WO2013118555A1 - ワイヤレス給電システム、送電装置及び送電方法 - Google Patents

ワイヤレス給電システム、送電装置及び送電方法 Download PDF

Info

Publication number
WO2013118555A1
WO2013118555A1 PCT/JP2013/050869 JP2013050869W WO2013118555A1 WO 2013118555 A1 WO2013118555 A1 WO 2013118555A1 JP 2013050869 W JP2013050869 W JP 2013050869W WO 2013118555 A1 WO2013118555 A1 WO 2013118555A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
load
reflected
receiving device
transmission
Prior art date
Application number
PCT/JP2013/050869
Other languages
English (en)
French (fr)
Inventor
雄敬 大川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2013118555A1 publication Critical patent/WO2013118555A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • the present invention relates to a wireless power feeding system, a power transmission apparatus, and a power transmission method, and more particularly, to a wireless power feeding system, a power transmission apparatus, and a power transmission method using a magnetic field resonance method.
  • the electromagnetic induction type non-contact power supply that is widely used at present needs to share a magnetic field between the power transmission side and the power reception side. For this reason, in order to send electric power efficiently in electromagnetic induction type non-contact power feeding, it is necessary to arrange the power transmission side and the power receiving side very close to each other, and it is necessary to accurately perform the alignment of the coupling. is there.
  • non-contact power supply using resonance phenomenon can transmit power at a greater distance than electromagnetic induction due to the principle of resonance phenomenon, and the transmission efficiency changes much even if the axis is slightly misaligned.
  • the transmission method using the resonance phenomenon includes an electric field resonance method in addition to the magnetic field resonance method. Below, it demonstrates based on a magnetic field resonance system.
  • Patent Document 1 discloses a wireless power feeding system that enables this impedance control with low loss.
  • the power feeding device stores impedance characteristic estimation information for estimating the power receiving side impedance characteristics from the power transmission side impedance characteristics in advance as a correspondence table.
  • the power supply device identifies the impedance state on the power receiving side with reference to the correspondence table when the impedance on the power transmission side is detected.
  • the power feeding device generates impedance control information indicating the specified impedance state, and transmits this to the power receiving device.
  • the power receiving apparatus that has received such impedance control information switches the taps of the coils of the variable matching device based on the impedance state indicated by this information and adjusts so that the optimum impedance is obtained.
  • the wireless power feeding system disclosed in Patent Document 1 has a problem in the accuracy of impedance control information because it merely estimates the impedance on the power receiving side indirectly on the power transmission side. Further, in the wireless power feeding system disclosed in Patent Document 1, since impedance control information must be transmitted from the power feeding device to the power receiving device, a wireless communication device must be provided separately.
  • an object of the present invention is to make it possible to identify the state of the load in the power receiving device by the power transmitting device by obtaining information on the reflected power.
  • a wireless power supply system is a wireless power supply system including a power transmission device and a power reception device that receives power supply from the power transmission device by a magnetic resonance method, and the power transmission device generates power.
  • a power generation unit a power transmission unit that transmits the power generated by the power generation unit to the power receiving device; a reflected power detection unit that detects a value of reflected power obtained by the power transmission unit; and the reflected power detection unit
  • a control unit that determines the state of the load in the power receiving device from the value of the reflected power detected in step (b).
  • the state of the load in the power receiving device can be specified by the power transmitting device by obtaining the reflected power information.
  • FIG. 1 is a block diagram schematically showing a configuration of a wireless power feeding system according to an embodiment. It is the schematic for demonstrating the principle of the wireless power feeding of the magnetic field resonance system in a wireless power feeding system. It is a flowchart (the 1) which shows the process in a wireless electric power feeding system. It is a flowchart (the 2) which shows the process in a wireless electric power feeding system. It is the schematic showing the frequency and transmission efficiency with respect to the load variation in a power receiving apparatus.
  • FIG. 1 is a block diagram schematically showing a configuration of a wireless power feeding system 100 according to an embodiment.
  • the wireless power feeding system 100 includes a power transmission device 110 and a power receiving device 130 that receives power supply from the power transmission device 110 by a magnetic field resonance method.
  • the wireless power supply system 100 has a problem when the load is in a short-circuit state and when there is no load. For example, when the load is in a short-circuit state, an overload state, in other words, transmission efficiency is reduced, loss in the coil is increased, and a problem of heat generation occurs.
  • the power transmission device 110 in the no-load state, although there is no load, the power transmission device 110 always performs a resonance operation, so that a power loss on the power transmission side always occurs. Therefore, some treatment is required in these conditions.
  • the power transmission device 110 includes a power source 111, a reflected power detection unit 112, a power transmission unit 113, a memory 114, and a control unit 115.
  • the power source 111 is a power generation unit that generates power to be supplied.
  • power supply 111 generates high-frequency AC power for wirelessly transmitting power.
  • the reflected power detection unit 112 detects the value of the reflected power obtained by the power transmission unit 113.
  • the value of the reflected power detected by the reflected power detection unit 112 is determined by the power receiving device 130. Load fluctuation is reflected. In other words, the reflected power detection unit 112 can detect the reflected power from the power receiving device 130.
  • the power transmission unit 113 transmits the electric power generated by the power source 111 by a magnetic resonance method.
  • the power transmission unit 113 includes an excitation coil 113a and a power transmission coil 113b.
  • the exciting coil 113a generates a magnetic field by an alternating current supplied from the power source 111.
  • the excitation coil 113a supplies the alternating current supplied from the power supply 111 to the power transmission coil 113b by electromagnetic induction.
  • the excitation coil 113a is formed by an air core coil.
  • impedance matching between the power transmission coil 113b and the power source 111 is achieved.
  • the impedance of the exciting coil 113a is usually low impedance. Thereby, impedance matches between the power supply 111 and the power transmission unit 113.
  • the power transmission coil 113b transmits the AC power supplied from the excitation coil 113a to the power receiving device 130 by the magnetic field resonance method.
  • the power transmission coil 113b is formed by an air-core coil.
  • the power transmission coil 113b is also called a resonance coil or a resonance coil.
  • the memory 114 is a storage unit that stores corresponding load information indicating the load impedance in the power receiving device 130 corresponding to the value of the reflected power.
  • the corresponding load information is generated by measuring in advance the load impedance in the power receiving apparatus 130 corresponding to each value of the reflected power.
  • the control unit 115 determines the state of the load in the power receiving device 130 from the value of the reflected power detected by the reflected power detection unit 112. For example, the control unit 115 identifies the load impedance corresponding to the value of the reflected power detected by the reflected power detection unit 112 based on the corresponding load information stored in the memory 114. Then, the control unit 115 determines a load state in the power receiving apparatus 130 based on the specified load impedance. In addition, the control unit 115 performs a predetermined process according to the load state in the power receiving apparatus 130.
  • the control unit 115 determines that the load of the power receiving apparatus 130 is in an abnormal state (for example, a short circuit or no load state) based on the specified load impedance, the control unit 115 transmits power to the power receiving apparatus 130. Process to stop. Further, the control unit 115 performs a process of restarting the transmission of power to the power receiving apparatus 130 after a predetermined period has elapsed since the transmission of power to the power receiving apparatus 130 was stopped. Then, the control unit 115 again determines the load state in the power receiving apparatus 130 and performs processing according to the determination result. Note that when the transmission of power to the power receiving apparatus 130 is stopped, the control unit 115 performs processing for notifying the outside that the transmission of power to the power receiving apparatus 130 is stopped.
  • an abnormal state for example, a short circuit or no load state
  • the power reception device 130 includes a power reception unit 131, a rectification unit 132, a stabilized power supply unit 133, and a load 134.
  • the power receiving unit 131 receives the power transmitted from the power transmission device 110 by a magnetic resonance method.
  • the power reception unit 131 includes a power reception coil 131a and an excitation coil 131b.
  • the power receiving coil 131a receives the power transmitted from the power transmitting coil 113b of the power transmitting device 110 by a magnetic field resonance method.
  • the self-resonant frequency of the power receiving coil 131a matches the self-resonant frequency of the power transmitting coil 113b, a magnetic field resonance relationship is established and power can be transmitted efficiently.
  • the receiving coil 131a supplies the alternating current power received from the power transmission apparatus 110 to the exciting coil 131b by electromagnetic induction.
  • the exciting coil 131b feeds AC power supplied from the power receiving coil 131a to the rectifying unit 132.
  • impedance matching is established between the power receiving coil 131a and the rectifying unit 132.
  • the impedance of the exciting coil 131b is usually low impedance. As a result, impedance is matched between the power reception unit 131 and the rectification unit 132.
  • the rectifying unit 132 rectifies the AC power received from the exciting coil 131b and supplies it to the stabilized power source 133 as direct current (DC) power.
  • the stabilized power supply unit 133 converts the DC power supplied from the rectifying unit 132 into a DC voltage according to the specification of the load 134 as the supply destination, and gives the stabilized DC power to the load 134.
  • the power source 111 In the power transmission device 110, the power source 111 generates high-frequency power for wireless power transmission.
  • the high frequency power generated by the power source 111 is supplied to the exciting coil 113a.
  • This high frequency power is fed from the exciting coil 113a to the power transmitting coil 113b by electromagnetic induction.
  • the power transmission coil 113b transmits power to the power receiving device 130 at the resonance frequency.
  • the power receiving coil 131a receives power from the power transmitting device 110 at the resonance frequency.
  • the AC power received by the power receiving coil 131a is fed to the exciting coil 131b by electromagnetic induction.
  • the exciting coil 131 b provides the received AC power to the rectifying unit 132.
  • the rectifying unit 132 rectifies the received AC power and supplies it to the stabilized power source 133 as DC power.
  • the stabilized power supply unit 133 converts the DC power supplied from the rectifying unit 132 into a DC voltage corresponding to the load 134 and applies this DC voltage to the load 134.
  • the magnetic resonance state is established.
  • the degree of coupling between the two coils is maximized and the loss of power is minimized, and power is transmitted in this state.
  • the frequency generated by the power supply 111 is set to be the same as the resonance frequency of the power transmission coil 113b.
  • the excitation coil 113a and the power transmission coil 113b, and the power reception coil 131a and the excitation coil 131b are respectively coupled by electromagnetic induction.
  • the excitation coils 113a and 131b have an impedance matching (conversion) function so that the resonance operation of the power transmission coil 113b and the power reception coil 131a is not affected by load fluctuations.
  • the efficiency is usually lowered when the distance between the power transmission coil 113b and the power reception coil 131a is changed or the load 134 of the power reception device 130 is changed. Therefore, it is necessary to adjust the impedance.
  • the impedance is readjusted. An example of this is described in Patent Document 1.
  • the impedance can be adjusted by changing the diameters of the exciting coils 113a and 131b. In the present embodiment, it is assumed that the load 134 fluctuates when the distance between the power transmission coil 113b and the power reception coil 131a is constant.
  • FIGS. 3 and 4 are flowcharts showing processing in the wireless power supply system 100.
  • FIG. The flow illustrated in FIGS. 3 and 4 is started while power is being transmitted from the power transmission device 110 to the power reception device 130.
  • the control unit 115 supplies the power generation signal G2a to the power supply 111.
  • the power supply 111 that has received such a signal generates high-frequency AC power.
  • the generated AC power is sent to the power transmission coil 113b via the reflected power detection unit 112 and the excitation coil 113a, and transmission of power is started from the power transmission coil 113b.
  • control unit 115 After a predetermined period has elapsed, the control unit 115 gives the reflected power detection request G3a to the reflected power detection unit 112 (S10).
  • the reflected power detection unit 112 Upon receipt of the reflected power detection request G3a, the reflected power detection unit 112 detects the value of the reflected power accompanying the load fluctuation in the power receiving apparatus 130.
  • FIG. 5 is a schematic diagram illustrating the frequency and transmission efficiency with respect to load fluctuations in the power receiving apparatus.
  • the reflected power detection unit 112 installed at the output end of the power source 111 of the power transmission apparatus 110 detects the change shown in FIG. 5 as the value of the reflected power. And if the value of reflected power is detected, the reflected power detection part 112 will give the reflection detection information G3b which shows the value of the reflected power to the control part 115 (S11).
  • the control unit 115 refers to the corresponding load information stored in the memory 114, and identifies the current load impedance of the power receiving device 130 corresponding to the value of the reflected power indicated by the reflected power detection information G3b (S12). .
  • the control unit 115 determines whether or not there is an abnormal state based on the specified load impedance (S13). For example, the control unit 115 determines that the load is in an abnormal state when it can be determined that the load is short-circuited or the load is unloaded by comparing the specified load impedance with a predetermined threshold. If the control unit 115 determines that the state is abnormal (S13: Yes), the process proceeds to step S14. If the control unit 115 determines that the state is not abnormal (S13: No), the process proceeds to step S10. Return to.
  • step S14 the control unit 115 sends the power generation stop signal G2b to the power supply 111 because the load is in an abnormal state. Upon receiving such a signal, the power supply 111 stops generating power, and thus power transmission from the power transmission coil 113b is also stopped.
  • control part 115 outputs the electric power transmission stop signal G4 from the output terminal (output part) 117 (S15).
  • the power transmission stop signal G4 is used to notify a device (not shown) outside the power transmission device 110 that power transmission has been stopped due to a load abnormality.
  • An external device can use this signal in any form suitable for the system, for example, turning on a light or LED, or displaying information indicating an abnormality on the display.
  • the control unit 115 proceeds to the process of step S16 in FIG.
  • Step S16 of FIG. 4 the control unit 115 measures a predetermined period after giving the power transmission stop signal G2b. Then, the control unit 115 gives the power generation signal G2a to the power source 111 after the lapse of the predetermined period (S17). Further, the control unit 115 stops outputting the power stop signal G4 via the output terminal 117 (S18). Thereby, the power transmission coil 113b resumes power transmission.
  • control unit 115 After a certain period of time has elapsed since the power transmission was resumed, the control unit 115 gives the reflected power detection request G3a to the reflected power detection unit 112 (S19).
  • the reflected power detection unit 112 Upon receipt of the reflected power detection request G3a, the reflected power detection unit 112 detects the value of the reflected power accompanying the load fluctuation in the power receiving apparatus 130. And if the value of reflected power is detected, the reflected power detection part 112 will give the reflection detection information G3b which shows the value of the reflected power to the control part 115 (S20).
  • the control unit 115 refers to the corresponding load information stored in the memory 114, and identifies the current load impedance of the power receiving apparatus 130 corresponding to the value of the reflected power indicated by the reflected power detection information G3b (S21). .
  • the control unit 115 determines whether or not there is an abnormal state based on the specified load impedance (S22). If the control unit 115 determines that the state is abnormal (S22: Yes), the process proceeds to step S23. If the control unit 115 determines that the state is not abnormal (S22: No), the step illustrated in FIG. The process returns to S10.
  • step S23 the control unit 115 sends the power generation stop signal G2b to the power source 111 because the load is in an abnormal state. Upon receiving such a signal, the power supply 111 stops generating power, and thus power transmission from the power transmission coil 113b is also stopped.
  • control part 115 outputs the electric power transmission stop signal G4 from the output terminal 117 (S24).
  • control unit 115 returns to the process of step S16.
  • the wireless power feeding system 100 it is possible to protect the wireless power feeding system 100 from a load abnormality.
  • the load state is obtained directly from the power receiving device 130 with the reflected power, the accuracy of information is high, and it is possible to determine whether to stop or restart the power transmission only on the power transmitting device 110 side, so complicated control is required. This makes it possible to achieve highly accurate operation.
  • the control unit 115 refers to the corresponding load information stored in the memory 114, and corresponds to the current power receiving device corresponding to the value of the reflected power indicated by the reflected power detection information G3b. 130 load impedances are specified, and an abnormal state of the load is determined based on the load impedance.
  • the present invention is not limited to such an example.
  • the memory 114 stores a threshold for determining an abnormal state of the load based on the value of the reflected power, and the control unit 115 detects the reflected power.
  • the abnormal state of the load may be determined based on a comparison result obtained by comparing the value of the reflected power indicated by the information G3b with this threshold value.
  • 100 wireless power supply system 110 power transmission device, 111 power supply, 112 reflected power detection unit, 113 power transmission unit, 114 memory, 115 control unit, 130 power reception device, 131 power reception unit, 132 rectification unit, 133 stabilization power supply unit, 134 load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 ワイヤレス給電システム(100)は、送電装置(110)、及び、送電装置(110)から磁界共鳴方式で電力の供給を受ける受電装置(130)を備え、送電装置(110)は、電力を生成する電源(111)と、電源(111)で生成された電力を、受電装置(130)に伝送する送電部(113)と、送電部(113)で得られる反射電力の値を検出する反射電力検出部(112)と、反射電力検出部(112)で検出された反射電力の値から、受電装置(130)における負荷の状態を判定する制御部(115)と、を備える。

Description

ワイヤレス給電システム、送電装置及び送電方法
 本発明は、ワイヤレス給電システム、送電装置及び送電方法に関し、特に、磁界共鳴方式を用いた、ワイヤレス給電システム、送電装置及び送電方法に関する。
 近年、共鳴現象を利用した磁界共鳴方式と呼ばれる方式を用いたワイヤレス給電が注目されている。
 現在広く用いられている電磁誘導方式の非接触給電は、送電側と受電側とで磁界を共有する必要がある。このため、電磁誘導方式の非接触給電において効率良く電力を送るためには、送電側と受電側とを極めて近接して配置する必要があり、さらに結合の軸合わせを精度よく行うことが必要である。
 一方、共鳴現象を用いた非接触給電は、共鳴現象という原理から、電磁誘導方式よりも距離を離して電力を伝送することが可能で、かつ、多少軸合わせがずれても伝送効率があまり変わらないという利点がある。なお、共鳴現象を用いた伝送方式には、磁界共鳴方式の他に電界共鳴方式がある。以下では、磁界共鳴方式に基づいて説明する。
 この磁界共鳴方式を用いたワイヤレス給電システムは、伝送距離を長くする事が可能であるが、この特徴を最大限に発揮するためには動的なインピーダンス制御が必要である。例えば、特許文献1には、低損失でこのインピーダンス制御を可能にするワイヤレス給電システムが開示されている。
 この特許文献1に開示されているワイヤレス給電システムでは、給電装置が、送電側のインピーダンス特性から受電側のインピーダンス特性を推定するためのインピーダンス特性推定情報を予め対応テーブルとして記憶している。そして、この給電装置は、送電側のインピーダンスを検出した時点で対応テーブルを参照して受電側のインピーダンス状態を特定する。給電装置は、特定されたインピーダンス状態を示すインピーダンス制御情報を生成して、これを受電装置に送信する。このようなインピーダンス制御情報を受信した受電装置は、この情報で示されるインピーダンス状態に基づき可変整合器のコイルのタップを切り替えて最適なインピーダンスになるように調整する。
特開2011-223739号公報
 特許文献1に開示されているワイヤレス給電システムでは、送電側で間接的に受電側のインピーダンスを推定しているにすぎないためインピーダンス制御情報の精度に問題がある。また、特許文献1に開示されているワイヤレス給電システムでは、給電装置から受電装置にインピーダンス制御情報を送信しなければならないため、別個、無線通信装置を備えなければならない。
 そこで、本発明は、反射電力の情報を得ることで、受電装置における負荷の状態を送電装置で特定できるようにすることを目的とする。
 本発明の一態様に係るワイヤレス給電システムは、送電装置、及び、前記送電装置から磁界共鳴方式で電力の供給を受ける受電装置を備えるワイヤレス給電システムであって、前記送電装置は、電力を生成する電力生成部と、前記電力生成部で生成された電力を、前記受電装置に伝送する送電部と、前記送電部で得られる反射電力の値を検出する反射電力検出部と、前記反射電力検出部で検出された反射電力の値から、前記受電装置における負荷の状態を判定する制御部と、を備えることを特徴とする。
 本発明の一態様によれば、反射電力の情報を得ることで、受電装置における負荷の状態を送電装置で特定することができる。
実施の形態に係るワイヤレス給電システムの構成を概略的に示すブロック図である。 ワイヤレス給電システムにおける磁界共鳴方式のワイヤレス給電の原理を説明するための概略図である。 ワイヤレス給電システムでの処理を示すフローチャート(その1)である。 ワイヤレス給電システムでの処理を示すフローチャート(その2)である。 受電装置における負荷変動に対する周波数と伝送効率を表す概略図である。
実施の形態
 図1は、実施の形態に係るワイヤレス給電システム100の構成を概略的に示すブロック図である。ワイヤレス給電システム100は、送電装置110と、送電装置110から磁界共鳴方式で電力の供給を受ける受電装置130とを備える。一般に、ワイヤレス給電システム100では、負荷が短絡状態である場合及び無負荷の場合に問題が生ずる。例えば、負荷が短絡状態であると、過負荷状態、言い換えると、伝送効率が低下すると共にコイルでの損失が増大し、発熱の問題が発生する。また、無負荷の状態であると、負荷はないものの送電装置110は常に共鳴動作をしているため、送電側での電力の損失が常に発生していることになる。従って、これらの状態においては何らかの処置が必要とされる。
 送電装置110は、電源111と、反射電力検出部112と、送電部113と、メモリ114と、制御部115とを有する。
 電源111は、給電すべき電力を生成する電力生成部である。本実施の形態では、電源111は、ワイヤレスで電力を伝送するための、高周波の交流電力を生成する。
 反射電力検出部112は、送電部113で得られる反射電力の値を検出する。本実施の形態においては、後述するように、電源111と送電部113との間のインピーダンス整合がとられているため、反射電力検出部112で検出される反射電力の値は、受電装置130における負荷変動が反映される。言い換えると、反射電力検出部112は、受電装置130からの反射電力を検出することが可能である。
 送電部113は、電源111で生成された電力を磁界共鳴方式で伝送する。送電部113は、励磁コイル113aと、送電コイル113bとを備える。
 励磁コイル113aは、電源111から供給される交流電流により、磁界を発生する。そして、励磁コイル113aは、電磁誘導により、電源111から供給される交流電流を送電コイル113bに供給する。例えば、励磁コイル113aは、空心コイルにより形成される。
 また、励磁コイル113aでは、送電コイル113bと電源111との間のインピーダンス整合がとられている。励磁コイル113aのインピーダンスは、通常、低インピーダンスである。これにより、電源111と送電部113との間でインピーダンスが整合することとなる。
 送電コイル113bは、励磁コイル113aから供給される交流電力を、磁界共鳴方式で受電装置130に伝送する。例えば、送電コイル113bは、空心コイルにより形成される。なお、送電コイル113bは、共鳴コイル又は共振コイルとも呼ばれる。
 メモリ114は、反射電力の値に対応する、受電装置130における負荷インピーダンスを示す対応負荷情報を記憶する記憶部である。例えば、対応負荷情報は、反射電力の各々の値に対応する、受電装置130における負荷インピーダンスを予め測定することにより生成される。
 制御部115は、反射電力検出部112で検出された反射電力の値から、受電装置130における負荷の状態を判定する。例えば、制御部115は、メモリ114に記憶されている対応負荷情報に基づいて、反射電力検出部112で検出された反射電力の値に対応する負荷インピーダンスを特定する。そして、制御部115は、特定された負荷インピーダンスに基づいて、受電装置130における負荷の状態を判定する。
 また、制御部115は、受電装置130における負荷の状態に応じて、予め定められた処理を行う。例えば、制御部115は、特定された負荷インピーダンスにより、受電装置130の負荷が異常状態(例えば、短絡又は無負荷の状態)であると判定した場合には、受電装置130への電力の伝送を停止する処理を行う。
 さらに、制御部115は、受電装置130への電力の伝送を停止してから予め定められた一定の期間経過後に、受電装置130への電力の伝送を再開する処理を行う。そして、再び、制御部115は、受電装置130における負荷の状態を判定して、この判定結果に応じた処理を行う。
 なお、制御部115は、受電装置130への電力の伝送を停止した場合には、受電装置130への電力の伝送を停止したことを外部に通知する処理を行う。
 次に、受電装置130は、受電部131と、整流部132と、安定化電源部133と、負荷134とを備える。
 受電部131は、送電装置110から伝送された電力を、磁界共鳴方式で受電する。受電部131は、受電コイル131aと、励磁コイル131bとを備える。
 受電コイル131aは、送電装置110の送電コイル113bから伝送される電力を、磁界共鳴方式で受電する。そして、受電コイル131aの自己共振周波数と、送電コイル113bの自己共振周波数とが一致したときに、磁界共鳴関係となり電力を効率よく伝送することができる。
 そして、受電コイル131aは、電磁誘導により、送電装置110から受電した交流電力を、励磁コイル131bに供給する。
 励磁コイル131bは、受電コイル131aから供給された交流電力を、整流部132に給電する。なお、励磁コイル131bでは、受電コイル131aと整流部132との間のインピーダンス整合がとられている。励磁コイル131bのインピーダンスは、通常、低インピーダンスである。これにより、受電部131と整流部132との間でインピーダンスが整合することとなる。
 整流部132は、励磁コイル131bから受電した交流電力を整流して直流(DC)電力として安定化電源部133に供給する。
 安定化電源部133は、整流部132から供給されるDC電力を、供給先の負荷134の仕様に応じたDC電圧に変換して、その安定化したDC電力を負荷134に与える。
 次に、図2を用いて、ワイヤレス給電システム100における磁界共鳴方式のワイヤレス給電の原理を説明する。図2では、送電装置110の反射電力検出部112、メモリ114及び制御部115は、省略している。
 まず、送電装置110において、電源111が、ワイヤレス電力伝送の為の高周波電力を生成する。電源111で発生された高周波電力は、励磁コイル113aに供給される。そして、この高周波電力は、電磁誘導にて励磁コイル113aから送電コイル113bに給電される。送電コイル113bは、共振周波数にて、受電装置130に電力の伝送を行う。
 次に、受電装置130では、受電コイル131aは、共振周波数にて、送電装置110から電力を受電する。受電コイル131aで受電された交流電力は、電磁誘導によって、励磁コイル131bに給電される。そして、励磁コイル131bは、受電した交流電力を整流部132に与える。整流部132は、受電した交流電力を整流して直流電力として安定化電源部133に供給する。安定化電源部133は、整流部132から供給された直流電力を、負荷134に応じた直流電圧に変換して、この直流電圧を負荷134に与える。
 以上に示すように、磁界共鳴方式のワイヤレス給電では、送電コイル113bと受電コイル131aとの共振周波数が同じ時に磁界共鳴の状態となる。磁界共鳴の状態では、両コイルの結合度が最大となり、かつ、電力の損失が最小となり、この状態で電力の伝送が行われる。なお、電源111で発生される周波数は、送電コイル113bの共振周波数と同じになるように設定されている。また、励磁コイル113aと送電コイル113b、及び、受電コイル131aと励磁コイル131bは、それぞれ電磁誘導で結合される。そして、励磁コイル113a、131bは、送電コイル113bと受電コイル131aの共鳴動作に負荷変動等による影響がでないようにインピーダンス整合(変換)の機能を有している。
 ワイヤレス給電システム100では、通常、送電コイル113bと受電コイル131aとの間の距離を変えたり、受電装置130の負荷134に変動があったりすると効率が下がるため、インピーダンスの調整が必要となる。特に距離が変わった場合は、両コイル113b、131aの相互インダクタンスも変わることから、共振周波数の変動と、インピーダンスの双方の変動が発生する。これに対応するために、インピーダンスは再調整される。これについては、特許文献1に例が記載されており、例えば、励磁コイル113a、131bの径を変更することにより、インピーダンスを調整することができる。
 本実施の形態は、送電コイル113bと受電コイル131aとの間の距離が一定の場合において、負荷134が変動したときを想定している。
 図3及び4は、ワイヤレス給電システム100での処理を示すフローチャートである。図3及び図4に示されているフローは、送電装置110から受電装置130に電力の伝送が行われている間に開始される。例えば、送電装置110の制御部115に、入力端子(入力部)116を介して、外部よりワイヤレス給電システム100の起動信号G1が入力されると、制御部115は、電源111に電力発生信号G2aを送信する。このような信号を受けた電源111は、高周波の交流電力を生成する。生成された交流電力は、反射電力検出部112及び励磁コイル113aを介して、送電コイル113bに送られ、送電コイル113bから電力の伝送が開始される。
 予め定められた一定期間経過後、制御部115は、反射電力検出部112に、反射電力検出要求G3aを与える(S10)。
 反射電力検出要求G3aを受けた反射電力検出部112は、受電装置130における負荷変動に伴う反射電力の値を検出する。図5は、受電装置における負荷変動に対する周波数と伝送効率を表す概略図である。送電装置110の電源111の出力端に設置されている反射電力検出部112は、この図5で表されている変化を反射電力の値として検出する。そして、反射電力の値を検出したら、反射電力検出部112は、制御部115にその反射電力の値を示す反射検出情報G3bを与える(S11)。
 制御部115は、メモリ114に記憶されている対応負荷情報を参照して、反射電力検出情報G3bで示される反射電力の値に対応する、現在の受電装置130の負荷インピーダンスを特定する(S12)。
 制御部115は、特定された負荷インピーダンスに基づいて、異常状態であるか否かを判定する(S13)。例えば、制御部115は、特定された負荷インピーダンスを予め定められた閾値と比較することにより、負荷の短絡状態又は負荷が無負荷であると判断できる場合には、異常状態であると判定する。そして、制御部115は、異常状態であると判定した場合(S13:Yes)には、ステップS14の処理に進み、異常状態ではないと判定した場合(S13:No)には、ステップS10の処理に戻る。
 ステップS14では、制御部115は、負荷が異常状態となっているため、電源111に電力発生停止信号G2bを送出する。このような信号を受けた電源111は、電力の生成を停止するため、送電コイル113bからの電力伝送も停止される。
 そして、制御部115は、出力端子(出力部)117から、電力伝送停止信号G4を出力する(S15)。この電力伝送停止信号G4は、送電装置110の外部の装置(図示せず)に負荷の異常で電力伝送を停止したことを知らせるためのものである。外部の装置は、例えば、ライト又はLEDの点灯、若しくは、ディスプレイに異常を知らせる情報を表示させる等、システムに合わせて自由な形態で、この信号を使用できる。次に、制御部115は、図4のステップS16の処理に進む。
 図4のステップS16では、制御部115は、電力伝送停止信号G2bを与えてから予め定められた一定期間を計測する。そして、制御部115は、この一定期間の経過後、電源111に電力発生信号G2aを与える(S17)。また、制御部115は、出力端子117を介した電力停止信号G4の出力を停止する(S18)。これにより、送電コイル113bは、電力伝送を再開する。
 電力の伝送が再開されてから予め定められた一定期間経過後、制御部115は、反射電力検出部112に、反射電力検出要求G3aを与える(S19)。
 反射電力検出要求G3aを受けた反射電力検出部112は、受電装置130における負荷変動に伴う反射電力の値を検出する。そして、反射電力の値を検出したら、反射電力検出部112は、制御部115にその反射電力の値を示す反射検出情報G3bを与える(S20)。
 制御部115は、メモリ114に記憶されている対応負荷情報を参照して、反射電力検出情報G3bで示される反射電力の値に対応する、現在の受電装置130の負荷インピーダンスを特定する(S21)。
 制御部115は、特定された負荷インピーダンスに基づいて、異常状態であるか否かを判定する(S22)。そして、制御部115は、異常状態であると判定した場合(S22:Yes)には、ステップS23の処理に進み、異常状態ではないと判定した場合(S22:No)には、図3のステップS10の処理に戻る。
 ステップS23では、制御部115は、負荷が異常状態となっているため、電源111に電力発生停止信号G2bを送出する。このような信号を受けた電源111は、電力の生成を停止するため、送電コイル113bからの電力伝送も停止される。
 そして、制御部115は、出力端子117から、電力伝送停止信号G4を出力する(S24)。次に、制御部115は、ステップS16の処理に戻る。
 以上のように、本実施の形態によれば、ワイヤレス給電システム100を負荷の異常から保護することができる。この場合、負荷の状態を反射電力で直接受電装置130から得るため情報の精度が高く、また、電力伝送の停止及び再開の判断を送電装置110側のみで可能であるため、複雑な制御を必要としないで精度の高い動作の実現が可能となる。
 なお、図3のフローで示されている電力伝送停止処理及び図4のフローで示されている電力伝送再開処理の何れか一方だけで、実施の形態が成立し得る。
 以上に記載した実施の形態においては、制御部115は、メモリ114に記憶されている対応負荷情報を参照して、反射電力検出情報G3bで示される反射電力の値に対応する、現在の受電装置130の負荷インピーダンスを特定し、この負荷インピーダンスに基づいて、負荷の異常状態を判定している。しかしながら、このような例に限定されず、例えば、メモリ114には、反射電力の値に基づいて、負荷の異常状態を判定するための閾値が記憶されており、制御部115は、反射電力検出情報G3bで示される反射電力の値とこの閾値とを比較した比較結果により、負荷の異常状態を判定してもよい。
 100 ワイヤレス給電システム、 110 送電装置、 111 電源、 112 反射電力検出部、 113 送電部、 114 メモリ、 115 制御部、 130 受電装置、 131 受電部、 132 整流部、 133 安定化電源部、 134 負荷。

Claims (19)

  1.  送電装置、及び、前記送電装置から磁界共鳴方式で電力の供給を受ける受電装置を備えるワイヤレス給電システムであって、
     前記送電装置は、
     電力を生成する電力生成部と、
     前記電力生成部で生成された電力を、前記受電装置に伝送する送電部と、
     前記送電部で得られる反射電力の値を検出する反射電力検出部と、
     前記反射電力検出部で検出された反射電力の値から、前記受電装置における負荷の状態を判定する制御部と、を備えること
     を特徴とするワイヤレス給電システム。
  2.  前記送電装置は、
     反射電力の値に対応する、前記受電装置の負荷インピーダンスを示す対応負荷情報を記憶する記憶部をさらに備え、
     前記制御部は、前記対応負荷情報を参照することで、前記反射電力検出部で検出された反射電力の値に対応する、前記受電装置の負荷インピーダンスを特定し、特定された負荷インピーダンスにより前記受電装置における負荷の状態を判定すること
     を特徴とする請求項1に記載のワイヤレス給電システム。
  3.  前記送電装置は、
     反射電力の値に基づいて、前記受電装置における負荷の状態を判定するための閾値を記憶する記憶部をさらに備え、
     前記制御部は、前記閾値と、前記反射電力検出部で検出された反射電力の値とを比較し、当該比較結果により前記受電装置における負荷の状態を判定すること
     を特徴とする請求項1に記載のワイヤレス給電システム。
  4.  前記制御部は、前記判定された負荷の状態に応じて、予め定められた処理を行うこと
     を特徴とする請求項1から3の何れか一項に記載のワイヤレス給電システム。
  5.  前記制御部は、前記受電装置における負荷の状態の判定として、前記受電装置の負荷が異常な状態であるか否かを判定し、前記受電装置の負荷が異常な状態であると判定した場合には、前記予め定められた処理として、前記受電装置への電力の伝送を停止する処理を行うこと
     を特徴とする請求項4に記載のワイヤレス給電システム。
  6.  前記制御部は、前記受電装置の負荷が短絡又は前記受電装置が無負荷と判断することができる場合に、前記受電装置の負荷が異常な状態であると判定すること
     を特徴とする請求項5に記載のワイヤレス給電システム。
  7.  前記制御部は、前記受電装置への電力の伝送を停止してから予め定められた一定の期間経過後に、前記受電装置への電力の伝送を再開する処理を行い、
     前記反射電力検出部は、前記受電装置への電力の伝送の再開後に前記送電部で反射電力の値を検出し、
     前記制御部は、前記受電装置への電力の伝送の再開後に、前記反射電力検出が検出した反射電力の値に基づいて、前記受電装置の負荷が異常な状態であると判定した場合には、前記受電装置への電力の伝送を再度停止する処理を行うこと
     を特徴とする請求項5又は6に記載のワイヤレス給電システム。
  8.  前記制御部は、前記受電装置への電力の伝送を停止又は再度停止した場合には、前記受電装置への電力の伝送を停止又は再度停止したことを外部に通知する処理を行うこと
     を特徴とする請求項5から7の何れか一項に記載のワイヤレス給電システム。
  9.  電力を生成する電力生成部と、
     前記電力生成部で生成された電力を、磁界共鳴方式で受電装置に伝送する送電部と、
     前記送電部で得られる反射電力の値を検出する反射電力検出部と、
     前記反射電力検出部で検出された反射電力の値から、前記受電装置における負荷の状態を判定する制御部と、を備えること
     を特徴とする送電装置。
  10.  反射電力の値に対応する、前記受電装置の負荷インピーダンスを示す対応負荷情報を記憶する記憶部をさらに備え、
     前記制御部は、前記対応負荷情報を参照することで、前記反射電力検出部で検出された反射電力の値に対応する、前記受電装置の負荷インピーダンスを特定し、特定された負荷インピーダンスにより前記受電装置における負荷の状態を判定すること
     を特徴とする請求項9に記載の送電装置。
  11.  反射電力の値に基づいて、前記受電装置における負荷の状態を判定するための閾値を記憶する記憶部をさらに備え、
     前記制御部は、前記閾値と、前記反射電力検出部で検出された反射電力の値とを比較し、当該比較結果により前記受電装置における負荷の状態を判定すること
     を特徴とする請求項9に記載の送電装置。
  12.  前記制御部は、前記判定された負荷の状態に応じて、予め定められた処理を行うこと
     を特徴とする請求項9から11の何れか一項に記載の送電装置。
  13.  前記制御部は、前記受電装置における負荷の状態の判定として、前記受電装置の負荷が異常な状態であるか否かを判定し、前記受電装置の負荷が異常な状態であると判定した場合には、前記予め定められた処理として、前記受電装置への電力の伝送を停止する処理を行うこと
     を特徴とする請求項12に記載の送電装置。
  14.  前記制御部は、前記受電装置の負荷が短絡又は前記受電装置が無負荷と判断することができる場合に、前記受電装置の負荷が異常な状態であると判定すること
     を特徴とする請求項13に記載の送電装置。
  15.  前記制御部は、前記受電装置への電力の伝送を停止してから予め定められた一定の期間経過後に、前記受電装置への電力の伝送を再開する処理を行い、
     前記反射電力検出部は、前記受電装置への電力の伝送の再開後に前記送電部からの反射電力の値を検出し、
     前記制御部は、前記受電装置への電力の伝送の再開後に、前記反射電力検出が検出した反射電力の値に基づいて、前記受電装置の負荷が異常な状態であると判定した場合には、前記受電装置への電力の伝送を再度停止する処理を行うこと
     を特徴とする請求項13又は14に記載の送電装置。
  16.  前記制御部は、前記受電装置への電力の伝送を停止又は再度停止した場合には、前記受電装置への電力の伝送を停止又は再度停止したことを外部に通知する処理を行うこと
     を特徴とする請求項13から15の何れか一項に記載の送電装置。
  17.  電力を生成する電力生成過程と、
     前記電力生成過程で生成された電力を、磁界共鳴方式で受電装置に伝送する送電過程と、
     前記送電過程における反射電力の値を検出する反射電力検出過程と、
     前記反射電力検出過程で検出された反射電力の値から、前記受電装置における負荷の状態を判定する制御過程と、を有すること
     を特徴とする送電方法。
  18.  前記制御過程は、反射電力の値に対応する、前記受電装置の負荷インピーダンスを示す対応負荷情報を参照することで、前記反射電力検出過程で検出された反射電力の値に対応する、前記受電装置の負荷インピーダンスを特定し、特定された負荷インピーダンスにより前記受電装置における負荷の状態を判定すること
     を特徴とする請求項17に記載の送電方法。
  19.  前記制御過程は、反射電力の値に基づいて、前記受電装置における負荷の状態を判定するための閾値と、前記反射電力検出過程で検出された反射電力の値とを比較し、当該比較結果により前記受電装置における負荷の状態を判定すること
     を特徴とする請求項17に記載の送電方法。
PCT/JP2013/050869 2012-02-09 2013-01-18 ワイヤレス給電システム、送電装置及び送電方法 WO2013118555A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-025912 2012-02-09
JP2012025912A JP2015084608A (ja) 2012-02-09 2012-02-09 ワイヤレス給電システム、送電装置及び送電方法

Publications (1)

Publication Number Publication Date
WO2013118555A1 true WO2013118555A1 (ja) 2013-08-15

Family

ID=48947324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050869 WO2013118555A1 (ja) 2012-02-09 2013-01-18 ワイヤレス給電システム、送電装置及び送電方法

Country Status (2)

Country Link
JP (1) JP2015084608A (ja)
WO (1) WO2013118555A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016092978A (ja) * 2014-11-05 2016-05-23 本田技研工業株式会社 非接触充電システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015007160B4 (de) 2015-12-25 2020-06-18 Mitsubishi Electric Corporation Leistungsversorgungsvorrichtung, Leistungsempfangsvorrichtung, Leistungsversorgungssystem, Leistungsversorgungsverfahren, Leistungsquellenverwaltungsverfahren, Leistungsversorgungsprogramm und Leistungsquellenverwaltungsprogramm

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063245A (ja) * 2008-09-02 2010-03-18 Sony Corp 非接触給電装置
JP2010068634A (ja) * 2008-09-11 2010-03-25 Yazaki Corp 車両用ワイヤレス充電システム
JP2010154625A (ja) * 2008-12-24 2010-07-08 Toyota Industries Corp 共鳴型非接触充電装置
JP2012044735A (ja) * 2010-08-13 2012-03-01 Sony Corp ワイヤレス充電システム
JP2012050286A (ja) * 2010-08-30 2012-03-08 Aiphone Co Ltd 非接触給電装置
JP2012205379A (ja) * 2011-03-25 2012-10-22 Sanyo Electric Co Ltd 充電システム、電源装置、移動体、無線電力送受電システム及び受電装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063245A (ja) * 2008-09-02 2010-03-18 Sony Corp 非接触給電装置
JP2010068634A (ja) * 2008-09-11 2010-03-25 Yazaki Corp 車両用ワイヤレス充電システム
JP2010154625A (ja) * 2008-12-24 2010-07-08 Toyota Industries Corp 共鳴型非接触充電装置
JP2012044735A (ja) * 2010-08-13 2012-03-01 Sony Corp ワイヤレス充電システム
JP2012050286A (ja) * 2010-08-30 2012-03-08 Aiphone Co Ltd 非接触給電装置
JP2012205379A (ja) * 2011-03-25 2012-10-22 Sanyo Electric Co Ltd 充電システム、電源装置、移動体、無線電力送受電システム及び受電装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016092978A (ja) * 2014-11-05 2016-05-23 本田技研工業株式会社 非接触充電システム

Also Published As

Publication number Publication date
JP2015084608A (ja) 2015-04-30

Similar Documents

Publication Publication Date Title
US10944294B2 (en) Method for transmitting signal by wireless power transmitter in wireless charging system, wireless power transmitter and wireless power receiver
US10097047B2 (en) Wireless power transmission system and power transmission device of wireless power transmission system
US20160094050A1 (en) Power transmitting apparatus, power receiving apparatus, wireless power transfer system, control method, and storage medium
US9853481B2 (en) Method for detecting load in wireless charging priority
US11949249B2 (en) Calibration of foreign object detection during changes in operating conditions
KR20140061337A (ko) 무선전력 송신장치 및 무선전력 전송 방법
JP2010051137A (ja) 電力送信装置、及び電力受信装置
JP2012060850A (ja) 共鳴型無線電力伝送装置および共鳴型無線電力伝送方法
US11271432B2 (en) Wireless power control method and device
JP2016092986A (ja) 非接触電力伝送装置及び受電機器
WO2013118555A1 (ja) ワイヤレス給電システム、送電装置及び送電方法
JP2014121108A (ja) ワイヤレス給電システム、送電装置及び送電方法
JP2012034426A (ja) 無接点電力伝送装置
US11515731B2 (en) Contactless power transmission system for transmitting power from power transmitter apparatus to power receiver apparatus, and detecting foreign object
KR101360550B1 (ko) 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 시스템 및 무선전력 전송 방법
JP2015136274A (ja) 非接触電力伝送装置
JP2018046637A (ja) ワイヤレス給電システム
US11515730B2 (en) Contactless power transmission system for transmitting power from power transmitter apparatus to power receiver apparatus, and supplying load device with desired voltage
KR20130124109A (ko) 전력 공급 장치, 무선전력 송신장치 및 공진 주파수 검출 방법
US11916406B1 (en) Techniques for wireless power systems power delivery
JP7102104B2 (ja) 送電装置、無線電力伝送システム、制御方法及びプログラム
TWI683498B (zh) 偵測受電模組之方法及供電模組
JP2019176684A (ja) ワイヤレス受電装置、及びワイヤレス電力伝送システム
JP2021078322A (ja) 受電装置、受電装置の制御方法及びプログラム
JP2016067122A (ja) 非接触電力伝送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP