WO2013115000A1 - 半導体スイッチング素子の駆動回路並びにそれを用いた電力変換回路 - Google Patents

半導体スイッチング素子の駆動回路並びにそれを用いた電力変換回路 Download PDF

Info

Publication number
WO2013115000A1
WO2013115000A1 PCT/JP2013/051142 JP2013051142W WO2013115000A1 WO 2013115000 A1 WO2013115000 A1 WO 2013115000A1 JP 2013051142 W JP2013051142 W JP 2013051142W WO 2013115000 A1 WO2013115000 A1 WO 2013115000A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switching element
semiconductor switching
current
voltage
Prior art date
Application number
PCT/JP2013/051142
Other languages
English (en)
French (fr)
Inventor
和俊 小川
石川 勝美
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201380007694.5A priority Critical patent/CN104094509A/zh
Priority to EP13743481.7A priority patent/EP2811632A4/en
Priority to US14/375,189 priority patent/US20150003133A1/en
Publication of WO2013115000A1 publication Critical patent/WO2013115000A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/168Modifications for eliminating interference voltages or currents in composite switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • H03K17/163Soft switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/74Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0009AC switches, i.e. delivering AC power to a load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0027Measuring means of, e.g. currents through or voltages across the switch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0063High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0072Low side switches, i.e. the lower potential [DC] or neutral wire [AC] being directly connected to the switch and not via the load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/009Resonant driver circuits

Definitions

  • the present invention relates to a driving circuit for a semiconductor switching element in a power conversion circuit using a wide-gap semiconductor Schottky barrier diode.
  • silicon carbide (SiC), gallium nitride (GaN), and the like have attracted attention as wide gap semiconductor materials having a larger band gap than silicon (Si). Since these wide gap semiconductor materials have a breakdown electric field strength about 10 times higher than that of Si, in a semiconductor element using a wide gap semiconductor material as a base material, a drift layer for securing a withstand voltage is about 1/10 of Si. Can be thin. For this reason, a low on-voltage of the semiconductor element can be realized. As a result, even in a high breakdown voltage region where only bipolar elements can be used with Si, unipolar elements can be used with wide gap semiconductor elements such as SiC, and as a result, high-speed switching is possible.
  • SiC represented by a wide gap semiconductor will be described, but the same applies to other wide gap semiconductors.
  • a reflux diode is connected in parallel with a semiconductor switching element.
  • a Si—PiN diode has been used as a reflux diode.
  • the Si-PiN diode is a bipolar semiconductor element, and has a structure in which a voltage drop is reduced by conductivity modulation when a large current is applied with a forward bias.
  • the PiN diode has a characteristic that carriers remaining in the PiN diode due to conductivity modulation generate a reverse recovery current in the process from the forward bias state to the reverse bias state.
  • the reverse carrier current increases because the remaining carriers have a long lifetime. For this reason, the reverse recovery current increases a loss (Eon) when the semiconductor switching element is turned on and a recovery loss (Err) that occurs when the diode is reversely recovered.
  • FIG. 8 shows a conventional power conversion circuit having an upper and lower arm composed of an insulated gate bipolar transistor (hereinafter referred to as IGBT) and a PiN diode, which are semiconductor switching elements, and a drive circuit for each IGBT.
  • IGBT insulated gate bipolar transistor
  • PiN diode which are semiconductor switching elements
  • 9A and 9B are diagrams for explaining the terminal voltage and current waveform of the diode when the reverse recovery current is generated in the power conversion circuit of FIG.
  • a Schottky Barrier Diode (hereinafter referred to as SBD) is a unipolar semiconductor element and generates almost no carriers due to conductivity modulation. Therefore, when used in an inverter circuit, a reverse recovery current is very high. Since it is small, turn-on loss and recovery loss can be reduced. Since conventional Si has a low dielectric breakdown electric field strength, when an SBD is manufactured with a structure having a high breakdown voltage, a large resistance is generated during energization, so that the breakdown voltage of Si-SBD is limited to about 200V.
  • SiC has a dielectric breakdown field strength 10 times that of Si, it becomes possible to put to practical use a high breakdown voltage SBD, loss at turn-on (Eon), and recovery loss (Err) that occurs when the diode reversely recovers. ) Is known to be reduced.
  • Patent Document 1 introduces a method of detecting a terminal voltage of a switching element and charging a gate capacitance with a current source and short-circuiting when the terminal voltage reaches a threshold value.
  • Patent Document 2 proposes a method of charging and short-circuiting the gate of the IGBT when recovery occurs in an active clamp circuit in which a Zener diode is connected between the collector terminal and the gate terminal of the IGBT.
  • SiC-SBD has higher voltage oscillation and voltage change rate during switching than PiN diode.
  • Patent Documents 1 and 2 of the prior art are effective only when the surge voltage rises to the vicinity of the breakdown voltage of the element. When SiC-SBD is applied, voltage oscillation increases even if the surge voltage is small. It is difficult to suppress this.
  • the present invention has been made in consideration of the above-described problems, and provides a driving circuit for a semiconductor switching element that can reliably reduce voltage oscillation when a wide-gap semiconductor SBD is applied to a power conversion circuit. Objective.
  • the semiconductor switching element drive circuit controls the gate voltage of the semiconductor switching element in the upper and lower arm circuit in which a Schottky barrier diode whose base material is a wide gap semiconductor material is connected as a free wheel diode to the semiconductor switching element.
  • the other of the upper and lower arms A gate voltage increasing circuit that changes the gate voltage of the semiconductor switching element in FIG. 2 from an OFF value to a value larger than the OFF value, and controls the gate voltage to a value greater than the OFF value for a predetermined period.
  • the gate voltage of the semiconductor switching element in the other arm is increased and the upper and lower arms are short-circuited. Voltage oscillation in the applied power conversion circuit can be reliably reduced.
  • FIG. 1 shows a power conversion circuit and a drive circuit according to an embodiment of the present invention.
  • An example of the detailed circuit structure of a drive circuit. 6 shows a power conversion circuit and a drive circuit according to another embodiment of the present invention. 6 shows a power conversion circuit and a drive circuit according to another embodiment of the present invention. Current dependence of surge voltage and voltage change rate. 6 shows a power conversion circuit and a drive circuit according to another embodiment of the present invention. Conventional power conversion circuit and drive circuit.
  • FIG. 1 shows a power conversion circuit and a drive circuit according to an embodiment of the present invention.
  • IGBT2a and IGBT2b are connected in series as switching elements.
  • the series connection circuit of the IGBT 2 a and the IGBT 2 b constitutes a half-bridge circuit for one phase, and both ends of the series connection circuit are connected to the DC power source 1, and the series connection point is connected to the AC output terminal 24.
  • SiC-SBD 3a and SiC-SBD 3b are connected in parallel to IGBT 2a and IGBT 2b as freewheel diodes, respectively.
  • an upper arm composed of a parallel circuit of IGBT 2a and SiC-SBD 3a and a lower arm composed of a parallel circuit of IGBT 2b and SiC-SBD 3b are connected in series. Both ends of the series connection circuit of the upper and lower arms are connected to the DC power source 1, and the series connection point is connected to the AC output terminal 24.
  • the upper arm is connected between the high voltage side of the DC power supply 1 and the AC output terminal 24, and the lower arm is connected to the AC output terminal 24 and the low voltage side of the DC power supply 1.
  • a drive circuit 31a and a drive circuit 31b are connected to the IGBT 2a and the IGBT 2b, respectively, in order to control the gate voltage.
  • the drive circuit 31a controls the gate voltage of the IGBT 2a according to the switching control signal applied to the gate control signal terminal 12a, and raises the gate voltage of the IGBT 2a according to the short circuit control signal applied to the short circuit control signal terminal 25a.
  • a gate voltage raising circuit 11a for driving is provided.
  • the drive circuit 31b increases the gate voltage of the IGBT 2b in accordance with the gate circuit 4b that controls the gate voltage of the IGBT 2b according to the switching control signal applied to the gate control signal terminal 12b, and the short-circuit control signal applied to the short-circuit control signal terminal 25b.
  • a gate voltage raising circuit 11b for short-circuit driving for temporarily short-circuiting the arm.
  • the power conversion circuit of this embodiment converts the DC power of the DC power source 1 into AC power by performing on / off switching control of the IGBTs 2a and 2b by the drive circuits 31a and 31b, respectively.
  • the AC power is output from the AC output terminal 24 and supplied to a load such as an induction motor or a permanent magnet motor connected to the AC output terminal 24.
  • FIG. 1 shows the upper and lower arms for one phase, actually, the power conversion circuit includes upper and lower arms for the number of phases of the load. For example, in the case of a three-phase AC motor, the power conversion circuit includes three sets of series connection circuits of upper and lower arms.
  • the parasitic inductance of the main circuit wiring is denoted as inductance 5 and the junction capacitances of the SiC-SBDs 3a and 3b are denoted as capacitors 6a and 6b in order to explain the circuit operation described later.
  • 2A to 2D are current voltage waveform examples showing the operation of the drive circuit in this embodiment. The description can be made during either turn-on (transition from off to on) operation of the IGBTs 2a and 2b in FIG. 1, but here, the case where the IGBT 2b is turned on is shown.
  • “upper IGBT” indicates the upper arm IGBT or IGBT 2a
  • “upper diode” indicates the upper arm diode or SiC-SBD 3a
  • “lower IGBT” indicates the lower arm IGBT or IGBT 2b.
  • Vth represents the gate threshold voltage of the IGBTs 2a and 2b. Further, the current waveform in FIG.
  • the SiC-SBD 3a When the lower IGBT (2b) is turned on, the current flowing through the SiC-SBD 3a is reduced, and the current starts to flow through the turned-down lower IGBT (2b). When the current flowing through the SiC-SBD 3a becomes zero, the SiC-SBD 3a is turned off (transition from on to off). In the case of SiC-SBD, a large recovery current unlike a PiN diode does not flow, and when the SiC-SBD 3a is turned off, the junction capacitor 6a operates as a capacitor. For this reason, the LC resonance current flows and ringing occurs due to the energy stored in the inductance 5 in FIG.
  • the gate-emitter voltage (hereinafter referred to as “gate voltage”) of the lower IGBT (2b) starts to change to a value larger than the voltage at the OFF time, that is, after the gate voltage starts to rise
  • the gate voltage of the upper IGBT (2a) connected in parallel with the turned-off SiC-SBD 3a is controlled to a value larger than the off-time voltage by using the gate voltage increasing circuit 11a in the period until the gate voltage at the time is reached. To do. More specifically, in the case of FIGS.
  • the gate voltage value of the lower IGBT (2b) becomes equal to or higher than the threshold value (Vth) from the negative voltage at the OFF time
  • the upper IGBT (2a) The gate voltage is increased from the negative voltage at the OFF time to a positive voltage smaller than the threshold value (Vth).
  • the gate voltage of the upper IGBT (2a) becomes the threshold (Vth) by the gate voltage raising circuit 11a.
  • the positive voltage is controlled to be smaller than the threshold voltage (Vth)
  • the displacement voltage flowing in the gate capacitance of the upper IGBT (2a) as the voltage of the SiC-SBD 3a increases, that is, the voltage of the upper IGBT (2a) increases.
  • the upper IGBT (2a) is turned on (t2).
  • the gate voltage of the upper IGBT (2a) is controlled to a value larger than that at the OFF time before the current starts to flow to the lower IGBT (2b).
  • the gate voltage of the upper IGBT (2a) can be set to a threshold value or more. Therefore, ringing vibration can be reliably suppressed.
  • the upper IGBT (2a) is turned on by setting the gate voltage to a threshold value or more by the displacement current, but based on the voltage of the SiC-SBD 3a or the upper IGBT (2a) or the gate voltage of the lower IGBT (2b).
  • the gate voltage rise circuit 11a sets the gate voltage of the upper IGBT (2a) to a voltage value equal to or higher than the threshold (Vth) for a predetermined period. Also good.
  • the IGBT 2a Ringing can be reduced by turning on the IGBT 2a by setting the gate voltage of the transistor to a threshold value or higher.
  • FIG. 3 shows an example of a detailed circuit configuration of the drive circuit shown in FIG.
  • the drive circuit 31a of the IGBT 2a in the upper arm and the upper arm in FIG. 1 is shown, but the lower arm has the same circuit configuration.
  • a gate circuit switch 41a, 41b and a short circuit control switch 42 includes a gate circuit switch 41a, 41b and a short circuit control switch 42, a gate circuit power supply 43 when turned on, a gate circuit power supply 44 when turned off, a power supply 45 for a gate voltage raising circuit, and an on-side gate resistance. 46, an off-side gate resistor 47, and a gate voltage increasing circuit resistor 48.
  • the short circuit control switch 42 When a short circuit control signal is given to the short circuit control signal terminal 25a, the short circuit control switch 42 is turned on. At this time, the gate circuit switch 41a is turned off and the gate circuit switch 41b is turned on by the switching control signal applied to the gate control signal terminal 12a.
  • the gate circuit power supply 44 and the gate voltage rise circuit power supply 45 in the off state are connected in series, and a current flows through the off-side gate resistor 47 and the gate voltage rise circuit resistor 48.
  • This current causes a voltage drop in the off-side gate resistor 47, and an added value of the terminal voltage of the off-side gate resistor 47 and the voltage of the gate circuit power supply 44 at the time of off is applied to the gate of the IGBT 2a. It becomes a value larger than the gate voltage at OFF.
  • the increase amount of the gate voltage is set by the voltage dividing ratio of the off-side gate resistor 47 and the gate voltage increase circuit resistor 48. In this way, the gate voltage raising circuit 11a in this embodiment applies a positive voltage having a value lower than the gate threshold voltage to the gate of the IGBT 2a.
  • the current due to the energy accumulated in the inductance 5 flows as a short-circuit current in the IGBT 2a and the IGBT 2b of the upper and lower arms, so that the inductance 5 and the capacitor Ringing caused by resonance current due to 6a (junction capacitance of SiC-SBD 3a) can be reduced.
  • the gate circuit power source 43 and the gate voltage raising circuit power source 45 are individually provided when they are turned on, but the same power source may be used. Further, as the gate circuit switches 41a and 41b and the short circuit control switch 42, semiconductor switching elements such as MOSFETs can be applied.
  • FIG. 4 shows a power conversion circuit and a drive circuit according to another embodiment of the present invention.
  • FIG. 4 shows a power conversion circuit and a drive circuit according to another embodiment of the present invention.
  • the timing for operating the gate voltage raising circuit is controlled by the one-shot circuit.
  • the SiC-SBD 3a in the upper arm recovers as in FIGS. 2A to 2D
  • the switching signal applied to the gate control signal terminal 12b of the IGBT 2b in the lower arm is detected by the detection circuit 13a provided in the drive circuit 31a.
  • a control signal for operating the gate voltage raising circuit 11a is created by the one-shot circuit 17a in accordance with the detected switching signal.
  • FIG. 5 shows a power conversion circuit and a drive circuit according to another embodiment of the present invention.
  • FIG. 6 shows the voltage change rate of the terminal voltage after turn-off and the switching current dependence of the surge voltage for the SiC-SBD in the embodiment of FIG.
  • FIGS. 1 and 4 differ from the above-described embodiment of FIGS. 1 and 4 will be described.
  • the voltage change rate and surge voltage of the terminal voltage after turn-off of the SiC-SBD increase as the switching current (current flowing through the IGBT or SiC-SBD in the on state) increases, and the switching current decreases. It gets smaller. Therefore, even if the gate voltage raising circuit is operated only in a region where the switching current is large, the voltage change rate, the peak value of the surge voltage, and ringing can be effectively suppressed.
  • the current flowing through the load via the AC output terminal 24 is detected by a current sensor 50, for example, a current transformer.
  • the current detector 21 a included in the drive circuit 31 a outputs a detection signal corresponding to the current flowing through the load, that is, the current value of the switching current, based on the output signal of the current sensor 50.
  • the current comparator 22a compares the current value of the switching current indicated by the detection signal output from the current detector 21a with a preset current threshold value and determines that the current value of the switching current is equal to or greater than the current threshold value, a short circuit occurs.
  • a control signal for enabling the operation of the gate voltage raising circuit 11a according to the short circuit control signal given to the control signal terminal 25a is created.
  • the gate voltage rise circuit operates when the switching current is equal to or higher than a preset threshold value. Therefore, the gate voltage rise is achieved while effectively suppressing the voltage change rate, the peak value of the surge voltage, and the ringing. Power loss in the circuit can be suppressed.
  • FIG. 7 shows a power conversion circuit and a drive circuit according to another embodiment of the present invention.
  • the gate voltage raising circuit is controlled by using the current estimation circuit 18 instead of the current sensor and the current detector in the embodiment of FIG.
  • the current estimation circuit 18 estimates the current value of the switching current based on the current command value given to the current command value terminal 23 of the control circuit 100 that creates the switching signal at the gate control signal terminals 12a and 12b.
  • the current comparator 22a included in the drive circuit 31a compares the estimated value of the switching current indicated by the output signal of the current estimation circuit 18 with a preset current threshold value, and determines that the estimated value of the switching current is equal to or greater than the current threshold value. Then, a control signal for enabling the operation of the gate voltage raising circuit 11a according to the short circuit control signal given to the short circuit control signal terminal 25a is created.
  • the present embodiment with a simple circuit configuration, it is possible to suppress the power loss in the gate voltage increasing circuit while effectively suppressing the voltage change rate, the peak value of the surge voltage, and the ringing.
  • control circuit 100 a known pulse width modulation control circuit or the like can be used.
  • a semiconductor material serving as a base material of SBD a wide gap semiconductor having a larger band gap than Si, such as GaN and diamond, can be applied in addition to SiC.
  • semiconductor switching elements constituting the upper and lower arms of the power conversion circuit voltage controlled semiconductor switching elements such as MOSFET (Metal / Oxide / Semiconductor / Field / Effect / Transistor) and SIT (Static / Induction Transistor) can be applied.
  • MOSFET Metal / Oxide / Semiconductor / Field / Effect / Transistor
  • SIT Static / Induction Transistor

Abstract

 電力変換回路にワイドギャップ半導体のショットキーバリアダイオードを適用した場合に確実にリンギングを低減する。上下アームの一方における半導体スイッチング素子のゲート電圧がオフ時の値より上昇し始めてからオン時の値に達するまでの期間において、上下アームの他方における前半導体スイッチング素子のゲート電圧を、オフ時の値から該オフ時の値よりも大きな値に変化させ、所定期間、オフ時の値よりも大きな値に制御するゲート電圧上昇回路11aを備える。

Description

半導体スイッチング素子の駆動回路並びにそれを用いた電力変換回路
 本発明は、ワイドギャップ半導体のショットキーバリアダイオードを用いた電力変換回路における半導体スイッチング素子の駆動回路に関する。
 近年、シリコン(Si)よりバンドギャップが大きなワイドギャップ半導体材料として炭化ケイ素(SiC)や、窒化ガリウム(GaN)などが注目を浴びてきている。これらワイドギャップ半導体材料はSiより約10倍の高い絶縁破壊電界強度を持っているので、ワイドギャップ半導体材料を母材とする半導体素子では耐圧を確保するためのドリフト層をSiの1/10程度まで薄くできる。このため、半導体素子の低オン電圧化が実現可能である。これにより、Siではバイポーラ素子しか使用できないような高耐圧領域でも、SiCなどのワイドギャップ半導体素子ではユニポーラ素子が使用でき、その結果、高速なスイッチングが可能となる。
 以下、ワイドギャップ半導体として代表されるSiCについて記述するが、他のワイドギャップ半導体でも同様である。
 インバータなどの電力変換回路に用いるパワー半導体モジュールには、半導体スイッチング素子に並列に還流用のダイオードが接続されている。従来のパワー半導体モジュールでは、還流用のダイオードとしてSi-PiNダイオードが使用されてきた。Si-PiNダイオードはバイポーラ型の半導体素子であり、順方向バイアスで大電流を通電させる場合、伝導度変調により電圧降下が低くなるような構造となっている。しかし、PiNダイオードは、順方向バイアス状態から逆バイアス状態に至る過程で、伝導度変調によりPiNダイオードに残留したキャリアが逆回復電流を発生するという特性を持つ。SiのPiNダイオードにおいては、残留するキャリアの寿命が長いため、逆回復電流が大きくなる。そのため、この逆回復電流により、半導体スイッチング素子のターンオン時の損失(Eon)や、ダイオードが逆回復したときに発生するリカバリ損失(Err)が大きくなる。
 次に、逆回復電流発生時のダイオードの端子電圧・電流波形について説明する。 
 図8は、半導体スイッチング素子である絶縁ゲートバイポーラトランジスタ(Insulated Gate  Bipolar Transistor:以下IGBTと記す)およびPiNダイオードによって上下アームが構成されるとともに、各IGBTの駆動回路を備えた従来の電力変換回路を示し、図9A及び図9Bは、図8の電力変換回路における逆回復電流発生時のダイオードの端子電圧、電流波形を説明するための図である。従来のPiNダイオードを用いたパワーモジュールのインバータの主回路では、PiNダイオードの逆回復電流の減衰時の電流変化(逆回復di/dt)と主回路の寄生インダクタンスLとの積により、転流サージ電圧(ΔVp=L×逆回復di/dt)が加わり、電源電圧(E)とサージ電圧(ΔVp)の和(E+ΔVp)がIGBTの耐電圧を超えると、IGBTを壊してしまう可能性がある。そのため、主回路の寄生インダクタンスの低減技術やノイズ低減技術が種々提案されている。
 一方、ショットキーバリアダイオード(Schottky Barrier Diode:以下SBDと記す)はユニポーラ型の半導体素子であり、伝導度変調によるキャリア発生が殆どないので、インバータ回路で使用される場合、逆回復電流が非常に小さいため、ターンオン損失やリカバリ損失を小さくできる。従来のSiは絶縁破壊電界強度が低いため、高耐圧を持たせる構造でSBDを作製すると通電時に大きな抵抗が生じるため、Si-SBDでは耐圧200V程度が限界であった。ところが、SiCはSiの10倍の絶縁破壊電界強度を持つため、高耐圧のSBDの実用化が可能となり、ターンオン時の損失(Eon)や、ダイオードが逆回復したときに発生するリカバリ損失(Err)を低減することが可能になることが知られている。
 しかしながら、SiC-SBDを回路に適用した場合、自アームの半導体スイッチング素子がターンオンした際に対アームのダイオードの端子には電源電圧が印加され、ダイオードの接合容量と主回路の寄生インダクタンスにより共振電流が流れ、PiNダイオードに比べ、電圧振動やスイッチング時の電圧変化率が上昇する欠点がある。図10A及び図10BはSiC-SBDを適用した場合のダイオードの端子電圧、電流波形を説明するための図である。電圧振動や電圧変化率が上昇すると、ノイズレベルの上昇、モータ絶縁材料の劣化が懸念されるため、低減技術が必要である。
 PiNダイオードを適用したインバータにおいて、サージ電圧の低減方法として、ダイオードのリカバリ期間中に、リカバリしているダイオードと並列に接続された半導体スイッチング素子をターンオンし、瞬間的に上下アームを短絡する方式がある。そこで、サージ電圧が素子の耐圧付近まで上昇したときに短絡動作させる手法として、下記の二つが提案されている。
 特許文献1ではスイッチング素子の端子電圧を検出し、端子電圧が閾値に達した時点で、ゲート容量を電流源で充電し、短絡させる方法が紹介されている。
 特許文献2ではIGBTのコレクタ端子とゲート端子間にツェナーダイオードを接続するアクティブクランプ回路において、リカバリ発生時にIGBTのゲートを充電し、短絡させる手法が提案されている。
特開2003-218675号公報 特開2005-328668号公報
 SiC-SBDは、PiNダイオードに比べ、電圧振動、スイッチング時の電圧変化率が上昇する。しかし、従来技術の特許文献1、特許文献2ではサージ電圧が素子の耐圧付近まで上昇した場合にのみ有効であり、SiC-SBDを適用した場合、サージ電圧が小さくとも電圧振動が大きくなるため、これを抑制することが難しい。
 本発明は、上記の問題点を考慮してなされたものであり、電力変換回路にワイドギャップ半導体のSBDを適用した場合に確実に電圧振動を低減できる半導体スイッチング素子の駆動回路を提供することを目的とする。
 本発明による半導体スイッチング素子の駆動回路は、半導体スイッチング素子にフリーホイールダイオードとしてワイドギャップ半導体材料を母材とするショットキーバリアダイオードが並列に接続される上下アーム回路における半導体スイッチング素子のゲート電圧を制御するものであって、上記課題を解決するために、上下アームの一方における半導体スイッチング素子のゲート電圧がオフ時の値より上昇し始めてからオン時の値に達するまでの期間において、上下アームの他方における半導体スイッチング素子のゲート電圧を、オフ時の値から該オフ時の値よりも大きな値に変化させ、所定期間、前記オフ時の値よりも大きな値に制御するゲート電圧上昇回路を備える。
 上下アームの一方の半導体スイッチング素子に電流が流れ始める前に他方のアームにおける半導体スイッチング素子のゲート電圧を上昇させ上下アームを短絡することにより、ワイドギャップ半導体材料を母材とするショットキーバリアダイオードを適用した電力変換回路における電圧振動を確実に低減することができる。
本発明の一実施例である電力変換回路および駆動回路。 駆動回路の動作を示す電流電圧波形例。 駆動回路の動作を示す電流電圧波形例。 駆動回路の動作を示す電流電圧波形例。 駆動回路の動作を示す電流電圧波形例。 駆動回路の詳細な回路構成の一例。 本発明の他の実施例である電力変換回路および駆動回路。 本発明の他の実施例である電力変換回路および駆動回路。 サージ電圧、電圧変化率の電流依存性。 本発明の他の実施例である電力変換回路および駆動回路。 従来の電力変換回路および駆動回路。 Si-PiNを適用した電力変換回路の電流・電圧波形。 Si-PiNを適用した電力変換回路の電流・電圧波形。 SiC-SBDを適用した電力変換回路の電流・電圧波形。 SiC-SBDを適用した電力変換回路の電流・電圧波形。
 図1は本発明の一実施例である電力変換回路および駆動回路を示す。 
 本電力変換回路においては、スイッチング素子としてIGBT2aとIGBT2bが互いに直列に接続される。IGBT2aとIGBT2bの直列接続回路は、一相分のハーフブリッジ回路を構成し、直列接続回路の両端は直流電源1に接続され、直列接続点は交流出力端子24に接続される。IGBT2aおよびIGBT2bには、フリーホイールダイオードとして、それぞれSiC-SBD3aおよびSiC-SBD3bが並列に接続される。すなわち、IGBT2aとSiC-SBD3aの並列回路からなる上アームと、IGBT2bとSiC-SBD3bの並列回路からなる下アームが直列に接続される。上下アームの直列接続回路の両端が直流電源1に接続され、直列接続点が交流出力端子24に接続される。ここで、上アームは直流電源1の高圧側と交流出力端子24の間に接続され、下アームは交流出力端子24と直流電源1の低圧側に接続される。
 IGBT2aとIGBT2bには、ゲート電圧を制御するために、それぞれ駆動回路31aと駆動回路31bが接続される。駆動回路31aは、ゲート制御信号端子12aに与えられるスイッチング制御信号に従いIGBT2aのゲート電圧を制御するゲート回路4aと、短絡制御信号端子25aに与えられる短絡制御信号に従ってIGBT2aのゲート電圧を上昇させて短絡駆動を行うためのゲート電圧上昇回路11aを備える。駆動回路31bも、同様に、ゲート制御信号端子12bに与えられるスイッチング制御信号に従いIGBT2bのゲート電圧を制御するゲート回路4bと、短絡制御信号端子25bに与えられる短絡制御信号に従ってIGBT2bのゲート電圧を上昇させて一時的にアーム短絡させる短絡駆動を行うためのゲート電圧上昇回路11bを備える。
 本実施例の電力変換回路は、IGBT2a,2bを、それぞれ駆動回路31a,31bによってオン・オフスイッチング制御することにより、直流電源1の直流電力を交流電力に変換する。交流電力は、交流出力端子24から出力され、交流出力端子24に接続される誘導電動機や永久磁石電動機などの負荷に供給される。なお、図1には一相分の上下アームを示しているが、実際には、電力変換回路は、上下アームを負荷の相数分備える。例えば、三相交流電動機の場合、電力変換回路は、上下アームの直列接続回路を3組備える。
 なお、図1においては、後述する回路動作の説明のために、主回路配線の寄生インダクタンスをインダクタンス5と記し、またSiC-SBD3a,3bの接合容量をコンデンサ6a,6bと記す。
 図2A~図2Dは本実施例における駆動回路の動作を示す電流電圧波形例である。図1のIGBT2a,2bのどちらのターンオン(オフからオンに遷移)動作時でも説明は可能であるが、ここではIGBT2bがターンオンした場合について示す。なお、図2A~図2D中、「上IGBT」は上アームのIGBTすなわちIGBT2aを示し、「上ダイオード」は上アームのダイオードすなわちSiC-SBD3aを示し、「下IGBT」は下アームのIGBTすなわちIGBT2bを示す。また、VthはIGBT2a,2bのゲート閾値電圧を示す。また、図2Bの電流波形は、上アームに流れる電流、すなわち「上IGBT」に流れる電流と「上ダイオード」に流れる電流とを合わせた電流の波形を示す。但し、「上ダイオード」の順方向に流れる電流を正の電流としているので、上IGBTに流れる電流は負の電流として示される。
 下IGBT(2b)がターンオンした際、SiC-SBD3aに流れていた電流は減少し、ターンオンした下IGBT(2b)に電流が流れ始める。そして、SiC-SBD3aに流れていた電流がゼロになった時点で、SiC-SBD3aはターンオフ(オンからオフに遷移)する。SiC-SBDの場合は、PiNダイオードのような大きなリカバリ電流が流れず、SiC-SBD3aはターンオフした際、接合容量6aによりコンデンサとして動作する。このため、図1におけるインダクタンス5に蓄えられたエネルギーにより、LC共振電流が流れ、リンギングが発生する。
 本実施例では、下IGBT(2b)のゲート-エミッタ間電圧(以下「ゲート電圧」と記す)が、オフ時の電圧より大きい値に変化し始めてから、すなわちゲート電圧が上昇し始めてから、オン時のゲート電圧に到達するまでの期間において、ターンオフしたSiC-SBD3aと並列に接続された上IGBT(2a)のゲート電圧を、オフ時の電圧より大きい値にゲート電圧上昇回路11aを用いて制御する。より具体的には、図2A~図2Dの場合、下IGBT(2b)のゲート電圧の値がオフ時の負電圧から閾値(Vth)以上となった時点(t1)で、上IGBT(2a)のゲート電圧をオフ時の負電圧から閾値(Vth)よりも小さな正電圧へ増大させている。そして、SiC-SBD3aの電流がほぼ零となり、上IGBT(2a)の端子電圧すなわちSiC-SBD3aの電圧が上昇すると、上IGBT(2a)のゲート電圧は、ゲート電圧上昇回路11aによって閾値(Vth)よりも小さな正電圧に制御されていても、SiC-SBD3aの電圧上昇すなわち上IGBT(2a)の電圧上昇に伴って上IGBT(2a)のゲート容量に流れる変位電流によりゲート電圧が閾値(Vth)以上に上昇し、上IGBT(2a)がターンオンする(t2)。
 本実施例では、下IGBT(2b)に電流が流れ始める以前に上IGBT(2a)のゲート電圧をオフ時よりも大きな値に制御しているので、変位電流が流れ始める時点(t2)で確実に上IGBT(2a)のゲート電圧を閾値以上とすることができる。従って、確実にリンギング振動を抑制することができる。
 上IGBT(2a)がターンオンすると、インダクタンス5に蓄えられたエネルギーによる電流は上IGBT(2a)を介して流れる。ここで、上IGBT(2a)は抵抗成分として動作するため、リンギング振動は抑制され、サージ電圧、ノイズレベルの低減が可能である。その後、下IGBT(2b)のゲート電圧がゲート電源電圧に達した時点(t3)で、上IGBT(2a)のゲート電圧を再びオフ時の電圧に制御する。これにより、上IGBT(2a)をターンオンすることで短絡電流が流れるため上IGBT(2a)に発生する電力損失、および下IGBT(2b)のターンオン損失の増大を抑えることができる。
 上記実施例においては、変位電流によってゲート電圧を閾値以上にして上IGBT(2a)をターンオンさせたが、SiC-SBD3aあるいは上IGBT(2a)の電圧、もしくは下IGBT(2b)のゲート電圧に基づいて、変位電流が流れ始める時点を検出して、変位電流が流れ始めたらゲート電圧上昇回路11aにより、所定期間、上IGBT(2a)のゲート電圧を閾値(Vth)以上の電圧値に設定しても良い。
 なお、少なくとも、SiC-SBD3aおよび上IGBT(2a)、すなわち上アームの電圧が上昇する期間、すなわちSiC-SBD3aに流れる電流(還流電流)が減少して零になった以降のリカバリ期間において、IGBT2aのゲート電圧を閾値以上としてIGBT2aをターンオンすればリンギングを低減することができる。
 次に図1に記載の駆動回路の詳細な回路構成の一例を図3に示す。ここでは図1の上アームおよび上アームにおけるIGBT2aの駆動回路31aのみを示すが、下アームも同様の回路構成である。
 図3の駆動回路31aは、ゲート回路用スイッチ41a,41bと短絡制御用スイッチ42、オン時のゲート回路電源43、オフ時のゲート回路電源44、ゲート電圧上昇回路用電源45、オン側ゲート抵抗46、オフ側ゲート抵抗47、ゲート電圧上昇回路用抵抗48から構成される。短絡制御信号端子25aに短絡制御信号が与えられると、短絡制御用スイッチ42はオンする。この時、ゲート制御信号端子12aに与えられたスイッチング制御信号により、ゲート回路用スイッチ41aはオフ、ゲート回路用スイッチ41bはオン状態となっている。
 短絡制御用スイッチ42がオンすると、オフ時のゲート回路電源44とゲート電圧上昇回路用電源45は直列に接続され、オフ側ゲート抵抗47及びゲート電圧上昇回路用抵抗48に電流が流れる。この電流により、オフ側ゲート抵抗47で電圧降下が生じ、オフ側ゲート抵抗47の端子電圧とオフ時のゲート回路電源44の電圧の加算値がIGBT2aのゲートに印加され、この時のゲート電圧はオフ時のゲート電圧より大きい値になる。ここで、ゲート電圧の上昇分はオフ側ゲート抵抗47とゲート電圧上昇回路用抵抗48の分圧比で設定される。このようにして、本実施例におけるゲート電圧上昇回路11aは、IGBT2aのゲートにゲート閾値電圧よりも低い値の正の電圧を印加する。
 IGBT2aのゲート電圧がオフ時のゲート電圧より大きい値になると、上述したように、インダクタンス5に蓄積されたエネルギーによる電流が、上下アームのIGBT2aおよびIGBT2bにおける短絡電流として流れることにより、インダクタンス5およびコンデンサ6a(SiC-SBD3aの接合容量)による共振電流に起因するリンギングを低減することができる。
 その後、短絡制御信号端子25aに与えられる短絡制御信号によって短絡制御用スイッチ42がオフすることにより、IGBT2aのゲート電圧を再びオフ時の電圧に制御する。これにより、上述したように、短絡電流により発生するIGBT2aの電力損失、およびIGBT2bのターンオン損失の増大を抑えることができる。
 本実施例では、オン時のゲート回路電源43とゲート電圧上昇回路用電源45を個別に設けているが、同一の電源でも構わない。また、ゲート回路用スイッチ41a,41bと短絡制御用スイッチ42としては、MOSFETなどの半導体スイッチング素子が適用できる。
 図4は、本発明の他の実施例である電力変換回路および駆動回路を示す。以下、上述した図1の実施例と異なる点について説明する。
 本実施例においては、ワンショット回路によってゲート電圧上昇回路を動作させるタイミングを制御している。例えば図2A~図2Dと同様に上アームにおけるSiC-SBD3aがリカバリする場合、駆動回路31aが備える検出回路13aによって下アームにおけるIGBT2bのゲート制御信号端子12bに与えられるスイッチング信号を検出する。検出されたスイッチング信号に応じてワンショット回路17aによりゲート電圧上昇回路11aを動作させるための制御信号を作成する。このようにしてワンショット回路を用いることにより、ゲート電圧の上昇期間を制御可能となり、ゲート電圧を瞬間的に上昇させることができるので、リンギングを確実に低減することができる。
 図5は、本発明の他の実施例である電力変換回路および駆動回路を示す。図6は、図5の実施例におけるSiC-SBDについて、ターンオフ後の端子電圧の電圧変化率、並びにサージ電圧のスイッチング電流依存性を示す。以下、上述した図1及び図4の実施例と異なる点について説明する。
 図6に示すように、SiC-SBDのターンオフ後の端子電圧の電圧変化率およびサージ電圧は、スイッチング電流(オン状態においてIGBTまたはSiC-SBDに流れる電流)が大きいほど大きくなり、スイッチング電流が小さいほど小さくなる。従って、スイッチング電流が大きな領域においてのみゲート電圧上昇回路を動作させても、有効に電圧変化率やサージ電圧のピーク値およびリンギングを抑制することができる。
 そこで、図5に示す本実施例では、交流出力端子24を介して負荷に流れる電流を電流センサ50、例えば電流トランスによって検出する。駆動回路31aが備える電流検出器21aは、電流センサ50の出力信号に基づいて負荷に流れる電流すなわちスイッチング電流の電流値応じた検出信号を出力する。電流比較器22aは、電流検出器21aが出力した検出信号が示すスイッチング電流の電流値と予め設定された電流閾値とを比較し、スイッチング電流の電流値が電流閾値以上であると判定すると、短絡制御信号端子25aに与えられる短絡制御信号に応じたゲート電圧上昇回路11aの動作を有効にするための制御信号を作成する。
 本実施例によれば、スイッチング電流が予め設定された閾値以上の場合にゲート電圧上昇回路が動作するので、電圧変化率やサージ電圧のピーク値およびリンギングを有効に抑制しながらも、ゲート電圧上昇回路における電力損失を抑えることができる。
 図7は本発明の他の実施例である電力変換回路および駆動回路を示す。以下、上述した図1,図4及び図5の実施例と異なる点について説明する。
 本実施例においては、図5の実施例における電流センサおよび電流検出器の代わりに、電流推定回路18を用いてゲート電圧上昇回路を制御する。電流推定回路18は、ゲート制御信号端子12a,12bにスイッチング信号を作成する制御回路100の電流指令値端子23に与えられる電流指令値に基づいてスイッチング電流の電流値を推定する。駆動回路31aが備える電流比較器22aは、電流推定回路18の出力信号が示すスイッチング電流の推定値と予め設定された電流閾値とを比較し、スイッチング電流の推定値が電流閾値以上であると判定すると、短絡制御信号端子25aに与えられる短絡制御信号に応じたゲート電圧上昇回路11aの動作を有効にするための制御信号を作成する。
 本実施例によれば、簡単な回路構成によって、電圧変化率やサージ電圧のピーク値およびリンギングを有効に抑制しながらゲート電圧上昇回路における電力損失を抑えることができる。
 なお、制御回路100としては、公知のパルス幅変調制御回路などを用いることができる。
 以上、本発明の実施例について詳述したが、上記の実施例に限らず、本発明の技術的思想の範囲内において種々の実施形態が可能である。例えば、SBDの母材となる半導体材料としては、SiCのほか、GaNやダイアモンドなど、Siよりも大きなバンドギャップを有するワイドギャップ半導体を適用することができる。また、電力変換回路の上下アームを構成する半導体スイッチング素子としては、IGBTのほかMOSFET(Metal Oxide Semiconductor Field Effect Transistor)やSIT(Static Induction Transistor)などの電圧制御型半導体スイッチング素子が適用できる。なお、半導体スイッチング素子の母材となる半導体材料はSiおよびワイドギャップ半導体のいずれでも良い。
1 直流電源
2a IGBT(上IGBT)
2b IGBT(下IGBT)
3a,3b SiC-SBD
3A,3B Si-PINダイオード
4a,4b ゲート回路
5 インダクタンス
6a,6b コンデンサ(接合容量)
11a,11b ゲート電圧上昇回路
12a,12b ゲート制御信号端子
13a,13b 検出回路
17a,17b ワンショット回路
18 電流推定回路
19 制御回路
21a,21b 電流検出器
22a,22b 電流比較器
23 電流指令値端子
24 交流出力端子
25a,25b 短絡制御信号端子
31a,31b 駆動回路
41a,41b ゲート回路用スイッチ
42 短絡制御用スイッチ
43 オン時のゲート回路電源
44 オフ時のゲート回路電源
45 ゲート電圧上昇回路用電源
46 オン側ゲート抵抗
47 オフ側ゲート抵抗
48 ゲート電圧上昇回路用抵抗
50 電流センサ

Claims (7)

  1.  半導体スイッチング素子にフリーホイールダイオードとしてワイドギャップ半導体材料を母材とするショットキーバリアダイオードが並列に接続される上下アーム回路における前記半導体スイッチング素子のゲート電圧を制御する半導体スイッチング素子の駆動回路において、
     前記上下アームの一方における前記半導体スイッチング素子の前記ゲート電圧がオフ時の値より上昇し始めてからオン時の値に達するまでの期間において、前記上下アームの他方における前記半導体スイッチング素子のゲート電圧を、オフ時の値から該オフ時の値よりも大きな値に変化させ、所定期間、前記オフ時の値よりも大きな値に制御するゲート電圧上昇回路を備えることを特徴とする半導体スイッチング素子の駆動回路。
  2.  請求項1に記載の半導体スイッチング素子の駆動回路において、
     前記ゲート電圧上昇回路は、前記上下アームの他方における前記半導体スイッチング素子の前記ゲートに、前記所定期間、ゲート閾値電圧よりも低い値の正の電圧を印加することを特徴とする半導体スイッチング素子の駆動回路。
  3.  請求項1または請求項2に記載の半導体スイッチング素子の駆動回路において、
     前記ゲート電圧上昇回路は、前記所定期間後、前記上下アームの前記他方における前記半導体スイッチング素子のゲート電圧をオフ時の電圧に制御することを特徴とする半導体スイッチング素子の駆動回路。
  4.  請求項1乃至3のいずれか1項に記載される半導体スイッチング素子の駆動回路において、
     前記所定期間の時間を制御するワンショット回路を備えたことを特徴とする半導体スイッチング素子の駆動回路。
  5.  請求項1乃至4に記載される半導体スイッチングの駆動回路において、
     前記半導体スイッチング素子に流れる電流を検出する電流センサを備え、
     前記電流センサによって検出された電流値が、予め設定された電流閾値以上の場合に、前記ゲート電圧上昇回路の動作を有効にすることを特徴とする半導体スイッチング素子の駆動回路。
  6.  請求項1乃至4に記載される半導体スイッチングの駆動回路において、
     前記スイッチング素子のオン、オフ信号を生成するための電流指令値信号に基づいて前記半導体スイッチング素子に流れる電流を推定する電流推定回路を備え、
     前記電流推定回路によって推定された電流値が予め設定された電流閾値以上の場合に、前記ゲート電圧上昇回路の動作を有効にすることを特徴とする半導体スイッチング素子の駆動回路。
  7.  半導体スイッチング素子と、フリーホイールダイオードとしてワイドギャップ半導体材料を母材とするショットキーバリアダイオードとが並列に接続される上下アーム回路と、
     前記上下アームにおける前記半導体スイッチング素子のゲート電圧を制御する駆動回路とを備えた電力変換回路において、
     前記駆動回路が、請求項1乃至6のいずれか1項に記載される半導体スイッチング素子の駆動回路であることを特徴とする電力変換回路。
PCT/JP2013/051142 2012-02-03 2013-01-22 半導体スイッチング素子の駆動回路並びにそれを用いた電力変換回路 WO2013115000A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380007694.5A CN104094509A (zh) 2012-02-03 2013-01-22 半导体开关元件的驱动电路以及使用该驱动电路的电力转换电路
EP13743481.7A EP2811632A4 (en) 2012-02-03 2013-01-22 ATTACK CIRCUIT FOR SWITCH SEMICONDUCTOR ELEMENT AND ELECTRIC CONVERSION CIRCUIT USING THE SAME
US14/375,189 US20150003133A1 (en) 2012-02-03 2013-01-22 Drive Circuit of Semiconductor Switching Element and Power Conversion Circuit Using the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012021464A JP5970194B2 (ja) 2012-02-03 2012-02-03 半導体スイッチング素子の駆動回路並びにそれを用いた電力変換回路
JP2012-021464 2012-02-03

Publications (1)

Publication Number Publication Date
WO2013115000A1 true WO2013115000A1 (ja) 2013-08-08

Family

ID=48905042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051142 WO2013115000A1 (ja) 2012-02-03 2013-01-22 半導体スイッチング素子の駆動回路並びにそれを用いた電力変換回路

Country Status (5)

Country Link
US (1) US20150003133A1 (ja)
EP (1) EP2811632A4 (ja)
JP (1) JP5970194B2 (ja)
CN (1) CN104094509A (ja)
WO (1) WO2013115000A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191017B2 (ja) * 2013-01-24 2017-09-06 パナソニックIpマネジメント株式会社 ハーフブリッジ回路及びハーフブリッジ回路から構成されるフルブリッジ回路及び3相インバータ回路
US9496864B2 (en) 2014-12-18 2016-11-15 General Electric Company Gate drive circuit and method of operating same
JP6304191B2 (ja) 2015-10-20 2018-04-04 トヨタ自動車株式会社 電力変換装置
US10122294B2 (en) * 2016-12-01 2018-11-06 Ford Global Technologies, Llc Active gate clamping for inverter switching devices with enhanced common source inductance
US10193544B2 (en) 2017-04-21 2019-01-29 Ford Global Technologies, Llc Minimizing ringing in wide band gap semiconductor devices
FR3084540B1 (fr) * 2018-07-24 2021-04-30 Valeo Systemes De Controle Moteur Bras de convertisseur de tension
JP7117949B2 (ja) * 2018-09-06 2022-08-15 三菱電機株式会社 半導体モジュールおよび電力変換装置
JP6979939B2 (ja) * 2018-12-14 2021-12-15 三菱電機株式会社 半導体装置の試験装置
CN109842279B (zh) * 2019-02-22 2021-07-02 湖南大学 一种SiC MOSFET开环主动驱动电路
DE102020202842A1 (de) 2020-03-05 2021-09-09 Robert Bosch Gesellschaft mit beschränkter Haftung Treiberschaltung für ein niederinduktives Leistungsmodul sowie ein niederinduktives Leistungsmodul mit erhöhter Kurzschlussfestigkeit
CN115065222B (zh) * 2022-08-18 2022-12-20 深圳英集芯科技股份有限公司 应用全桥同步整流启动防倒灌电路及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218675A (ja) 2002-01-22 2003-07-31 Hitachi Ltd 半導体素子の駆動装置ならびにそれを用いた電力変換装置
JP2005328668A (ja) 2004-05-17 2005-11-24 Fuji Electric Device Technology Co Ltd 自己消弧形半導体素子の駆動回路
JP2006324794A (ja) * 2005-05-17 2006-11-30 Toyota Motor Corp 電圧駆動型半導体素子の駆動装置
JP2007267560A (ja) * 2006-03-30 2007-10-11 Hitachi Ltd 貫通電流制御装置を備えたインバータ
JP2008092663A (ja) * 2006-10-02 2008-04-17 Hitachi Ltd ゲート駆動回路
JP2012191408A (ja) * 2011-03-10 2012-10-04 Toshiba Corp ゲート駆動回路、およびパワー半導体モジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535115A (en) * 1992-10-30 1996-07-09 Matsushita Electric Industrial Co., Ltd. Output circuit of PWM inverter wherein floating time is reduced
JP4113436B2 (ja) * 2003-01-24 2008-07-09 三菱電機株式会社 ゲートドライブ装置
JP4762929B2 (ja) * 2007-02-14 2011-08-31 トヨタ自動車株式会社 半導体電力変換装置
JP5740837B2 (ja) * 2010-05-10 2015-07-01 三菱電機株式会社 基準回路モジュール、三相インバータ回路、整流回路、pam回路、一石型pam回路、ハーフブリッジ/インターリーブ回路、および空気調和装置
JP5611684B2 (ja) * 2010-06-22 2014-10-22 株式会社東芝 電力変換装置
JP5444142B2 (ja) * 2010-07-06 2014-03-19 株式会社日立製作所 電力変換器、及びこれを用いたモータ駆動装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218675A (ja) 2002-01-22 2003-07-31 Hitachi Ltd 半導体素子の駆動装置ならびにそれを用いた電力変換装置
JP2005328668A (ja) 2004-05-17 2005-11-24 Fuji Electric Device Technology Co Ltd 自己消弧形半導体素子の駆動回路
JP2006324794A (ja) * 2005-05-17 2006-11-30 Toyota Motor Corp 電圧駆動型半導体素子の駆動装置
JP2007267560A (ja) * 2006-03-30 2007-10-11 Hitachi Ltd 貫通電流制御装置を備えたインバータ
JP2008092663A (ja) * 2006-10-02 2008-04-17 Hitachi Ltd ゲート駆動回路
JP2012191408A (ja) * 2011-03-10 2012-10-04 Toshiba Corp ゲート駆動回路、およびパワー半導体モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2811632A4

Also Published As

Publication number Publication date
EP2811632A4 (en) 2015-12-09
JP2013162590A (ja) 2013-08-19
JP5970194B2 (ja) 2016-08-17
US20150003133A1 (en) 2015-01-01
EP2811632A1 (en) 2014-12-10
CN104094509A (zh) 2014-10-08

Similar Documents

Publication Publication Date Title
JP5970194B2 (ja) 半導体スイッチング素子の駆動回路並びにそれを用いた電力変換回路
JP5746954B2 (ja) インバータ装置
US8299737B2 (en) Motor driving circuit
US5107151A (en) Switching circuit employing electronic devices in series with an inductor to avoid commutation breakdown and extending the current range of switching circuits by using igbt devices in place of mosfets
JP4445036B2 (ja) 電力変換器
CN107317461B (zh) 电力转换装置
JP5277579B2 (ja) 半導体装置
JP2010252568A (ja) 半導体素子の駆動回路
US10554150B2 (en) Three-level inverter
EP3029821B1 (en) Semiconductor device and power conversion device
JP5993749B2 (ja) 半導体装置のゲート駆動回路およびそれを用いた電力変換装置
JP6582764B2 (ja) 半導体素子の駆動装置
JP2009011013A (ja) 電力変換装置
JP6575230B2 (ja) 半導体素子の駆動装置
JP5316251B2 (ja) スイッチ回路
WO2019207977A1 (ja) ゲート駆動回路およびゲート駆動方法
JP2021078309A (ja) ゲート駆動装置及び電力変換装置
US11011971B2 (en) Rectifying circuit and power supply device
JP5251553B2 (ja) 半導体装置
JP6590783B2 (ja) 半導体装置
JP6338145B2 (ja) 半導体装置及びそれを用いた電力変換装置
JP2019041514A (ja) 半導体素子の駆動回路
JP6191017B2 (ja) ハーフブリッジ回路及びハーフブリッジ回路から構成されるフルブリッジ回路及び3相インバータ回路
WO2024057598A1 (ja) 半導体スイッチング素子のゲート駆動回路、電動機制御システムおよび半導体装置
Tauer The Challenges of Using SiC MOSFET-Based Power Modules for Solar Inverters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743481

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013743481

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013743481

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14375189

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE