WO2013115352A1 - 単結晶基板の製造方法、単結晶基板、および、内部改質層形成単結晶部材の製造方法 - Google Patents

単結晶基板の製造方法、単結晶基板、および、内部改質層形成単結晶部材の製造方法 Download PDF

Info

Publication number
WO2013115352A1
WO2013115352A1 PCT/JP2013/052326 JP2013052326W WO2013115352A1 WO 2013115352 A1 WO2013115352 A1 WO 2013115352A1 JP 2013052326 W JP2013052326 W JP 2013052326W WO 2013115352 A1 WO2013115352 A1 WO 2013115352A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
laser
modified layer
substrate
laser beam
Prior art date
Application number
PCT/JP2013/052326
Other languages
English (en)
French (fr)
Inventor
利香 松尾
鈴木 秀樹
国司 洋介
順一 池野
Original Assignee
信越ポリマー株式会社
国立大学法人埼玉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越ポリマー株式会社, 国立大学法人埼玉大学 filed Critical 信越ポリマー株式会社
Publication of WO2013115352A1 publication Critical patent/WO2013115352A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/04After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • B23K26/0617Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis and with spots spaced along the common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • the present invention relates to a method for producing a single crystal substrate, a single crystal substrate, and a method for producing an internal modified layer-forming single crystal member, and more particularly, to a method for producing a single crystal substrate by thinly and stably cutting a single crystal substrate, and a single crystal
  • the present invention relates to a substrate and a method for producing an internal modified layer-forming single crystal member.
  • the semiconductor wafer thus manufactured is subjected to various processes such as formation of a circuit pattern in the previous process in order and used for the subsequent process, and the back surface is back-ground processed in the subsequent process to achieve thinning. Accordingly, the thickness is adjusted to about 750 ⁇ m to 100 ⁇ m or less, for example, about 75 ⁇ m or 50 ⁇ m.
  • SiC silicon carbide
  • Patent Document 1 discloses a technique of using a multiphoton absorption of laser light to form a modified layer inside a silicon ingot and peeling the wafer from the silicon ingot using an electrostatic chuck.
  • Patent Document 1 it is not easy to uniformly peel off a large area substrate (silicon substrate).
  • the surface roughness of the peeled surface of the obtained single crystal substrate (wafer) is relatively rough, the time taken for lapping (polishing) of the peeled surface is long.
  • the present invention has a surface roughness Ra of the separation surface of the single crystal substrate of less than 1 when a relatively large and thin single crystal substrate is formed by peeling from the modified layer formed on the single crystal member. It is an object of the present invention to provide a method for manufacturing a single crystal substrate, a single crystal substrate, and a method for manufacturing an internal modified layer-forming single crystal member.
  • a laser beam is formed on the surface of the single crystal member by the first step of disposing the laser focusing unit on the single crystal member in a non-contact manner and the laser focusing unit.
  • the laser light is condensed inside the single crystal member by irradiating light, and the laser condensing means and the single crystal member are relatively moved so that a two-dimensional modification is made inside the single crystal member.
  • a second step of forming a porous layer, and a third step of forming a single crystal substrate by peeling a single crystal layer separated by the modified layer from the modified layer, the third step There is provided a method for manufacturing a single crystal substrate in which the laser light irradiation conditions are adjusted in the second step so that the surface roughness Ra of the peel surface of the single crystal substrate formed in step 1 is less than 1.
  • a single crystal substrate manufactured by the method for manufacturing a single crystal substrate according to the present invention.
  • an internal modified layer forming single crystal in which a modified layer is formed inside the single crystal member by irradiating the single crystal member with laser light from the surface and condensing the inside comprising: a first step of disposing a laser condensing unit in a non-contact manner on the single crystal member; and the laser condensing unit irradiating a surface of the single crystal member with laser light to The laser beam is condensed inside the crystal member, and the laser condensing means and the single crystal member are relatively moved to form a two-dimensional modified layer inside the single crystal member.
  • a surface roughness Ra of the peeling surface of the single crystal substrate formed by peeling the single crystal layer separated by the modified layer from the modified layer is less than 1.
  • the surface roughness Ra of the peel surface of the single crystal substrate is less than 1. It is possible to provide a method for manufacturing a single crystal substrate, a single crystal substrate, and a method for manufacturing an internal modified layer-forming single crystal member.
  • FIG. 1 is a schematic perspective sectional view for explaining a method for producing a single crystal substrate and an internal modified layer forming single crystal member according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing that a crack is formed inside a single crystal member by laser light irradiation in an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view for explaining that the single crystal layer is peeled off from the modified layer by bonding a metal substrate to the upper and lower surfaces of the internal modified layer forming single crystal member in one embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view for explaining that the single crystal layer is peeled off from the modified layer by bonding a metal substrate to the upper and lower surfaces of the internal modified layer forming single crystal member in one embodiment of the present invention.
  • the typical sectional view explaining the modification of one embodiment of the present invention.
  • the partial expanded side view of the single crystal substrate obtained by one Embodiment of this invention.
  • FIG. 1A is a side view showing that a laser beam corrected by an aberration correction ring is incident on a condenser lens and is irradiated as a modification of the embodiment of the present invention
  • (b) is a part of (a). Enlarged view.
  • Explanatory drawing which shows the experimental condition and measurement result in Experimental example 1.
  • FIG. Explanatory drawing which shows the experimental condition and measurement result in Experimental example 1.
  • FIG. The optical microscope photograph of the cross section of the single crystal substrate obtained in Example 1A.
  • the optical microscope photograph of the cross section of the single crystal substrate obtained in Example 1C The laser confocal microscope photograph of the cross section of the single crystal substrate obtained in Example 1C.
  • the optical microscope photograph of the cross section of the single crystal substrate obtained in Example 1D The laser confocal microscope photograph of the cross section of the single crystal substrate obtained in Example 1D.
  • 2 is a laser confocal microscope photograph of a cross section of a single crystal substrate obtained in Example 2.
  • 6 is a laser confocal microscope photograph of a peeled surface of a single crystal substrate obtained in Example 5.
  • FIG. 6 is a laser confocal microscope photograph of a peeled surface of a single crystal part obtained in Example 5.
  • FIG. 6 is a laser confocal microscope photograph of a peeled surface of a single crystal substrate obtained in Example 6.
  • FIG. 6 is a laser confocal microscope photograph of the peeled surface on the single crystal part side obtained in Example 6.
  • FIG. 6 is an SEM observation image of a peeled surface of a single crystal substrate obtained in Example 6.
  • FIG. 8 is a laser confocal microscope photograph of a peeled surface of a single crystal substrate obtained in Example 7.
  • FIG. 6 is a laser confocal microscope photograph of the peeled surface on the single crystal part side obtained in Example 7.
  • FIG. 6 is an SEM observation image of a peeled surface of a single crystal substrate obtained in Example 6.
  • FIG. SEM observation image of peeled surface on single crystal part side obtained in Example 7 2 is a laser confocal microscope photograph of a peeled surface of a single crystal substrate obtained in Comparative Example 1.
  • FIG. 1 is a schematic bird's-eye view illustrating that laser light is condensed in the air by laser condensing means in one embodiment of the present invention (hereinafter referred to as this embodiment).
  • FIG. 2 is a schematic bird's-eye view for explaining that the laser beam is focused inside the single crystal member by the laser focusing unit in the present embodiment.
  • FIG. 3 is a schematic cross-sectional structure illustrating the single crystal substrate manufacturing method and the internal modified layer forming single crystal member 11 according to the present embodiment.
  • FIG. 4 is a schematic cross-sectional view showing that a crack 12c is formed inside the single crystal member by irradiation with laser light.
  • FIG. 5 is a schematic perspective sectional view showing that the modified layer 12 formed by condensing the laser beam is exposed on the side wall of the internal modified layer forming single crystal member 11.
  • FIG. 6 is a schematic cross-sectional view for explaining that the single crystal layer is peeled from the modified layer by adhering a metal substrate to the upper and lower surfaces of the internal modified layer forming single crystal member in the present embodiment.
  • FIG. 7 is a schematic cross-sectional view for explaining that the single crystal layer is peeled off from the modified layer by adhering a metal substrate to the upper and lower surfaces of the internal modified layer forming single crystal member in this embodiment. It is explained that the single crystal layer 10u is peeled from the material layer 12.
  • the single crystal substrate manufacturing method includes a first step of disposing the condensing lens 15 on the single crystal member 10 in a non-contact manner as laser condensing means, and the condensing lens 15 on the surface of the single crystal member 10.
  • the laser beam B is irradiated to collect the laser beam B inside the single crystal member 10, and the condensing lens 15 and the single crystal member 10 are relatively moved so as to form a two-dimensional shape inside the single crystal member 10.
  • the second step of forming the modified layer 12 and the single crystal layer 10u separated by the modified layer 12 are peeled off from the interface with the modified layer 12, so that FIG. 7 (see also FIG. 11 described later) is obtained.
  • the single crystal layer 10u is described as being peeled from the interface 10u with the modified layer 12.
  • the present invention is not limited to peeling from the interface 10u, and the peeling is performed within the modified layer 12. It may be made to occur.
  • the condensing lens 15 disposed in a non-contact manner on the single crystal member 10 is configured to correct aberration due to the refractive index of the single crystal member 10.
  • the condensing lens 15 is configured such that when the condensing lens 15 condenses in the air, the laser light that has reached the outer peripheral portion E of the condensing lens 15 is condensed.
  • the laser beam is corrected so as to be condensed on the condensing lens side with respect to the laser light reaching the central portion M.
  • the condensing point EP of the laser light reaching the outer peripheral portion E of the condensing lens 15 is condensed compared to the condensing point MP of the laser light reaching the central portion M of the condensing lens 15. The correction is made so that the position is close to the lens 15.
  • the condensing lens 15 includes a first lens 16 that condenses in the air, and a second lens 18 disposed between the first lens 16 and the single crystal member 10. .
  • Both the first lens 16 and the second lens 18 are lenses capable of condensing laser light in a conical shape.
  • the depth (interval) D from the surface 10t (irradiated side surface) of the single crystal member 10 on the side irradiated with the laser beam B to the modified layer 12 is mainly set to the first lens 16 and the surface 10t. It is the structure adjusted with the distance L1. Further, the thickness T of the modified layer 12 is adjusted mainly by the distance L2 between the second lens 18 and the surface 10t.
  • aberration correction in the air is mainly performed by the first lens 16, and aberration correction in the single crystal member 10 is mainly performed by the second lens 18.
  • the distances L1 and L2 are set.
  • the first lens 16 in addition to a spherical or aspherical single lens, a combination lens can be used to correct various aberrations and ensure a working distance, and the NA is 0.3 to 0.7. It is preferable.
  • the NA of the condensing lens 15 in the air defined by the light and its condensing point EP is preferably 0.3 to 0.85, and more preferably 0.5 to 0.85.
  • the size of the single crystal member 10 is not particularly limited, it is preferable that the surface 10t irradiated with the laser beam B is flattened in advance, for example, made of a thick silicon wafer of ⁇ 300 mm.
  • the laser beam B is irradiated not on the peripheral surface of the single crystal member 10 but on the surface 10t from the irradiation device (not shown) through the condenser lens 15.
  • the laser beam B is composed of, for example, a pulse laser beam having a pulse width of 1 ⁇ s or less, and a wavelength of 900 nm or more, preferably 1000 nm or more is selected.
  • a YAG laser or the like is suitable. Used for.
  • a laser oscillator may be disposed above the condensing lens 15 to emit light toward the condensing lens 15, or a reflecting mirror may be disposed above the condensing lens 15 to irradiate laser light toward the reflecting mirror. And you may make it the form reflected toward the condensing lens 15 with a reflective mirror.
  • the laser beam B has a light transmittance of 1 to 80% when irradiated on a single crystal substrate having a thickness of 0.625 mm as the single crystal member 10.
  • a single crystal substrate of silicon since laser light having a wavelength of 800 nm or less has a large absorption, only the surface is processed and the internal modified layer 12 cannot be formed.
  • a wavelength of 900 nm or more, preferably 1000 nm or more is selected.
  • a CO2 laser with a wavelength of 10.64 ⁇ m has a light transmittance that is too high, and it is difficult to process a single crystal substrate. Therefore, a YAG fundamental wave laser or the like is preferably used.
  • the reason why the wavelength of the laser beam B is preferably 900 nm or more is that if the wavelength is 900 nm or more, the laser beam B is improved in the transmittance of the single crystal substrate made of silicon, and the modified layer 12 is reliably provided inside the single crystal substrate. It is because it can form. Laser light B is applied to the peripheral portion of the surface of the single crystal substrate or from the central portion of the surface of the single crystal substrate toward the peripheral portion.
  • the single crystal member 10 is held by a vacuum chuck, an electrostatic chuck or the like.
  • the condenser lens 15 and the single crystal member 10 are moved to the surface of the single crystal member 10 on the side where the condenser lens 15 is disposed.
  • a large number of cracks 12c are formed by the laser beam B condensed inside the single crystal member 10.
  • the aggregate of crack portions 12p having the cracks 12c is the modified layer 12 described above.
  • the moving direction of the condenser lens 15 is a direction orthogonal to the optical axis of the laser beam B
  • the modified layer 12 is orthogonal to the optical axis of the laser beam B (that is, the modified layer 12
  • the normal direction is parallel to the optical axis of the laser beam B).
  • This internal modified layer forming single crystal member 11 includes a modified layer 12 formed inside the single crystal member, a single crystal layer 10u on the upper side of the modified layer 12 (that is, the irradiated side of the laser beam B), A single crystal portion 10d is provided below the material layer 12.
  • the single crystal layer 10 u and the single crystal portion 10 d are formed by dividing the single crystal member 10 by the modified layer 12.
  • pulsed laser light is irradiated as laser light.
  • the laser light irradiation conditions are set so that the surface roughness Ra of the peeling surface 10f (see FIGS. 7 and 11) of the single crystal substrate 10s formed in the third step is less than 1. adjust.
  • laser beam deflecting means such as a galvanometer mirror or a polygon mirror may be used, and laser light scanning within the irradiation area of the condenser lens 15 may be used in combination.
  • the laser beam B is focused on the surface 10t on the irradiated side of the single crystal member 10, that is, the surface 10t of the single crystal layer 10u. A mark indicating the region is attached, and then the single crystal member 10 is cut (cleaved) based on this mark, and the peripheral portion of the modified layer 12 is exposed and the single crystal layer 10u is peeled off as described later. May be performed.
  • the inner modified layer forming single crystal member 11 is cleaved so as to cross the region to be processed by the laser beam B, that is, the modified layer 12, and a cleavage plane (for example, 14a in FIGS. 3 and 5).
  • -D may be confirmed by observing with a scanning electron microscope or a confocal microscope.
  • a Y stage is fed to a single crystal member (for example, a silicon wafer) of the same material under the same irradiation conditions. It may be easily confirmed by performing linear processing inside the member at intervals of 6 to 50 ⁇ m, cleaving across the member, and observing the cleavage plane.
  • the modified layer 12 and the single crystal layer 10u are peeled off (third step).
  • the modified layer 12 is exposed on the side wall of the internal modified layer forming single crystal member 11.
  • cleavage is performed along a predetermined crystal plane of the single crystal portion 10d and the single crystal layer 10u.
  • FIG. 5 a structure in which the modified layer 12 is sandwiched between the single crystal layer 10u and the single crystal portion 10d is obtained.
  • the surface 10t of the single crystal layer 10u is a surface on the side irradiated with the laser beam B.
  • the exposure work is omitted. It is possible.
  • metal substrates 28u and 28d are bonded to the upper and lower surfaces of the internal modified layer forming single crystal member 11, respectively. That is, the metal substrate 28u is bonded to the surface 10t of the single crystal layer 10u with the adhesive 34u, and the metal substrate 28d is bonded to the surface 10b of the single crystal portion 10d with the adhesive 34d.
  • Oxide layers 29u and 29d are formed on the surfaces of the metal substrates 28u and 28d, respectively.
  • the oxide layer 29u is bonded to the surface 10t
  • the oxide layer 29d is bonded to the surface 10b.
  • a SUS peeling auxiliary plate is used as the metal substrates 28u and 28d.
  • the adhesive an adhesive that is used in a normal semiconductor manufacturing process and is used as a so-called wax for fixing a commercially available silicon ingot is used.
  • the adhesive bonded with this adhesive is immersed in water, the adhesive strength of the adhesive is reduced, so that the adhesive and the adherend (single crystal layer 10u) can be easily separated.
  • the metal substrate 28u is attached to the surface 10t of the single crystal layer 10u with a temporary fixing adhesive, and the metal substrate 28u is lined and peeled by applying a force.
  • the adhesive strength of the temporary fixing adhesive only needs to be stronger than the force necessary for peeling at the interface 11u between the modified layer 12 and the single crystal layer 10u.
  • the size and density of the crack 12c to be formed may be adjusted.
  • the temporary fixing adhesive for example, an adhesive made of an anaerobic acrylic two-component monomer component that cures using metal ions as a reaction initiator is used.
  • the uncured monomer and the cured reaction product are water-insoluble, it is possible to prevent the peeling surface 10f (for example, the peeling surface of the silicon wafer) of the single crystal layer 10u exposed when peeling in water from being contaminated. .
  • the coating thickness of the temporary fixing adhesive is preferably 0.1 to 1 mm, more preferably 0.15 to 0.35 mm before curing. If the application thickness of the temporary fixing adhesive is excessively large, it takes a long time to be completely cured, and cohesive failure of the temporary fixing adhesive is likely to occur when the single crystal member (silicon wafer) is cleaved. . Moreover, when application
  • the application thickness of the temporary fixing adhesive may be controlled by using a method of fixing the metal substrates 28u and 28d to be bonded to an arbitrary height, but simply using a shim plate. Can do.
  • the necessary parallelism may be obtained using one or more auxiliary plates.
  • the metal substrates 28u and 28d are bonded to the upper and lower surfaces of the internal modified layer-forming single crystal member 11 with a temporary fixing adhesive, they may be bonded one by one or may be bonded simultaneously on both sides.
  • the metal substrate is bonded to one side and the adhesive is cured, and then the metal substrate is bonded to the other side.
  • the surface to which the temporary fixing adhesive is applied may be the upper surface or the lower surface of the internal modified layer forming single crystal member 11.
  • a resin film not containing metal ions may be used as the cover layer.
  • machining such as a punch hole for fixing the apparatus may be performed.
  • the metal substrate to be bonded undergoes a peeling process in water, it is preferable to form a passive layer for the purpose of suppressing contamination of the silicon wafer, and an oxide layer (oxide film) to be formed for the purpose of reducing the tact time of peeling in water.
  • a thinner layer is preferred.
  • the surface of the metal surface is easily obtained by removing the oxide layer on the metal surface by a mechanical or chemical method and providing an anchor effect.
  • a mechanical or chemical method include acid cleaning using chemicals and degreasing treatment.
  • Specific examples of the mechanical method include sand blasting and shot blasting.
  • the method of damaging the surface of a metal substrate with sand paper is the simplest, and the particle size is preferably # 80 to 2000. Considering the surface damage of the substrate made, # 150 to 800 is more preferable.
  • the method for applying the forces Fu and Fd is not particularly limited.
  • the side wall of the internal modified layer forming single crystal member 11 is etched to form grooves 36 in the modified layer 12, and as shown in FIG.
  • the forces Fu and Fd may be generated by press-fitting (for example, a cutter blade).
  • an upward force component Fu and a downward force component Fd may be generated by applying a force F from the angular direction to the internal modified layer forming single crystal member 11.
  • the surface roughness Ra of the peeled surface of the single crystal substrate 10s formed in the third step is less than 1 by adjusting the laser light irradiation conditions in the second step. Therefore, the time required for lapping of the single crystal substrate after peeling can be greatly reduced as compared with the conventional case. Further, since other steps can be omitted as compared with the case where Ra is 1 or more, contamination of the single crystal substrate due to the other steps can be avoided.
  • the energy of the laser beam B can be concentrated on the thin thickness portion in the single crystal member 10 with the large NA condensing lens 15. Therefore, the internal modified layer forming single crystal member 11 in which the modified layer (working region) 12 having a small thickness T (length along the irradiation axis BC of the laser beam B) is formed in the single crystal member 10 is manufactured. be able to. Then, it is easy to manufacture the thin single crystal substrate 10 s by peeling the single crystal layer 10 u from the modified layer 12. Further, such a thin single crystal substrate 10s can be easily manufactured in a relatively short time. In addition, since the number of single crystal substrates 10 s can be obtained from the single crystal member 10 by suppressing the thickness of the modified layer 12, the product rate can be improved.
  • the modified layer 12 an aggregate of crack portions 12p parallel to the irradiation axis BC of the laser beam B is formed. Thereby, peeling of the modified layer 12 and the single crystal layer 10u is easy.
  • the single crystal substrate 10s is obtained by bonding and peeling the metal substrate 28u having the oxide layer 29u on the surface to the surface of the single crystal layer 10u. Therefore, an adhesive used in a normal semiconductor manufacturing process can be used for bonding to a metal substrate, and a cyanoacrylate adhesive having a strong adhesive force used when bonding an acrylic plate must be used. That's it. Moreover, since the adhesive strength of the adhesive is greatly reduced by being immersed in water after peeling, the single crystal substrate 10s can be easily separated from the metal substrate 28u.
  • FIG. 12 is a diagram showing an example of the above 2).
  • FIG. 12A is a side view showing that the laser light corrected by the aberration correction ring 40 is incident on the condenser lens 45 and irradiated, and FIG. It is the elements on larger scale of (a).
  • the laser light incident on the outer peripheral portion of the condensing lens 45 is aligned with the optical axis (center axis) of the condensing lens 45.
  • the crossing position is adjusted so that the laser beam incident on the inner peripheral side is located closer to the condenser lens 45 than the position where the laser beam intersects the optical axis (center axis) of the condenser lens 45.
  • the DF value of the condensing lens 45 is adjusted to adjust the distance from the surface 10t, which is the irradiated surface of the single crystal member 10, to the modified layer 12, thereby obtaining a single layer obtained by peeling. It is possible to adjust the thickness of the crystal substrate 10s.
  • the metal substrates 28u and 28d are attached to the upper and lower surfaces of the internal modified layer forming single crystal member 11, respectively, and the metal substrates 28u and 28d are peeled by applying force to the single crystal substrate. Although it has been described by forming 10 s, it may be removed by removing the modified layer 12 by etching.
  • the single crystal member 10 is not limited to a silicon wafer, but an ingot of a silicon wafer, an ingot of single crystal sapphire, SiC, or a wafer cut out from the ingot, or another crystal (GaN, GaAs, InP) on this surface. Etc.) can be applied. Further, the plane orientation of the single crystal member 10 is not limited to (100), and other plane orientations can be used.
  • Example 1 The inventor conducted the following experiment, and the surface of the separation surface 10f of the single crystal substrate 10s obtained by separation in the third step and the surface of the separation surface on the single crystal portion 10u side formed by the separation. The roughness Ra was measured. Experimental conditions and measurement results are shown in FIGS. 13A and 13B. Although FIG. 13A and FIG. 13B are originally connected to one, they are divided into two for convenience of space. In this experimental example, the aberration correction ring 40 is used when performing aberration correction.
  • Example 1 In Example 1, a fiber laser A that supplies a laser beam having a wavelength of 1064 nm, an infrared objective lens having a numerical aperture of 0.85 as the condensing lens 45, and the above-described aberration correction ring 40 are used. An experiment was conducted in which a silicon wafer substrate (double-sided mirror (100) having a thickness of 725 ⁇ m) as the modified layer-forming single crystal member 10 was irradiated from the substrate surface to be internally processed.
  • a silicon wafer substrate double-sided mirror (100) having a thickness of 725 ⁇ m
  • the irradiation conditions were a laser irradiation interval of 1 ⁇ m, an offset of 10 ⁇ m, an DF of 80 ⁇ m in air, and an adjustment length of 0 to 1 mm for the aberration correction ring 40 relative to the silicon wafer substrate.
  • the cross section obtained by cleaving the processing cross section perpendicular to the laser scanning direction was observed with an optical microscope and a laser confocal microscope.
  • Examples 1A to 1D were performed by changing the irradiation conditions little by little as follows.
  • FIG. 14 is an optical micrograph of a cross section of the single crystal substrate (silicon wafer) 10s obtained in Example 1A.
  • FIG. 15 is a laser confocal micrograph of a cross section of the single crystal substrate (silicon wafer) 10s obtained in Example 1A, and corresponds to a partially enlarged view of FIG.
  • Example 1A internal processing was performed by irradiating a silicon wafer with laser light at a repetition frequency of 100 kHz, a pulse width of 21 ns, and an output after the objective lens (that is, the intensity of the laser light after passing through the condenser lens 45) of 0.4 W. .
  • the scanning direction of the laser light is a direction from the front side of the paper to the back side of the paper in FIGS. 14 and 15 (this direction is also shown in FIGS. 16 to 27 described later).
  • the scale of the aberration correction ring 40 is sequentially adjusted to 0 mm, 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm, and 1.0 mm from the left side of the drawing. Formed. Moreover, in FIG. 15, the process traces 48c and 48d are shown.
  • FIG. 16 is an optical micrograph of a cross section of the single crystal substrate (silicon wafer) 10s obtained in Example 1B.
  • FIG. 17 is a laser confocal micrograph of the cross section of the single crystal substrate (silicon wafer) 10s obtained in Example 1B, and corresponds to a partially enlarged view of FIG.
  • Example 1B internal processing was performed by irradiating a silicon wafer with laser light at a repetition frequency of 100 kHz, a pulse width of 21 ns, and an objective lens output of 0.8 W.
  • the scale of the aberration correction ring 40 is sequentially adjusted to 0 mm, 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm, and 1.0 mm from the left side of the drawing. Formed. Moreover, in FIG. 17, the process marks 50c and 50d are shown.
  • FIG. 18 is an optical micrograph of a cross section of the single crystal substrate (silicon wafer) 10s obtained in Example 1C.
  • FIG. 19 is a laser confocal micrograph of a cross section of the single crystal substrate (silicon wafer) 10s obtained in Example 1C, and corresponds to a partially enlarged view of FIG.
  • Example 1C internal processing was performed by irradiating a silicon wafer with laser light at a repetition frequency of 200 kHz, a pulse width of 39 ns, and an objective lens output of 0.8 W.
  • the scale of the aberration correction ring 40 is sequentially adjusted to 0 mm, 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm, and 1.0 mm from the left side of the drawing. Formed. Moreover, in FIG. 19, the process traces 52c and 52d are shown.
  • FIG. 20 is an optical micrograph of a cross section of the single crystal substrate (silicon wafer) 10s obtained in Example 1D.
  • FIG. 21 is a laser confocal microscope photograph of a cross section of the single crystal substrate (silicon wafer) 10s obtained in Example 1D, and corresponds to a partially enlarged view of FIG.
  • Example 1D internal processing was performed by irradiating a silicon wafer with laser light at a repetition frequency of 200 kHz, a pulse width of 39 ns, and an objective lens output of 1.6 W.
  • the scale of the aberration correction ring 40 is sequentially adjusted to 0 mm, 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm, and 1.0 mm from the left side of the drawing. Formed. Moreover, in FIG. 21, the process marks 54c and 54d are shown.
  • FIG. 22 is a laser confocal photomicrograph of the cross section of the single crystal substrate (silicon wafer) 10s obtained in Example 2.
  • Example 2 a fiber laser A that supplies a laser beam having a wavelength of 1064 nm and an infrared objective lens having a numerical aperture of 0.85 are used as the condenser lens 45, and the laser beam is sent to a silicon wafer substrate (double-sided mirror with a thickness of 725 ⁇ m ( 100)) was applied to conduct internal processing.
  • a silicon wafer substrate double-sided mirror with a thickness of 725 ⁇ m ( 100)
  • Irradiation conditions include a repetition frequency of 100 kHz, an output after the objective lens of 0.8 W, a laser irradiation interval of 1 ⁇ m, a pulse width of 21 ns, an offset of 10 ⁇ m, an DF of 20 to 80 ⁇ m in terms of air, and an adjustment length of 0 mm for the aberration correction ring 40 with respect to the silicon wafer substrate. It was. As an observation of the state of the internal processing marks, a cross section obtained by cleaving a processing cross section perpendicular to the laser scanning direction was observed.
  • Example 3 a fiber laser B that supplies a laser beam having a wavelength of 1062 nm and an infrared objective lens having a numerical aperture of 0.85 are used as the condensing lens 45, and the laser beam is sent to a silicon wafer substrate (double-sided mirror with a thickness of 725 ⁇ m ( 100)) was applied to conduct internal processing.
  • a silicon wafer substrate double-sided mirror with a thickness of 725 ⁇ m ( 100)
  • the irradiation conditions were a repetition frequency of 50 kHz, a laser irradiation interval of 2 ⁇ m, an objective lens output of 1.6 W, a pulse width of 200 ns, a DF of 80 ⁇ m in air, and an adjustment length of the aberration correction ring 40 with respect to the silicon wafer substrate of 0 mm.
  • a cross section obtained by cleaving a processing cross section perpendicular to the laser scanning direction was observed.
  • Examples 3A and 3B were performed by changing the irradiation conditions little by little as follows.
  • FIG. 23 is a laser confocal photomicrograph of the cross section of the single crystal substrate (silicon wafer) 10s obtained in Example 3A.
  • the offset was 1 ⁇ m.
  • FIG. 24 is a laser confocal photomicrograph of the cross section of the single crystal substrate (silicon wafer) 10s obtained in Example 3B.
  • the offset was 5 ⁇ m.
  • Example 4 a fiber laser B that supplies a laser beam having a wavelength of 1062 nm and an infrared objective lens having a numerical aperture of 0.85 are used as the condensing lens 45, and the laser beam is sent to a silicon wafer substrate (double-sided mirror with a thickness of 725 ⁇ m ( 100)) was applied to conduct internal processing.
  • a silicon wafer substrate double-sided mirror with a thickness of 725 ⁇ m ( 100)
  • the irradiation conditions were a repetition frequency of 50 kHz, a laser irradiation interval of 1 ⁇ m, an offset of 1 ⁇ m, an output after the objective lens of 0.7 W, a pulse width of 200 ns, a DF of 70 ⁇ m in air, and an adjustment length of 0 mm for the aberration correction ring 40 with respect to the silicon wafer substrate. .
  • a cross section obtained by cleaving a processing cross section perpendicular to the laser scanning direction was observed.
  • Examples 4A to 4C were performed by changing the irradiation conditions little by little as follows.
  • FIG. 25 is a laser confocal photomicrograph of the cross section of the single crystal substrate (silicon wafer) 10s obtained in Example 4A.
  • the number of irradiations was one.
  • FIG. 26 is a laser confocal photomicrograph of the cross section of the single crystal substrate (silicon wafer) 10s obtained in Example 4B.
  • the number of irradiations was two.
  • FIG. 27 is a laser confocal photomicrograph of the cross section of the single crystal substrate (silicon wafer) 10s obtained in Example 4C.
  • the number of irradiations was three.
  • FIG. 28 is a laser confocal micrograph of the peeling surface 10f of the single crystal substrate (silicon wafer) 10s obtained in Example 5, and FIG. 29 is the peeling on the single crystal part 10u side obtained in Example 5. It is the laser confocal microscope picture of a surface.
  • Example 5 a fiber laser A that supplies a laser beam having a wavelength of 1064 nm and an infrared objective lens having a numerical aperture of 0.85 are used as the condenser lens 45, and the laser beam is sent to a silicon wafer substrate (double-sided mirror with a thickness of 725 ⁇ m ( 100)) was applied to conduct internal processing.
  • a silicon wafer substrate double-sided mirror with a thickness of 725 ⁇ m ( 100)
  • Irradiation conditions include a repetition frequency of 200 kHz, an objective lens output of 0.8 W, a laser irradiation interval of 1 ⁇ m, a pulse width of 39 ns, an offset of 1 ⁇ m, an DF of 80 ⁇ m in air, and an adjustment length of 0.6 mm for the aberration correction ring 40 relative to the silicon wafer substrate. Then, the silicon wafer substrate was internally processed with a laser beam into a 5 mm ⁇ 20 mm region.
  • the peeled surfaces (exposed surfaces) obtained by attaching and peeling the metal plates to both surfaces of the internally processed silicon wafer substrate via an adhesive were observed with a laser confocal microscope.
  • Example 6 30 is a laser confocal micrograph of the peeling surface of the single crystal substrate (silicon wafer) 10s obtained in Example 6, and FIG. 31 is the peeling surface on the single crystal part 10u side obtained in Example 6. It is a laser confocal microscope photograph of this.
  • 32 is an SEM observation image of the peeled surface of the single crystal substrate 10s obtained in Example 6, and
  • FIG. 33 is an SEM observed image of the peeled surface on the single crystal part 10u side obtained in Example 6. It is.
  • Example 6 a fiber laser A that supplies a laser beam having a wavelength of 1064 nm and an infrared objective lens having a numerical aperture of 0.85 are used as the condenser lens 45, and the laser beam is converted into a silicon wafer substrate (double-sided mirror with a thickness of 725 ⁇ m ( 100)) was applied to conduct internal processing.
  • a repetition frequency of 200 kHz, an objective lens output of 1.2 W, a laser irradiation interval of 1 ⁇ m, a pulse width of 39 ns, an offset of 1 ⁇ m, an DF of 80 ⁇ m in air, and an adjustment length of the aberration correction ring 40 with respect to the silicon wafer substrate is 0.6 mm.
  • the silicon wafer substrate was internally processed with a laser beam into a 5 mm ⁇ 20 mm region. And it peeled like Example 5, and the peeling surface of the obtained single crystal substrate was observed with the laser confocal microscope and the scanning electron microscope.
  • Example 7 34 is a laser confocal micrograph of the peeled surface of the single crystal substrate (silicon wafer) 10s obtained in Example 7, and FIG. 35 is the peeled surface on the single crystal part 10u side obtained in Example 7. It is a laser confocal microscope photograph of this.
  • 36 is an SEM observation image of the peeled surface of the single crystal substrate 10s obtained in Example 6, and
  • FIG. 37 is an SEM observed image of the peeled surface on the single crystal part 10u side obtained in Example 7. It is.
  • Example 7 a fiber laser C that supplies a laser beam having a wavelength of 1064 nm and an infrared objective lens having a numerical aperture of 0.85 are used as the condenser lens 45, and the laser beam is sent to a silicon wafer substrate (double-sided mirror with a thickness of 725 ⁇ m ( 100)) was applied to conduct internal processing.
  • a silicon wafer substrate double-sided mirror with a thickness of 725 ⁇ m ( 100)
  • Irradiation conditions include a repetition frequency of 200 kHz, an objective lens output of 0.6 W, a laser irradiation interval of 1 ⁇ m, a pulse width of 60 ns, an offset of 1 ⁇ m, an DF of 80 ⁇ m in air, and an adjustment length of 0.6 mm for the aberration correction ring 40 relative to the silicon wafer substrate. Then, the silicon wafer substrate was internally processed into a 5 mm ⁇ 10 mm region with laser light. And it peeled like Example 5, and the peeling surface of the obtained single crystal substrate was observed with the laser confocal microscope and the scanning electron microscope.
  • Example 8 a fiber laser B that supplies a laser beam having a wavelength of 1062 nm and an infrared objective lens having a numerical aperture of 0.85 are used as the condenser lens 45, and the laser beam is sent to a silicon wafer substrate (double-sided mirror with a thickness of 725 ⁇ m ( 100)) was applied to conduct internal processing.
  • a silicon wafer substrate double-sided mirror with a thickness of 725 ⁇ m ( 100)
  • a repetition frequency of 50 kHz, an output after the objective lens of 0.8 W, a laser irradiation interval of 1 ⁇ m, a pulse width of 200 ns, an offset of 1 ⁇ m, a DF of 80 ⁇ m in air, and an adjustment length of the aberration correction ring 40 with respect to the silicon wafer substrate is 0 mm.
  • the silicon wafer substrate was internally processed with a laser beam into a 10 mm ⁇ 10 mm region. And it peeled similarly to Example 4, and the peeling surface of the obtained single crystal substrate was observed.
  • Example 9 In Example 9, a fiber laser B that supplies a laser beam having a wavelength of 1062 nm and an infrared objective lens having a numerical aperture of 0.85 are used as the condenser lens 45, and the laser beam is sent to a silicon wafer substrate (double-sided mirror with a thickness of 725 ⁇ m ( 100)) was applied to conduct internal processing.
  • a silicon wafer substrate double-sided mirror with a thickness of 725 ⁇ m ( 100)
  • a repetition frequency of 50 kHz, an output after the objective lens of 1.6 W, a laser irradiation interval of 1 ⁇ m, a pulse width of 200 ns, an offset of 1 ⁇ m, an DF of 80 ⁇ m in air, an adjustment length of the aberration correction ring 40 with respect to the silicon wafer substrate is 0 mm
  • the silicon wafer substrate was internally processed with a laser beam into a 10 mm ⁇ 10 mm region. And it peeled similarly to Example 5, and the peeling surface of the obtained single crystal substrate was observed.
  • Example 10 a fiber laser B that supplies a laser beam having a wavelength of 1062 nm and an infrared objective lens having a numerical aperture of 0.85 are used as the condenser lens 45, and the laser beam is converted into a silicon wafer substrate (double-sided mirror with a thickness of 725 ⁇ m ( 100)) was applied to conduct internal processing.
  • a repetition frequency of 100 kHz, an output after the objective lens of 0.5 W, a laser irradiation interval of 1 ⁇ m, a pulse width of 200 ns, an offset of 1 ⁇ m, an DF of 80 ⁇ m in air, and an adjustment length of the aberration correction ring 40 with respect to the silicon wafer substrate is 0 mm.
  • the number of times of irradiation was set to 2 times, and the silicon wafer substrate was internally processed with a laser beam into a 10 mm ⁇ 10 mm region. And it peeled similarly to Example 5, and the peeling surface of the obtained single crystal substrate was observed.
  • Example 11 In Example 11, a fiber laser C that supplies a laser beam having a wavelength of 1064 nm and an infrared objective lens having a numerical aperture of 0.85 are used as the condenser lens 45, and the laser beam is sent to a silicon wafer substrate (double-sided mirror with a thickness of 725 ⁇ m ( 100)) was applied to conduct internal processing.
  • a silicon wafer substrate double-sided mirror with a thickness of 725 ⁇ m ( 100)
  • a repetition frequency of 200 kHz, an output after the objective lens of 0.8 W, a laser irradiation interval of 1 ⁇ m, a pulse width of 80 ns, an offset of 2 ⁇ m, an DF of 80 ⁇ m in terms of air, and an adjustment length of the aberration correction ring 40 with respect to the silicon wafer substrate is 0.6 mm.
  • the number of times of irradiation was 2, and the silicon wafer substrate was internally processed in a region of 5 mm ⁇ 10 mm. And it peeled similarly to Example 5, and the peeling surface of the obtained single crystal substrate was observed.
  • Example 12 In Example 12, a fiber laser D that supplies a laser beam having a wavelength of 1062 nm and an infrared objective lens having a numerical aperture of 0.85 are used as the condenser lens 45, and the laser beam is sent to a silicon wafer substrate (double-sided mirror with a thickness of 725 ⁇ m ( 100)) was applied to conduct internal processing.
  • a silicon wafer substrate double-sided mirror with a thickness of 725 ⁇ m ( 100)
  • a repetition frequency of 100 kHz, an objective lens output of 0.8 W, a laser irradiation interval of 1 ⁇ m, a pulse width of 200 ns, an offset of 1 ⁇ m, an DF of 80 ⁇ m in air, and an adjustment length of the aberration correction ring 40 with respect to the silicon wafer substrate is 0 mm.
  • the number of times of irradiation was set to 2 times, and the silicon wafer substrate was internally processed with a laser beam into a 10 mm ⁇ 10 mm region. And it peeled similarly to Example 5, and the peeling surface of the obtained single crystal substrate was observed.
  • Example 13 a fiber laser D that supplies a laser beam having a wavelength of 1062 nm and an infrared objective lens having a numerical aperture of 0.85 are used as the condenser lens 45, and the laser beam is sent to a silicon wafer substrate (double-sided mirror with a thickness of 725 ⁇ m ( 100)) was applied to conduct internal processing.
  • a repetition frequency of 100 kHz, an objective lens output of 0.8 W, a laser irradiation interval of 1 ⁇ m, a pulse width of 200 ns, an offset of 1 ⁇ m, an DF of 80 ⁇ m in air, and an adjustment length of the aberration correction ring 40 with respect to the silicon wafer substrate is 0 mm.
  • the number of times of irradiation was set to 2 times, and the silicon wafer substrate was internally processed with a laser beam into a 10 mm ⁇ 10 mm region. And it peeled similarly to Example 5, and the peeling surface of the obtained single crystal substrate was observed.
  • Comparative Example 1 38 is a laser confocal micrograph of the peeled surface of the single crystal substrate (silicon wafer) obtained in Comparative Example 1, and FIG. 39 is a laser of the peeled surface on the single crystal part side obtained in Comparative Example 1. It is a confocal microscope picture. 40 is an SEM observation image of the peeling surface of the single crystal substrate obtained in Comparative Example 1, and FIG. 41 is an SEM observation image of the peeling surface on the single crystal part side obtained in Comparative Example 1. .
  • Comparative Example 1 a fiber laser A that supplies a laser beam having a wavelength of 1064 nm and an infrared objective lens having a numerical aperture of 0.85 are used as the condenser lens 45, and the laser beam is sent to a silicon wafer substrate (double-sided mirror with a thickness of 725 ⁇ m ( 100)) was applied to conduct internal processing.
  • a silicon wafer substrate double-sided mirror with a thickness of 725 ⁇ m ( 100)
  • Irradiation conditions include a repetition frequency of 200 kHz, an output after the objective lens of 1.6 W, a laser irradiation interval of 1 ⁇ m, a pulse width of 39 ns, an offset of 1 ⁇ m, an DF of 80 ⁇ m in terms of air, and an adjustment length of 0.6 mm for the aberration correction ring 40 relative to the silicon wafer substrate. Then, the silicon wafer substrate was internally processed with a laser beam into a 5 mm ⁇ 10 mm region. And it peeled similarly to Example 5, and the peeling surface of the obtained single crystal substrate was observed.
  • Comparative Example 2 In Comparative Example 2, a fiber laser C that supplies a laser beam having a wavelength of 1064 nm and an infrared objective lens having a numerical aperture of 0.85 are used as the condenser lens 45, and the laser beam is sent to a silicon wafer substrate (double-sided mirror with a thickness of 725 ⁇ m ( 100)) was applied to conduct internal processing.
  • a silicon wafer substrate double-sided mirror with a thickness of 725 ⁇ m ( 100)
  • Irradiation conditions include a repetition frequency of 200 kHz, an output after the objective lens of 0.8 W, a laser irradiation interval of 1 ⁇ m, a pulse width of 60 ns, an offset of 1 ⁇ m, an DF of 80 ⁇ m in air, and an adjustment length of 0.6 mm for the aberration correction ring 40 relative to the silicon wafer substrate. Then, the silicon wafer substrate was internally processed with a laser beam into a 5 mm ⁇ 10 mm region. And it peeled similarly to Example 5, and the peeling surface of the obtained single crystal substrate was observed.
  • Comparative Example 3 a fiber laser D that supplies a laser beam having a wavelength of 1062 nm and an infrared objective lens having a numerical aperture of 0.85 are used as the condenser lens 45, and the laser beam is sent to a silicon wafer substrate (double-sided mirror with a thickness of 725 ⁇ m ( 100)) was applied to conduct internal processing.
  • a silicon wafer substrate double-sided mirror with a thickness of 725 ⁇ m ( 100)
  • Irradiation conditions include a repetition frequency of 50 kHz, an output after the objective lens of 0.8 W, a laser irradiation interval of 0.5 ⁇ m, a pulse width of 200 ns, an offset of 1 ⁇ m, an DF of 80 ⁇ m in air, and an adjustment length of 0 mm for the aberration correction ring 40 with respect to the silicon wafer substrate. Then, the silicon wafer substrate was internally processed with a laser beam into a 10 mm ⁇ 10 mm region. And it peeled similarly to Example 5, and the peeling surface of the obtained single crystal substrate was observed.
  • ⁇ Experimental example 2> The inventor uses a fiber laser B for supplying a laser beam having a wavelength of 1062 nm and an infrared objective lens having a numerical aperture of 0.85 as the condenser lens 45, and the laser beam is sent to a silicon wafer substrate (double-sided mirror having a thickness of 725 ⁇ m ( 100)) was applied to conduct internal processing.
  • a repetition frequency of 50 kHz, an output after the objective lens of 0.5 W, a laser irradiation interval of 1 ⁇ m, a pulse width of 200 ns, an offset of 1 ⁇ m, an DF of 80 ⁇ m in air, an adjustment length of the aberration correction ring 40 with respect to the silicon wafer substrate is 0 mm, The number of times of irradiation was one, and the silicon wafer substrate was internally processed with a laser beam into a 10 mm ⁇ 10 mm region.
  • Mechanical damage refers to damage caused by mechanical external forces such as machining.
  • a substrate having mechanical damage is easily broken from the damaged portion, and has lower mechanical strength and lower quality as a substrate than a substrate without mechanical damage.
  • Mechanical damage can be confirmed by using Raman spectrum measurement, X-ray structural analysis, or the like. In the Raman spectroscopic measurement, knowledge about the completeness of the crystal can be obtained from the broadening of the half-value width of the reference bond. By utilizing this, the position of mechanical damage can be confirmed.
  • the thinly cut single crystal substrate can be applied to a solar cell as long as it is a Si substrate, and a sapphire substrate such as a GaN-based semiconductor device.
  • a solar cell as long as it is a Si substrate, and a sapphire substrate such as a GaN-based semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Laser Beam Processing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

 単結晶部材に形成した改質層から剥離させることで比較的大きくて薄い単結晶基板を形成した際、単結晶基板の剥離面の表面粗さRaを1未満にすることができる単結晶基板の製造方法、単結晶基板、および、内部改質層形成単結晶部材の製造方法を提供することを課題とする。単結晶部材(10)上に非接触に集光レンズ(15)を配置する第1工程と、単結晶部材内部にレーザ光(B)を集光するとともに、集光レンズ(15)と単結晶部材(10)とを相対的に移動させて、単結晶部材内部に2次元状の改質層(12)を形成する第2工程と、改質層(12)により分断されてなる単結晶層を改質層(12)から剥離することで単結晶基板を形成する第3工程と、を行う。その際、第3工程で形成した単結晶基板の剥離面の表面粗さRaが1未満となるように、第2工程でレーザ光の照射条件を調整する。

Description

単結晶基板の製造方法、単結晶基板、および、内部改質層形成単結晶部材の製造方法
 本発明は、単結晶基板の製造方法、単結晶基板、および、内部改質層形成単結晶部材の製造方法に関し、特に、単結晶基板を薄く安定して切り出す単結晶基板の製造方法、単結晶基板、および、内部改質層形成単結晶部材の製造方法に関する。
 従来、単結晶のシリコン(Si)ウエハに代表される半導体ウエハを製造する場合には、石英るつぼ内に溶融されたシリコン融液から凝固した円柱形のインゴットを適切な長さのブロックに切断して、その周縁部を目標の直径になるよう研削し、その後、ブロック化されたインゴットをワイヤソーによりウエハ形にスライスして半導体ウエハを製造するようにしている。
 このようにして製造された半導体ウエハは、前工程で回路パターンの形成等、各種の処理が順次施されて後工程に供され、この後工程で裏面がバックグラインド処理されて薄片化が図られることにより、厚さが約750μmから100μm以下、例えば75μmや50μm程度に調整される。
 従来における半導体ウエハは、以上のように製造され、インゴットがワイヤソーにより切断され、しかも、切断の際にワイヤソーの太さ以上の切り代が必要となる。従って、厚さ0.1mm以下の薄い半導体ウエハを製造することが非常に困難であり、製品率も向上しないという問題がある。
 また近年、次世代の半導体として、硬度が大きく、熱伝導率も高いシリコンカーバイド(SiC)が注目されている。しかし、SiCの場合には、Siよりも硬度が大きい関係上、インゴットをワイヤソーにより容易にスライスすることができず、また、バックグラインドによる基板の薄層化も容易ではない。
 一方、集光レンズでレーザ光の集光点をインゴットの内部に合わせ、そのレーザ光でインゴットを相対的に走査することにより、インゴットの内部に多光子吸収による面状の改質層を形成し、この改質層を剥離面としてインゴットの一部を基板として剥離する基板製造方法および基板製造装置が開示されている。例えば特許文献1には、レーザ光の多光子吸収を利用し、シリコンインゴット内部に改質層を形成しシリコンインゴットから静電チャックを利用してウエハを剥離する技術が開示されている。
特開2005‐277136号公報
 しかしながら、特許文献1の技術では、大面積の基板(シリコン基板)を均一に剥離することは容易でない。しかも、得られた単結晶基板(ウエハ)の剥離面の表面粗さが比較的粗いため、剥離面のラッピング(研磨)にかける時間が長い。
 本発明は、上記課題に鑑み、単結晶部材に形成した改質層から剥離させることで比較的大きくて薄い単結晶基板を形成した際、単結晶基板の剥離面の表面粗さRaを1未満にすることができる単結晶基板の製造方法、単結晶基板、および、内部改質層形成単結晶部材の製造方法を提供することを課題とする。
 上記課題を解決するための本発明の一態様によれば、単結晶部材上に非接触にレーザ集光手段を配置する第1工程と、前記レーザ集光手段により、前記単結晶部材表面にレーザ光を照射して前記単結晶部材内部に前記レーザ光を集光するとともに、前記レーザ集光手段と前記単結晶部材とを相対的に移動させて、前記単結晶部材内部に2次元状の改質層を形成する第2工程と、前記改質層により分断されてなる単結晶層を前記改質層から剥離することで単結晶基板を形成する第3工程と、を備え、前記第3工程で形成した前記単結晶基板の剥離面の表面粗さRaが1未満となるように、前記第2工程でレーザ光の照射条件を調整する単結晶基板の製造方法が提供される。
 本発明の別の態様によれば、本発明に係る単結晶基板の製造方法によって製造された単結晶基板が提供される。
 本発明の更に別の態様によれば、単結晶部材に表面からレーザ光を照射して内部で集光することで前記単結晶部材の内部に改質層を形成した内部改質層形成単結晶部材の製造方法であって、前記単結晶部材上にレーザ集光手段を非接触に配置する第1工程と、前記レーザ集光手段により、前記単結晶部材表面にレーザ光を照射して前記単結晶部材内部に前記レーザ光を集光するとともに、前記レーザ集光手段と前記単結晶部材とを相対的に移動させて、前記単結晶部材内部に2次元状の改質層を形成する第2工程と、を備え、前記改質層により分断されてなる単結晶層を前記改質層から剥離することで形成した前記単結晶基板の剥離面の表面粗さRaが1未満となるように、前記第2工程でレーザ光の照射条件を調整する内部改質層形成単結晶部材の製造方法が提供される。
 本発明によれば、単結晶部材に形成した改質層から剥離させることで比較的大きくて薄い単結晶基板を形成した際、単結晶基板の剥離面の表面粗さRaを1未満にすることができる単結晶基板の製造方法、単結晶基板、および、内部改質層形成単結晶部材の製造方法を提供することができる。
本発明の一実施形態に係る単結晶基板の製造方法を説明する模式的鳥瞰図。 本発明の一実施形態に係る単結晶基板の製造方法を説明する模式的鳥瞰図。 本発明の一実施形態に係る単結晶基板の製造方法および内部改質層形成単結晶部材を説明する模式的斜視断面図。 本発明の一実施形態で、レーザ光の照射により単結晶部材内部にクラックが形成されていることを示す模式的断面図。 本発明の一実施形態で、内部改質層形成単結晶部材の側壁に改質層を露出させたことの模式的斜視断面図。 本発明の一実施形態で、内部改質層形成単結晶部材の上下面に金属製基板を接着させて改質層から単結晶層を剥離させることを説明する模式的断面図。 本発明の一実施形態で、内部改質層形成単結晶部材の上下面に金属製基板を接着させて改質層から単結晶層を剥離させることを説明する模式的断面図。 本発明の一実施形態の変形例を説明する模式的断面図。 本発明の一実施形態の変形例を説明する模式的断面図。 本発明の一実施形態の変形例を説明する模式的斜視断面図。 本発明の一実施形態で得られた単結晶基板の部分拡大側面図。 (a)は、本発明の一実施形態の変形例として、収差補正環で補正したレーザ光を集光レンズに入光させて照射することを示す側面図、(b)は(a)の部分拡大図。 実験例1での実験条件および測定結果を示す説明図。 実験例1での実験条件および測定結果を示す説明図。 実施例1Aで得られた単結晶基板の断面の光学顕微鏡写真。 実施例1Aで得られた単結晶基板の断面のレーザ共焦点顕微鏡写真。 実施例1Bで得られた単結晶基板の断面の光学顕微鏡写真。 実施例1Bで得られた単結晶基板の断面のレーザ共焦点顕微鏡写真。 実施例1Cで得られた単結晶基板の断面の光学顕微鏡写真。 実施例1Cで得られた単結晶基板の断面のレーザ共焦点顕微鏡写真。 実施例1Dで得られた単結晶基板の断面の光学顕微鏡写真。 実施例1Dで得られた単結晶基板の断面のレーザ共焦点顕微鏡写真。 実施例2で得られた単結晶基板の断面のレーザ共焦点顕微鏡写真。 実施例3Aで得られた単結晶基板の断面のレーザ共焦点顕微鏡写真。 実施例3Bで得られた単結晶基板の断面のレーザ共焦点顕微鏡写真。 実施例4Aで得られた単結晶基板の断面のレーザ共焦点顕微鏡写真。 実施例4Bで得られた単結晶基板の断面のレーザ共焦点顕微鏡写真。 実施例4Cで得られた単結晶基板の断面のレーザ共焦点顕微鏡写真。 実施例5で得られた単結晶基板の剥離面のレーザ共焦点顕微鏡写真。 実施例5で得られた単結晶部の剥離面のレーザ共焦点顕微鏡写真。 実施例6で得られた単結晶基板の剥離面のレーザ共焦点顕微鏡写真。 実施例6で得られた単結晶部側の剥離面のレーザ共焦点顕微鏡写真。 実施例6で得られた単結晶基板の剥離面のSEM観察像。 実施例6で得られた単結晶部側の剥離面のSEM観察像。 実施例7で得られた単結晶基板の剥離面のレーザ共焦点顕微鏡写真。 実施例7で得られた単結晶部側の剥離面のレーザ共焦点顕微鏡写真。 実施例6で得られた単結晶基板の剥離面のSEM観察像。 実施例7で得られた単結晶部側の剥離面のSEM観察像 比較例1で得られた単結晶基板の剥離面のレーザ共焦点顕微鏡写真。 比較例1で得られた単結晶部側の剥離面のレーザ共焦点顕微鏡写真。 比較例1で得られた単結晶基板の剥離面のSEM観察像 比較例1で得られた単結晶部側の剥離面のSEM観察像。 実験例2で、内部改質層形成単結晶部材の断面の光学顕微鏡写真およびスペクトル図。
 以下、添付図面を参照して、本発明の実施の形態について説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。従って、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
 また、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の実施の形態は、請求の範囲において、種々の変更を加えることができる。
 図1は、本発明の一実施形態(以下、本実施形態という)で、レーザ集光手段により空気中でレーザ光を集光したことを説明する模式的鳥瞰図である。図2は、本実施形態で、レーザ集光手段により単結晶部材内部にレーザ光を集光したことを説明する模式的鳥瞰図である。図3は、本実施形態に係る単結晶基板製造方法および内部改質層形成単結晶部材11を説明する模式的断面構造である。図4は、レーザ光の照射により単結晶部材内部にクラック12cが形成されていることを示す模式的断面図である。図5は、内部改質層形成単結晶部材11の側壁に、レーザ光の集光によって形成された改質層12を露出させたことを示す模式的斜視断面図である。図6は、本実施形態で、内部改質層形成単結晶部材の上下面に金属製基板を接着させて改質層から単結晶層を剥離させることを説明する模式的断面図である。図7は、本実施形態で、内部改質層形成単結晶部材の上下面に金属製基板を接着させて改質層から単結晶層を剥離させることを説明する模式的断面図であり、改質層12から単結晶層10uを剥離させたことを説明している。
 本実施形態に係る単結晶基板製造方法は、レーザ集光手段として集光レンズ15を単結晶部材10上に非接触に配置する第1工程と、集光レンズ15により、単結晶部材10表面にレーザ光Bを照射して単結晶部材10内部にレーザ光Bを集光するとともに、集光レンズ15と単結晶部材10とを相対的に移動させて、単結晶部材10内部に2次元状の改質層12を形成する第2工程と、改質層12により分断されてなる単結晶層10uを改質層12との界面から剥離することで、図7(後述の図11も参照)に示すような単結晶基板10sを形成する第3工程と、を備えていて、第3工程で形成した単結晶基板10sの剥離面の表面粗さRaが1未満となるように、第2工程でレーザ光の照射条件を調整する。
 ここで、表面粗さとは、算術平均粗さRaで表現され、粗さ曲線からその中心線の方向に測定長さLの部分を抜き取り、この抜き取り部分の中心線をX軸、縦倍率の方向をY軸とし、粗さ曲線をy=f(x)で表したとき、次の式で与えられるRaの値をマイクロメートル単位(μm)で表したものをいう。
Figure JPOXMLDOC01-appb-M000001
 なお、以下の説明では、単結晶層10uを改質層12との界面10uから剥離させることで説明するが、本発明は界面10uから剥離させることに限られず、改質層12内で剥離が生じるようにしてもよい。
 (装置構成および第1工程(レーザ集光手段の配置工程))
 単結晶部材10上に非接触に配置する集光レンズ15は、単結晶部材10の屈折率に起因する収差を補正する構成になっている。具体的には、図1に示すように、本実施形態では、集光レンズ15は、空気中で集光した際に、集光レンズ15の外周部Eに到達したレーザ光が集光レンズ15の中央部Mに到達したレーザ光よりも集光レンズ側で集光するように補正する構成になっている。すなわち、集光した際、集光レンズ15の外周部Eに到達したレーザ光の集光点EPが、集光レンズ15の中央部Mに到達したレーザ光の集光点MPに比べ、集光レンズ15に近い位置となるように補正する構成になっている。
 詳細に説明すると、集光レンズ15は、空気中で集光する第1レンズ16と、この第1レンズ16と単結晶部材10との間に配置される第2レンズ18と、で構成される。第1レンズ16および第2レンズ18は、何れもレーザ光を円錐状に集光できるレンズとされている。そして、レーザ光Bが照射される側の単結晶部材10の表面10t(被照射側の表面)から改質層12までの深さ(間隔)Dを、主に第1レンズ16とこの表面10tとの距離L1で調整する構成になっている。さらに、改質層12の厚みTを、主に第2レンズ18とこの表面10tとの距離L2で調整する構成になっている。従って、主に第1レンズ16で空気中での収差補正を行い、主に第2レンズ18で単結晶部材10内での収差補正を行うことになる。本実施形態では、表面10tから所定の深さDの位置に、厚みTが60μm未満の改質層12が形成されるように、第1レンズ16、第2レンズ18の焦点距離、および、上記の距離L1、L2を設定しておく。
 第1レンズ16としては、球面または非球面の単レンズのほか、各種の収差補正や作動距離を確保するために組レンズを用いることが可能であり、NAが0.3~0.7であることが好ましい。第2レンズ18としては、第1レンズ16よりも小さなNAのレンズで、例えば曲率半径が3~5mm程度の凸ガラスレンズが、簡便に使用する観点で好ましい。
 そして、レーザ光Bの照射によって単結晶部材10の表面10tにダメージを与えることなく単結晶部材10の内部に改質層12を形成する観点で、集光レンズ15の外周部Eに到達したレーザ光とその集光点EPで定義される空気中の集光レンズ15のNAは、0.3~0.85にすることが好ましく、0.5~0.85にすることがさらに好ましい。
 単結晶部材10のサイズは、特に限定されるものではないが、例えばφ300mmの厚いシリコンウエハからなり、レーザ光Bが照射される表面10tが予め平坦化されていることが好ましい。
 レーザ光Bは、単結晶部材10の周面ではなく、上記の表面10tに照射装置(図示省略)から集光レンズ15を介して照射される。このレーザ光Bは、単結晶部材10がシリコンの場合には、例えばパルス幅が1μs以下のパルスレーザ光からなり、900nm以上の波長、好ましくは1000nm以上の波長が選択され、YAGレーザ等が好適に使用される。
 集光レンズ15に上方からレーザ光を入光する形態については特にこだわらない。集光レンズ15の上方にレーザ発振器を配置して集光レンズ15に向けて発光する形態としてもよいし、集光レンズ15の上方に反射ミラーを配置しレーザ光をこの反射ミラーに向けて照射して反射ミラーで集光レンズ15に向けて反射する形態にしてもよい。
 このレーザ光Bは、単結晶部材10として厚み0.625mmの単結晶基板に照射したときの光線透過率が1~80%の波長であることが望ましい。例えば、単結晶部材10としてシリコンの単結晶基板を用いた場合、波長が800nm以下のレーザ光では吸収が大きいため、表面のみが加工され、内部の改質層12を形成することができないため、900nm以上の波長、好ましくは、1000nm以上の波長が選択される。また、波長10.64μmのCO2レーザでは、光線透過率が高すぎるため、単結晶基板の加工をすることが困難なため、YAG基本波のレーザなどが好適に使用される。
 レーザ光Bの波長が900nm以上が好ましい理由は、波長が900nm以上であれば、シリコンからなる単結晶基板に対するレーザ光Bの透過性を向上させ、単結晶基板内部に改質層12を確実に形成することができるからである。レーザ光Bは、単結晶基板表面の周縁部に照射され、あるいは単結晶基板の表面の中心部から周縁部方向に照射される。
 (第2工程(改質層の形成工程))
 集光レンズ15と単結晶部材10とを相対的に移動させて単結晶部材10内部に改質層12を形成する工程(第2工程)としては、例えば、単結晶部材10をXYステージ(図示せず)上に載置し、真空チャック、静電チャックなどでこの単結晶部材10を保持する。
 そして、XYステージで単結晶部材10をX方向やY方向に移動させることで、集光レンズ15と単結晶部材10とを、単結晶部材10の集光レンズ15が配置されている側の表面10tと平行な方向に相対的に移動させながらレーザ光Bを照射することで、単結晶部材10の内部に集光したレーザ光Bによって多数のクラック12cが形成される。このクラック12cを有するクラック部12pの集合体が上述の改質層12である。本実施形態では、集光レンズ15の移動方向がレーザ光Bの光軸に直交する方向であり、改質層12はレーザ光Bの光軸に直交している(すなわち、改質層12の法線方向がレーザ光Bの光軸と平行方向である)。
 この改質層12が形成された結果、内部改質層形成単結晶部材11が製造される。この内部改質層形成単結晶部材11は、単結晶部材内部に形成された改質層12と、改質層12の上側(すなわちレーザ光Bの被照射側)に単結晶層10uと、改質層12の下側に単結晶部10dと、を有する。単結晶層10uおよび単結晶部10dは、改質層12によって単結晶部材10が分断されたことにより形成されたものである。本実施形態では、レーザ光としてパルスレーザ光を照射する。
 改質層12を形成するにあたり、第3工程で形成した単結晶基板10sの剥離面10f(図7および図11参照)の表面粗さRaが1未満となるように、レーザ光の照射条件を調整する。
 なお、ステージの移動速度を抑えるために、ガルバノミラーやポリゴンミラーなどのレーザービーム偏向手段を用い、集光レンズ15の照射エリア内でレーザ光をスキャンすることを併用してもよい。また、このような内部照射を行って改質層12の形成の終了後、単結晶部材10の被照射側の表面10t、すなわち単結晶層10uの表面10tにレーザ光Bの焦点を合わせ、照射領域を示すマークを付け、その後、このマークを基準に単結晶部材10を切断(割断)して、後述するように、改質層12の周縁部を露出させた上で単結晶層10uの剥離を行ってもよい。
 このような照射によって形成された改質層12では、図4に示すように、レーザ光Bの照射軸BCに平行な多数のクラック12cが形成されている。形成するクラック12cの寸法、密度などは、改質層12から単結晶層10uを剥離し易くする観点で、単結晶部材10の材質などを考慮して設定することが好ましい。
 なお、クラック12cを確認するには、レーザ光Bによる加工領域すなわち改質層12を横断するように内部改質層形成単結晶部材11をへき開し、へき開面(例えば図3、図5の14a~d)を走査電子顕微鏡もしくは共焦点顕微鏡で観察することで確認してもよいが、同一の材質の単結晶部材(例えばシリコンウエハ)に対し、同一の照射条件で、例えばYステージの送りを6~50μm間隔で部材内部に線状の加工を行い、これを横断する形でへき開してへき開面を観察することで、容易に確認してもよい。
 (第3工程(剥離工程))
 この後、改質層12と単結晶層10uとの剥離を行う(第3工程)。本実施形態では、まず、内部改質層形成単結晶部材11の側壁に改質層12を露出させる。露出させるには、例えば、単結晶部10d、単結晶層10uの所定の結晶面に沿ってへき開する。この結果、図5に示すように、単結晶層10uと単結晶部10dとによって改質層12が挟まれた構造のものが得られる。なお、単結晶層10uの表面10tはレーザ光Bの被照射側の面である。
 改質層12が既に露出している場合や、改質層12の周縁と内部改質層形成単結晶部材11の側壁との距離が十分に短い場合には、この露出をさせる作業を省略することが可能である。
 その後、図6に示すように、内部改質層形成単結晶部材11の上下面に、それぞれ、金属製基板28u、28dを接着する。すなわち、単結晶層10uの表面10tに金属製基板28uを接着剤34uで接着し、単結晶部10dの表面10bに金属製基板28dを接着剤34dで接着する。金属製基板28u、28dには、それぞれ、表面に酸化層29u、29dが形成されている。本実施形態では、酸化層29uを表面10tに、酸化層29dを表面10bに接着する。金属製基板28u、28dとしては、例えば、SUS製の剥離用補助板を用いる。接着剤としては、通常の半導体製造プロセスで使用される接着剤であって、市販のシリコンインゴット固定用の所謂ワックスとして使用される接着剤を用いる。この接着剤で接着させたものを水に浸けると接着剤の接着力が低下するので、接着剤と被接着物(単結晶層10u)とを容易に分離させることができる。
 この接着では、まず、金属製基板28uを単結晶層10uの表面10tに仮固定用接着剤で貼り付け、金属製基板28uを裏打ちし力を加えることで剥離する。
 仮固定用接着剤の接着強度は、改質層12と単結晶層10uとの界面11uで剥離するのに必要な力よりも強ければよい。仮固定用接着剤の接着強度に応じ、形成するクラック12cの寸法、密度を調整してもよい。
 仮固定用接着剤としては、例えば、金属イオンを反応開始剤として硬化する嫌気性アクリル系2液モノマー成分からなる接着剤を用いる。この場合、未硬化モノマーおよび硬化反応物が非水溶性であると、水中で剥離した際に露出した単結晶層10uの剥離面10f(例えばシリコンウエハの剥離面)が汚染されることを防止できる。
 仮固定用接着剤の塗布厚みは、硬化前で0.1~1mmが好ましく、0.15~0.35mmがより好ましい。仮固定用接着剤の塗布厚みが過度に大きい場合、完全硬化となるまでに長時間を必要とする上、単結晶部材(シリコンウエハ)の割断時に仮固定用接着剤の凝集破壊が起こりやすくなる。また、塗布厚みが過度に小さい場合、割断した単結晶部材の水中剥離に長時間を必要とする。
 仮固定用接着剤の塗布厚みの制御は、接着する金属製基板28u、28dを任意の高さに固定する方法を用いることで行ってもよいが、簡易的にはシムプレートを用いて行うことができる。
 接着した際に金属製基板28uと金属製基板28dとの平行度が十分に得られない場合には、1枚以上の補助板を使用して必要な平行度を得てもよい。
 また、金属製基板28u、28dを仮固定用接着剤で内部改質層形成単結晶部材11の上下面に接着する際、片面ずつ接着してもよいし、両面同時に接着してもよい。
 厳密に塗布厚みを制御したい場合には、一方の片面に金属製基板を接着させて接着剤が硬化した後、もう一方の片面に金属製基板を接着することが好ましい。このように片面ずつ接着する場合、仮固定用接着剤を塗布する面が内部改質層形成単結晶部材11の上面であっても下面であってもよい。その際、単結晶部材10の非接着面に接着剤が付着して硬化することを抑制するために、金属イオンを含まない樹脂フィルムをカバーレイヤーとして用いてもよい。
 金属製基板としては、平行度および平坦度が得られるのであれば、装置固定用の抜き穴等の機械加工を行っていても構わない。接着する金属製基板は水中での剥離工程を経るため、シリコンウエハのコンタミ抑制目的では不動態層を形成するものであることが好ましく、水中剥離のタクトタイム短縮目的では形成する酸化層(酸化皮膜層)が薄い方が好ましい。
 内部加工シリコンウエハ割断後に水中剥離を行うため、接着前の金属製基板については、通常行われる金属の脱脂処理を行うことが好ましい。
 仮固定用接着剤と金属製基板との接着力を高めるには、機械的または化学的方法で金属表面の酸化層を落として活性な金属面を出すとともに、アンカー効果を得やすい表面構造にするのが好ましい。上記の化学的方法とは、具体的には薬品を用いた酸洗浄や脱脂処理などがある。上記の機械的方法とは、具体的にはサンドブラスト、ショットブラストなどが挙げられるが、サンドペーパーで金属製基板の表面を傷つける方法が最も簡便であり、その粒度は#80~2000が好ましく、金属製基板の表面ダメージを考慮すると#150~800がより好ましい。
 金属製基板の接着後、図6に示したように、金属製基板28uに上方向の力Fuを、金属製基板28dに下方向の力Fdをそれぞれ加える。ここで、改質層12と単結晶部10dとの界面11dよりも、改質層12と単結晶層10uとの界面11uのほうが剥離しやすい。このため、力Fu、Fdによって、図7に示すように、改質層12と単結晶層10uとの界面11uで剥離する。この剥離によって、単結晶層10uを改質層12から剥離してなる薄い単結晶基板10sを得る。このようにして得られた単結晶基板10sの剥離面10fでは、例えば図11に示すように、表面粗さRaが1未満(Ra<1)である。
 力Fu、Fdを加える手法は特に限定しない。例えば、図8に示すように、内部改質層形成単結晶部材11の側壁をエッチングして改質層12に溝36を形成し、図9に示すように、この溝36に楔状圧入材30(例えばカッター刃)を圧入することで力Fu、Fdを発生させてもよい。また、図10に示すように、内部改質層形成単結晶部材11に角方向から力Fを加えて、上方向の力成分Fuと下方向の力成分Fdとを発生させてもよい。
 以上説明したように、本実施形態では、第2工程でレーザ光の照射条件を調整することで、第3工程で形成した単結晶基板10sの剥離面の表面粗さRaを1未満としている。従って、剥離後の単結晶基板のラッピングにかかる時間を、従来に比べて大幅に短縮させることが可能となる。また、Raが1以上である場合に比べて他工程を省略することができるので、他工程による単結晶基板の汚染を回避することができる。
 また、大きなNAの集光レンズ15で、単結晶部材10内の薄い厚み部分にレーザ光Bによるエネルギーを集中させることができる。従って、単結晶部材10内に、厚みT(レーザ光Bの照射軸BCに沿った長さ)が小さい改質層(加工領域)12を形成した内部改質層形成単結晶部材11を製造することができる。そして、改質層12から単結晶層10uを剥離することで薄い単結晶基板10sを製造することが容易である。また、このような薄い単結晶基板10sを比較的短時間で容易に製造することができる。しかも、改質層12の厚みを抑えることで単結晶部材10から多数枚の単結晶基板10sが得られるので、製品率を向上させることができる。
 また、改質層12として、レーザ光Bの照射軸BCと平行なクラック部12pの集合体を形成している。これにより、改質層12と単結晶層10uとの剥離が容易である。
 また、単結晶基板10sを形成する工程では、表面に酸化層29uを有する金属製基板28uを単結晶層10uの表面に接着して剥離させることで単結晶基板10sを得ている。従って、金属製基板との接着に、通常の半導体製造プロセスで使用される接着剤を用いることができ、アクリル板を接着させる際に用いる強力な接着力を有するシアノアクリレート系接着剤を用いなくて済む。しかも、剥離した後、水に浸けることで接着剤の接着力が大きく低減して剥がれ易くなるので、金属製基板28uから単結晶基板10sを容易に分離させることができる。
 なお、第2工程でレーザ光の照射条件を調整する際、1)集光レンズ15の通過後のレーザ光のエネルギーを調整する、2)集光レンズ15(第1レンズ16および第2レンズ18)に代えて、収差補正環40と集光レンズ45(何れも後述の図12参照)とを配置する構成にして、集光レンズ45による集光を収差補正環40により調整する、3)レーザ光として照射するパルスレーザ光の照射回数で調整する、4)レーザ光として照射するパルスレーザ光の照射間隔(隣り合う照射位置同士の間隔)を調整する、5)集光レンズ45と単結晶部材10とのオフセットを調整する、のいずれか又はこれらの組み合わせを行うことが有効である。
 図12は上記の2)の一例を示す図であり、(a)は収差補正環40で補正したレーザ光を集光レンズ45に入光させて照射することを示す側面図、(b)は(a)の部分拡大図である。集光レンズ45による集光を収差補正環40により調整する際、例えば図12に示すように、集光レンズ45の外周部に入射したレーザ光が集光レンズ45の光軸(中心軸)と交差する位置が、その内周部側に入射したレーザ光が集光レンズ45の光軸(中心軸)と交差する位置よりも集光レンズ45側に位置するように調整する。
 また、以上の説明では収差補正を行う例で説明したが、第2工程でレーザ光の照射条件を調整することによって単結晶基板10sの剥離面10fの表面粗さRaが1未満となる限り、収差補正をしない構成にすることも可能である。
 また、本実施形態では、集光レンズ45のDF値を調整して単結晶部材10の被照射面である表面10tから改質層12までの距離を調整することにより、剥離して得られる単結晶基板10sの厚みを調整することが可能である。
 また、本実施形態では、内部改質層形成単結晶部材10としてシリコンウエハを用い、シリコンウエハ内部に改質層12を形成することが可能である。
 また、本実施形態では、金属製基板28u、28dを内部改質層形成単結晶部材11の上下面にそれぞれ貼り付けて、金属製基板28u、28dに力を加えて剥離することで単結晶基板10sを形成することで説明したが、エッチングにより改質層12を除去することで剥離してもよい。
 また、単結晶部材10はシリコンウエハに限定されるものではなく、シリコンウエハのインゴット、単結晶のサファイア、SiCなどのインゴットやこれから切り出したウエハ、あるいはこの表面に他の結晶(GaN、GaAs、InPなど)を成長させたエピタキシャルウエハなどを適用可能である。また、単結晶部材10の面方位は(100)に限らず、他の面方位とすることも可能である。
 <実験例1>
 本発明者は、以下の実験を行い、第3工程で剥離して得られた単結晶基板10sの剥離面10f、および、剥離されたことで形成された単結晶部10u側の剥離面の表面粗さRaをそれぞれ測定した。実験条件および測定結果を図13A、図13Bに示す。図13Aと図13Bとは本来は1つに繋がった図であるが、紙面の都合上2つに分けて示している。なお、本実験例では、収差補正を行う際には収差補正環40を用いた。
  (実施例1)
 実施例1では、波長1064nmのレーザ光を供給するファイバーレーザAと、集光レンズ45として開口数0.85の赤外用対物レンズと、上述の収差補正環40とを用い、レーザ光を、内部改質層形成単結晶部材10としてシリコンウエハ基板(厚み725μmの両面ミラー(100))へ基板表面から照射して内部加工する実験を行った。照射条件としては、レーザ照射間隔1μm、オフセット10μm、空気中換算でDF80μm、シリコンウエハ基板に対する収差補正環40の調整長さ0~1mmとした。内部加工痕の状態の観察としては、レーザ走査方向に対して垂直な加工断面をへき開して得られた断面を、光学顕微鏡およびレーザ共焦点顕微鏡で観察した。実施例1では、以下のように照射条件を少しずつ変更して実施例1A~1Dを行った。
    (実施例1A)
 図14は、実施例1Aで得られた単結晶基板(シリコンウエハ)10sの断面の光学顕微鏡写真である。図15は、実施例1Aで得られた単結晶基板(シリコンウエハ)10sの断面のレーザ共焦点顕微鏡写真であり、図14の部分拡大図に相当する。
 実施例1Aでは、繰り返し周波数100kHz、パルス幅21ns、対物レンズ後出力(すなわち集光レンズ45を通過後のレーザ光の強度)0.4Wでシリコンウエハにレーザ光を照射して内部加工を行った。なお、レーザ光の走査方向は図14、図15で紙面手前側から紙面奥側に向く方向である(後述の図16~図27でもこの方向)。
 図14に示される6つの加工痕48a~fは、紙面左側から、順次、収差補正環40の目盛りを0mm、0.2mm、0.4mm、0.6mm、0.8mm、1.0mmに調整して形成したものである。また、図15では、加工痕48c、48dを示す。
    (実施例1B)
 図16は、実施例1Bで得られた単結晶基板(シリコンウエハ)10sの断面の光学顕微鏡写真である。図17は、実施例1Bで得られた単結晶基板(シリコンウエハ)10sの断面のレーザ共焦点顕微鏡写真であり、図16の部分拡大図に相当する。
 実施例1Bでは、繰り返し周波数100kHz、パルス幅21ns、対物レンズ後出力0.8Wでシリコンウエハにレーザ光を照射して内部加工を行った。
 図16に示される6つの加工痕50a~fは、紙面左側から、順次、収差補正環40の目盛りを0mm、0.2mm、0.4mm、0.6mm、0.8mm、1.0mmに調整して形成したものである。また、図17では、加工痕50c、50dを示す。
    (実施例1C)
 図18は、実施例1Cで得られた単結晶基板(シリコンウエハ)10sの断面の光学顕微鏡写真である。図19は、実施例1Cで得られた単結晶基板(シリコンウエハ)10sの断面のレーザ共焦点顕微鏡写真であり、図18の部分拡大図に相当する。
 実施例1Cでは、繰り返し周波数200kHz、パルス幅39ns、対物レンズ後出力0.8Wでシリコンウエハにレーザ光を照射して内部加工を行った。
 図18に示される6つの加工痕52a~fは、紙面左側から、順次、収差補正環40の目盛りを0mm、0.2mm、0.4mm、0.6mm、0.8mm、1.0mmに調整して形成したものである。また、図19では、加工痕52c、52dを示す。
    (実施例1D)
 図20は、実施例1Dで得られた単結晶基板(シリコンウエハ)10sの断面の光学顕微鏡写真である。図21は、実施例1Dで得られた単結晶基板(シリコンウエハ)10sの断面のレーザ共焦点顕微鏡写真であり、図20の部分拡大図に相当する。
 実施例1Dでは、繰り返し周波数200kHz、パルス幅39ns、対物レンズ後出力1.6Wでシリコンウエハにレーザ光を照射して内部加工を行った。
 図20に示される6つの加工痕54a~fは、紙面左側から、順次、収差補正環40の目盛りを0mm、0.2mm、0.4mm、0.6mm、0.8mm、1.0mmに調整して形成したものである。また、図21では、加工痕54c、54dを示す。
  (実施例2)
 図22は、実施例2で得られた単結晶基板(シリコンウエハ)10sの断面のレーザ共焦点顕微鏡写真である。
 実施例2では、波長1064nmのレーザ光を供給するファイバーレーザAと、集光レンズ45として開口数0.85の赤外用対物レンズとを用い、レーザ光をシリコンウエハ基板(厚み725μmの両面ミラー(100))へ照射して内部加工する実験を行った。
 照射条件としては、繰り返し周波数100kHz、対物レンズ後出力0.8W、レーザ照射間隔1μm、パルス幅21ns、オフセット10μm、空気中換算でDF20~80μm、シリコンウエハ基板に対する収差補正環40の調整長さ0mmとした。内部加工痕の状態の観察としては、レーザ走査方向に対して垂直な加工断面をへき開して得られた断面を観察した。
  (実施例3)
 実施例3では、波長1062nmのレーザ光を供給するファイバーレーザBと、集光レンズ45として開口数0.85の赤外用対物レンズとを用い、レーザ光をシリコンウエハ基板(厚み725μmの両面ミラー(100))へ照射して内部加工する実験を行った。
 照射条件としては、繰り返し周波数50kHz、レーザ照射間隔2μm、対物レンズ後出力1.6W、パルス幅200ns、空気中換算でDF80μm、シリコンウエハ基板に対する収差補正環40の調整長さ0mmとした。内部加工痕の状態の観察としては、レーザ走査方向に対して垂直な加工断面をへき開して得られた断面を観察した。実施例3では、以下のように照射条件を少しずつ変更して実施例3A、3Bを行った。
    (実施例3A)
 図23は、実施例3Aで得られた単結晶基板(シリコンウエハ)10sの断面のレーザ共焦点顕微鏡写真である。実施例3Aでは、オフセット1μmとした。
    (実施例3B)
 図24は、実施例3Bで得られた単結晶基板(シリコンウエハ)10sの断面のレーザ共焦点顕微鏡写真である。実施例3Bでは、オフセット5μmとした。
  (実施例4)
 実施例4では、波長1062nmのレーザ光を供給するファイバーレーザBと、集光レンズ45として開口数0.85の赤外用対物レンズとを用い、レーザ光をシリコンウエハ基板(厚み725μmの両面ミラー(100))へ照射して内部加工する実験を行った。
 照射条件としては、繰り返し周波数50kHz、レーザ照射間隔1μm、オフセット1μm、対物レンズ後出力0.7W、パルス幅200ns、空気中換算でDF70μm、シリコンウエハ基板に対する収差補正環40の調整長さ0mmとした。内部加工痕の状態の観察としては、レーザ走査方向に対して垂直な加工断面をへき開して得られた断面を観察した。実施例4では、以下のように照射条件を少しずつ変更して実施例4A~4Cを行った。
    (実施例4A)
 図25は、実施例4Aで得られた単結晶基板(シリコンウエハ)10sの断面のレーザ共焦点顕微鏡写真である。実施例4Aでは照射回数を1回とした。
    (実施例4B)
 図26は、実施例4Bで得られた単結晶基板(シリコンウエハ)10sの断面のレーザ共焦点顕微鏡写真である。実施例4Bでは照射回数を2回とした。
    (実施例4C)
 図27は、実施例4Cで得られた単結晶基板(シリコンウエハ)10sの断面のレーザ共焦点顕微鏡写真である。実施例4Cでは照射回数を3回とした。
  (実施例5)
 図28は、実施例5で得られた単結晶基板(シリコンウエハ)10sの剥離面10fのレーザ共焦点顕微鏡写真であり、図29は、実施例5で得られた単結晶部10u側の剥離面のレーザ共焦点顕微鏡写真である。
 実施例5では、波長1064nmのレーザ光を供給するファイバーレーザAと、集光レンズ45として開口数0.85の赤外用対物レンズとを用い、レーザ光をシリコンウエハ基板(厚み725μmの両面ミラー(100))へ照射して内部加工する実験を行った。
 照射条件としては、繰り返し周波数200kHz、対物レンズ後出力0.8W、レーザ照射間隔1μm、パルス幅39ns、オフセット1μm、空気中換算でDF80μm、シリコンウエハ基板に対する収差補正環40の調整長さ0.6mmとし、シリコンウエハ基板へ5mm×20mmの領域へレーザ光で内部加工した。
 そして、内部加工したシリコンウエハ基板の両面に接着剤を介して金属板をそれぞれ接着して剥離して得られた剥離面(露出面)を、レーザ共焦点顕微鏡で観察した。
  (実施例6)
 図30は、実施例6で得られた単結晶基板(シリコンウエハ)10sの剥離面のレーザ共焦点顕微鏡写真であり、図31は、実施例6で得られた単結晶部10u側の剥離面のレーザ共焦点顕微鏡写真である。また、図32は、実施例6で得られた単結晶基板10sの剥離面のSEM観察像であり、図33は、実施例6で得られた単結晶部10u側の剥離面のSEM観察像である。
 実施例6では、波長1064nmのレーザ光を供給するファイバーレーザAと、集光レンズ45として開口数0.85の赤外用対物レンズとを用い、レーザ光をシリコンウエハ基板(厚み725μmの両面ミラー(100))へ照射して内部加工する実験を行った。
 照射条件としては、繰り返し周波数200kHz、対物レンズ後出力1.2W、レーザ照射間隔1μm、パルス幅39ns、オフセット1μm、空気中換算でDF80μm、シリコンウエハ基板に対する収差補正環40の調整長さ0.6mmとし、シリコンウエハ基板へ5mm×20mmの領域へレーザ光で内部加工した。そして、実施例5と同様にして剥離し、得られた単結晶基板の剥離面をレーザ共焦点顕微鏡および走査電子顕微鏡で観察した。
  (実施例7)
 図34は、実施例7で得られた単結晶基板(シリコンウエハ)10sの剥離面のレーザ共焦点顕微鏡写真であり、図35は、実施例7で得られた単結晶部10u側の剥離面のレーザ共焦点顕微鏡写真である。また、図36は、実施例6で得られた単結晶基板10sの剥離面のSEM観察像であり、図37は、実施例7で得られた単結晶部10u側の剥離面のSEM観察像である。
 実施例7では、波長1064nmのレーザ光を供給するファイバーレーザCと、集光レンズ45として開口数0.85の赤外用対物レンズとを用い、レーザ光をシリコンウエハ基板(厚み725μmの両面ミラー(100))へ照射して内部加工する実験を行った。
 照射条件としては、繰り返し周波数200kHz、対物レンズ後出力0.6W、レーザ照射間隔1μm、パルス幅60ns、オフセット1μm、空気中換算でDF80μm、シリコンウエハ基板に対する収差補正環40の調整長さ0.6mmとし、シリコンウエハ基板へ5mm×10mmの領域へレーザ光で内部加工した。そして、実施例5と同様にして剥離し、得られた単結晶基板の剥離面をレーザ共焦点顕微鏡および走査電子顕微鏡で観察した。
  (実施例8)
 実施例8では、波長1062nmのレーザ光を供給するファイバーレーザBと、集光レンズ45として開口数0.85の赤外用対物レンズとを用い、レーザ光をシリコンウエハ基板(厚み725μmの両面ミラー(100))へ照射して内部加工する実験を行った。
 照射条件としては、繰り返し周波数50kHz、対物レンズ後出力0.8W、レーザ照射間隔1μm、パルス幅200ns、オフセット1μm、空気中換算でDF80μm、シリコンウエハ基板に対する収差補正環40の調整長さ0mmとし、シリコンウエハ基板へ10mm×10mmの領域へレーザ光で内部加工した。そして、実施例4と同様にして剥離し、得られた単結晶基板の剥離面を観察した。
  (実施例9)
 実施例9では、波長1062nmのレーザ光を供給するファイバーレーザBと、集光レンズ45として開口数0.85の赤外用対物レンズとを用い、レーザ光をシリコンウエハ基板(厚み725μmの両面ミラー(100))へ照射して内部加工する実験を行った。
 照射条件としては、繰り返し周波数50kHz、対物レンズ後出力1.6W、レーザ照射間隔1μm、パルス幅200ns、オフセット1μm、空気中換算でDF80μm、シリコンウエハ基板に対する収差補正環40の調整長さ0mmとし、シリコンウエハ基板へ10mm×10mmの領域へレーザ光で内部加工した。そして、実施例5と同様にして剥離し、得られた単結晶基板の剥離面を観察した。
  (実施例10)
 実施例10では、波長1062nmのレーザ光を供給するファイバーレーザBと、集光レンズ45として開口数0.85の赤外用対物レンズとを用い、レーザ光をシリコンウエハ基板(厚み725μmの両面ミラー(100))へ照射して内部加工する実験を行った。
 照射条件としては、繰り返し周波数100kHz、対物レンズ後出力0.5W、レーザ照射間隔1μm、パルス幅200ns、オフセット1μm、空気中換算でDF80μm、シリコンウエハ基板に対する収差補正環40の調整長さ0mmとし、照射回数を2回として、シリコンウエハ基板へ10mm×10mmの領域へレーザ光で内部加工した。そして、実施例5と同様にして剥離し、得られた単結晶基板の剥離面を観察した。
  (実施例11)
 実施例11では、波長1064nmのレーザ光を供給するファイバーレーザCと、集光レンズ45として開口数0.85の赤外用対物レンズとを用い、レーザ光をシリコンウエハ基板(厚み725μmの両面ミラー(100))へ照射して内部加工する実験を行った。
 照射条件としては、繰り返し周波数200kHz、対物レンズ後出力0.8W、レーザ照射間隔1μm、パルス幅80ns、オフセット2μm、空気中換算でDF80μm、シリコンウエハ基板に対する収差補正環40の調整長さ0.6mmとし、照射回数を2回として、シリコンウエハ基板へ5mm×10mmの領域で内部加工した。そして、実施例5と同様にして剥離し、得られた単結晶基板の剥離面を観察した。
  (実施例12)
 実施例12では、波長1062nmのレーザ光を供給するファイバーレーザDと、集光レンズ45として開口数0.85の赤外用対物レンズとを用い、レーザ光をシリコンウエハ基板(厚み725μmの両面ミラー(100))へ照射して内部加工する実験を行った。
 照射条件としては、繰り返し周波数100kHz、対物レンズ後出力0.8W、レーザ照射間隔1μm、パルス幅200ns、オフセット1μm、空気中換算でDF80μm、シリコンウエハ基板に対する収差補正環40の調整長さ0mmとし、照射回数を2回として、シリコンウエハ基板へ10mm×10mmの領域へレーザ光で内部加工した。そして、実施例5と同様にして剥離し、得られた単結晶基板の剥離面を観察した。
  (実施例13)
 実施例13では、波長1062nmのレーザ光を供給するファイバーレーザDと、集光レンズ45として開口数0.85の赤外用対物レンズとを用い、レーザ光をシリコンウエハ基板(厚み725μmの両面ミラー(100))へ照射して内部加工する実験を行った。
 照射条件としては、繰り返し周波数100kHz、対物レンズ後出力0.8W、レーザ照射間隔1μm、パルス幅200ns、オフセット1μm、空気中換算でDF80μm、シリコンウエハ基板に対する収差補正環40の調整長さ0mmとし、照射回数を2回として、シリコンウエハ基板へ10mm×10mmの領域へレーザ光で内部加工した。そして、実施例5と同様にして剥離し、得られた単結晶基板の剥離面を観察した。
  (比較例1)
 図38は、比較例1で得られた単結晶基板(シリコンウエハ)の剥離面のレーザ共焦点顕微鏡写真であり、図39は、比較例1で得られた単結晶部側の剥離面のレーザ共焦点顕微鏡写真である。また、図40は、比較例1で得られた単結晶基板の剥離面のSEM観察像であり、図41は、比較例1で得られた単結晶部側の剥離面のSEM観察像である。
 比較例1では、波長1064nmのレーザ光を供給するファイバーレーザAと、集光レンズ45として開口数0.85の赤外用対物レンズとを用い、レーザ光をシリコンウエハ基板(厚み725μmの両面ミラー(100))へ照射して内部加工する実験を行った。
 照射条件としては、繰り返し周波数200kHz、対物レンズ後出力1.6W、レーザ照射間隔1μm、パルス幅39ns、オフセット1μm、空気中換算でDF80μm、シリコンウエハ基板に対する収差補正環40の調整長さ0.6mmとし、シリコンウエハ基板へ5mm×10mmの領域へレーザ光で内部加工した。そして、実施例5と同様にして剥離し、得られた単結晶基板の剥離面を観察した。
  (比較例2)
 比較例2では、波長1064nmのレーザ光を供給するファイバーレーザCと、集光レンズ45として開口数0.85の赤外用対物レンズとを用い、レーザ光をシリコンウエハ基板(厚み725μmの両面ミラー(100))へ照射して内部加工する実験を行った。
 照射条件としては、繰り返し周波数200kHz、対物レンズ後出力0.8W、レーザ照射間隔1μm、パルス幅60ns、オフセット1μm、空気中換算でDF80μm、シリコンウエハ基板に対する収差補正環40の調整長さ0.6mmとし、シリコンウエハ基板へ5mm×10mmの領域へレーザ光で内部加工した。そして、実施例5と同様にして剥離し、得られた単結晶基板の剥離面を観察した。
  (比較例3)
 比較例3では、波長1062nmのレーザ光を供給するファイバーレーザDと、集光レンズ45として開口数0.85の赤外用対物レンズとを用い、レーザ光をシリコンウエハ基板(厚み725μmの両面ミラー(100))へ照射して内部加工する実験を行った。
 照射条件としては、繰り返し周波数50kHz、対物レンズ後出力0.8W、レーザ照射間隔0.5μm、パルス幅200ns、オフセット1μm、空気中換算でDF80μm、シリコンウエハ基板に対する収差補正環40の調整長さ0mmとし、シリコンウエハ基板へ10mm×10mmの領域へレーザ光で内部加工した。そして、実施例5と同様にして剥離し、得られた単結晶基板の剥離面を観察した。
 <実験例2>
 本発明者は、波長1062nmのレーザ光を供給するファイバーレーザBと、集光レンズ45として開口数0.85の赤外用対物レンズとを用い、レーザ光をシリコンウエハ基板(厚み725μmの両面ミラー(100))へ照射して内部加工する実験を行った。
 照射条件としては、繰り返し周波数50kHz、対物レンズ後出力0.5W、レーザ照射間隔1μm、パルス幅200ns、オフセット1μm、空気中換算でDF80μm、シリコンウエハ基板に対する収差補正環40の調整長さ0mmとし、照射回数を1回として、シリコンウエハ基板へ10mm×10mmの領域へレーザ光で内部加工した。
 そして、へき開した断面に対して、後方散乱ラマンスペクトル測定を、He-Neレーザを光源とするHORIBA JOBIN YVON社製LabRAM HR-800を用いて行った。測定結果を図42に示す。
 図42から判るように、レーザ光で内部加工してなる改質層12以外では、剥離前のシリコンウエハに機械的損傷がないことを確認した。
 なお、機械的損傷とは、機械加工など機械的な外力が要因となって生じる損傷をいう。機械的損傷がある基板は、その損傷部分から破損しやすく、機械的損傷のない基板と比較して機械的強度が低く、基板としての品質が低い。機械的損傷は、ラマンスペクトル測定やX線構造解析などを用いて、機械的損傷の有無を確認することができる。ラマン分光測定では、基準とする結合の半値幅の広がりから結晶の完全性に関する知見が得られる。これを利用することで、機械的損傷の位置を確認できる。
 本発明により薄い単結晶基板を効率良く形成することができることから、薄く切り出された単結晶基板は、Si基板であれば、太陽電池に応用可能であり、また、GaN系半導体デバイスなどのサファイア基板などであれば、発光ダイオード、レーザダイオードなどに応用可能であり、SiCなどであれば、SiC系パワーデバイスなどに応用可能であり、透明エレクトロニクス分野、照明分野、ハイブリッド/電気自動車分野など幅広い分野において適用可能である。
10 単結晶部材、シリコンウエハ
10u 単結晶層
10s 単結晶基板
10t 表面
10f 剥離面
11 内部改質層形成単結晶部材
12 改質層
15 集光レンズ(レーザ集光手段)
40 収差補正環
45 集光レンズ
B レーザ光

Claims (9)

  1.  単結晶部材上に非接触にレーザ集光手段を配置する第1工程と、
     前記レーザ集光手段により、前記単結晶部材表面にレーザ光を照射して前記単結晶部材内部に前記レーザ光を集光するとともに、前記レーザ集光手段と前記単結晶部材とを相対的に移動させて、前記単結晶部材内部に2次元状の改質層を形成する第2工程と、
     前記改質層により分断されてなる単結晶層を前記改質層から剥離することで単結晶基板を形成する第3工程と、
     を備え、前記第3工程で形成した前記単結晶基板の剥離面の表面粗さRaが1未満となるように、前記第2工程でレーザ光の照射条件を調整することを特徴とする単結晶基板の製造方法。
  2.  前記第2工程でレーザ光の照射条件を調整する際、前記レーザ集光手段に設けた対物レンズ通過後のレーザ光のエネルギーを調整することを特徴とする請求項1に記載の単結晶基板の製造方法。
  3.  前記第2工程でレーザ光の照射条件を調整する際、前記レーザ集光手段に収差補正環を設けて該収差補正環により調整することを特徴とする請求項1に記載の単結晶基板の製造方法。
  4.  前記第2工程でレーザ光の照射条件を調整する際、レーザ光として照射するパルスレーザ光の照射回数で調整することを特徴とする請求項1に記載の単結晶基板の製造方法。
  5.  前記第2工程でレーザ光の照射条件を調整する際、レーザ光として照射するパルスレーザ光の照射間隔を調整することを特徴とする請求項1に記載の単結晶基板の製造方法。
  6.  前記第2工程でレーザ光の照射条件を調整する際、前記レーザ集光手段と前記単結晶部材とのオフセットを調整することを特徴とする請求項1に記載の単結晶基板の製造方法。
  7.  前記レーザ集光手段に設ける対物レンズのDF値を調整して前記単結晶部材の被照射面から前記改質層までの距離を調整することにより、前記単結晶基板の厚みを調整することを特徴とする請求項1~6のいずれか1項に記載の単結晶基板の製造方法。
  8.  請求項1~7のいずれか1項に記載の単結晶基板の製造方法によって製造されたことを特徴とする単結晶基板。
  9.  単結晶部材に表面からレーザ光を照射して内部で集光することで前記単結晶部材の内部に改質層を形成した内部改質層形成単結晶部材の製造方法であって、
     前記単結晶部材上にレーザ集光手段を非接触に配置する第1工程と、
     前記レーザ集光手段により、前記単結晶部材表面にレーザ光を照射して前記単結晶部材内部に前記レーザ光を集光するとともに、前記レーザ集光手段と前記単結晶部材とを相対的に移動させて、前記単結晶部材内部に2次元状の改質層を形成する第2工程と、
     を備え、
     前記改質層により分断されてなる単結晶層を前記改質層から剥離することで形成した単結晶基板の剥離面の表面粗さRaが1未満となるように、前記第2工程でレーザ光の照射条件を調整することを特徴とする内部改質層形成単結晶部材の製造方法。
PCT/JP2013/052326 2012-02-01 2013-02-01 単結晶基板の製造方法、単結晶基板、および、内部改質層形成単結晶部材の製造方法 WO2013115352A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012020222A JP5843393B2 (ja) 2012-02-01 2012-02-01 単結晶基板の製造方法、単結晶基板、および、内部改質層形成単結晶部材の製造方法
JP2012-020222 2012-08-24

Publications (1)

Publication Number Publication Date
WO2013115352A1 true WO2013115352A1 (ja) 2013-08-08

Family

ID=48905380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052326 WO2013115352A1 (ja) 2012-02-01 2013-02-01 単結晶基板の製造方法、単結晶基板、および、内部改質層形成単結晶部材の製造方法

Country Status (2)

Country Link
JP (1) JP5843393B2 (ja)
WO (1) WO2013115352A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016113030A3 (de) * 2015-01-15 2016-09-09 Siltectra Gmbh Festkörperteilung mittels stoffumwandlung
WO2016083609A3 (de) * 2014-11-27 2016-09-22 Siltectra Gmbh Laserbasiertes trennverfahren
WO2016083610A3 (de) * 2014-11-27 2016-09-22 Siltectra Gmbh Festkörperteilung mittels stoffumwandlung
WO2020234416A1 (en) * 2019-05-23 2020-11-26 Ascatron Ab Crystal efficient sic device wafer production

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119076A (ja) * 2013-12-19 2015-06-25 信越ポリマー株式会社 内部加工層形成単結晶部材およびその製造方法
JP6381110B2 (ja) * 2014-04-16 2018-08-29 信越ポリマー株式会社 基板加工方法及び基板
JP2016015447A (ja) * 2014-07-03 2016-01-28 パナソニックIpマネジメント株式会社 ウエハの製造方法および装置
JP6358940B2 (ja) * 2014-12-04 2018-07-18 株式会社ディスコ ウエーハの生成方法
JP6399913B2 (ja) * 2014-12-04 2018-10-03 株式会社ディスコ ウエーハの生成方法
JP6358941B2 (ja) * 2014-12-04 2018-07-18 株式会社ディスコ ウエーハの生成方法
JP6472332B2 (ja) * 2015-06-02 2019-02-20 株式会社ディスコ ウエーハの生成方法
JP6472333B2 (ja) * 2015-06-02 2019-02-20 株式会社ディスコ ウエーハの生成方法
JP6482423B2 (ja) * 2015-07-16 2019-03-13 株式会社ディスコ ウエーハの生成方法
JP6472347B2 (ja) * 2015-07-21 2019-02-20 株式会社ディスコ ウエーハの薄化方法
WO2017167614A1 (de) 2016-03-22 2017-10-05 Siltectra Gmbh Kombinierte laserbehandlung eines zu splittenden festkörpers
JP6851040B2 (ja) * 2016-03-29 2021-03-31 国立大学法人埼玉大学 基板加工方法および基板加工装置
JP6698468B2 (ja) * 2016-08-10 2020-05-27 株式会社ディスコ ウエーハ生成方法
JP6851041B2 (ja) * 2016-08-16 2021-03-31 国立大学法人埼玉大学 基板加工方法および基板加工装置
JP7256123B2 (ja) 2016-12-12 2023-04-11 ジルテクトラ ゲゼルシャフト ミット ベシュレンクテル ハフツング 構成部材を備えた固体層を薄くするための方法
JP7330771B2 (ja) * 2019-06-14 2023-08-22 株式会社ディスコ ウエーハの生成方法およびウエーハの生成装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2221138A1 (de) * 2009-01-16 2010-08-25 BIAS Bremer Institut für angewandte Strahltechnik GmbH Verfahren und Vorrichtung zum Separieren eines Halbleiter-Wafers von einem Halbleiterkristall durch Erzeugung von Schwachstellen in dem Halbleiterkristall
JP2011003624A (ja) * 2009-06-17 2011-01-06 Shin Etsu Polymer Co Ltd 半導体ウェーハの製造方法及びその装置
JP2011060862A (ja) * 2009-09-07 2011-03-24 Saitama Univ 基板スライス方法
JP2011155070A (ja) * 2010-01-26 2011-08-11 Saitama Univ 基板加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2221138A1 (de) * 2009-01-16 2010-08-25 BIAS Bremer Institut für angewandte Strahltechnik GmbH Verfahren und Vorrichtung zum Separieren eines Halbleiter-Wafers von einem Halbleiterkristall durch Erzeugung von Schwachstellen in dem Halbleiterkristall
JP2011003624A (ja) * 2009-06-17 2011-01-06 Shin Etsu Polymer Co Ltd 半導体ウェーハの製造方法及びその装置
JP2011060862A (ja) * 2009-09-07 2011-03-24 Saitama Univ 基板スライス方法
JP2011155070A (ja) * 2010-01-26 2011-08-11 Saitama Univ 基板加工方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11407066B2 (en) 2014-01-15 2022-08-09 Siltectra Gmbh Splitting of a solid using conversion of material
EP3666445A1 (de) 2014-11-27 2020-06-17 Siltectra GmbH Festkörperteilung mittels stoffumwandlung
EP4234156A3 (de) * 2014-11-27 2023-10-11 Siltectra GmbH Laserbasiertes trennverfahren
US11996331B2 (en) 2014-11-27 2024-05-28 Siltectra Gmbh Method for separating a solid body
US11833617B2 (en) 2014-11-27 2023-12-05 Siltectra Gmbh Splitting of a solid using conversion of material
WO2016083609A3 (de) * 2014-11-27 2016-09-22 Siltectra Gmbh Laserbasiertes trennverfahren
US10930560B2 (en) 2014-11-27 2021-02-23 Siltectra Gmbh Laser-based separation method
WO2016083610A3 (de) * 2014-11-27 2016-09-22 Siltectra Gmbh Festkörperteilung mittels stoffumwandlung
US11527441B2 (en) 2014-11-27 2022-12-13 Siltectra Gmbh Method for producing a detachment area in a solid body
EP4122633A1 (de) 2014-11-27 2023-01-25 Siltectra GmbH Festkörperteilung mittels stoffumwandlung
US11014199B2 (en) 2015-01-15 2021-05-25 Siltectra Gmbh Method of modifying a solid using laser light
EP4234148A3 (de) * 2015-01-15 2023-10-18 Siltectra GmbH Festkörperteilung mittels stoffumwandlung
WO2016113030A3 (de) * 2015-01-15 2016-09-09 Siltectra Gmbh Festkörperteilung mittels stoffumwandlung
US10661392B2 (en) 2015-01-15 2020-05-26 Siltectra Gmbh Splitting of a solid using conversion of material
WO2020234416A1 (en) * 2019-05-23 2020-11-26 Ascatron Ab Crystal efficient sic device wafer production
US11996330B2 (en) 2019-05-23 2024-05-28 Ii-Vi Advanced Materials, Llc Crystal efficient SiC device wafer production

Also Published As

Publication number Publication date
JP2013158778A (ja) 2013-08-19
JP5843393B2 (ja) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5843393B2 (ja) 単結晶基板の製造方法、単結晶基板、および、内部改質層形成単結晶部材の製造方法
JP6004338B2 (ja) 単結晶基板製造方法および内部改質層形成単結晶部材
JP5875121B2 (ja) 単結晶基板の製造方法および内部改質層形成単結晶部材の製造方法
JP5875122B2 (ja) 単結晶基板製造方法および内部改質層形成単結晶部材
JP6004339B2 (ja) 内部応力層形成単結晶部材および単結晶基板製造方法
JP5537081B2 (ja) 加工対象物切断方法
JP4358762B2 (ja) 基板の分割方法
JP5476063B2 (ja) 加工対象物切断方法
JP6032789B2 (ja) 単結晶加工部材の製造方法、および、単結晶基板の製造方法
JP2014019120A (ja) 内部加工層形成単結晶部材の製造方法
JP5509448B2 (ja) 基板スライス方法
JP5946112B2 (ja) 基板加工方法
JP2015119076A (ja) 内部加工層形成単結晶部材およびその製造方法
JP6531885B2 (ja) 内部加工層形成単結晶部材およびその製造方法
JP5561666B2 (ja) 基板スライス方法
JP5950269B2 (ja) 基板加工方法及び基板
JP2015074002A (ja) 内部加工層形成単結晶部材およびその製造方法
JP6202696B2 (ja) 単結晶基板製造方法
JP6202695B2 (ja) 単結晶基板製造方法
JP6265522B2 (ja) 表面3次元構造部材の製造方法
JP2015074003A (ja) 内部加工層形成単結晶部材およびその製造方法
JP2019140411A (ja) 内部加工層形成単結晶部材の製造方法
JP2019140410A (ja) 内部加工層形成単結晶部材およびその製造方法
JP2006024782A (ja) 基板製造方法、および基板製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13744331

Country of ref document: EP

Kind code of ref document: A1