WO2013118441A1 - アクティブインダクタを含む増幅回路 - Google Patents

アクティブインダクタを含む増幅回路 Download PDF

Info

Publication number
WO2013118441A1
WO2013118441A1 PCT/JP2013/000363 JP2013000363W WO2013118441A1 WO 2013118441 A1 WO2013118441 A1 WO 2013118441A1 JP 2013000363 W JP2013000363 W JP 2013000363W WO 2013118441 A1 WO2013118441 A1 WO 2013118441A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
circuit
output terminal
active inductor
amplifier circuit
Prior art date
Application number
PCT/JP2013/000363
Other languages
English (en)
French (fr)
Inventor
遠藤 斗紀雄
渡邉 学
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013118441A1 publication Critical patent/WO2013118441A1/ja
Priority to US14/323,114 priority Critical patent/US9294053B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/46One-port networks
    • H03H11/48One-port networks simulating reactances
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/429Two or more amplifiers or one amplifier with filters for different frequency bands are coupled in parallel at the input or output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to an amplifier circuit including an active inductor.
  • the first stage low-noise amplifier (LNA) in an LSI is important for multiband operation.
  • LNA low-noise amplifier
  • the technique of the above-mentioned patent document 1 includes resistors connected in series with each other, and makes a gain and a band variable by selecting a resistor to be bypassed with a switch. Therefore, no matter which switch is selected, resistance and parasitic components of the switch are added to the high frequency signal line, and the high frequency characteristics are deteriorated. Moreover, if the series resistors are arranged in a straight line, the layout becomes long, and if bent, the high frequency characteristics deteriorate. Although it is possible to make the gain variable by making the resistance value variable, there is also a problem that when the gain is changed, the inductor component is changed and the peak frequency is shifted.
  • An object of the present invention is to realize band switching and gain control while suppressing deterioration of high frequency characteristics in an amplifier circuit including an active inductor.
  • a first amplifier circuit includes a first transistor that converts an input voltage signal into a current signal, and an active that converts the current signal into an output voltage signal and supplies the output voltage signal to an output terminal.
  • An active circuit including an inductor, wherein the active inductor is connected in parallel between a second transistor interposed between the output terminal and a power source, and a gate and a drain of the second transistor. The first and second resistors and a switch connected in series with the first resistor between the gate and drain of the second transistor.
  • the second amplifier circuit includes a first transistor that converts an input voltage signal into a current signal, and an active inductor that converts the current signal into an output voltage signal and supplies the output voltage signal to an output terminal.
  • the active inductor includes a second transistor interposed between the output terminal and a power source, a first resistor connected in series between the gate and the drain of the second transistor, and A first switch; and the amplifier circuit further includes a second resistor and a second switch connected in series between the drain and source of the second transistor. It is.
  • the third amplifier circuit includes a first transistor that converts an input voltage signal into a current signal, and an active inductor that converts the current signal into an output voltage signal and supplies the output voltage signal to an output terminal.
  • the active inductor includes a second transistor interposed between the output terminal and a power source, and a resistor connected between a gate and a drain of the second transistor, and the amplifier The circuit separately generates a third transistor connected to the output terminal so as to be in parallel with the first transistor, a current flowing through the first transistor, and a current flowing through the third transistor. And a bias circuit to be controlled.
  • an amplifier circuit including an active inductor it is possible to perform band switching and gain control while suppressing deterioration of high frequency characteristics, and the amplifier circuit is manufactured with individual amplifiers and wirings corresponding to each band. Since no inductor is required, the chip area is reduced.
  • FIG. 4 is a circuit diagram showing a configuration of a modification of the amplifier circuit of FIG. 3. It is a circuit diagram which shows the structure of the amplifier circuit which concerns on Embodiment 3 of this invention.
  • FIG. 6 is a circuit diagram showing a configuration of a first modification of the amplifier circuit of FIG. 5.
  • FIG. 6 is a circuit diagram showing a configuration of a second modification of the amplifier circuit of FIG. 5.
  • FIG. 6 is a circuit diagram showing a configuration of a third modification of the amplifier circuit of FIG. 5. It is a circuit diagram which shows the structure of the amplifier circuit which concerns on Embodiment 4 of this invention. It is a circuit diagram which shows the structure of the amplifier circuit which concerns on Embodiment 5 of this invention.
  • FIG. 11 is a block diagram illustrating a detailed configuration example of a bias circuit in FIGS. 5 to 10.
  • FIG. 1 shows the configuration of an amplifier circuit according to Embodiment 1 of the present invention.
  • the amplifier circuit of FIG. 1 converts a first transistor 21 that converts an input voltage signal 11 applied via an input terminal IN into a current signal, converts the current signal into an output voltage signal 12, and supplies the output voltage signal 12 to an output terminal OUT.
  • an active inductor includes a second transistor 22 interposed between the output terminal OUT and the power supply VDD, and first and second resistors 41 connected in parallel between the gate and drain of the second transistor 22. 42 and a switch 51 connected in series to the first resistor 41 between the gate and drain of the second transistor 22.
  • the first transistor 21 is an NMOS transistor
  • the second transistor 22 is a PMOS transistor.
  • the first transistor 21 has a gate connected to the input terminal IN, a source connected to the ground, and a drain connected to the output terminal OUT.
  • the second transistor 22 has a source connected to the power supply VDD and a drain connected to the output terminal OUT.
  • a series circuit of a first resistor 41 and a switch 51 and a second resistor 42 connected in parallel to the series circuit are connected.
  • the inductor component of the active inductor can be changed by switching on / off of the switch 51, the band to be amplified can be made variable.
  • resistors 41 and 42 connected in parallel with each other are provided, and the switch 51 selects the number of resistors to which the voltage is applied. As a result, the parasitic component is suppressed and deterioration of the high frequency characteristics can be suppressed.
  • FIG. 2 shows a configuration of a modification of the amplifier circuit of FIG.
  • the second transistor 22 made of a PMOS transistor in FIG. 1 is replaced with a second transistor 32 made of an NMOS transistor.
  • the second transistor 32 has a drain connected to the power supply VDD and a source connected to the output terminal OUT. Between the gate and drain of the second transistor 32, a series circuit of a first resistor 41 and a switch 51 and a second resistor 42 connected in parallel to the series circuit are connected.
  • the switch 51 can also change the band to be amplified because the inductor component of the active inductor can be changed by switching the switch 51 on and off.
  • resistors 41 and 42 connected in parallel with each other are provided, and the switch 51 selects the number of resistors to which the voltage is applied. As a result, the parasitic component is suppressed and deterioration of the high frequency characteristics can be suppressed.
  • a switch may be further provided in series with the second resistor 42.
  • FIG. 3 shows a configuration of an amplifier circuit according to Embodiment 2 of the present invention.
  • the amplifier circuit shown in FIG. 3 converts a first transistor 21 that converts an input voltage signal 11 supplied via an input terminal IN into a current signal, and converts the current signal into an output voltage signal 12 and supplies the output voltage signal 12 to an output terminal OUT.
  • an active inductor includes a second transistor 22 interposed between the output terminal OUT and the power supply VDD, a first resistor 41 and a first resistor connected in series between the gate and drain of the second transistor 22. And a switch 51.
  • the amplifier circuit further includes a second resistor 42 and a second switch 52 connected in series between the drain and source of the second transistor 22.
  • the first transistor 21 is an NMOS transistor
  • the second transistor 22 is a PMOS transistor.
  • the first transistor 21 has a gate connected to the input terminal IN, a source connected to the ground, and a drain connected to the output terminal OUT.
  • the second transistor 22 has a source connected to the power supply VDD and a drain connected to the output terminal OUT.
  • a series circuit of a first resistor 41 and a first switch 51 is connected between the gate and drain of the second transistor 22 so that the control signal 13 is applied to the gate of the second transistor 22.
  • a series circuit of a second resistor 42 and a second switch 52 is connected between the drain and source of the second transistor 22.
  • the second transistor 22 and the first resistor 41 operate as an active inductor and amplify the entire circuit.
  • the active inductor including the second transistor 22 does not function, and the second resistor 42 converts the current signal into a voltage signal. Output. Therefore, even when it is difficult to function as an active inductor at a low frequency band to be amplified, the amplification function can be performed as a resistance load like a normal amplifier.
  • the band to be amplified can be made variable.
  • a series circuit of the first resistor 41 and the first switch 51 is provided between the gate and drain of the second transistor 22, and the second transistor 22 Since the configuration in which the series circuit of the second resistor 42 and the second switch 52 is provided between the drain and the source is adopted, the parasitic component of the high-frequency signal line is suppressed, and deterioration of the high-frequency characteristics can be suppressed. .
  • FIG. 4 shows a configuration of a modification of the amplifier circuit of FIG.
  • the second transistor 22 made of a PMOS transistor in FIG. 3 is replaced with a second transistor 32 made of an NMOS transistor.
  • the second transistor 32 has a drain connected to the power supply VDD and a source connected to the output terminal OUT.
  • a series circuit of a first resistor 41 and a first switch 51 is connected between the gate and drain of the second transistor 32, and the control signal 13 is applied to the gate of the second transistor 32.
  • a series circuit of the second resistor 42 and the second switch 52 is connected between the drain and source of the second transistor 32.
  • FIG. 5 shows a configuration of an amplifier circuit according to Embodiment 3 of the present invention.
  • the amplifier circuit shown in FIG. 3 converts a first transistor 21 that converts an input voltage signal 11 supplied via an input terminal IN into a current signal, and converts the current signal into an output voltage signal 12 and supplies the output voltage signal 12 to an output terminal OUT.
  • an active inductor includes a second transistor 22 interposed between the output terminal OUT and the power supply VDD, and a resistor 40 connected between the gate and drain of the second transistor 22.
  • the amplifying circuit includes a third transistor 23 for current drawing connected to the output terminal OUT so as to be in parallel with the first transistor 21, a current flowing through the first transistor 21, and a third transistor And a bias circuit 101 for individually controlling the current flowing through the circuit 23.
  • the first transistor 21 is an NMOS transistor
  • the second transistor 22 is a PMOS transistor
  • the third transistor 23 is an NMOS transistor.
  • the first transistor 21 has a gate connected to the input terminal IN and the bias circuit 101, a source connected to the ground, and a drain connected to the output terminal OUT.
  • the second transistor 22 has a source connected to the power supply VDD and a drain connected to the output terminal OUT.
  • a resistor 40 is connected between the gate and drain of the second transistor 22.
  • the third transistor 23 has a gate connected to the bias circuit 101, a source connected to the ground, and a drain connected to the output terminal OUT.
  • the gain of the first transistor 21 and the inductor component of the active inductor can be changed. It is possible to make the bandwidth to be variable.
  • the gain and the band to be amplified can be made variable by controlling the bias circuit 101.
  • a third transistor 23 is provided for drawing a current flowing in the second transistor 22 which forms the main part of the active inductor, and the first transistor 21 and the third transistor Since the configuration in which the transistor 23 is individually controlled by the bias circuit 101 is adopted, the parasitic component of the high-frequency signal line is suppressed, and deterioration of the high-frequency characteristics can be suppressed.
  • FIG. 6 shows a configuration of a first modification of the amplifier circuit of FIG.
  • the second transistor 22 made of a PMOS transistor in FIG. 5 is replaced with a second transistor 32 made of an NMOS transistor.
  • the second transistor 32 has a drain connected to the power supply VDD and a source connected to the output terminal OUT.
  • a resistor 40 is connected between the gate and drain of the second transistor 32.
  • a third transistor 23 for drawing a current flowing in the second transistor 32 that forms the main part of the active inductor is provided, and the first transistor 21 and the third transistor Since the configuration in which the transistor 23 is individually controlled by the bias circuit 101 is adopted, the parasitic component of the high-frequency signal line is suppressed, and deterioration of the high-frequency characteristics can be suppressed.
  • FIG. 7 shows a configuration of a second modification of the amplifier circuit of FIG.
  • the second modification is obtained by adding a fourth transistor 24 composed of a PMOS transistor connected to the output terminal OUT so as to be in parallel with the second transistor 22 to the configuration of FIG.
  • the fourth transistor 24 has a gate connected to the bias circuit 101, a drain connected to the power supply VDD, and a source connected to the output terminal OUT.
  • the bias circuit 101 individually controls the current flowing through the first transistor 21, the current flowing through the third transistor 23, and the current flowing through the fourth transistor 24.
  • the gain of the first transistor 21 and the inductor component of the active inductor can be changed. Therefore, the gain and the band to be amplified can be made variable.
  • the gain and the band to be amplified can be made variable by the control of the bias circuit 101.
  • a third transistor 23 for drawing a current flowing in the second transistor 22 which forms the main part of the active inductor, and a current to flow in the second transistor 22 Since the fourth transistor 24 for shunting is provided and the first transistor 21, the third transistor 23, and the fourth transistor 24 are individually controlled by the bias circuit 101, the parasitic of the high-frequency signal line is adopted. Components are suppressed, and it is possible to suppress deterioration of high frequency characteristics.
  • FIG. 8 shows a configuration of a third modification of the amplifier circuit of FIG.
  • the second transistor 22 made of a PMOS transistor in FIG. 7 is replaced with a second transistor 32 made of an NMOS transistor.
  • the second transistor 32 has a drain connected to the power supply VDD and a source connected to the output terminal OUT.
  • a resistor 40 is connected between the gate and drain of the second transistor 32.
  • the gain and the band to be amplified variable also makes it possible to make the gain and the band to be amplified variable under the control of the bias circuit 101.
  • a third transistor 23 for drawing a current flowing in the second transistor 32 that forms the main part of the active inductor, and a current to flow in the second transistor 32 are used. Since the fourth transistor 24 for shunting is provided and the first transistor 21, the third transistor 23, and the fourth transistor 24 are individually controlled by the bias circuit 101, the parasitic of the high-frequency signal line is adopted. Components are suppressed, and it is possible to suppress deterioration of high frequency characteristics.
  • the bias circuit 101 may be controlled so that the current flowing through the second transistors 22 and 32 does not change.
  • the inductor component of the active inductor is kept constant. It becomes possible to keep it constant.
  • FIG. 9 shows a configuration of an amplifier circuit according to Embodiment 4 of the present invention.
  • the amplifier circuit of FIG. 9 is obtained by adding a third transistor 23 and a bias circuit 101 to the configuration of FIG.
  • the third transistor 23 is an NMOS transistor connected to the output terminal OUT so as to be in parallel with the first transistor 21, and includes a gate connected to the bias circuit 101, a source connected to the ground, and And a drain connected to the output terminal OUT.
  • the bias circuit 101 individually controls the current flowing through the first transistor 21 and the current flowing through the third transistor 23.
  • the band to be amplified can be made variable. Further, by individually controlling the first transistor 21 and the third transistor 23 by the bias circuit 101, the gain of the first transistor 21 and the inductor component of the active inductor can be changed. The band can be made variable.
  • the gain and the band to be amplified can be made variable by the control of the switch 51 and the bias circuit 101.
  • the switch 51 is used to select the number of resistors to which the voltage is applied, and the active inductor Since the third transistor 23 for drawing the current flowing through the second transistor 22 that forms the main part is provided and the first transistor 21 and the third transistor 23 are individually controlled by the bias circuit 101, Parasitic components of the high-frequency signal line are suppressed, and deterioration of the high-frequency characteristics can be suppressed.
  • a switch may be further provided in series with the second resistor 42.
  • the third transistor 23 and the bias circuit 101 may be added to the configuration of FIG.
  • the bias circuit 101 may be controlled so that the current flowing through the second transistor 22 does not change. In this case, even when the gain of the first transistor 21 is variable, the current flowing through the second transistor 22 is constant, so that the inductor component of the active inductor is kept constant. It becomes possible to keep.
  • FIG. 10 shows a configuration of an amplifier circuit according to the fifth embodiment of the present invention.
  • the amplifier circuit of FIG. 10 is obtained by adding a third transistor 23 and a bias circuit 101 to the configuration of FIG.
  • the third transistor 23 is an NMOS transistor connected to the output terminal OUT so as to be in parallel with the first transistor 21, and includes a gate connected to the bias circuit 101, a source connected to the ground, and And a drain connected to the output terminal OUT.
  • the bias circuit 101 individually controls the current flowing through the first transistor 21 and the current flowing through the third transistor 23.
  • the band to be amplified can be made variable. Further, by individually controlling the first transistor 21 and the third transistor 23 by the bias circuit 101, the gain of the first transistor 21 and the inductor component of the active inductor can be changed. The band can be made variable.
  • the gain and the band to be amplified can be made variable by controlling the first and second switches 51 and 52 and the bias circuit 101.
  • a series circuit of the first resistor 41 and the first switch 51 is provided between the gate and drain of the second transistor 22, and the second transistor 22 A configuration in which a series circuit of a second resistor 42 and a second switch 52 is provided between the drain and the source is employed, and a third current for drawing a current flowing through the second transistor 22 which forms the main part of the active inductor. Since the first transistor 21 and the third transistor 23 are individually controlled by the bias circuit 101, the parasitic component of the high-frequency signal line is suppressed and deterioration of the high-frequency characteristics is suppressed. It becomes possible.
  • the bias circuit 101 may be controlled so that the current flowing through the second transistor 22 does not change. In this case, even when the gain of the first transistor 21 is variable, the current flowing through the second transistor 22 is constant, so that the inductor component of the active inductor is kept constant. It becomes possible to keep.
  • FIG. 11 shows a detailed configuration example of the bias circuit 101 in FIGS.
  • a bias circuit 101 in FIG. 11 includes a bias control circuit 102 and a determination circuit 103.
  • the bias control circuit 102 individually controls the gate voltage of the first transistor 21 and the gate voltage of the third transistor 23.
  • the bias control circuit 102 further individually controls the gate voltage of the fourth transistor 24.
  • the determination circuit 103 determines the strength of the output voltage signal 12 or the resistance variation in the active inductor, and controls the operation of the bias control circuit 102 by the control signal 14 according to the determination result. This makes it possible to correct the gain and the band to be amplified according to the determination result.
  • the purpose of determining the resistance variation is that the frequency characteristics of the active inductor are determined by the resistance value, and the characteristics may vary due to diffusion variations, and correction may be necessary.
  • an RC oscillator, a method of fixing with a fuse by performing a resistance value, or the like can be considered.
  • the conductivity type of the MOS transistors constituting the first to fourth transistors 21 to 24 is not limited to those shown in the above examples.
  • the present invention in an amplifier circuit including an active inductor, it is possible to perform band switching and gain control while suppressing deterioration of high frequency characteristics. Therefore, the present invention is useful for a semiconductor integrated circuit that operates with a button battery or the like and requires low power consumption, particularly in the field of sensor networks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

 入力電圧信号(11)を電流信号に変換する第1のトランジスタ(21)と、当該電流信号を出力電圧信号(12)に変換する第2のトランジスタ(22)とを備えた増幅回路にて、第2のトランジスタ(22)のゲート・ドレイン間に抵抗(41,42)及びスイッチ(51)を配することにより可変のアクティブインダクタを構成したうえ、第1のトランジスタ(21)に対して並列接続された電流引き込みのための第3のトランジスタ(23)と、第1のトランジスタ(21)に流れる電流と第3のトランジスタ(23)に流れる電流とを個別制御するバイアス回路(101)とを更に設ける。

Description

アクティブインダクタを含む増幅回路
 本発明は、アクティブインダクタを含む増幅回路に関するものである。
 近年、携帯電話や無線LAN(local area network)等多くの無線通信サービスが展開され、中でも複数システムの搭載が可能なマルチバンド技術が注目を浴びている。また、特定小電力無線分野では電池で動作させるシステムがあり、電池寿命を延ばすために消費電力の削減が強く求められている。
 マルチバンド化にはLSI(large-scale integrated circuit)内の初段の低雑音増幅器(LNA:low noise amplifier)が重要であり、従来は各帯域に対応した複数のLNAを搭載したり、LNA負荷としての複数のインダクタを切り替えたりすることによりマルチバンド化を行っていた(非特許文献1参照)。
 ただし、複数のLNAを搭載したり、各々配線で作製した複数のインダクタを用いたりする場合には、レイアウト面積が増大しLSIのコストが増加する。
 そこで、MOS(metal oxide semiconductor)トランジスタと抵抗要素とで実現されるアクティブインダクタの利用が考えられた。アクティブインダクタを増幅器の負荷として利用することにより、配線で作製したインダクタを用いる場合に比べてレイアウト面積を削減することが可能になる(特許文献1参照)。
米国特許出願公開第2008/0204171号明細書
Win-Ming Chang et al.,"2.45GHz/5.2GHz switched dual-band CMOSLNA with 4 gain control modes", APMC2005 Proceedings.
 上記特許文献1の技術は、互いに直列接続された抵抗を備え、バイパスさせる抵抗をスイッチで選択することにより、ゲインや帯域を可変にするものであった。したがって、いずれのスイッチを選択しても高周波信号ラインに抵抗とスイッチの寄生成分が付加され高周波特性が劣化する。しかも、直列抵抗を直線状に配置すればレイアウトが長くなり、折り曲げれば高周波特性が劣化する。また、抵抗値を可変にすることによりゲインを可変にすることは可能であるが、ゲインを変更したときにインダクタ成分が変更されてしまい、ピーク周波数がずれてしまうという課題もあった。
 本発明の目的は、アクティブインダクタを含む増幅回路において、高周波特性の劣化を抑制しつつ帯域の切り替えやゲインの制御を実現することにある。
 上記課題を解決するため、本発明に係る第1の増幅回路は、入力電圧信号を電流信号に変換する第1のトランジスタと、前記電流信号を出力電圧信号に変換して出力端子へ供給するアクティブインダクタとを備えた増幅回路であって、前記アクティブインダクタは、前記出力端子と電源との間に介在した第2のトランジスタと、前記第2のトランジスタのゲート・ドレイン間にて互いに並列接続された第1及び第2の抵抗と、前記第2のトランジスタのゲート・ドレイン間にて前記第1の抵抗に対して直列接続されたスイッチとを有することを特徴とするものである。
 また、本発明に係る第2の増幅回路は、入力電圧信号を電流信号に変換する第1のトランジスタと、前記電流信号を出力電圧信号に変換して出力端子へ供給するアクティブインダクタとを備えた増幅回路であって、前記アクティブインダクタは、前記出力端子と電源との間に介在した第2のトランジスタと、前記第2のトランジスタのゲート・ドレイン間にて互いに直列接続された第1の抵抗及び第1のスイッチとを有し、前記増幅回路は、前記第2のトランジスタのドレイン・ソース間にて互いに直列接続された第2の抵抗及び第2のスイッチを更に備えたことを特徴とするものである。
 また、本発明に係る第3の増幅回路は、入力電圧信号を電流信号に変換する第1のトランジスタと、前記電流信号を出力電圧信号に変換して出力端子へ供給するアクティブインダクタとを備えた増幅回路であって、前記アクティブインダクタは、前記出力端子と電源との間に介在した第2のトランジスタと、前記第2のトランジスタのゲート・ドレイン間に接続された抵抗とを有し、前記増幅回路は、前記第1のトランジスタに対して並列になるように前記出力端子に接続された第3のトランジスタと、前記第1のトランジスタに流れる電流と、前記第3のトランジスタに流れる電流とを個別制御するバイアス回路とを更に備えたことを特徴とするものである。
 本発明によれば、アクティブインダクタを含む増幅回路において、高周波特性の劣化を抑制しつつ帯域の切り替えやゲインの制御を行うことが可能であり、各帯域に応じた個別の増幅器や配線で作製したインダクタが不要となるので、チップ面積が削減される。
本発明の実施形態1に係る増幅回路の構成を示す回路図である。 図1の増幅回路の変形例の構成を示す回路図である。 本発明の実施形態2に係る増幅回路の構成を示す回路図である。 図3の増幅回路の変形例の構成を示す回路図である。 本発明の実施形態3に係る増幅回路の構成を示す回路図である。 図5の増幅回路の第1変形例の構成を示す回路図である。 図5の増幅回路の第2変形例の構成を示す回路図である。 図5の増幅回路の第3変形例の構成を示す回路図である。 本発明の実施形態4に係る増幅回路の構成を示す回路図である。 本発明の実施形態5に係る増幅回路の構成を示す回路図である。 図5~図10中のバイアス回路の詳細構成例を示すブロック図である。
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の各実施形態や変形例の説明において、一度説明した構成要素と同様の機能を有する構成要素については、同一の符号を付して説明を省略する。
 《実施形態1》
 図1は、本発明の実施形態1に係る増幅回路の構成を示している。図1の増幅回路は、入力端子INを介して与えられた入力電圧信号11を電流信号に変換する第1のトランジスタ21と、当該電流信号を出力電圧信号12に変換して出力端子OUTへ供給するアクティブインダクタとを備えている。アクティブインダクタは、出力端子OUTと電源VDDとの間に介在した第2のトランジスタ22と、当該第2のトランジスタ22のゲート・ドレイン間にて互いに並列接続された第1及び第2の抵抗41,42と、第2のトランジスタ22のゲート・ドレイン間にて第1の抵抗41に対して直列接続されたスイッチ51とを有する。
 ここに、第1のトランジスタ21はNMOSトランジスタであり、第2のトランジスタ22はPMOSトランジスタである。第1のトランジスタ21は、入力端子INに接続されたゲートと、接地に接続されたソースと、出力端子OUTに接続されたドレインとを有する。第2のトランジスタ22は、電源VDDに接続されたソースと、出力端子OUTに接続されたドレインとを有する。第2のトランジスタ22のゲート・ドレイン間には、第1の抵抗41とスイッチ51との直列回路と、この直列回路に対して並列接続された第2の抵抗42とが接続されている。
 図1の増幅回路によれば、スイッチ51のオン・オフを切り替えることによりアクティブインダクタのインダクタ成分が変更できるので、増幅する帯域を可変にすることが可能になる。しかも、従来の互いに直列接続された抵抗に代えて、互いに並列接続された抵抗41,42を設け、そのうちの電圧を印加する抵抗の数をスイッチ51で選択する構成を採用したので、高周波信号ラインの寄生成分が抑制され高周波特性の劣化を抑制することが可能になる。
 図2は、図1の増幅回路の変形例の構成を示している。この変形例は、図1中のPMOSトランジスタからなる第2のトランジスタ22を、NMOSトランジスタからなる第2のトランジスタ32に置き換えたものである。第2のトランジスタ32は、電源VDDに接続されたドレインと、出力端子OUTに接続されたソースとを有する。第2のトランジスタ32のゲート・ドレイン間には、第1の抵抗41とスイッチ51との直列回路と、この直列回路に対して並列接続された第2の抵抗42とが接続されている。
 図2の増幅回路によっても、スイッチ51のオン・オフを切り替えることによりアクティブインダクタのインダクタ成分が変更できるので、増幅する帯域を可変にすることが可能になる。しかも、従来の互いに直列接続された抵抗に代えて、互いに並列接続された抵抗41,42を設け、そのうちの電圧を印加する抵抗の数をスイッチ51で選択する構成を採用したので、高周波信号ラインの寄生成分が抑制され高周波特性の劣化を抑制することが可能になる。
 なお、図1及び図2の増幅回路において、第2の抵抗42に対して直列にスイッチを更に設けてもよい。
 《実施形態2》
 図3は、本発明の実施形態2に係る増幅回路の構成を示している。図3の増幅回路は、入力端子INを介して与えられた入力電圧信号11を電流信号に変換する第1のトランジスタ21と、当該電流信号を出力電圧信号12に変換して出力端子OUTへ供給するアクティブインダクタとを備えている。アクティブインダクタは、出力端子OUTと電源VDDとの間に介在した第2のトランジスタ22と、当該第2のトランジスタ22のゲート・ドレイン間にて互いに直列接続された第1の抵抗41及び第1のスイッチ51とを有する。当該増幅回路は、第2のトランジスタ22のドレイン・ソース間にて互いに直列接続された第2の抵抗42及び第2のスイッチ52を更に備えている。
 ここに、第1のトランジスタ21はNMOSトランジスタであり、第2のトランジスタ22はPMOSトランジスタである。第1のトランジスタ21は、入力端子INに接続されたゲートと、接地に接続されたソースと、出力端子OUTに接続されたドレインとを有する。第2のトランジスタ22は、電源VDDに接続されたソースと、出力端子OUTに接続されたドレインとを有する。第2のトランジスタ22のゲート・ドレイン間には第1の抵抗41と第1のスイッチ51との直列回路が接続されて、第2のトランジスタ22のゲートに制御信号13が印加されるようになっている。また、第2のトランジスタ22のドレイン・ソース間には、第2の抵抗42と第2のスイッチ52との直列回路が接続されている。
 ここで、第1のスイッチ51がオンで第2のスイッチ52がオフのときは、第2のトランジスタ22及び第1の抵抗41がアクティブインダクタとして動作し、回路全体として増幅を行う。
 一方、第1のスイッチ51がオフで第2のスイッチ52がオンのときは、第2のトランジスタ22を含むアクティブインダクタが機能せず、第2の抵抗42で電流信号を電圧信号に変換して出力する。したがって、増幅したい帯域が低い周波数でアクティブインダクタとして機能しづらい場合でも、通常の増幅器のように抵抗負荷として増幅機能が可能になる。
 図3の増幅回路によれば、第1及び第2のスイッチ51,52のオン・オフを切り替えることによりアクティブインダクタの動作の切り替えができるので、増幅する帯域を可変にすることが可能になる。しかも、従来の互いに直列接続された抵抗に代えて、第2のトランジスタ22のゲート・ドレイン間に第1の抵抗41と第1のスイッチ51との直列回路を設け、かつ第2のトランジスタ22のドレイン・ソース間に第2の抵抗42と第2のスイッチ52との直列回路を設けた構成を採用したので、高周波信号ラインの寄生成分が抑制され高周波特性の劣化を抑制することが可能になる。
 図4は、図3の増幅回路の変形例の構成を示している。この変形例は、図3中のPMOSトランジスタからなる第2のトランジスタ22を、NMOSトランジスタからなる第2のトランジスタ32に置き換えたものである。第2のトランジスタ32は、電源VDDに接続されたドレインと、出力端子OUTに接続されたソースとを有する。第2のトランジスタ32のゲート・ドレイン間には第1の抵抗41と第1のスイッチ51との直列回路が接続されて、第2のトランジスタ32のゲートに制御信号13が印加されるようになっている。また、第2のトランジスタ32のドレイン・ソース間には、第2の抵抗42と第2のスイッチ52との直列回路が接続されている。
 図4の増幅回路によっても、第1及び第2のスイッチ51,52のオン・オフを切り替えることによりアクティブインダクタの動作の切り替えができるので、増幅する帯域を可変にすることが可能になる。しかも、従来の互いに直列接続された抵抗に代えて、第2のトランジスタ32のゲート・ドレイン間に第1の抵抗41と第1のスイッチ51との直列回路を設け、かつ第2のトランジスタ32のドレイン・ソース間に第2の抵抗42と第2のスイッチ52との直列回路を設けた構成を採用したので、高周波信号ラインの寄生成分が抑制され高周波特性の劣化を抑制することが可能になる。
 《実施形態3》
 図5は、本発明の実施形態3に係る増幅回路の構成を示している。図3の増幅回路は、入力端子INを介して与えられた入力電圧信号11を電流信号に変換する第1のトランジスタ21と、当該電流信号を出力電圧信号12に変換して出力端子OUTへ供給するアクティブインダクタとを備えている。アクティブインダクタは、出力端子OUTと電源VDDとの間に介在した第2のトランジスタ22と、当該第2のトランジスタ22のゲート・ドレイン間に接続された抵抗40とを有する。当該増幅回路は、第1のトランジスタ21に対して並列になるように出力端子OUTに接続された電流引き込みのための第3のトランジスタ23と、第1のトランジスタ21に流れる電流と第3のトランジスタ23に流れる電流とを個別制御するバイアス回路101とを更に備えている。
 ここに、第1のトランジスタ21はNMOSトランジスタであり、第2のトランジスタ22はPMOSトランジスタであり、第3のトランジスタ23はNMOSトランジスタである。第1のトランジスタ21は、入力端子IN及びバイアス回路101に接続されたゲートと、接地に接続されたソースと、出力端子OUTに接続されたドレインとを有する。第2のトランジスタ22は、電源VDDに接続されたソースと、出力端子OUTに接続されたドレインとを有する。第2のトランジスタ22のゲート・ドレイン間には、抵抗40が接続されている。第3のトランジスタ23は、バイアス回路101に接続されたゲートと、接地に接続されたソースと、出力端子OUTに接続されたドレインとを有する。
 ここで、バイアス回路101により第1のトランジスタ21と第3のトランジスタ23とを個別制御することで、第1のトランジスタ21のゲインやアクティブインダクタのインダクタ成分を変更することができるので、ゲインや増幅する帯域を可変にすることが可能になる。
 つまり、図5の増幅回路によれば、バイアス回路101の制御によりゲインや増幅する帯域を可変にすることが可能になる。しかも、従来の互いに直列接続された抵抗に代えて、アクティブインダクタの主要部をなす第2のトランジスタ22に流れる電流を引き込むための第3のトランジスタ23を設け、第1のトランジスタ21と第3のトランジスタ23とをバイアス回路101により個別制御する構成を採用したので、高周波信号ラインの寄生成分が抑制され高周波特性の劣化を抑制することが可能になる。
 図6は、図5の増幅回路の第1変形例の構成を示している。第1変形例は、図5中のPMOSトランジスタからなる第2のトランジスタ22を、NMOSトランジスタからなる第2のトランジスタ32に置き換えたものである。第2のトランジスタ32は、電源VDDに接続されたドレインと、出力端子OUTに接続されたソースとを有する。第2のトランジスタ32のゲート・ドレイン間には、抵抗40が接続されている。
 図6の増幅回路によっても、バイアス回路101の制御によりゲインや増幅する帯域を可変にすることが可能になる。しかも、従来の互いに直列接続された抵抗に代えて、アクティブインダクタの主要部をなす第2のトランジスタ32に流れる電流を引き込むための第3のトランジスタ23を設け、第1のトランジスタ21と第3のトランジスタ23とをバイアス回路101により個別制御する構成を採用したので、高周波信号ラインの寄生成分が抑制され高周波特性の劣化を抑制することが可能になる。
 図7は、図5の増幅回路の第2変形例の構成を示している。第2変形例は、図5の構成に対して、第2のトランジスタ22に対して並列になるように出力端子OUTに接続されたPMOSトランジスタからなる第4のトランジスタ24を付加したものである。第4のトランジスタ24は、バイアス回路101に接続されたゲートと、電源VDDに接続されたドレインと、出力端子OUTに接続されたソースとを有する。バイアス回路101は、第1のトランジスタ21に流れる電流と、第3のトランジスタ23に流れる電流と、第4のトランジスタ24に流れる電流とを個別制御する。
 ここで、バイアス回路101により第1のトランジスタ21と第3のトランジスタ23と第4のトランジスタ24とを個別制御することで、第1のトランジスタ21のゲインやアクティブインダクタのインダクタ成分を変更することができるので、ゲインや増幅する帯域を可変にすることが可能になる。
 つまり、図7の増幅回路によれば、バイアス回路101の制御によりゲインや増幅する帯域を可変にすることが可能になる。しかも、従来の互いに直列接続された抵抗に代えて、アクティブインダクタの主要部をなす第2のトランジスタ22に流れる電流を引き込むための第3のトランジスタ23と、第2のトランジスタ22に流れるべき電流を分流させるための第4のトランジスタ24とを設け、第1のトランジスタ21と第3のトランジスタ23と第4のトランジスタ24とをバイアス回路101により個別制御する構成を採用したので、高周波信号ラインの寄生成分が抑制され高周波特性の劣化を抑制することが可能になる。
 図8は、図5の増幅回路の第3変形例の構成を示している。第3変形例は、図7中のPMOSトランジスタからなる第2のトランジスタ22を、NMOSトランジスタからなる第2のトランジスタ32に置き換えたものである。第2のトランジスタ32は、電源VDDに接続されたドレインと、出力端子OUTに接続されたソースとを有する。第2のトランジスタ32のゲート・ドレイン間には、抵抗40が接続されている。
 図8の増幅回路によっても、バイアス回路101の制御によりゲインや増幅する帯域を可変にすることが可能になる。しかも、従来の互いに直列接続された抵抗に代えて、アクティブインダクタの主要部をなす第2のトランジスタ32に流れる電流を引き込むための第3のトランジスタ23と、第2のトランジスタ32に流れるべき電流を分流させるための第4のトランジスタ24とを設け、第1のトランジスタ21と第3のトランジスタ23と第4のトランジスタ24とをバイアス回路101により個別制御する構成を採用したので、高周波信号ラインの寄生成分が抑制され高周波特性の劣化を抑制することが可能になる。
 なお、図5~図8の構成において、バイアス回路101は、第2のトランジスタ22,32に流れる電流が変化しないように制御することとしてもよい。この場合には、第1のトランジスタ21でゲインを可変にしたときでも第2のトランジスタ22,32に流れる電流が一定であるためアクティブインダクタのインダクタ成分が一定に保たれる結果、増幅する帯域を一定に保つことが可能になる。
 《実施形態4》
 図9は、本発明の実施形態4に係る増幅回路の構成を示している。図9の増幅回路は、図1の構成に、第3のトランジスタ23とバイアス回路101とを付加したものである。第3のトランジスタ23は、第1のトランジスタ21に対して並列になるように出力端子OUTに接続されたNMOSトランジスタであって、バイアス回路101に接続されたゲートと、接地に接続されたソースと、出力端子OUTに接続されたドレインとを有する。バイアス回路101は、第1のトランジスタ21に流れる電流と、第3のトランジスタ23に流れる電流とを個別制御する。
 ここで、スイッチ51のオン・オフを切り替えることによりアクティブインダクタのインダクタ成分が変更できるので、増幅する帯域を可変にすることが可能になる。また、バイアス回路101により第1のトランジスタ21と第3のトランジスタ23とを個別制御することで、第1のトランジスタ21のゲインやアクティブインダクタのインダクタ成分を変更することができるので、ゲインや増幅する帯域を可変にすることが可能になる。
 つまり、図9の増幅回路によれば、スイッチ51及びバイアス回路101の制御によりゲインや増幅する帯域を可変にすることが可能になる。しかも、従来の互いに直列接続された抵抗に代えて、互いに並列接続された抵抗41,42を設け、そのうちの電圧を印加する抵抗の数をスイッチ51で選択する構成を採用し、かつアクティブインダクタの主要部をなす第2のトランジスタ22に流れる電流を引き込むための第3のトランジスタ23を設け、第1のトランジスタ21と第3のトランジスタ23とをバイアス回路101により個別制御する構成を採用したので、高周波信号ラインの寄生成分が抑制され高周波特性の劣化を抑制することが可能になる。
 なお、図9の増幅回路において、第2の抵抗42に対して直列にスイッチを更に設けてもよい。
 図2の構成に対して、第3のトランジスタ23とバイアス回路101とを付加してもよい。
 また、バイアス回路101は、第2のトランジスタ22に流れる電流が変化しないように制御することとしてもよい。この場合には、第1のトランジスタ21でゲインを可変にしたときでも第2のトランジスタ22に流れる電流が一定であるためアクティブインダクタのインダクタ成分が一定に保たれる結果、増幅する帯域を一定に保つことが可能になる。
 《実施形態5》
 図10は、本発明の実施形態5に係る増幅回路の構成を示している。図10の増幅回路は、図3の構成に、第3のトランジスタ23とバイアス回路101とを付加したものである。第3のトランジスタ23は、第1のトランジスタ21に対して並列になるように出力端子OUTに接続されたNMOSトランジスタであって、バイアス回路101に接続されたゲートと、接地に接続されたソースと、出力端子OUTに接続されたドレインとを有する。バイアス回路101は、第1のトランジスタ21に流れる電流と、第3のトランジスタ23に流れる電流とを個別制御する。
 ここで、第1及び第2のスイッチ51,52のオン・オフを切り替えることによりアクティブインダクタの動作の切り替えができるので、増幅する帯域を可変にすることが可能になる。また、バイアス回路101により第1のトランジスタ21と第3のトランジスタ23とを個別制御することで、第1のトランジスタ21のゲインやアクティブインダクタのインダクタ成分を変更することができるので、ゲインや増幅する帯域を可変にすることが可能になる。
 つまり、図10の増幅回路によれば、第1及び第2のスイッチ51,52並びにバイアス回路101の制御によりゲインや増幅する帯域を可変にすることが可能になる。しかも、従来の互いに直列接続された抵抗に代えて、第2のトランジスタ22のゲート・ドレイン間に第1の抵抗41と第1のスイッチ51との直列回路を設け、かつ第2のトランジスタ22のドレイン・ソース間に第2の抵抗42と第2のスイッチ52との直列回路を設けた構成を採用し、またアクティブインダクタの主要部をなす第2のトランジスタ22に流れる電流を引き込むための第3のトランジスタ23を設け、第1のトランジスタ21と第3のトランジスタ23とをバイアス回路101により個別制御する構成を採用したので、高周波信号ラインの寄生成分が抑制され高周波特性の劣化を抑制することが可能になる。
 なお、図4の構成に対して、第3のトランジスタ23とバイアス回路101とを付加してもよい。
 また、バイアス回路101は、第2のトランジスタ22に流れる電流が変化しないように制御することとしてもよい。この場合には、第1のトランジスタ21でゲインを可変にしたときでも第2のトランジスタ22に流れる電流が一定であるためアクティブインダクタのインダクタ成分が一定に保たれる結果、増幅する帯域を一定に保つことが可能になる。
 図11は、図5~図10中のバイアス回路101の詳細構成例を示している。図11のバイアス回路101は、バイアス制御回路102と判定回路103とで構成されている。バイアス制御回路102は、第1のトランジスタ21のゲート電圧と、第3のトランジスタ23のゲート電圧とを個別制御する。第4のトランジスタ24が設けられる場合には、バイアス制御回路102は、更に第4のトランジスタ24のゲート電圧を個別制御する。判定回路103は、出力電圧信号12の強度又はアクティブインダクタ中の抵抗ばらつきを判定し、当該判定の結果に応じた制御信号14によりバイアス制御回路102の動作を制御する。これにより、判定結果に応じて、ゲインや増幅する帯域を補正することが可能になる。
 なお、抵抗ばらつきを判定する目的は、アクティブインダクタの周波数特性は抵抗値により決まり、拡散ばらつきで特性がばらつく可能性があり、補正が必要になる場合があるためである。抵抗ばらつきを判定する回路の具体例としては、RC発振器や、抵抗値の出来映えによりフューズで固定したりする手法等が考えられる。
 また、上記第1~第4のトランジスタ21~24を構成するMOSトランジスタの導電型は、上記の各例に示されたものに限らない。
 本発明によれば、アクティブインダクタを含む増幅回路において、高周波特性の劣化を抑制しつつ帯域の切り替えやゲインの制御を行うことが可能になる。したがって、本発明は、特にセンサーネットワーク分野のようにボタン電池等で動作し、低消費電力が望まれる半導体集積回路に有用である。
11 入力電圧信号
12 出力電圧信号
13,14 制御信号
21~24,32 トランジスタ
40,41,42 抵抗
51,52 スイッチ
101 バイアス回路
102 バイアス制御回路
103 判定回路
IN 入力端子
OUT 出力端子
VDD 電源

Claims (8)

  1.  入力電圧信号を電流信号に変換する第1のトランジスタと、
     前記電流信号を出力電圧信号に変換して出力端子へ供給するアクティブインダクタとを備えた増幅回路であって、
     前記アクティブインダクタは、
     前記出力端子と電源との間に介在した第2のトランジスタと、
     前記第2のトランジスタのゲート・ドレイン間にて互いに並列接続された第1及び第2の抵抗と、
     前記第2のトランジスタのゲート・ドレイン間にて前記第1の抵抗に対して直列接続されたスイッチとを有することを特徴とする増幅回路。
  2.  入力電圧信号を電流信号に変換する第1のトランジスタと、
     前記電流信号を出力電圧信号に変換して出力端子へ供給するアクティブインダクタとを備えた増幅回路であって、
     前記アクティブインダクタは、
     前記出力端子と電源との間に介在した第2のトランジスタと、
     前記第2のトランジスタのゲート・ドレイン間にて互いに直列接続された第1の抵抗及び第1のスイッチとを有し、
     前記増幅回路は、前記第2のトランジスタのドレイン・ソース間にて互いに直列接続された第2の抵抗及び第2のスイッチを更に備えたことを特徴とする増幅回路。
  3.  請求項1又は2に記載の増幅回路において、
     前記第1のトランジスタに対して並列になるように前記出力端子に接続された第3のトランジスタと、
     前記第1のトランジスタに流れる電流と、前記第3のトランジスタに流れる電流とを個別制御するバイアス回路とを更に備えたことを特徴とする増幅回路。
  4.  入力電圧信号を電流信号に変換する第1のトランジスタと、
     前記電流信号を出力電圧信号に変換して出力端子へ供給するアクティブインダクタとを備えた増幅回路であって、
     前記アクティブインダクタは、
     前記出力端子と電源との間に介在した第2のトランジスタと、
     前記第2のトランジスタのゲート・ドレイン間に接続された抵抗とを有し、
     前記増幅回路は、
     前記第1のトランジスタに対して並列になるように前記出力端子に接続された第3のトランジスタと、
     前記第1のトランジスタに流れる電流と、前記第3のトランジスタに流れる電流とを個別制御するバイアス回路とを更に備えたことを特徴とする増幅回路。
  5.  請求項4記載の増幅回路において、
     前記第2のトランジスタに対して並列になるように前記出力端子に接続された第4のトランジスタを更に備え、
     前記バイアス回路は、前記第1のトランジスタに流れる電流と、前記第3のトランジスタに流れる電流と、前記第4のトランジスタに流れる電流とを個別制御することを特徴とする増幅回路。
  6.  請求項3~5のいずれか1項に記載の増幅回路において、
     前記バイアス回路は、前記第2のトランジスタに流れる電流が変化しないように制御することを特徴とする増幅回路。
  7.  請求項3~6のいずれか1項に記載の増幅回路において、
     前記バイアス回路は、
     前記第1のトランジスタのゲート電圧と、前記第3のトランジスタのゲート電圧とを個別制御するバイアス制御回路と、
     前記出力電圧信号の強度又は前記アクティブインダクタ中の抵抗ばらつきを判定し、当該判定の結果に応じて前記バイアス制御回路の動作を制御する判定回路とを有することを特徴とする増幅回路。
  8.  請求項1~7のいずれか1項に記載の増幅回路を備えた半導体集積回路。
PCT/JP2013/000363 2012-02-06 2013-01-24 アクティブインダクタを含む増幅回路 WO2013118441A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/323,114 US9294053B2 (en) 2012-02-06 2014-07-03 Amplifying circuit including active inductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-022847 2012-02-06
JP2012022847 2012-02-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/323,114 Continuation US9294053B2 (en) 2012-02-06 2014-07-03 Amplifying circuit including active inductor

Publications (1)

Publication Number Publication Date
WO2013118441A1 true WO2013118441A1 (ja) 2013-08-15

Family

ID=48947220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000363 WO2013118441A1 (ja) 2012-02-06 2013-01-24 アクティブインダクタを含む増幅回路

Country Status (2)

Country Link
US (1) US9294053B2 (ja)
WO (1) WO2013118441A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9288085B2 (en) 2014-04-11 2016-03-15 International Business Machines Corporation Continuous-time linear equalizer for high-speed receiving unit
JP2018513637A (ja) * 2015-04-08 2018-05-24 ザイリンクス インコーポレイテッドXilinx Incorporated 調整可能なバッファ回路
JP2019507548A (ja) * 2016-01-28 2019-03-14 ザイリンクス インコーポレイテッドXilinx Incorporated 位相補間器および位相補間器を実装する方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11515067B2 (en) 2018-02-22 2022-11-29 Aalborg Universitet Two-terminal active inductor device
WO2019161866A1 (en) 2018-02-22 2019-08-29 Aalborg Universitet A two-terminal active capacitor device
CN110086436B (zh) * 2019-05-10 2024-03-26 南京牛芯微电子有限公司 一种高频宽带放大器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145149A (ja) * 1996-10-30 1998-05-29 Deutsche Thomson Brandt Gmbh 入力信号増幅器
US20080204171A1 (en) * 2007-02-28 2008-08-28 Abel Christopher J Methods and apparatus for programmable active inductance
JP2011097638A (ja) * 2006-02-27 2011-05-12 Mitsubishi Electric Corp 可変利得増幅器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264806A (en) * 1992-05-26 1993-11-23 Trw Inc. Bipolar microwave monolithic amplifier with active feedback
KR100265761B1 (ko) * 1997-12-08 2000-09-15 윤종용 능동인덕터
JP2003298355A (ja) * 2002-03-29 2003-10-17 Kawasaki Microelectronics Kk ミキサおよび差動アンプ
US7098737B2 (en) * 2002-05-31 2006-08-29 Kabushiki Kaisha Toshiba Variable inductor, oscillator including the variable inductor and radio terminal comprising this oscillator, and amplifier including the variable inductor and radio terminal comprising this amplifier
TWI327416B (en) * 2006-10-27 2010-07-11 Nat Univ Tsing Hua Cascode low noise amplifier with a source coupled active inductor
US8644773B2 (en) * 2009-12-10 2014-02-04 Skyworks Solutions, Inc. Multiband low noise amplifier (LNA) with parallel resonant feedback
US8514021B2 (en) * 2011-05-19 2013-08-20 Renesas Mobile Corporation Radio frequency integrated circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145149A (ja) * 1996-10-30 1998-05-29 Deutsche Thomson Brandt Gmbh 入力信号増幅器
JP2011097638A (ja) * 2006-02-27 2011-05-12 Mitsubishi Electric Corp 可変利得増幅器
US20080204171A1 (en) * 2007-02-28 2008-08-28 Abel Christopher J Methods and apparatus for programmable active inductance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9288085B2 (en) 2014-04-11 2016-03-15 International Business Machines Corporation Continuous-time linear equalizer for high-speed receiving unit
JP2018513637A (ja) * 2015-04-08 2018-05-24 ザイリンクス インコーポレイテッドXilinx Incorporated 調整可能なバッファ回路
JP2022031689A (ja) * 2015-04-08 2022-02-22 ザイリンクス インコーポレイテッド 調整可能なバッファ回路
JP2019507548A (ja) * 2016-01-28 2019-03-14 ザイリンクス インコーポレイテッドXilinx Incorporated 位相補間器および位相補間器を実装する方法

Also Published As

Publication number Publication date
US9294053B2 (en) 2016-03-22
US20140312979A1 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
US9077290B2 (en) Low-noise amplifier with impedance boosting circuit
WO2013118441A1 (ja) アクティブインダクタを含む増幅回路
US6882228B2 (en) Radio frequency integrated circuit having an antenna diversity structure
JP4330549B2 (ja) 高周波電力増幅装置
US8106710B2 (en) Apparatus and method for variable gain transconductance
JP2007116694A (ja) 高効率混合モード電力増幅器
JP2006279963A (ja) 可変利得モードを持つ低雑音増幅器及び差動増幅器
JP2008277882A (ja) 増幅回路および無線通信装置
EP3134966B1 (en) Differential cascode amplifier with selectively coupled gate terminals
JP2008277882A5 (ja)
Datta et al. A concurrent low-area dual band 0.9/2.4 GHz LNA in 0.13 µm RF CMOS technology for multi-band wireless receiver
US10050592B2 (en) Output circuit
US20090027128A1 (en) Variable gain amplifier
US8269561B1 (en) Systems and methods for CMOS power amplifiers with power mode control
Santos et al. 2.4 GHz CMOS digitally programmable power amplifier for power back-off operation
JP5313970B2 (ja) 高周波電力増幅器
JP2008098771A (ja) 低雑音増幅器
JP2012227637A (ja) 高周波増幅回路
KR20110060735A (ko) 고주파 변압기를 이용한 다중 대역 전력증폭기
JPWO2006095416A1 (ja) 減衰器を備えた高周波増幅器
JP4693706B2 (ja) スタンバイ機能付き増幅器
Sturm et al. Tunable Balun Low-Noise Amplifier in 65nm CMOS Technology
JP2007116750A (ja) 可変インダクタを含む増幅器及びこの増幅器を備えた無線端末
KR20150096193A (ko) 다중이득 모드를 지원하는 저잡음 증폭기
KR20130032501A (ko) 주파수 혼합기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13747292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP