WO2013115489A1 - 슬래그 환원 방법 - Google Patents

슬래그 환원 방법 Download PDF

Info

Publication number
WO2013115489A1
WO2013115489A1 PCT/KR2012/011827 KR2012011827W WO2013115489A1 WO 2013115489 A1 WO2013115489 A1 WO 2013115489A1 KR 2012011827 W KR2012011827 W KR 2012011827W WO 2013115489 A1 WO2013115489 A1 WO 2013115489A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
reducing agent
composition ratio
ratio
complex
Prior art date
Application number
PCT/KR2012/011827
Other languages
English (en)
French (fr)
Inventor
기준성
신동경
유병돈
주성웅
홍성훈
황진일
Original Assignee
현대제철 주식회사
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사, 인하대학교 산학협력단 filed Critical 현대제철 주식회사
Priority to CN201280067728.5A priority Critical patent/CN104066855B/zh
Priority to JP2014552121A priority patent/JP2015504978A/ja
Priority to EP12867616.0A priority patent/EP2811038B1/en
Publication of WO2013115489A1 publication Critical patent/WO2013115489A1/ko
Priority to US14/446,283 priority patent/US9512497B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B15/00Other processes for the manufacture of iron from iron compounds
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/54Processes yielding slags of special composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a slag reduction method, and to a slag reduction method in which an optimal reducing agent is added to slag generated during steelmaking and steelmaking to improve a reduction effect.
  • slag is a product which inevitably occurs in the steel smelting process. Slag is inevitably produced from iron ore or coke gangue components in the steelmaking process, and in the steelmaking process, by molten iron or oxides produced during oxidation and deoxidation of molten steel or by subsidiary materials added for refining purposes.
  • An object of the present invention is to provide a slag reduction method for increasing the recovery amount of the valuable metal in the slag by increasing the reduction effect by putting the optimum reducing agent in the slag generated during the steelmaking, steelmaking process.
  • the object of the present invention is to identify the components of the slag to be reduced, the target composition ratio setting step of setting the target composition ratio after reduction;
  • a slag reduction method including a slag reduction step of reducing the complex reducing agent determined by the complex reducing agent determination step into the molten slag to reduce.
  • the slag reduction method according to the present invention maximizes the reduction efficiency of slag by using two or more complex reducing agents, and calculates and uses the optimum mixing ratio and input amount of the complex reducing agent suitable for the corresponding slag composition, and effectively utilizes various types of reducing agents. It has the effect of making it possible.
  • the slag reduction method according to the present invention has the effect of increasing the recovery of valuable metals of slag, and reducing the required cost by efficiently utilizing a reducing agent when slag reduction.
  • FIG. 1 is a block diagram showing a slag reduction method according to the present invention
  • Figure 2 is a graph showing the melting point for each slag component for setting the target composition ratio in the present invention
  • Figure 3 is a flow chart illustrating a complex reducing agent determination step according to the present invention
  • target composition ratio setting step 200 complex reducing agent determination step
  • a target composition ratio setting step 100 of identifying a component of a slag to be reduced according to the present invention and setting a target composition ratio after reduction is included.
  • the slag used in the present invention is a steel slag generated by dissolving scrap in an electric furnace, and it is preferable to use one having a composition range in Table 1 below.
  • Table 1 ingredient FeO MnO SiO 2 Al 2 O 3 MgO CaO Other Composition (wt%) 19 to 32.5 5 to 10 18.5-26 8.5-16 6.0 to 12 14 to 26 0.1 to 2
  • Other components in the slag include P 2 O 5 , S, FeO 3 , CrO 3 , TiO 2 , and include at least one of P 2 O 5 , S, FeO 3 , CrO 3 , TiO 2 .
  • a complex reducing agent determination step 200 of determining a mixing ratio and an input amount of a complex reducing agent in which a plurality of reducing agents are mixed according to the target composition ratio set in the target composition ratio setting step 100 is performed.
  • the complex reducing agent determined in the complex reducing agent determination step 200 is reduced into the molten slag.
  • the main reduction target components are FeO, Fe 2 O 3 , MnO, P 2 O 5 .
  • Reducing elements of the reducing agent for reducing the slag include Ca, Al, Si, C, etc.
  • Representative reducing agents include metal aluminum (Al), CaSi-30, FeSi, SiC, graphite (Graphite) and the like.
  • the main components of slag after reduction, and the components of slag affecting the reduction are CaO, SiO 2, Al 2 O 3 .
  • 2 is a graph showing melting points according to the CaO, SiO 2, Al 2 O 3 component ratio in the slag after reduction. Although not shown in FIG. 2, the graph also displays a viscosity graph. Melting point and viscosity are important in slag reduction reaction, and the main components of slag, CaO, SiO 2 and Al 2 O 3, are components that affect the melting point and viscosity of slag.
  • the viscosity line is shown in FIG. 2, and the optimum component ratio of CaO, SiO 2 , and Al 2 O 3 in the slag composition for reduction may be represented as the target point P.
  • FIG. The target point P may be displayed in plural on the graph, and the target point P is a target composition ratio after reduction.
  • the target composition ratio setting step 100 confirms the component ratio of CaO, SiO 2 , Al 2 O 3 in the current slag, and calculates the target component ratio that is the most close to the component ratio of CaO, SiO 2 , Al 2 O 3 in the current slag It is set by the component ratio.
  • the target component ratio of the CaO, SiO 2 , Al 2 O 3 in the reacted slag after the addition of the reducing agent is 100wt% CaO 39.5wt% or more 40.5wt%, SiO 2 39.5wt% or more 40.5wt% or less , Al 2 O 3 It is preferable that it is 19.5 wt% or more and 20.5 wt% or less. It can be seen that the viscosity and melting point in the region of the target point P in the region of the target point P in FIG.
  • the slag To promote phase separation of the reducing metal and slag, the slag must remain molten and the slag melting point must be lower than the working temperature. In the zone of the target point P, the zone has the lowest viscosity and melting point and the highest reduction efficiency of the reducing metal.
  • the compound reducing agent determining step 200 includes a compounding ratio determining process (S210) for determining a plurality of compound reducing agents and an optional compounding ratio of each reducing agent in the complex reducing agent;
  • An input amount calculation process of determining the input amount of the complex reducing agent and the input amount of the reconstituting agent according to the amount of slag to be reduced (S220);
  • composition ratio comparison process (S250) includes a reducing agent determination process (S260) for determining the composite reducing agent as the final reducing agent.
