熱管のフィンに対する密着部の外周面と略面一構成にしたりする等の策を採っているのが現状である。
特開2006-329476号公報 特開2010-243078号公報
 しかしながら、伝熱管の肉厚を厚くする方法は、簡単で確実な方法であるが、1台の熱交換器で使用する伝熱チューブ(銅管)の総延長長さを考えると、材料費や重量の増加は無視できず、それが直に製品コストに跳ね返ってしまうという問題がある。更に、伝熱管の肉厚が厚くなると、伝熱性能の低下および冷媒の圧損が大きくなってしまう。また、補強スリーブを被せる方法は、別部品が必要であり、部品点数や組み立て工数の増加により生産効率の低下が懸念される等の課題を有している。
 さらに、拡管率を抑える方法は、強度を確保する上で有効な方法であるが、特許文献2に示すものは、外径が約5Φ、肉厚が約0.32mmという比較的細い伝熱チューブを用いた場合のものであり、大型機器用として冷媒循環量を確保し、圧損を低減するために外径が太い8Φ程度の伝熱チューブを用いた場合、それだけでは不十分であり、肉厚を可及的に薄くしながら、強度を確保することができるフィンチューブ型熱交換器が求められている。
 本発明は、このような事情に鑑みてなされたものであって、伝熱管の肉厚を極力薄くしながら、伝熱管とベンド管および/または枝管との接続部の強度を確保することができるフィンチューブ型熱交換器を提供することを目的とする。
 上記した課題を解決するために、本発明のフィンチューブ型熱交換器は、以下の手段を採用する。
 本発明の一態様に係るフィンチューブ型熱交換器は、伝熱管に多数のフィンが挿通され、その両側部に側板が配設されるとともに、前記伝熱管の端部にベンド管および/または枝管の端部が挿入され、ろう付け接続されているフィンチューブ型の熱交換器において、前記伝熱管が挿通される前記側板の挿通穴周りに外側に向けて突出されたバーリングが設けられ、該バーリングの端部と、前記伝熱管の端部に挿入され、ろう付け接続される前記ベンド管および/または枝管の端部との間の外部に抑え部材がなく、ろう材が廻り難い部分の寸法が、0~5mmの範囲に設定されていることを特徴とする。
 上記態様に係るフィンチューブ型熱交換器によれば、多数のフィンの両側部に配設される側板の挿通穴周りに外側に向けて突出されたバーリングを設けるとともに、そのバーリングの端部と、伝熱管の端部に挿入され、ろう付け接続されるベンド管および/または枝管の端部との間の外部に抑え部材がなく、ろう材が廻り難い部分の寸法が、0~5mmの範囲に設定されている。従って、外周部に抑え部材がなく、ろう材が廻り難いことから、強度が弱くなる伝熱管とベンド管および/または枝管との接続部分の管軸方向長さ、すなわちバーリングの端部と、ベンド管および/または枝管の端部との間の寸法を、最小範囲の0~5mmに設定し、当該接続部分での受圧面積を小さくすることによって、強度を向上することができる。このため、伝熱管の肉厚を厚くしたり、補強スリーブを被せたりする必要がなく、大型機器用として比較的肉厚が薄く外径が太い伝熱管を使用した場合おいても、十分に強度を確保することができ、高性能で簡素化、軽量化、低コスト化された安全性の高いフィンチューブ型熱交換器を提供することができる。
 上記態様に係るフィンチューブ型熱交換器は、前記伝熱管内を流通される媒体がCO2冷媒とされ、該CO2冷媒と空気とを熱交換する空気熱交換器として適用される構成であってもよい。
 この構成によれば、伝熱管内を流通される媒体がCO2冷媒とされ、該CO2冷媒と空気とを熱交換する空気熱交換器に適用したとしても、CO2冷媒を用いる場合の設計圧力の3倍が一般的である強度試験圧力を満たすことができる。従って、CO2冷媒を用いた空調機や冷凍機、ヒートポンプ、給湯機等の空気熱交換器に適用して好適な高性能で、かつ軽量化、低コスト化された安全性の高いフィンチューブ型熱交換器を得ることができる。
 上記態様に係るフィンチューブ型熱交換器は、前記伝熱管の拡管前の外径が8Φとされ、その肉厚が0.45mm以下とされている構成であってもよい。
 この構成によれば、伝熱管の拡管前の外径が8Φとされ、その肉厚が0.45mm以下とされているため、CO2冷媒用のフィンチューブ型熱交換器としては、それに適した外径で最小の肉厚の伝熱管を用いることができる。従って、CO2冷媒用フィンチューブ型熱交換器の低圧損化を図り、高性能化、軽量化、低コスト化を図ることができるとともに、安全性を確保することができる。
 上記態様に係るフィンチューブ型熱交換器は、前記伝熱管は、高強度管とされている構成であってもよい。
 この構成によれば、伝熱管が、JIS;H3300、合金番号C5110の高強度管とされているため、伝熱管として広範に使用されているリン脱酸銅系(JIS;H3300、合金番号C1220)の管に比べ、可及的に肉厚を薄くしながら強度を確保することができる。従って、フィンチューブ型熱交換器の熱交換性能の更なる向上と軽量化を図ることができる。
 本発明によると、外周部に抑え部材がないことから、強度が弱くなる伝熱管とベンド管および/または枝管との接続部分の管軸方向長さ、すなわちバーリングの端部と、ベンド管および/または枝管の端部との間の外部に抑え部材がなく、ろう材が廻り難い部分の寸法を、最小範囲の0~5mmに設定し、当該接続部分の受圧面積を小さくすることによって、強度を向上することができるため、伝熱管の肉厚を厚くしたり、補強スリーブを被せたりする必要がなく、比較的肉厚が薄く外径が太い伝熱管を使用した場合おいても、十分に強度を確保することができ、高性能で簡素化、軽量化、低コスト化された安全性の高いフィンチューブ型熱交換器を提供することができる。
本発明の一実施形態に係るフィンチューブ型熱交換器の斜視図である。 図1に示すフィンチューブ型熱交換器のヘッダ側枝管接続部分の拡大断面図である。
 以下に、本発明の一実施形態について、図1および図2を参照して説明する。
 図1には、本発明の一実施形態に係るフィンチューブ型熱交換器の斜視図が示され、図2には、そのヘッダ側枝管接続部分の拡大断面図が示されている。
 フィンチューブ型熱交換器1は、U字状に曲げ加工された所定長さのヘアピンチューブからなる多数の伝熱管2と、伝熱管2が挿通される薄板を短冊状に打抜き成形した多数のプレートフィン(フィン)3と、プレートフィン3の両側部に配設される側板4と、伝熱管2の端部同士を互いに接続するU字状のベント管5と、伝熱管2からの冷媒を合流させるヘッダ6と、ヘッダ6と所定の伝熱管2との間を接続するヘッダ側枝管(枝管)7と、伝熱管2に冷媒を分配するディストリビュータ8と、ディストリビュータ8と所定の伝熱管2との間を接続するディストリビュータ側枝管(枝管)9とから構成されている。
 ヘアピンチューブとされた伝熱管2は、外径が8Φ、肉厚が0.45mm以下のJIS;H3300、合金番号C5110の伝熱チューブが使用されており、プレートフィン3および側板4が挿通された後、所定寸法だけ拡管され、伝熱管2とプレートフィン3および側板4とが密着されるようになっている。プレートフィン3は、アルミ合金製の薄板を短冊状に打抜き成形したもので、伝熱管2の本数に対応した数のバーリング付き挿通穴が穿設されており、伝熱管2の外周に所定ピッチで多数枚挿通され、伝熱管2の拡管により密着されるようなっている。
 側板4は、所定の強度を有する板厚の鉄板等により構成されるものであり、所定ピッチで多数枚配設されたプレートフィン3の両側部にそれぞれ配設され、熱交換器のコア部を形作るとともに、熱交換器を据え付け設置する際の設置機能を担うものである。この側板4は、プレートフィン3と同様の外形および伝熱管2の挿通穴4Aを有しており、各々の挿通穴4Aの周りには、外側に向って突出加工された所定高さのバーリング4Bが設けられた構成とされている。
 ベント管5は、隣接する伝熱管2の端部同士を互いに接続し、複数本のヘアピンチューブ同士を蛇行状に繋ぐことにより、熱交換器のコア部において所定長さの冷媒流路を形成するものである。ベント管5は、伝熱管2よりも肉厚の管で構成されており、伝熱管2の端部に設けられている拡管部2Aに対して内挿され、冷媒漏れが発生しないように全周ろう付けにより接続されるようになっている。
 ディストリビュータ8は、冷媒配管を介して送られてくる冷媒を複数のサーキットに分けられている伝熱管2毎に分岐して供給するためのものであり、またヘッダ6は、各サーキットの伝熱管2群を流通した冷媒を合流して冷媒配管側に送り出すためのものである。枝管7は、ヘッダ6と、所定の伝熱管2との間を接続するためのもので、伝熱管2よりも肉厚の管により構成されており、伝熱管2の端部に設けられた拡管部2Aに内挿され、冷媒漏れが発生しないように全周ろう付けにより接続されている。また、詳細は図示されていないが、ディストリビュータ8と所定の伝熱管2との間を接続する枝管9も、伝熱管2よりも肉厚の管により構成され、枝管7と同様に、伝熱管2の端部に設けられた拡管部2Aに内挿されて冷媒漏れが発生しないように全周ろう付けにより接続されるようになっている。なお、ろう材が廻り込む範囲は拡管部2Aとなる。
 また、枝管7,9には、伝熱管2よりも太い管が使用されている。伝熱管2の拡管部2Aに対し内挿されてろう付けされるろう付け部7A(枝管9の相当部分)は、外径が細くなるように絞り加工されている。従って、枝管7,9は、必要な肉厚があり、強度が確保されている。ベンド管5も同様に太い管が使用されており、強度が確保されている。本実施形態の枝管7は、その一部がろう付け部7Aの先端側に伝熱管2内に内挿される更に径が細くされた内挿部7Bを備えたものとされている。枝管9には、枝管7の内挿部7Bに相当する部分は設けられていない。ヘッダ6およびディストリビュータ8も当然必要な強度を有している。
 さらに、本実施形態においては、外周部に抑えがなく、しかも肉厚が薄く、かつろう材が廻り難いことにより、強度が弱くなる伝熱管2とベンド管5および/または枝管7,9との接続部分における強度を確保するために、伝熱管2とベンド管5および/または枝管7,9との接続部分の管軸方向長さ、すなわち側板4のバーリング4Bの端部と、ベンド管5および/または枝管7,9の端部(ろう付け部7Aおよびその相当部分の端部)との間の寸法Lを、最小寸法の0~5mmの範囲に設定することによって、当該接続部分の受圧面積を小さくし、強度を確保する構成としている。
 このように、外径が8Φ、肉厚が0.45mm以下のJIS;H3300、合金番号C5110の伝熱管2を使用したフィンチューブ型熱交換器1において、伝熱管2とベンド管5および/または枝管7,9との接続部を、側板4にバーリング4Bを設け、そのバーリング4Bの端部と、ベンド管5および/または枝管7,9の端部(ろう付け部7Aおよびその相当部分の端部)との間の寸法Lを、0~5mmの範囲に設定した構成とすることで、外部に抑え部材がなく、ろう材が廻り難い当該接続部分の受圧面積を小さくするようにしている。
 かかる構成とされたフィンチューブ型熱交換器1を、冷媒がCO2冷媒とされている空調機、冷凍機、ヒートポンプ、給湯機等の蒸発器として機能する空気熱交換器に適用した場合の強度試験において、必要な強度を満たすことが確認された。なお、CO2冷媒を用いた機器における低圧側の設計圧力は、8.5MPaであり、必要な強度は、設計圧力の3倍の25.5MPaである。
 以上に説明の構成により、本実施形態によれば、以下の作用効果を奏する。
 上記フィンチューブ型熱交換器1において、冷媒は入口側のディストリビュータ8から複数のサーキット毎に枝管9を介して分流され、伝熱管2内に供給される。各サーキットの伝熱管2内に供給された冷媒は、ベンド管5を介して接続されている複数本の伝熱管2内を流通する間にその外部を流れる空気とプレートフィン3を介して熱交換される。冷媒は接続された複数本の伝熱管2の出口に至るまでに蒸発され、ガス冷媒となり枝管7を介して出口側のヘッダ6に導かれて合流された後、圧縮機へと吸入される。
 この際、フィンチューブ型熱交換器1の伝熱管2、ベンド管5、枝管7,9、ヘッダ6およびディストリビュータ8には、内圧が作用する。この場合、強度が最も弱くなる部分は、前述の通りヘアピンチューブである伝熱管2の端部と、ベンド管5および/または枝管7,9の端部とのろう付け接続部分、すなわち、外部に抑え部材がなく、ろう材が廻り難い、図2のL寸法部分である。しかるに、本実施形態では、伝熱管2が挿通される側板4の挿通穴4Aの周りに外側に向けて突出されたバーリング4Bを設けるとともに、そのバーリング4Bの端部と、伝熱管2の端部に挿入され、ろう付け接続されるベンド管5および/または枝管7,9の端部との間の寸法Lを、0~5mmの範囲に設定した構成としている。
 これによって、外周部に抑え部材がなく、ろう材が廻らないことにより、強度が最も弱くなる伝熱管2とベンド管5および/または枝管7,9との接続部分の管軸方向長さ、すなわちバーリング4Bの端部とベンド管5および/または枝管7,9の端部との間の寸法Lを、最小範囲の0~5mmに設定し、当該接続部分における受圧面積を小さくすることによって、強度を高めることができる。このため、伝熱管2の肉厚を厚くしたり、補強スリーブを被せたりする必要がなく、比較的肉厚が薄く外径が太い伝熱管2を使用した場合おいても、十分に強度を確保することができ、高性能で簡素化、軽量化、低コスト化された安全性の高いフィンチューブ型熱交換器1を提供することができる。
 また、伝熱管2内を流通される媒体がCO2冷媒とされ、該CO2冷媒と空気とを熱交換する空気熱交換器に適用したとしても、CO2冷媒を用いる場合の設計圧力(8.5MPa)の3倍が一般的である強度試験圧力を満たすことができ、従って、CO2冷媒を用いた空調機や冷凍機、ヒートポンプ、給湯機等の空気熱交換器に適用して好適な高性能でかつ軽量化、低コスト化された安全性の高いフィンチューブ型熱交換器1を得ることができる。
 さらに、本実施形態では、伝熱管2の拡管前の外径が8Φとされ、その肉厚が0.45mm以下とされているため、大型機器に適用するCO2冷媒用のフィンチューブ型熱交換器1としては、それに適した外径で最小の肉厚の伝熱管2を用いることができる。これによって、CO2冷媒用フィンチューブ型熱交換器1の低圧損化を図り、その高性能化、軽量化、低コスト化を図ることができる。
 また、上記伝熱管2が、JIS;H3300、合金番号C5110の高強度管とされているため、伝熱管2として広く使用されているリン脱酸銅系(JIS;H3300、合金番号C1220)の管に比べ、可及的に肉厚を薄くしながら強度を確保することができ、これによって、フィンチューブ型熱交換器1の熱交換性能の更なる向上と、軽量化を図ることができる。
 なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。例えば、上記実施形態では、枝管7の一部をろう付け部7Aの先端側に伝熱管2内に内挿される更に径が細くされた内挿部7Bを備えたものとしているが、この内挿部7Bは必ずしも必要なものではなく、省略してもよい。また、枝管9には、枝管7の内挿部7Bに相当する部分を設けていないが、同様の内挿部を設けてもよい。
 さらに、上記実施形態では、熱交換器1の入口側にディストリビュータ8を設け、出口側にヘッダ6を設けた例について説明したが、入口側および出口側ともにヘッダを設けた構成としてもよい。また、上記実施形態では、熱交換器1のコア部を90度曲げた形状としているが、曲げのない形状としてもよいことはもちろんである。
1 フィンチューブ型熱交換器
2 伝熱管
2A 伝熱管の拡管部
3 プレートフィン(フィン)
4 側板
4A 挿通穴
4B バーリング
5 ベンド管
6 ヘッダ
7 ヘッダ側枝管(枝管)
7A ろう付け部
8 ディストリビュータ
9 ディストリビュータ側枝管(枝管)
L 伝熱管端部とベンド管および/または枝管端部間の寸法

Claims (4)

  1.  伝熱管に多数のフィンが挿通され、その両側部に側板が配設されるとともに、前記伝熱管の端部にベンド管および/または枝管の端部が挿入され、ろう付け接続されているフィンチューブ型熱交換器において、
     前記伝熱管が挿通される前記側板の挿通穴周りに外側に向けて突出されたバーリングが設けられ、
     該バーリングの端部と、前記伝熱管の端部に挿入され、ろう付け接続される前記ベンド管および/または枝管の端部との間の外部に抑え部材がなく、ろう材が廻り難い部分の寸法が、0~5mmの範囲に設定されていることを特徴とするフィンチューブ型熱交換器。
  2.  前記伝熱管内を流通される媒体がCO2冷媒とされ、該CO2冷媒と空気とを熱交換する空気熱交換器として適用されることを特徴とする請求項1に記載のフィンチューブ型熱交換器。
  3.  前記伝熱管の拡管前の外径が8Φとされ、その肉厚が0.45mm以下とされていることを特徴とする請求項1または2に記載のフィンチューブ型熱交換器。
  4.  前記伝熱管は、高強度管とされていることを特徴とする請求項1ないし3のいずれかに記載のフィンチューブ型熱交換器。
     
PCT/JP2013/052705 2012-02-10 2013-02-06 フィンチューブ型熱交換器 WO2013118762A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-027419 2012-02-10
JP2012027419A JP2013164215A (ja) 2012-02-10 2012-02-10 フィンチューブ型熱交換器

Publications (1)

Publication Number Publication Date
WO2013118762A1 true WO2013118762A1 (ja) 2013-08-15

Family

ID=48947523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052705 WO2013118762A1 (ja) 2012-02-10 2013-02-06 フィンチューブ型熱交換器

Country Status (2)

Country Link
JP (1) JP2013164215A (ja)
WO (1) WO2013118762A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230984A1 (ja) * 2021-04-28 2022-11-03 ダイキン工業株式会社 配管連結構造及び冷凍サイクル装置
JP7174291B1 (ja) 2021-09-30 2022-11-17 ダイキン工業株式会社 熱交換器および空気調和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015175574A (ja) * 2014-03-17 2015-10-05 株式会社コベルコ マテリアル銅管 熱交換器用リターンベンド管、熱交換器用伝熱管、熱交換器及び熱交換器の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197186A (ja) * 1996-12-27 1998-07-31 Mitsubishi Materials Corp 熱交換器
JP2001116480A (ja) * 1999-10-15 2001-04-27 Toyo Radiator Co Ltd フィンコイルタイプ熱交換器およびその製造方法
JP2010230252A (ja) * 2009-03-27 2010-10-14 Sanyo Electric Co Ltd 熱交換器
JP2011027346A (ja) * 2009-07-27 2011-02-10 Iwasaki Kogyo:Kk クロスフィンチューブ式熱交換器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197186A (ja) * 1996-12-27 1998-07-31 Mitsubishi Materials Corp 熱交換器
JP2001116480A (ja) * 1999-10-15 2001-04-27 Toyo Radiator Co Ltd フィンコイルタイプ熱交換器およびその製造方法
JP2010230252A (ja) * 2009-03-27 2010-10-14 Sanyo Electric Co Ltd 熱交換器
JP2011027346A (ja) * 2009-07-27 2011-02-10 Iwasaki Kogyo:Kk クロスフィンチューブ式熱交換器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230984A1 (ja) * 2021-04-28 2022-11-03 ダイキン工業株式会社 配管連結構造及び冷凍サイクル装置
JP2022170142A (ja) * 2021-04-28 2022-11-10 ダイキン工業株式会社 配管連結構造及び冷凍サイクル装置
JP7227512B2 (ja) 2021-04-28 2023-02-22 ダイキン工業株式会社 配管連結構造及び冷凍サイクル装置
JP7174291B1 (ja) 2021-09-30 2022-11-17 ダイキン工業株式会社 熱交換器および空気調和装置
WO2023053851A1 (ja) * 2021-09-30 2023-04-06 ダイキン工業株式会社 熱交換器および空気調和装置
JP2023050589A (ja) * 2021-09-30 2023-04-11 ダイキン工業株式会社 熱交換器および空気調和装置

Also Published As

Publication number Publication date
JP2013164215A (ja) 2013-08-22

Similar Documents

Publication Publication Date Title
EP2312254B1 (en) Heat exchanger and air conditioner having the heat exchanger
EP2594886B1 (en) Heat exchanger
JP5517801B2 (ja) 熱交換器及びこの熱交換器を搭載したヒートポンプシステム
KR20120044851A (ko) 열교환기
WO2013118762A1 (ja) フィンチューブ型熱交換器
KR20080095628A (ko) 공기조화기
JP2009109183A (ja) 熱交換器用チューブ
US20240044557A1 (en) Pipe coupling structure and refrigeration cycle apparatus
JP5591285B2 (ja) 熱交換器および空気調和機
JP6200280B2 (ja) 熱交換器の拡管方法及び空気調和機
JP2006336885A (ja) 熱交換器及びその製造方法
JP2014105951A (ja) 熱交換器
CN111556950A (zh) 冷冻冷藏库用热交换器
JP2019128090A (ja) 熱交換器及び冷凍サイクル装置
WO2012017777A1 (ja) 熱交換器用二重管
JP2011099620A (ja) 熱交換器
JP2015014397A (ja) 熱交換器
JP2006317080A (ja) 熱交換器および熱交換器の製造方法
JP2017133814A (ja) 熱交換器
KR20100108754A (ko) 턴핀형 열교환기, 이를 이용한 열교환 시스템 및 턴핀형 열교환기의 제조방법
KR20060122375A (ko) 열교환기
JP6582373B2 (ja) 熱交換器
JP7174291B1 (ja) 熱交換器および空気調和装置
JP7503719B1 (ja) 空気調和機
WO2016174965A1 (ja) 空気調和装置及び空気調和装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746894

Country of ref document: EP

Kind code of ref document: A1