  • the compounding ratio determination process (S210) is described below by using two industrial reducing agents (A, B) as an example.
  • the mixing ratio (Rmix) of the reducing agent (A) is defined by Equation 1 below.
  • Equation 2 the weight W B of the reducing agent (B) is defined by Equation 2 below.
  • Equation 3 The content of a specific element or oxide (M) in the composite reducing agent in which two industrial reducing agents (A, B) are mixed is represented by Equation 3 below.
  • % M Average content of M component in complex reducing agent (% by weight)
  • % M B Content of M component in reducing agent (AB) (% by weight)
  • Equation 4 the average content of component M contained in the complex reducing agent is calculated by Equation 4 below.
  • Component M calculated here includes Ca, Al, Si, and C as reducing components in the reducing agent.
  • the average concentration of the component M contained in the two kinds (A, B) industrial reducing agents is calculated according to the content of the M component in the additive reducing agent and the mixing ratio of the reducing agent.
  • the input amount calculation process (S220) determines the input amount of the complex reducing agent and the input amount of the preparation agent according to the amount of slag to be reduced. At this time, once the dose determination index (K) is calculated.
  • the dosage determination index (K) is calculated by the following Equation 5 based on each content (wt%) of Ca, Al, Si, and C in the components included in the complex reducing agent.
  • % Ca The content of Ca in the composite reducing agent (% by weight)
  • the reducing agent dose (W red ) is represented by the following equation (6).
  • the preparation agent is an example of quicklime
  • the input amount of the quicklime is represented by the following equation (7).
  • M Al 2 O 3 Atomic weight of M Al 2 O 3 (g / mol)
  • Equations 8 to 10 are processes for calculating Equation 7 below.
  • denotes a quicklime requirement of ⁇ mole for 1 mole of (FeO), and is represented by Equation 8 below.
  • R is represented by the following equation (10).
  • the reaction product calculation process (S230) is represented by the following equations (11) to (13), and calculates the weight (g) of CaO, SiO 2 , Al 2 O 3 affecting the reduction, respectively.
  • the slag composition calculation process (S240) is represented by the following equations (14) to (16), and calculates CaO, SiO 2 , Al 2 O 3 calculated in the reaction product calculation process (S230).
  • reaction formula 1 the overall reduction of the slag by adding a complex reducing agent and a preparation agent is represented by the following reaction formula 1.
  • composition ratio comparison process is to compare the composition ratio of CaO, SiO 2 , Al 2 O 3 calculated as described above with the target composition ratio of slag.
  • the step of determining the composite reducing agent is 39.5wt% or more and 40.5wt% or less of CaO when the total composition of CaO, SiO 2 , Al 2 O 3 in the slag reacted after the target composition ratio, that is, the reducing agent is 100wt%
  • the composite reducing agent is determined to have a composition ratio of 39.5 wt% or more of SiO 2 and 40.5 wt% or less and 19.5 wt% or more and 20.5 wt% or less of Al 2 O 3 .
  • the target composition ratio is fixed to a predetermined value for the composition ratio of MgO components of the slag components after the reaction, and CaO 39.5wt when the sum of the components of CaO, SiO 2 , Al 2 O 3 in the slag to 100wt%
  • the composite reducing agent is determined to have a composition ratio of not less than 40.5 wt%, not less than 30.5 wt% SiO 2, not more than 40.5 wt% SiO 2, not less than 19.5 wt% and not more than 20.5 wt% Al 2 O 3 .
  • the MgO is fixed to have a composition ratio of 7wt% in the slag after the reducing agent addition reaction.
  • the component ratio of MgO may be fixed to a predetermined weight value based on the total amount of CaO, SiO 2 , and Al 2 O 3 .
  • the range is set to be limited.
  • the target composition ratio is determined when MgO 10Wt% relative to the total amount (100wt%) of CaO, SiO 2 , Al 2 O 3 .
  • the complex reducing agent determined in the complex reducing agent determination step preferably includes components of Al, Ca, Si, C, Fe.
  • the composite reducing agent is determined to have a composition ratio of 37 wt% or more and 55.5 wt% or less, C 0.2 wt% or more and 0.4 wt% or less, Fe 6.3 wt% or more and 9.8 wt% or less.
  • the input amount of the preparation agent is determined based on the total weight of the complex reducing agent, and quickener is used as the preparation agent.
  • the quicklime is preferably added in a weight of 20% to 64% relative to the total weight (100) of the complex reducing agent.
  • the embodiments of the present invention are as follows, and it is confirmed that the target composition ratio is satisfied with the composition and range of the complex reducing agent of the present invention through a total of 14 examples.
  • composition of the slag used in each example is shown in Table 2 below.
  • Example 1 20.6 6 25 15 7 25 0.1 0.4 0.9
  • Example 2 21.9 6 25 15 7 24 0.1 0.4 0.6
  • Example 3 23.1 6 24 15 7 24 0.1 0.4 0.4
  • Example 4 24.4 6 24 15 7 23 0.1 0.4 0.1
  • Example 5 25.7 6 25 10 7 25 0.1 0.4 0.8
  • Example 6 27 6 25 10 7 24 0.1 0.4 0.5
  • Example 8 29.6 7 25 10 7 20 0.1 0.4 0.9
  • Example 9 30.9 6 25 10 7 20 0.1 0.4 0.6
  • Example 11 32.2 6 22 10 7 22 0.1 0.4 0.3
  • Example 12 32.2 7 25 13 7 15 0.1 0.4 0.3
  • Example 13 32.2 7 22 15 7 15 0.1 0.1 0.3
  • the composition ratio of the MgO component in the slag reacted after the addition of the reducing agent in the complex reducing agent determination step is fixed to a predetermined value, and the component ratio of CaO, SiO 2 , Al 2 O 3 is added to the target composition ratio.
  • a match can be seen in Table 3 below.
  • the slag composition of Table 3 is a component ratio of CaO, SiO 2 , Al 2 O 3 when the total content of CaO, SiO 2 , Al 2 O 3 is 100wt% after the reaction with the composite reducing agent.
  • component ratios of Al, Ca, Si, C, Fe in Table 3 are Al, Ca, Si, C, Fe when the total component of Al, Ca, Si, C, Fe is 100wt% in the composite reducing agent. It is component ratio of.
  • the component ratio of MgO is fixed to include 10 wt% relative to the total amount (100 wt%) of CaO, SiO 2 , Al 2 O 3 .
  • the complex reducing agent according to the present invention can be confirmed to improve and maximize the reduction effect by reacting the slag at the target composition ratio.
  • the slag reduction method according to the present invention is to reduce the slag to the slag reduction step 300 to reduce the composite reducing agent determined by the complex reducing agent determination step 200 into the slag.
  • the slag reduction method according to the present invention maximizes the reduction efficiency of slag by using two or more complex reducing agents, and calculates and uses the optimum mixing ratio and input amount of the complex reducing agent suitable for the corresponding slag composition, and effectively utilizes various types of reducing agents. To be able.
  • the slag reduction method according to the present invention increases the recovery of valuable metals of slag, and reduces the required cost by efficiently utilizing a reducing agent when slag reduction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

본 발명은 환원 대상이 되는 슬래그의 성분을 확인하고, 환원 후 목표 조성비를 설정하는 목표 조성비 설정 단계, 상기 목표 조성비 설정 단계로 설정된 목표 조성비에 맞게 복수의 환원제를 혼합한 복합 환원제의 혼합비 및 투입량을 결정하는 복합 환원제 결정 단계 및 상기 복합 환원제 결정 단계로 결정된 복합 환원제를 슬래그 내로 투입하여 환원시키는 슬래그 환원 단계를 포함하여 슬래그의 환원 효율을 극대화시키고, 여러 종류의 환원제를 효율적으로 활용할 수 있게 하며, 유가 금속 회수량을 증대시키고, 슬래그 환원 시 환원제를 효율적으로 활용하여 소요 비용을 줄이는 효과가 있다.

Description

슬래그 환원 방법
본 발명은 슬래그 환원 방법에 관한 것으로, 제선, 제강 과정에서 발생되는 슬래그 내에 최적의 환원제를 투입하여 환원 효과를 향상시킨 슬래그 환원 방법에 관한 것이다.
본 발명은 2012년 1월 31일 출원된 한국특허출원 제10-2012-0009773호 및 2012년 11월 28일 출원된 한국특허출원 제10-2012-0136365호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
일반적으로, 슬래그는 철강제련공정에서 필연적으로 발생하는 생성물이다. 슬래그는 제선과정에서 철광석이나 코크스의 맥석 성분에서, 제강과정에서는 용선 또는 용강의 산화와 탈산시 생성되는 산화물 또는 정련을 목적으로 첨가되는 부원료 등에 의해 필연적으로 생성된다.
관련 선행 기술로는 국내 특허 공개 제10-1999-0018912호(1999.03.15 공개, 환원 슬래그 재활용 방법)가 있다.
본 발명의 목적은 제선, 제강 과정에서 발생되는 슬래그 내에 최적의 환원제를 투입하여 환원 효과를 높여 슬래그 내의 유가 금속에 대한 회수량을 증대시키는 슬래그 환원 방법을 제공하는 데 있다.
이러한 본 발명의 과제는 환원 대상이 되는 슬래그의 성분을 확인하고, 환원 후 목표 조성비를 설정하는 목표 조성비 설정 단계;
상기 목표 조성비 설정 단계로 설정된 목표 조성비에 맞게 복수의 환원제를 혼합한 복합 환원제의 혼합비 및 투입량을 결정하는 복합 환원제 결정 단계; 및
상기 복합 환원제 결정 단계로 결정된 복합 환원제를 용융된 슬래그 내로 투입하여 환원시키는 슬래그 환원 단계를 포함한 슬래그 환원 방법을 제공함으로써 해결된다.
본 발명에 따른 슬래그 환원 방법은 두가지 이상의 복합 환원제를 사용하고, 해당 슬래그 조성에 맞는 복합 환원제의 최적의 혼합비 및 투입량을 계산하여 사용함으로써 슬래그의 환원 효율을 극대화시키고, 여러 종류의 환원제를 효율적으로 활용할 수 있게 하는 효과가 있다.
본 발명에 따른 슬래그 환원 방법은 슬래그의 유가 금속 회수량을 증대시키고, 슬래그 환원 시 환원제를 효율적으로 활용하여 소요 비용을 줄이는 효과가 있다.
도 1은 본 발명에 따른 슬래그 환원 방법을 도시한 블록도
도 2는 본 발명에서 목표 조성비 설정을 위한 슬래그 성분별 융점을 나타낸 그래프
도 3은 본 발명에 따른 복합 환원제 결정 단계를 도시한 순서도
*도면 중 주요 부호에 대한 설명*
100 : 목표 조성비 설정 단계 200 : 복합 환원제 결정 단계
300 : 슬래그 환원 단계 S210 : 배합비 결정 과정
S220 : 투입량 계산 과정 S230 : 반응 생성물 계산 과정
S240 : 슬래그 조성 계산 과정 S250 : 조성비 비교 과정
S260 : 환원제 결정 과정
본 발명의 바람직한 실시 예를 첨부된 도면에 의하여 상세히 설명하면 다음과 같다.
도 1을 참고하면, 본 발명에 따른 환원 대상이 되는 슬래그의 성분을 확인하고, 환원 후 목표 조성비를 설정하는 목표 조성비 설정 단계(100)를 포함한다.
본 발명에 사용되는 슬래그는 전기로에서 스크랩을 용해하여 발생하는 제강 슬래그로써, 하기의 표 1에서의 조성 범위를 가지는 것을 사용하는 것이 바람직하다.
표 1
성분 FeO MnO SiO2 Al2O3 MgO CaO 기타
조성(wt%) 19 ~ 32.5 5 ~ 10 18.5 ~ 26 8.5 ~ 16 6.0 ~ 12 14 ~ 26 0.1 ~ 2
상기 슬래그 내에 기타의 성분은 P2O5, S, FeO3, CrO3, TiO2이 있고, P2O5, S, FeO3, CrO3, TiO2 중 적어도 어느 하나를 포함한다.
그리고, 상기 목표 조성비 설정 단계(100) 후에는 상기 목표 조성비 설정 단계(100)로 설정된 목표 조성비에 맞게 복수의 환원제를 혼합한 복합 환원제의 혼합비 및 투입량을 결정하는 복합 환원제 결정 단계(200)가 행해지고, 상기 복합 환원제 결정 단계(200)로 결정된 복합 환원제를 용융된 슬래그 내로 투입하여 환원시키는 것이다.
슬래그는 제선과정 및 제강과정에서 필수적으로 생성되는 것이며, 주된 환원 대상 성분은 FeO, Fe2O3, MnO, P2O5 이다. 상기 슬래그를 환원시키는 환원제의 환원 원소는 Ca, Al, Si, C 등이 있으며, 대표적 환원제로는 금속 알루미늄(Al), CaSi-30, FeSi, SiC, 흑연(Graphite) 등이 있다.
환원 후 슬래그의 주요 성분이고, 환원에 영향을 주는 슬래그의 성분은 CaO, SiO2, Al2O3가 있다. 도 2는 환원 후 슬래그 내 CaO, SiO2, Al2O3 성분비에 따른 융점을 나타낸 그래프이다. 도 2에 도시되어 있지는 않았지만, 상기 그래프에 점도 그래프도 표시한다. 슬래그의 환원 반응 시 융점과, 점도가 중요하며, 슬래그의 주용 성분인 CaO, SiO2, Al2O3는 슬래그의 융점 및 점도에 영향을 미치는 성분이다.
상기 도 2에 점도선을 표시하고, 환원을 위한 슬래그 내 조성 중 CaO, SiO2, Al2O3 최적 성분비가 목표점 P로 표시될 수 있다. 상기 목표점 P는 상기 그래프 상에 복수로 표시될 수 있고, 상기 목표점 P가 환원 후 목표 조성비인 것이다.
상기 목표 조성비 설정 단계(100)는 현재 슬래그 내 CaO, SiO2, Al2O3의 성분비를 확인하고, 현재 슬래그 내 CaO, SiO2, Al2O3의 성분비에서 가장 근사치의 목표 성분비를 해당 목표 성분비로 설정하는 것이다.
상기 해당 목표 성분비는 환원제 투입 후 반응된 슬래그 내 CaO, SiO2, Al2O3의 성분 합을 100wt%로 하였을때 CaO 39.5wt% 이상 40.5wt% 이하, SiO2 39.5wt% 이상 40.5wt% 이하, Al2O3 19.5wt% 이상 20.5wt% 이하인 것이 바람직하다. 이는 도 2에서 목표점 P의 구역으로 상기 목표점 P의 구역에서 점도 및 융점이 가장 낮은 부분임을 확인할 수 있다.
환원 금속과 슬래그의 상분리를 촉진하기 위해서는 슬래그가 용융상태를 유지해야 하며, 슬래그의 융점이 작업 온도보다 낮아야 한다. 상기 목표점 P의 구역에서 점도 및 융점이 가장 낮고 환원 금속의 환원 효율이 가장 높은 구역인 것이다.
한편, 도 3을 참고하면, 본 발명에 따른 복합 환원제 결정 단계(200)는 복수의 복합 환원제 및 상기 복합 환원제에서 각 환원제의 임의의 배합비를 결정하는 배합비 결정 과정(S210)과;
환원 대상의 슬래그의 량에 따른 상기 복합 환원제의 투입량과, 조재제의 투입량을 결정하는 투입량 계산 과정(S220);
상기 복합 환원제를 투입한 후 환원제의 반응으로 생성되는 반응 생성물을 계산하는 반응 생성물 계산 과정(S230);
상기 반응 생성물에 의해 변화된 슬래그 조성을 계산하는 슬래그 조성 계산 과정(S240);
상기 슬래그 조성 계산 과정(S240)으로 계산된 슬래그 조성과, 슬래그의 목표 조성비와 비교하여 다르면 다시 상기 배합비 결정 과정(S210)부터 시작하게 하는 조성비 비교 과정(S250); 및
상기 조성비 비교 과정(S250)에서 슬래그 조성과 슬래그의 목표 조성비가 같으면 해당 복합 환원제를 최종 환원제로 결정하는 환원제 결정 과정(S260)을 포함한다.
상기 배합비 결정 과정(S210)은 두 개의 공업용 환원제(A, B)를 사용하는 것을 일 예로 하여 설명하면 하기와 같다.
환원제(A)의 혼합비(Rmix)는 하기 수학식1로 정의된다.
[수학식 1]
Figure PCTKR2012011827-appb-I000001
WA : 환원제(A)의 중량(g)
WB : 환원제(B)의 중량(g)
상기 수학식1을 근거하여 환원제(B)의 중량(WB )은 하기 수학식 2로 정의된다.
[수학식 2]
Figure PCTKR2012011827-appb-I000002
두 개의 공업용 환원제(A, B)가 혼합된 복합 환원제 중 특정 원소 또는 산화물(M)의 함량은 하기 수학식3으로 표시된다.
[수학식 3]
Figure PCTKR2012011827-appb-I000003
%M : 복합 환원제 중 M성분의 평균 함량(중량%)
%MA : 환원제(A) 중 M성분의 함량(중량%)
%MB : 환원제(AB) 중 M성분의 함량(중량%)
상기 수학식 3과 수학식 2의 관계를 정리하여 복합 환원제 중에 포함된 성분M의 평균 함량은 하기의 수학식 4로 계산된다.
여기서 계산되는 성분M은 환원제 내에서 환원 성분인 Ca, Al, Si, C가 있다.
[수학식 4]
Figure PCTKR2012011827-appb-I000004
상기 2종류(A, B) 공업용 환원제 중에 함유된 성분M의 평균 농도는 가 환원제 중의 M성분의 함량과 환원제의 혼합비에 따라 계산된다.
상기 투입량 계산 과정(S220)은 환원 대상의 슬래그의 량에 따른 상기 복합 환원제의 투입량과, 조재제의 투입량을 결정한다. 이 때, 일 단 투입량 결정 지수(K)를 계산한다.
상기 투입량 결정 지수(K)는 복합 환원제 내에 포함된 성분 중 Ca, Al, Si, C의 각 함량(중량%)를 근거로 하여 하기 수학식 5로 계산된다.
[수학식 5]
Figure PCTKR2012011827-appb-I000005
MCa : Ca의 원자량(g/mol)
MAl : Al의 원자량(g/mol)
MSi : Si의 원자량(g/mol)
MC : C의 원자량(g/mol)
%Ca : 복합 환원제 중 Ca의 함량(중량%)
%Al : 복합 환원제 중 Al의 함량(중량%)
%Si : 복합 환원제 중 Si의 함량(중량%)
%C : 복합 환원제 중 C의 함량(중량%)
상기 투입량 결정 지수(K)를 사용하여 환원제 투입량(Wred)은 하기 수학식 6으로 표시된다.
[수학식 6]
Figure PCTKR2012011827-appb-I000006
- 1 mole의 (FeO)에 대하여 N(MnO)mole의 (MnO), 그리고 N(P2O5) mole의 (P2O5)가 함유됨.
또한, 조재제는 생석회를 일 예로 하며, 상기 생석회의 투입량은 하기 수학식7로 표시된다.
[수학식 7]
Figure PCTKR2012011827-appb-I000007
MCao : CaO의 원자량(g/mol)
MSiO2 : SiO2의 원자량(g/mol)
MAl2O3 : MAl2O3의 원자량(g/mol)
%CaO2 : 석회석 중 CaO2의 함량(중량%)
%Al2O3 : 석회석 중 Al2O3의 함량(중량%)
%SiO2 : 중 SiO2의 함량(중량%)
하기의 수학식8 내지 수학식10은 상기 수학식7 을 계산하기 위한 과정이다.
상기 α는 1 mole의 (FeO)에 대하여 α mole의 생석회 소요량을 말하며, 하기 수학식 8로 표시된다.
[수학식 8]
α= P/R
상기 P는 하기 수학식 9로 표시된다.
[수학식 9]
Figure PCTKR2012011827-appb-I000008
상기 R은 하기 수학식 10으로 표시된다.
[수학식 10]
Figure PCTKR2012011827-appb-I000009
- 1 mole의 (FeO)에 대하여 N(Al2O3)mole의 (Al2O3), 그리고 N(SiO2) mole의 (SiO2)가 함유됨.
상기 반응 생성물 계산 과정(S230)은 하기 수학식 11 내지 수학식 13으로 표시되며, 환원에 영향을 주는 CaO, SiO2, Al2O3의 중량(g)을 각각 계산한다.
[수학식 11]
Figure PCTKR2012011827-appb-I000010
[수학식 12]
Figure PCTKR2012011827-appb-I000011
[수학식 13]
Figure PCTKR2012011827-appb-I000012
또한, 슬래그 조성 계산 과정(S240)은 하기의 수학식 14 내지 수학식 16으로 표시되며, 상기 반응 생성물 계산 과정(S230)에서 계산된 CaO, SiO2, Al2O3의 을 계산한다.
[수학식 14]
Figure PCTKR2012011827-appb-I000013
[수학식 15]
Figure PCTKR2012011827-appb-I000014
[수학식 16]
Figure PCTKR2012011827-appb-I000015
그리고, 참고로, 복합 환원제와 조재제를 투입하여 슬래그의 총괄 환원 반응식은 하기 반응식1로 표시된다.
[반응식 1]
Figure PCTKR2012011827-appb-I000016
상기 조성비 비교 과정(S250)은 상기한 바와 같이 계산된 CaO, SiO2, Al2O3의 조성비를 슬래그의 목표 조성비와 비교하는 것이다.
그리고, 목표 조성비와 일치하면 상기 환원제 결정 과정(S260)으로 최종 환원제를 결정하는 것이며, 다르면, 다시 상기 배합비 결정 과정(S210), 투입량 계산 과정(S220), 반응 생성물 계산 과정(S230), 슬래그 조성 계산 과정(S240), 조성비 비교 과정(S250)을 반복하게 되는 것이다.
본 발명에서, 상기 복합 환원제 결정 단계는 상기 목표 조성비 즉, 환원제 투입 후 반응된 슬래그 내 CaO, SiO2, Al2O3의 성분 합을 100wt%로 하였을 때 CaO 39.5wt% 이상 40.5wt% 이하, SiO2 39.5wt% 이상 40.5wt% 이하, Al2O3 19.5wt% 이상 20.5wt% 이하의 조성비를 가지도록 복합 환원제를 결정한다. 또한, 상기 목표 조성비는 반응 후 슬래그의 성분 중 MgO의 성분에 대한 조성비를 기설정된 값으로 고정되도록 하고, 슬래그 내 CaO, SiO2, Al2O3의 성분 합을 100wt%로 하였을때 CaO 39.5wt% 이상 40.5wt% 이하, SiO2 39.5wt% 이상 40.5wt% 이하, Al2O3 19.5wt% 이상 20.5wt% 이하의 조성비를 가지도록 복합 환원제를 결정한다. 일 예로, 상기 MgO는 환원제 투입 반응 후 슬래그 내 7wt% 의 조성비를 가지도록 고정된다. 이는 상기 MgO가 슬래그의 점도 및 융점에 영향을 주기 때문이다. 그리고, 환원제 투입 반응 후 상기 MgO의 성분비는 CaO, SiO2, Al2O3의 총량 대비 기설정된 중량값으로 고정될 수도 있다. 일 예로, 범위로 한정하여 설정된다. 일 예로, CaO, SiO2, Al2O3의 총량(100wt%) 대비 MgO 10Wt%일 때 상기 목표 조성비를 결정하는 것이다. 이 때 상기 목표 조성비는 CaO, SiO2, Al2O3의 성분 합을 100wt%으로 하고, CaO, SiO2, Al2O3의 총량(100wt%) 대비 MgO 10Wt%일 때 CaO 40wt%, SiO2 40wt%, Al2O3 20wt%인 것이 가장 바람직하다.
상기 복합 환원제 결정 단계에서 결정되는 복합 환원제는 Al, Ca, Si, C, Fe의 성분을 포함하는 것이 바람직하다.
상기 복합 환원제에서 상기 Al, Ca, Si, C, Fe의 성분 합을 100wt%로 하였을때 상기 Al 7.5wt% 이상 37wt% 이하, Ca 19.5wt% 이상 28.5wt% 이하, Si 37wt% 이상 55.5wt% 이하, C 0.2wt% 이상 0.4wt% 이하, Fe 6.3wt% 이상 9.8wt% 이하 조성비를 가지도록 복합 환원제를 결정한다.
그리고, 상기 복합 환원제 결정 단계에서 상기 복합 환원제의 총 중량 대비 조제제의 투입량을 결정하며, 상기 조재제로는 생석회를 사용한다.
상기 생석회는 상기 복합 환원제의 총 중량(100) 대비 20% ~ 64%의 중량으로 투입되는 것이 바람직하다.
본 발명의 실시 예는 하기와 같으며 총 14개의 실시 예를 통해 본 발명의 복합 환원제의 조성 및 범위로 상기 목표 조성비를 만족하는 것임을 확인한다.
각 실시 예에 사용된 슬래그의 조성은 하기의 표 2와 같다.
표 2
FeO(wt%) MnO(wt%) SiO2(wt%) Al2O3(wt%) MgO(wt%) CaO(wt%) P2O5(wt%) S(wt%) 기타(wt%)
실시예1 20.6 6 25 15 7 25 0.1 0.4 0.9
실시예2 21.9 6 25 15 7 24 0.1 0.4 0.6
실시예3 23.1 6 24 15 7 24 0.1 0.4 0.4
실시예4 24.4 6 24 15 7 23 0.1 0.4 0.1
실시예5 25.7 6 25 10 7 25 0.1 0.4 0.8
실시예6 27 6 25 10 7 24 0.1 0.4 0.5
실시예7 28.3 6 23 15 7 20 0.1 0.4 0.2
실시예8 29.6 7 25 10 7 20 0.1 0.4 0.9
실시예9 30.9 6 25 10 7 20 0.1 0.4 0.6
실시예10 32.2 6 20 10 7 24 0.1 0.4 0.3
실시예11 32.2 6 22 10 7 22 0.1 0.4 0.3
실시예12 32.2 7 25 13 7 15 0.1 0.4 0.3
실시예13 32.2 7 22 15 7 15 0.1 0.4 1.3
실시예14 19.3 5 25 15 10 25 0.1 0.4 0.2
실시예15 19.3 10 24 15 7 24 0.1 0.4 0.2
실시예16 19.3 5 24 15 12 24 0.1 0.4 0.2
실시예17 32.2 5 20 10 12 50 0.1 0.4 0.3
실시예18 32.2 10 21 10 6 20 0.1 0.4 0.3
실시예19 28.3 5 20 14 12 20 0.1 0.4 0.2
실시예20 28.3 10 20 14 7 20 0.1 0.4 0.2
상기한 각 실시 예의 슬래그를 상기 복합 환원제 결정 단계에서 환원제 투입 후 반응된 슬래그에서 MgO의 성분에 대한 조성비가 기설정된 값으로 고정됨과 동시에 CaO, SiO2, Al2O3의 성분비가 상기 목표 조성비에 일치되는 것을 하기의 표 3에서 확인할 수 있다.
즉, 상기 복합 환원제 결정 단계는 환원제 투입 반응 후 MgO의 성분에 대한 조성비가 기설정된 값으로 고정함과 동시에 CaO, SiO2, Al2O3의 성분비가 상기 목표 조성비에 일치되도록 상기 복합 환원제의 투입량과 성분비를 결정한다.
하기 표 3의 슬래그의 조성은 복합 환원제와 반응 후 CaO, SiO2, Al2O3의 성분 합을 100wt%으로 할때 CaO, SiO2, Al2O3의 성분비이다.
또한, 하기 표3의 Al, Ca, Si, C, Fe의 성분비는 복합 환원제에서 상기 Al, Ca, Si, C, Fe의 성분 합을 100wt%로 하였을 때의 Al, Ca, Si, C, Fe의 성분비이다.
또한, 하기 표3의 슬래그 조성에서 MgO의 성분비는 CaO, SiO2, Al2O3의 총량(100wt%) 대비 10wt%를 포함되도록 고정된 상태이다.
표 3
환원제 조성(wt%) 생석회 슬래그 조성(wt%)
Al Ca Si C Fe %B.lime CaO SiO2 Al2O3
실시예1 11.46 26.89 52.02 0.37 9.26 44.6 40.01 39.99 20.00
실시예2 12.06 26.70 51.67 0.37 9.20 48.5 40.02 39.98 20.00
실시예3 10.16 27.29 52.78 0.38 9.39 44.8 39.99 40.01 20.00
실시예4 10.76 27.10 52.43 0.38 9.33 48.4 40.00 40.00 20.00
실시예5 36.40 19.31 37.37 0.27 6.65 36.6 40.01 39.99 20.00
실시예6 35.90 19.47 37.66 0.27 6.70 41.2 40.00 40.00 20.00
실시예7 10.21 27.27 52.75 0.38 9.39 53.6 40.00 40.00 20.00
실시예8 34.73 19.82 38.35 0.28 6.82 53.3 40.00 40.00 20.00
실시예9 34.66 19.85 38.39 0.27 6.83 53.2 40.00 40.00 20.00
실시예10 24.92 22.80 44.11 0.32 7.85 21.0 40.01 39.99 20.00
실시예11 28.66 21.67 41.91 0.30 7.46 39.4 40.01 39.99 20.00
실시예12 22.78 23.45 45.37 0.33 8.07 63.1 40.00 40.00 20.00
실시예13 10.11 27.30 52.81 0.38 9.40 60.2 40.00 40.00 20.00
실시예14 10.21 27.27 52.75 0.38 9.39 44.9 40.00 40.00 20.00
실시예15 10.27 27.25 52.72 0.38 9.38 44.9 40.00 40.00 20.00
실시예16 7.35 28.14 54.43 0.39 9.69 45.7 40.00 40.00 20.00
실시예17 24.82 22.83 44.18 0.31 7.86 40.5 40.00 40.00 20.00
실시예18 26.53 22.32 43.16 0.31 7.68 43.2 40.00 40.00 20.00
실시예19 7.75 28.02 54.19 0.39 9.65 45.6 40.00 40.00 20.00
실시예20 9.94 27.35 52.91 0.38 9.42 45.0 40.00 40.00 20.00
상기한 표 3에서와 같이 본 발명에 따른 복합 환원제는 상기한 목표 조성비로 상기 슬래그를 반응시켜 환원 효과를 향상시키고, 극대화시킴을 확인할 수 있다.
한편, 본 발명에 다른 슬래그 환원 방법은 상기 복합 환원제 결정 단계(200)로 결정된 복합 환원제를 슬래그 내로 투입하여 환원시키는 슬래그 환원 단계(300)로 슬래그를 환원시키는 것이다.
본 발명에 따른 슬래그 환원 방법은 두가지 이상의 복합 환원제를 사용하고, 해당 슬래그 조성에 맞는 복합 환원제의 최적의 혼합비 및 투입량을 계산하여 사용함으로써 슬래그의 환원 효율을 극대화시키고, 여러 종류의 환원제를 효율적으로 활용할 수 있게 한다.
본 발명에 따른 슬래그 환원 방법은 슬래그의 유가 금속 회수량을 증대시키고, 슬래그 환원 시 환원제를 효율적으로 활용하여 소요 비용을 줄인다.
본 발명은 상기한 실시 예에 한정되는 것이 아니라, 본 발명의 요지에 벗어나지 않는 범위에서 다양하게 변경하여 실시할 수 있으며 이는 본 발명의 구성에 포함됨을 밝혀둔다.

Claims (9)

  1. 전기로에서 스크랩 용해 시 발생하는 슬래그를 환원시키는 환원 방법이며,
    환원 대상이 되는 슬래그의 성분을 확인하고, 환원 후 목표 조성비를 설정하는 목표 조성비 설정 단계;
    상기 목표 조성비 설정 단계로 설정된 목표 조성비에 맞게 복수의 환원제를 혼합한 복합 환원제의 혼합비 및 투입량을 결정하는 복합 환원제 결정 단계; 및
    상기 복합 환원제 결정 단계로 결정된 복합 환원제를 용융된 슬래그 내로 투입하여 환원시키는 슬래그 환원 단계를 포함한 것을 특징으로 하는 슬래그 환원 방법.
  2. 청구항 1에 있어서,
    상기 복합 환원제 결정 단계는,
    복수의 복합 환원제 및 상기 복합 환원제에서 각 환원제의 임의의 배합비를 결정하는 배합비 결정 과정과;
    환원 대상의 슬래그의 량에 따른 상기 복합 환원제의 투입량과, 조재제의 투입량을 결정하는 투입량 계산 과정;
    상기 복합 환원제를 투입한 후 환원제의 반응으로 생성되는 반응 생성물을 계산하는 반응 생성물 계산 과정;
    상기 반응 생성물에 의해 변화된 슬래그 조성을 계산하는 슬래그 조성 계산 과정;
    상기 슬래그 조성 계산 과정으로 계산된 슬래그 조성과, 슬래그의 목표 조성비와 비교하여 다르면 다시 상기 배합비 결정 과정부터 시작하게 하는 조성비 비교 과정; 및
    상기 조성비 비교 과정에서 슬래그 조성과 슬래그의 목표 조성비가 같으면 해당 복합 환원제를 최종 환원제로 결정하는 환원제 결정 과정을 포함한 것을 특징으로 하는 슬래그 환원 방법.
  3. 청구항 1에 있어서,
    상기 목표 조성비 설정 단계에서 슬래그 내 조성 중 CaO, SiO2, Al2O3 를 목표 조성비의 성분으로 하는 것을 특징으로 하는 슬래그 환원 방법.
  4. 청구항 2에 있어서,
    상기 반응 생성물 계산 과정은 슬래그 내 조성 중 CaO, SiO2, Al2O3의 중량(g)을 각각 계산하고, 슬래그 조성 계산 과정은 환원 후 슬래그 내의 CaO, SiO2, Al2O3의 함량(중량%)를 계산하는 것을 특징으로 하는 슬래그 환원 방법.
  5. 청구항 1에 있어서,
    상기 목표 조성비 설정 단계에서 목표 성분비는 슬래그 내 CaO, SiO2, Al2O3의 성분 합을 100wt%로 하였을 때, CaO 39.5wt% 이상 40.5wt% 이하, SiO2 39.5wt% 이상 40.5wt% 이하, Al2O3 19.5wt% 이상 20.5wt% 이하인 것을 특징으로 하는 슬래그 환원 방법.
  6. 청구항 5에 있어서,
    상기 복합 환원제 결정 단계에서 결정되는 복합 환원제는 Al, Ca, Si, C, Fe의 성분을 포함하는 것을 특징으로 하는 슬래그 환원 방법.
  7. 청구항 6에 있어서,
    상기 복합 환원제 결정 단계에서 환원제 투입 후 반응된 슬래그에서 MgO의 성분에 대한 조성비를 기설정된 값으로 고정되도록 상기 복합 환원제의 성분비가 결정되는 것을 특징으로 하는 슬래그 환원 방법.
  8. 청구항 7에 있어서,
    상기 복합 환원제에서 상기 Al, Ca, Si, C, Fe의 성분 합을 100wt%로 하였을때, 상기 Al 7.5wt% 이상 37wt% 이하, Ca 19.5wt% 이상 28.5wt% 이하, Si 37wt% 이상 55.5wt% 이하, C 0.2wt% 이상 0.4wt% 이하, Fe 6.3wt% 이상 9.8wt% 이하 조성비를 가지도록 복합 환원제를 결정하는 것을 특징으로 하는 슬래그 환원 방법.
  9. 청구항 8에 있어서,
    상기 복합 환원제 결정 단계에서 상기 복합 환원제의 총 중량 대비 조제제의 투입량을 결정하며,
    상기 조재제로는 생석회를 사용하고,
    상기 생석회는 상기 복합 환원제의 총 중량(100) 대비 20% ~ 64%의 중량으로 투입되는 것을 특징으로 하는 슬래그 환원 방법.
PCT/KR2012/011827 2012-01-31 2012-12-31 슬래그 환원 방법 WO2013115489A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280067728.5A CN104066855B (zh) 2012-01-31 2012-12-31 用于还原炉渣的方法
JP2014552121A JP2015504978A (ja) 2012-01-31 2012-12-31 スラグの還元方法
EP12867616.0A EP2811038B1 (en) 2012-01-31 2012-12-31 Method for reducing slag
US14/446,283 US9512497B2 (en) 2012-01-31 2014-07-29 Method for reducing slag

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0009773 2012-01-31
KR20120009773 2012-01-31
KR20120136365A KR101435282B1 (ko) 2012-01-31 2012-11-28 슬래그 환원 방법
KR10-2012-0136365 2012-11-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/446,283 Continuation US9512497B2 (en) 2012-01-31 2014-07-29 Method for reducing slag

Publications (1)

Publication Number Publication Date
WO2013115489A1 true WO2013115489A1 (ko) 2013-08-08

Family

ID=49214997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011827 WO2013115489A1 (ko) 2012-01-31 2012-12-31 슬래그 환원 방법

Country Status (6)

Country Link
US (1) US9512497B2 (ko)
EP (1) EP2811038B1 (ko)
JP (1) JP2015504978A (ko)
KR (1) KR101435282B1 (ko)
CN (1) CN104066855B (ko)
WO (1) WO2013115489A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI673368B (zh) * 2019-01-21 2019-10-01 中國鋼鐵股份有限公司 改善爐渣流動性的方法
JP7531274B2 (ja) * 2019-11-29 2024-08-09 Jfeスチール株式会社 副生成物の処理方法
TWI708850B (zh) * 2020-03-27 2020-11-01 金瑲水泥製品股份有限公司 未安定化之還原碴的資源化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235017A (ja) * 1993-02-09 1994-08-23 Sumitomo Metal Ind Ltd 溶鋼スラグの改質方法
JPH06279828A (ja) * 1993-03-30 1994-10-04 Nisshin Steel Co Ltd 溶鋼成分適中精度を向上させたスラグ中の有価金属の還元回収方法
JPH07252516A (ja) * 1994-03-17 1995-10-03 Nisshin Steel Co Ltd 溶鋼成分適中精度を向上させたスラグ中の有価金属の還元回収方法
KR19990018912A (ko) 1997-08-28 1999-03-15 이찬일 환원 슬래그 재활용 방법
KR100226942B1 (ko) * 1995-12-30 1999-10-15 이구택 제강슬래그의 개질처리방법
KR20110077257A (ko) * 2009-12-30 2011-07-07 현대제철 주식회사 슬래그의 유가금속 회수방법
KR20110104695A (ko) * 2010-03-17 2011-09-23 한양대학교 산학협력단 석유탈황 폐촉매의 용융환원을 위한 슬래그 조성물

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865872A (en) * 1995-06-26 1999-02-02 Fenicem Minerals Inc. Method of recovering metals and producing a secondary slag from base metal smelter slag
KR100207859B1 (ko) 1995-11-11 1999-07-15 이구택 정련용 슬래그 조제방법
KR100377273B1 (ko) 1998-12-24 2003-06-11 주식회사 포스코 레이들 슬래그 조제방법
KR100398400B1 (ko) * 1999-12-09 2003-09-19 주식회사 포스코 타이타늄 함유 스테인레스강의 정련공정에서 슬래그조성제어방법
JP2001342510A (ja) * 2000-06-02 2001-12-14 Nisshin Steel Co Ltd 金属の精錬方法
JP3687644B2 (ja) * 2002-10-29 2005-08-24 住友金属工業株式会社 無方向性電磁鋼板の製造方法
JP2007332432A (ja) * 2006-06-16 2007-12-27 Katsuhiko Yamada 溶鋼の精錬方法
KR100793591B1 (ko) * 2006-12-28 2008-01-14 주식회사 포스코 산화크롬 함유 슬래그로부터의 크롬 금속 환원 방법
DE102007006529A1 (de) * 2007-02-09 2008-08-14 Sms Demag Ag Verfahren und Reduktion einer hochchromhaltigen Schlacke in einem Elektrolichtbogenofen
KR100872906B1 (ko) 2007-08-17 2008-12-10 지엠티 엔 티 주식회사 반응성이 향상된 슬래그 조재제
AU2010290830A1 (en) * 2009-09-07 2012-05-03 Waks, Anthony Raymond Processing of metallurgical slag
JP5370707B2 (ja) * 2009-12-30 2013-12-18 ヒュンダイ スチール カンパニー スラグの有価金属回収及び多機能性骨材の製造方法
JP5573403B2 (ja) * 2010-06-22 2014-08-20 Jfeスチール株式会社 製鋼スラグの資源化方法及び燐酸肥料用原料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235017A (ja) * 1993-02-09 1994-08-23 Sumitomo Metal Ind Ltd 溶鋼スラグの改質方法
JPH06279828A (ja) * 1993-03-30 1994-10-04 Nisshin Steel Co Ltd 溶鋼成分適中精度を向上させたスラグ中の有価金属の還元回収方法
JPH07252516A (ja) * 1994-03-17 1995-10-03 Nisshin Steel Co Ltd 溶鋼成分適中精度を向上させたスラグ中の有価金属の還元回収方法
KR100226942B1 (ko) * 1995-12-30 1999-10-15 이구택 제강슬래그의 개질처리방법
KR19990018912A (ko) 1997-08-28 1999-03-15 이찬일 환원 슬래그 재활용 방법
KR20110077257A (ko) * 2009-12-30 2011-07-07 현대제철 주식회사 슬래그의 유가금속 회수방법
KR20110104695A (ko) * 2010-03-17 2011-09-23 한양대학교 산학협력단 석유탈황 폐촉매의 용융환원을 위한 슬래그 조성물

Also Published As

Publication number Publication date
US20140331820A1 (en) 2014-11-13
US9512497B2 (en) 2016-12-06
EP2811038A4 (en) 2015-03-11
KR20130088727A (ko) 2013-08-08
CN104066855A (zh) 2014-09-24
JP2015504978A (ja) 2015-02-16
EP2811038A1 (en) 2014-12-10
CN104066855B (zh) 2015-10-14
KR101435282B1 (ko) 2014-09-01
EP2811038B1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
WO2013115489A1 (ko) 슬래그 환원 방법
KR100793591B1 (ko) 산화크롬 함유 슬래그로부터의 크롬 금속 환원 방법
WO2013162269A1 (ko) 페로니켈슬래그를 이용한 페로실리콘과 마그네슘 제조방법 및 그에 사용되는 제조장치 및 용융환원로
WO2011081265A1 (ko) 슬래그의 유가금속 회수방법
WO2017179769A1 (ko) 염화칼슘이 첨가된 고로슬래그 기반의 무시멘트 결합재
CN113564381B (zh) 协同炼铜方法及建筑材料
WO2024167210A1 (ko) 폐내화재로부터 친환경 습식제련응용공정을 통한 고순도 산화마그네슘 제조방법 및 이를 통해 제조된 산화마그네슘
CN102534273A (zh) 一种硅铝热法冶炼钼铁工艺
RU2002123053A (ru) Способ обработки шлаков или смесей шлаков
WO2021221455A1 (ko) 형석 대체 플럭스를 이용한 용강의 탈인 방법
WO2021133106A1 (ko) 희토류 금속의 회수방법
WO2016018050A1 (ko) 슬래그 볼, 이를 이용하는 용선 탈린 방법 및 전로 취련 방법
JP4790489B2 (ja) 転炉製鋼法
WO2021132891A1 (ko) 산업 부산물을 활용한 칼슘-알루미네이트계 플럭스 및 이의 제조방법, 이를 이용한 용강의 탈황 방법
WO2023090878A1 (ko) 정련슬래그를 이용한 저탄소 초속경 시멘트 조성물
WO2018048161A1 (ko) 강의 제조 방법
JP3915341B2 (ja) 溶銑の脱燐方法
CN105177195A (zh) 一种直接用粉状含铁尘泥冶炼铁水工艺
WO2020096308A1 (ko) 정련제 및 이를 이용한 용선 정련 방법
WO2018043835A1 (ko) 합금강 제조방법
WO2024085385A1 (ko) 제강 방법
KR20140004281A (ko) 동 슬래그에서 주철용 선철을 제조하는 방법
CN111676334B (zh) 高炉停炉前洗炉的方法
CN110964878A (zh) 一种转炉用高效脱磷的脱磷剂、其制备方法和应用
JP3704267B2 (ja) 溶鋼の精錬方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867616

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012867616

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014552121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE