WO2013114965A1 - 光時分割多重伝送システム - Google Patents

光時分割多重伝送システム Download PDF

Info

Publication number
WO2013114965A1
WO2013114965A1 PCT/JP2013/050882 JP2013050882W WO2013114965A1 WO 2013114965 A1 WO2013114965 A1 WO 2013114965A1 JP 2013050882 W JP2013050882 W JP 2013050882W WO 2013114965 A1 WO2013114965 A1 WO 2013114965A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
signals
channel
pulse
Prior art date
Application number
PCT/JP2013/050882
Other languages
English (en)
French (fr)
Inventor
隆行 黒須
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Publication of WO2013114965A1 publication Critical patent/WO2013114965A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems

Definitions

  • the present invention relates to an optical time division multiplex transmission system for increasing the transmission rate of information transmission.
  • OTDM Optical time division multiplexing
  • FIG. 1 shows the principle of OTDM transmission.
  • N optical transmitters 2 Ch.1 to Ch.N that output RZ signals having a symbol rate (clock frequency) of f 0 [baud / second] are used.
  • Optical signal pulses to be output are arranged at equal intervals by a multiplexer (Mux) 3 and converted into serial signals.
  • f 0 [baud / sec] is set to a value equal to or less than the upper limit that can be handled by the electrical phase synchronization circuit (PLL circuit).
  • PLL circuit electrical phase synchronization circuit
  • the receiver includes a demultiplexer (Demux) 4 on the optical input side, divides this OTDM signal into N parallel signals (Demux), and performs signal processing for each channel.
  • a general optical device has an input / output port for signal light and an input port for control light, and controls the intensity and phase of the signal light by turning on / off the control light.
  • ISBT semiconductor intersubband transition
  • the channel identification information is transmitted using a wavelength in a band (Outband) different from that of data by using a signal in which a clock pulse is superimposed on an optical time division multiplexed signal as a transmission signal. You can also. However, in that case, an extra band or power is required as the occupied band of the wavelength, and further, there is a problem that the timing of the extraction clock is likely to fluctuate due to the influence of the dispersion of the transmission path. It is desirable to transmit the channel identification information by Inband).
  • a method of transmitting channel identification information within a data band has been devised for OTDM transmission of OOK (On-off keying), which is a method of transmitting information using the intensity of an optical pulse, It is difficult to adopt such a method for a signal of the PSK method (Phase-shift keying), which is a method for transmitting information using the phase of an optical pulse.
  • OOK On-off keying
  • PSK Phase-shift keying
  • the multi-channel signal generation unit uses a symbol rate f 0 [baud / Second] OOK-RZ optical signal is generated, and the MUX / channel identification information adding unit 10 applies phase modulation only to a specific channel (reference channel) to perform time division multiplexing. This makes it possible to distinguish the reference channel shown in black from other channels (normal channels without phase modulation).
  • 11 is a phase modulation detector
  • 12 is a clock extractor
  • 13 is an OTDM signal divider.
  • This method does not require precise control of the photoelectric field phase over all pulses, but the transmitter requires an intensity modulator for data transmission and a phase modulator for channel information transmission, and the receiver also performs phase modulation.
  • the system may be complicated, such as requiring a detector. Both of these methods are effective for the OOK type OTDM because they use the photoelectric field phase, but cannot be applied to the PSK type OTDM.
  • the present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to obtain an optical time division multiplex transmission system having a simple system configuration without lowering spectrum use efficiency. That is.
  • the present invention modulates the pulse interval in OTDM transmission and adds a clock frequency component to the light intensity spectrum, so that the receiver always outputs a clock signal to the data at a constant timing.
  • the following technical means were taken. That is, (1) N optical transmitters that output optical pulse signals (RZ signals) with a symbol rate of f 0 [baud / sec] are used, and the N parallel optical signals are overlapped by a multiplexing device while shifting the time.
  • the multiplexing device includes the N channels (Ch 1 to Ch N ), the optical signal pulses are multiplexed by setting a specific time interval between any of the adjacent optical signal pulses, and the receiver performs the specific time interval. Based on the interval, the clock frequency f 0 [Hz] is extracted, and signal processing for each channel is performed.
  • the N optical transmitters output optical signal pulses at equal intervals from the N channels (Ch 1 to Ch N ).
  • the N channels A time interval in which no optical signal pulse exists is generated between any of the adjacent optical signal pulses from (Ch 1 to Ch N ).
  • N optical transmitters that output optical pulse signals (RZ signals) with a symbol rate of f 0 [baud / sec] are used, and these N optical parallel signals are overlapped with a multiplexing device shifted in time.
  • the multiplexing device includes the channels (Ch 1 to Ch N ) optical signal pulses from N ) are multiplexed by periodically changing the time interval between adjacent optical signal pulses every M (where M is a divisor of N).
  • the receiver extracts the clock frequency f 0 based on the period for each of the M lines, and performs signal processing for each channel.
  • N optical transmitters that output optical pulse signals (RZ signals) having a symbol rate of f 0 [baud / sec] are used, and the N parallel optical signals are overlapped at different times by a multiplexer.
  • RZ signals optical pulse signals
  • N parallel optical signals are overlapped at different times by a multiplexer.
  • At least one interval between optical signal pulses adjacent to each other at equal intervals is changed, optical signal pulses having different wavelengths are inserted between data, and N channels (Ch 1 to Ch) are inserted.
  • N to periodically change the interval of the optical signal pulse to the intensity spectrum of the OTDM signal without manipulating the phase or intensity of the optical signal pulse, and a frequency equal to the symbol rate f 0 or an integral multiple thereof.
  • Ingredients can be added. Since the clock frequency f 0 [Hz] can be extracted on the basis of the added frequency component, PSK that transmits information using the phase of an optical pulse, which has recently become increasingly important with the spread of digital coherent communication.
  • channel identification information can be put on the OTDM signal with the same system configuration as that of normal OTDM transmission.
  • the clock can be extracted by a normal electronic circuit on the receiving side without using an ultrahigh-speed optical device or the like. Therefore, the apparatus is simple and can transmit a signal with high quality as compared with a method of adding channel identification information to data using phase or intensity modulation. In addition, this method can be applied to both OOK and PSK transmission formats.
  • FIG. 1 is a diagram illustrating the principle of OTDM transmission.
  • FIG. 2 is a diagram for explaining the necessity of extracting a clock signal.
  • FIG. 3 is a diagram illustrating an example of a conventional technique.
  • FIG. 4 is a diagram illustrating another example of the prior art.
  • FIG. 5 is a diagram showing still another example of the prior art.
  • FIG. 6A is a diagram showing a conventional pulse train in which optical signal pulses are arranged at the same time interval in order to explain the basic principle of the present invention.
  • FIG. 6B is a diagram showing a pulse train of the present invention in which a time interval of ⁇ T is inserted for each N-channel signal in order to explain the basic principle of the present invention.
  • FIG. 7A is a diagram illustrating the transmission side according to the first embodiment of this invention.
  • FIG. 7B is a diagram illustrating the receiving side according to the first embodiment of this invention.
  • FIG. 8A is a diagram illustrating a transmission side in a modification of the first embodiment.
  • FIG. 8B is a diagram illustrating a reception side in a modification of the first embodiment.
  • FIG. 9A is a diagram illustrating the transmission side according to the second embodiment of this invention.
  • FIG. 9B is a diagram illustrating the receiving side according to the second embodiment of this invention.
  • FIG. 10A is a diagram illustrating the transmission side according to the third embodiment of this invention.
  • FIG. 10B is a diagram illustrating the receiving side according to the third embodiment of this invention.
  • FIG. 6A and 6B show the principle of the present invention.
  • optical signals pulses (RZ optical signals) a of Ch 1 to Ch N are arranged at the same time interval T, where the horizontal axis is time.
  • the clock frequency of the transmitter is f 0 [Hz] and the signal multiplicity is N
  • f The frequency component of 0 [Hz] is not included. Therefore, in the present invention, a new frequency component is added to the light intensity spectrum of the OTDM signal by arranging the pulse intervals so that they are periodically changed when multiplexing optical signals.
  • a pulse array as shown in FIG. 6B is inserted by inserting a time interval of ⁇ T between the optical signal pulse from the last channel and the first channel starting next in a series of N optical signal pulses. Can be obtained.
  • a clock frequency component having a sufficient strength to be extracted using a PLL circuit is added to the light intensity spectrum of the OTDM signal thus generated. Further, in the dividing device, it is possible to identify the channel based on the presence of ⁇ T.
  • FIG. 7A and 7B show typical examples of pulse arrangements that enable channel identification according to the first embodiment.
  • FIG. 7A shows the transmitting side
  • FIG. 7B shows the receiving side.
  • the multi-channel signal generation unit 14 On the transmission side, in synchronization with a clock signal (electrical signal) having a clock frequency f 0 [Hz], the multi-channel signal generation unit 14 generates N channels of electric signals having a transmission rate f 0 [baud / sec].
  • the signal is converted into an RZ optical signal by an electro / optical converter 15 including an electro-optic modulator.
  • ⁇ T a transmission rate
  • a pulse interval longer than this uniform time interval by ⁇ T is provided after the optical signal pulse train equally spaced from the channel (Ch 1 ) to the channel (Ch N ).
  • the OTDM signal (transmission rate N ⁇ f 0 [baud / sec]) is output.
  • a part of the OTDM signal is branched by the branching filter 17, and in the optical clock extracting unit 18, an optical receiver 19 composed of a photodiode or the like is used.
  • ⁇ T the clock frequency f 0 [Hz] can be extracted via the PLL circuit 20.
  • N optical signal pulses having a symbol rate (frequency) of f 0 [baud / sec] are output from the channels (Ch 1 to Ch N ) at equal intervals. 16, the optical signal from the (N + 1) channel is processed, and multiplexing is performed assuming that the (N + 1) th optical signal pulse is present after the optical signal pulse from Ch N.
  • the optical signal pulse of the channel (Ch N ) and the optical signal of the channel (Ch 1 ) of the next cycle are equivalent to one optical signal pulse and the normal time interval. A time gap will be formed between the pulses.
  • the optical signal pulses from channel 1 to channel N are arranged at equal intervals, and then an empty pulse is inserted. Then, an optical signal pulse of equal intervals from the pulse from channel 1 to channel N continues again, and this is repeated.
  • the optical clock extraction unit 18 detects that the time interval of the optical signal pulse has increased due to this empty pulse, so that the symbol rate (frequency) is f 0 [baud / sec] from the transmitter side. It can be recognized that the optical signal is N-channel multiplexed and transmitted. In addition, since the channel 1 to channel N signals are sequentially transmitted after the empty pulse, the data channel can be identified based on the empty pulse, and the OTDM signal dividing unit 21 can separate the OTDM signal.
  • the signal generation unit 14 may be provided with a channel (Ch N + 1 ) that does not emit an optical signal pulse.
  • the time interval between the optical signal pulses is different from the normal one, and is provided between the optical signal pulse from Ch N and the optical signal pulse from Ch 1 of the next cycle. It may be provided between any of Ch 1 to Ch N-1 , and the time interval between optical signal pulses is one empty pulse, but it may be a plurality.
  • the PLL circuit 20 converts it.
  • the clock frequency f 0 it is possible to extract the clock frequency f 0 , so that the time interval may be shorter than the time interval set at equal intervals.
  • the time interval between specific optical signal pulses is set to a time interval different from the time interval set at equal intervals.
  • the clock frequency f 0 is extracted.
  • the optical frequency spectrum of the OTDM signal always has a clock frequency component. Therefore, the clock frequency f 0 can be extracted by the PLL circuit 20 if a different time interval is set between arbitrary optical signal pulses as well as between specific optical signal pulses. It becomes.
  • the time interval between specific optical signal pulses is set to a time interval different from the time interval set at equal intervals.
  • the time interval of the optical signal pulses of the channels (Ch 1 ) to (Ch N ) is changed at a predetermined period, and the clock frequency is extracted at this period.
  • N optical signal pulses from channel (Ch 1 ) to channel (Ch N ) are represented by M (M is a divisor of N).
  • the optical path length between the electrical / optical conversion unit 15 and the optical time division multiplexing unit 16 is changed so that the time interval between adjacent optical signal pulses for each M is T 1 to T M, and N optical signals are obtained.
  • N / M optical signal pulse groups whose time intervals change periodically are formed in the pulse.
  • a new component is added to the frequency (N / M) f 0 [Hz] in the light intensity spectrum of the OTDM signal thus formed.
  • This OTDM signal is input to the PLL circuit 20 via the optical receiver 19 in the clock extraction unit 18, and a frequency component of (N / M) f 0 [Hz] is detected.
  • the clock frequency f 0 can be extracted and output to the OTDM signal divider 21.
  • every N optical signal pulses from the channel (Ch 1 ) to the channel (Ch N ) have a wavelength different from that of the other optical signal pulses. At least one light pulse is inserted.
  • the channel (Ch N + 1 ) in addition to the channels (Ch 1 ) to (Ch N ) for transmitting the original information, the channel (Ch N + 1 ) Among the electrical / optical converters 15 corresponding to the channel (Ch N + 1 ), the optical transmitters corresponding to the channels (Ch 1 ) to (Ch N ) output, for example, the wavelength ⁇ 1.
  • the optical transmitter corresponding to the channel (Ch N + 1 ) outputs a pulse train having the wavelength ⁇ 2. That is, from the optical time division multiplexing unit 16, a signal in which pulsed light of another wavelength is present is output as an OTDM signal for each N-channel data (black waveform).
  • the OTDM signal thus formed includes a data pulse and a clock pulse, and as shown in FIG. 10B (reception side), is input to the filter 23 that transmits the demultiplexer 17 and ⁇ 2 on the reception side.
  • the optical receiver 19 and the PLL circuit 20 can extract the clock frequency f 0 [Hz].
  • the optical signal pulse of wavelength ⁇ 1 extracted from the demultiplexer 17 through the filter 24 that transmits ⁇ 1 is the optical signal pulse from the channel (Ch 1 ) to the channel (Ch N ). Is output to the OTDM signal dividing unit 21 and processed as signal data on the receiving side.
  • the optical signal pulse having the wavelength ⁇ 2 from the channel (Ch N + 1 ) is removed by the filter 24, whereby the OTDM signal in which the empty pulse is formed is passed through the demultiplexer 25.
  • the symbol rate f 0 may be extracted by the PLL circuit 20 by making the time interval different from that of other optical signal pulses by the empty pulse, as in the first embodiment. .
  • a time interval different from any of the predetermined time intervals is set between any of the adjacent optical signal pulses.
  • a frequency component can be added.
  • channel identification information can be included in an OTDM signal with the same system configuration as that of normal OTDM transmission.
  • the clock can be extracted by a normal electronic circuit on the receiving side without using an ultrahigh-speed optical device or the like. For this reason, for example, it can be expected to be widely used in communication systems for transmitting video signals for Super Hi-Vision that have been researched in recent years.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

【課題】 シンボルレートがf0[baud/秒]の光パルス信号(RZ信号)を出力する光送信機をN個用い、多重化装置(16)によりそれらN本のパラレル光信号をシリアル信号に変換して受信器に送り、チャンネル毎の信号処理を行う。多重化装置(16)は、N本のチャンネルからの光信号パルスのうち、隣り合う光信号パルスのいずれかの間に、他とは異なる時間間隔を設定して光信号パルスの多重化を行い、受信器が異なる光信号パルスの時間間隔に基づいて、クロック周波数f0[Hz]を抽出し、チャンネル毎の信号処理を行う。これにより、光時分割多重伝送システムにおいて、高価な超高速光デバイスなどを使用することなく、品位の高い情報伝送を実現する。

Description

光時分割多重伝送システム
 本発明は、情報伝送の伝送レートを高めるための光時分割多重伝送システムに関する。
 インターネットの急速な発展により、光通信に要求される伝送レートは年々高まっているが、電子デバイスの動作速度は限界に達しようとしている。
 一般に、単位時間に送信できる符号(シンボル)の数をシンボルレート[baud/秒]と呼ぶが、電子デバイスの上限を超えるシンボルレートで信号を伝送するためには、光領域で信号を多重化する光時分割多重(OTDM)が必要となる。
 OTDM伝送では強度または位相に変調の施された光パルス信号(RZ信号と呼ばれる)を複数用意し、それらを高速に切り替えてシリアル信号に変換することで信号の多重化を図っている。
 図1に、OTDM伝送の原理を示す。
 例えば、多チャンネル信号送信機1として、シンボルレート(クロック周波数)がf0[baud/秒]のRZ信号を出力する光送信機2をN個(Ch.1~Ch.N)用い、これらが出力する光信号パルスを多重化装置(Mux)3で等間隔に配列してシリアル信号に変換する。ただし、f0[baud/秒]は、電気的な位相同期回路(PLL回路)で対応し得る上限以下の値とする。
 これにより、多重化装置(Mux)3からは、シンボルレートがf'=N×f0[baud/秒]のOTDM信号が生成される。
 一方、受信機は、光入力側に分割装置(Demux)4を備えており、このOTDM信号をN本のパラレル信号に分割(Demux)し、チャンネル毎に信号処理を行う。
 このDemux操作を行うためには、元の送信機のシンボルレート(=f0)に等しい周波数を持つ基準信号(クロック)が必要となる。したがって、受信機には受信したOTDM光信号から、光クロック抽出部5によりこのクロック信号を生成する、いわゆる光クロック抽出機能が要求される。
 OTDM信号の基本周波数は電子デバイスの動作速度の限界を超えるため、通常OTDM信号からクロック信号を抽出するためには非線形光学効果を利用した超高速光デバイスが必要となる。
 このように、OTDM方式では多重/分割等の信号処理を電子デバイスの動作限界を超える速度で実行する必要があるが、これには非線形光学効果を応用した光デバイスが利用される。一般的な光デバイスは、信号光の入出力ポートと制御光の入力ポートを持ち、制御光のオン/オフにより信号光の強度や位相を制御する。
 代表的な超高速光デバイスとしては、非線形ファイバーで生じる4光波混合や半導体サブバンド間遷移(ISBT)が示す相互位相変調を利用したものがあり、下記非特許文献1にみられるように、ISBT光ゲートを用いてシンボルレートが172G[baud/秒]のOTDMが実現されている。
 これまでに超高速光デバイスを用いたクロック抽出方法がいくつか考案されているが、図2上段に示されるように、多重化されたOTDM信号(f'0[baud/秒])には通常チャンネルに関する情報は含まれていないので、抽出されるクロック抽出信号のタイミングには、図2下段に示されるように、N通りの任意性がある(下記非特許文献2参照)。
 したがって、受信装置において多重分離された信号のチャンネルを識別するためには、クロック信号がOTDM信号に対して常に一定のタイミングで抽出されることが要求される。このため、下記非特許文献3に示されるように、データにチャンネル識別情報を付加して送信することが必要となる。
 チャンネル識別情報は、図3に示されるように、光時分割多重信号にクロックパルスを重畳したものを送信信号とすることにより、データとは別の帯域(Outband)の波長を用いて送信することもできる。しかし、その場合、波長の占有帯域として、余分な帯域や電力が必要となり、さらには、抽出クロックのタイミングが伝送路の分散の影響を受け変動し易い等の問題もあるので、データ帯域内(Inband)でチャンネル識別情報を送信する方が望ましい。
 これまでに光パルスの強度を用いて情報伝送する方式であるOOK方式(On-off keying)のOTDM伝送に対しては、データ帯域内でチャンネル識別情報を伝送する方法が考案されているが、光パルスの位相を用いて情報伝送する方式であるPSK方式(Phase-shiftkeying)の信号に対しては、その様な方法を採用することは困難である。
 近年、デジタルコヒーレント通信の普及に伴いPSK方式の重要度が高まっており、PSK方式のOTDM信号においてチャンネル識別を可能にするクロック抽出技術の開発は重要課題となっている。
黒須隆行、その他、「光時分割多重を用いたスーパーハイビジョン映像の伝送」、信学技報、IEICE Technical Report、IA2009-91、p.53-p.58、(2010) 青梅恵之、尾路京一、山下育男、猪口勝司、「160Gbit/s 光RZ信号からの10GHzクロック信号抽出の検討」、IEEJ Trans. EIS、vol.125、No.10、p.1608-p.1613、(2005) 藤井浩三、「超高速光信号処理技術の開発」、沖テクニカルレビュー、第204号、Vol.72、No.4、p.70-p.75、2005年10月黒須隆行他、「光時分割多重を用いたスーパーハイビジョン映像の伝送」、信学技報、IEICE Technical Report、IA2009-91、p.53-p.58、(2010)
 OOK方式のOTDM信号に対しては、光パルス信号の電場の位相を制御してチャンネル識別情報をデータに付加する方法が2例提案されている。
 第1の例は、図4に示されるように、短パルス光源6の出力に強度変調を施して生成されるNチャンネルのシンボルレートf0[baud/秒]のRZ光信号を多重化する際に、各チャンネルの光路長を調整して、隣接パルス間の光電場に固定した位相シフトφ1~φNを与える。これら位相シフトの大きさをチャンネル毎に変化させることにより、OTDM信号の光強度スペクトルにクロック周波数成分を付加し、光クロック抽出部8に出力している。
(上記非特許文献3参照)。
 この例では、全光パルスの電場位相を精密に制御する必要があり、光信号の多重化(MUX)部には高い作製精度が要求される。
 また、温度等の環境の変化に対して光電場位相が変化しない様に各チャンネルの光路長にフィードバック制御を施す必要があり、多重度Nが増えるほどシステムが複雑になる。
 第2の例は、本発明者らが先の出願(特願2011-000122号)で提案しているもので、図5に示されるように、多チャンネル信号生成部でシンボルレートf0[baud/秒]のOOK-RZ光信号をNチャンネル生成し、MUX・チャンネル識別情報付与部10により、特定のチャンネル(基準チャンネル)にのみ位相変調を施して時分割多重化を行う。
 これにより、黒で示す基準チャンネルを他チャンネル(位相変調のないノーマルチャンネル)から識別することを可能にしている。なお、図中11は位相変調検出部、12はクロック抽出部、13はOTDM信号分割部である。
 この方法では全パルスにわたって精密に光電場位相を制御する必要はないが、送信機にデータ送信用の強度変調器とチャンネル情報送信用の位相変調器が必要となるほか、受信機にも位相変調検出器が必要となるなどシステムが複雑になる場合がある。
 また、これら2つの方法は、いずれも、光電場位相を利用するためOOK方式のOTDMには有効であるが、PSK方式のOTDMには適用することができない。
 本発明は、上記従来技術の問題点を解決するためになされたものであり、その目的とするところは、スペクトルの利用効率を下げることなく、システム構成が簡素な光時分割多重伝送システムを得ることである。
 この課題を解決するため、本発明は、OTDM伝送においてパルス間隔に変調を施して、光強度スペクトルにクロック周波数の成分を付加することによって、受信機がデータに対し常に一定のタイミングでクロック信号を抽出することを可能にする。
 より具体的には、本発明の光時分割多重伝送システムでは、次のような技術的手段を講じた。すなわち、
(1)シンボルレートがf0[baud/秒]の光パルス信号(RZ信号)を出力する光送信機をN個用い、それらN本のパラレル光信号を多重化装置により時間をずらして重ねることでシリアル信号に変換して送信し、該受信機において受信信号をパラレル信号に分離しチャンネル毎の信号処理を行う光時分割多重伝送システムにおいて、前記多重化装置が、前記N本のチャンネル(Ch1~ChN)からの光信号パルスのうち、隣り合う光信号パルスのいずれかの間に特定の時間間隔を設定して光信号パルスの多重化を行うとともに、前記受信機が前記特定の時間間隔に基づいて、クロック周波数f0[Hz]を抽出し、チャンネル毎の信号処理を行うようにした。
(2)前記N個の光送信機が、前記チャンネル(Ch1~ChN)のN本から、等間隔に光信号パルスを出力するものであり、前記多重化装置において、前記N本のチャンネル(Ch1~ChN)からの隣り合う光信号パルスのいずれかの間に、光信号パルスが存在しない時間間隔を生成するようにした。
(3)シンボルレートがf0[baud/秒]の光パルス信号(RZ信号)を出力する光送信機をN個用い、それらN本の光パラレル信号を多重化装置により時間をずらして重ねることでシリアル信号に変換して送信し、該受信機において受信信号をパラレル信号に分離しチャンネル毎の信号処理を行う光時分割多重伝送システムにおいて、前記多重化装置が、前記チャンネル(Ch1~ChN)からのN本光信号パルスに対し、M本(ただし、MはN約数)毎に、隣り合う光信号パルス間の時間間隔を周期的に変化させて光信号パルスの多重化を行うとともに、前記受信機が前記M本毎の周期に基づいて、前記クロック周波数f0を抽出し、チャンネル毎の信号処理を行うようにした。
(4)シンボルレートがf0[baud/秒]の光パルス信号(RZ信号)を出力する光送信機をN個用い、それらN本のパラレル光信号を多重化装置により時間をずらして重ねることでシリアル信号に変換して送信し、該受信機において受信信号をパラレル信号に分離しチャンネル毎の信号処理を行う光時分割多重伝送システムにおいて、前記光送信機の少なくとも1つから出力される光信号パルスの波長を、他の前記光トランシーバから出力される光信号パルスの波長と異ならせるとともに、前記受信機が前記波長が異なる光信号パルスからの光信号パルスに基づいて、前記シンボルレートf0を抽出し、チャンネル毎の信号処理を行うようにした。
 本発明によれば、等間隔に隣り合う光信号パルスの間隔の少なくともひとつを変化させたり、さらには、波長が異なる光信号パルスをデータ間に挿入したり、N本のチャンネル(Ch1~ChN)からの光信号パルスの間隔を周期的に変化させたりすることにより、光信号パルスの位相や強度を操作することなくOTDM信号の強度スペクトルに、シンボルレートf0あるいはその整数倍に等しい周波数成分を付加することができる。そして、付加された周波数成分に基づいて、クロック周波数f0[Hz]を抽出できるので、近年、デジタルコヒーレント通信の普及に伴い重要度の高まっている、光パルスの位相を用いて情報伝送するPSK方式においても、通常のOTDM伝送と全く同じシステム構成でOTDM信号にチャンネル識別情報を載せることができる。しかも、受信側では超高速光デバイスなどを用いずに通常の電子回路でクロック抽出が可能になる。
 したがって、位相や強度変調などを利用してチャンネル識別情報をデータに付与する方法に比べて装置が簡素で、高い品質で信号を伝送することができる。また、本方法はOOK、PSKいずれの伝送フォーマットにも適用できる。
図1は、OTDM伝送の原理を示す図である。 図2は、クロック信号を抽出する必要性を説明する図である。 図3は、従来技術の一例を示す図である。 図4は、従来技術の他の例を示す図である。 図5は、従来技術のさらに他の例を示す図である。 図6Aは、本発明の基本原理を説明するため、光信号パルスを同じ時間間隔で配列した従来のパルス列を示す図である。 図6Bは、本発明の基本原理を説明するため、Nチャンネルの信号毎にΔTの時間間隔を挿入した本発明のパルス列を示す図である。 図7Aは、本発明の実施例1の送信側を示す図である。 図7Bは、本発明の実施例1の受信側を示す図である。 図8Aは、実施例1の変型例における送信側を示す図である。 図8Bは、実施例1の変型例における受信側を示す図である。 図9Aは、本発明の実施例2の送信側を示す図である。 図9Bは、本発明の実施例2の受信側を示す図である。 図10Aは、本発明の実施例3の送信側を示す図である。 図10Bは、本発明の実施例3の受信側を示す図である。
 図6A、Bに本発明の原理を示す。
 OTDMでは、通常、図6Aに示すように、横軸を時間としたとき、Ch1~ChNの光信号パルス(RZ光信号)aを同じ時間間隔Tに配列する。
 ここで、送信機のクロック周波数をf0[Hz]、信号多重度をNとすると、このOTDM信号の光強度波形のスペクトルの基本周波数はf'=N×f0[Hz]であり、f0[Hz]の周波数成分は含まれていない。
 そこで、発明では、光信号を多重化する時にパルス間隔を一定ではなく、周期的に変化させるように配列することで、OTDM信号の光強度スペクトルに新たな周波数成分を付加する。
 すなわち、図1に示す例では、送信側における各光送信機から出力させる光信号パルスのクロック周波数をf0[Hz]、信号多重度をNとした場合、多重化装置(Mux)3において、一連のN個の光信号パルスのうち、最後のチャンネルからの光信号パルスと、次に始まる最初のチャンネルと間に、ΔTの時間間隔を挿入することにより、図6Bに示されるようなパルス配列を得ることができる。
 このようにして生成されたOTDM信号の光強度スペクトルには、PLL回路を用いて抽出するのに十分な強度のクロック周波数成分が付け加えられる。また、分割装置において、ΔTの存在に基づいてチャンネル識別することも可能となる。
 以下、図面を参照しつつ本発明の実施例を説明する。
[実施例1]
 図7A、図7Bに、実施例1によりチャンネル識別を可能とするパルス配列の代表例を示す。図7Aは送信側、図7Bは受信側である。
 送信側において、クロック周波数f0[Hz]のクロック信号(電気信号)に同期して、多チャンネル信号生成部14では伝送レートf0[baud/秒]の電気信号がNチャンネル生成され、各電気信号は電気光学変調器などからなる電気/光変換部15によりRZ光信号に変換される。これらNチャンネルのパラレルRZ光信号は光時分割多重化部16により伝送レートf'=N×f0[baud/秒]のシリアル信号に変換される。
 そして、電気/光変換部15と光時分割多重化部16とを接続する光路長を、チャンネル毎に一定の長さずつ変化させること等により、光時分割多重化部16からは、チャンネル(Ch1)からチャンネル(ChN)まで、均一の時間間隔に並んだ光信号パルスが出力され、その後に光時分割多重化部16が前述のΔTに相当するギャップを挿入し、このサイクルを繰り返す。
 こうして図7Aに示されるように、光時分割多重部16から、チャンネル(Ch1)~チャンネル(ChN)から等間隔の光信号パルス列の後に、この均一の時間間隔よりΔTだけ長いパルス間隔を有するOTDM信号(伝送レートN×f0[baud/秒])が出力されることになる。
 一方、受信側においては、図7Bに示されるように、分波器17によりこのOTDM信号からその一部が分岐させられ、光クロック抽出部18内において、フォトダイオードなどからなる光受信器19により、ΔTのギャップを抽出することにより、PLL回路20を介して、クロック周波数f0[Hz]を取り出すことができる。
 この例では、チャンネル(Ch1~ChN)からは、シンボルレート(周波数)がf0[baud/秒]の光信号パルスが、N個等間隔に出力されるが、光時分割多重化装置16では、(N+1)のチャンネルからの光信号を処理するものとし、ChNからの光信号パルスの次に、(N+1)個目の光信号パルスがあるものとして多重化を行う。しかし、(N+1)個目の光信号パルスは存在しないため、1光信号パルス分と通常の時間間隔分だけ、チャンネル(ChN)の光信号パルスと次サイクルのチャンネル(Ch1)の光信号パルスの間に時間的なギャップが形成されることになる。
 そして、(ChN+1)の光送信機は存在しないため、多重化した光信号パルスには、チャンネル1からのパルスからチャンネルNまでの光信号パルスが等間隔に並び、その後空パルスを挟んで、再びチャンネル1からのパルスからチャンネルNまでの等間隔の光信号パルスが続き、これを繰り返すことになる。
 受信機では、光クロック抽出部18において、この空パルスにより光信号パルスの時間間隔が増大したことを検出することにより、送信機側から、シンボルレート(周波数)がf0[baud/秒]の光信号がNチャンネル多重化されて送信されていることを認識することができる。また、空パルスの後にチャンネル1からチャンネルNの信号が順次送られてくるので、空パルスを基準にしてデータのチャンネルを識別し、OTDM信号分割部21によりOTDM信号を分離することができる。
 なお、図8A(受信側)、図8B(送信側)に示されるように、信号生成部14において、光信号パルスを発しないチャンネル(ChN+1)を設けてもよい。
 また、この例では、光信号パルス間の時間間隔を通常のものと異ならせたものを、ChNからの光信号パルスと次サイクルのCh1からの光信号パルスとの間に設けたが、Ch1~ChN-1のいずれの間に設けてもよいし、光信号パルス間の時間間隔を、空パルス1個分としたが、複数個分としてもよい。
 要は、チャンネル(Ch1)~チャンネル(ChN)の光信号パルス間のうち、等間隔に設定された時間間隔とは異なる時間間隔を少なくとも1つ形成すれば、PLL回路20により、これを特定することにより、クロック周波数f0を抽出することが可能となるから、等間隔に設定された時間間隔より短い時間間隔となるようにしてもよい。
 この例では、チャンネル(Ch1)~チャンネル(ChN)の光信号パルス間のうち、特定の光信号パルス間の時間間隔を、等間隔に設定された時間間隔と異なる時間間隔を設定することにより、クロック周波数f0を抽出するようにした。しかし、チャンネル(Ch1)~チャンネル(ChN)の光信号パルス間のうち、他とは異なるユニークな時間間隔を少なくとも1つ形成すれば、OTDM信号の光強度スペクトルには必ずクロック周波数成分が含まれることになるので、特定の光信号パルス間に限らず、任意の光信号パルス間に、他とは異なる時間間隔を設定すれば、PLL回路20によりクロック周波数f0を抽出することが可能となる。
[実施例2]
 実施例1では、チャンネル(Ch1)~チャンネル(ChN)の光信号パルス間のうち、特定の光信号パルス間の時間間隔を、等間隔に設定された時間間隔と異なる時間間隔を設定することによりクロック周波数を抽出するようにしたが、実施例2では、チャンネル(Ch1)~チャンネル(ChN)の光信号パルスの時間間隔を所定周期で変化させ、この周期でクロック周波数の抽出を行う。
 すなわち、図9A(送信側)、図9B(受信側)に示されるように、チャンネル(Ch1)~チャンネル(ChN)からのN個の光信号パルスをM個(MはNの約数)ずつ分割する。そして、M毎に隣り合う光信号パルスの時間間隔がT1~TMとなるよう、電気/光変換部15と光時分割多重化部16間の光路長を変化させ、N個の光信号パルスに、周期的に時間間隔が変化するM個の光信号パルス群をN/M個を形成する。
 このようにして形成されたOTDM信号の光強度スペクトルには、周波数(N/M)f0[Hz]に新たな成分が加えられる。このOTDM信号は、クロック抽出部18において、光受信器19を介してPLL回路20に入力され、(N/M)f0[Hz]の周波数成分を検出し、これを分周器22によりM/N倍することにより、クロック周波数f0を抽出し、OTDM信号分割部21に出力することが可能となる。
[実施例3]
 本実施例では、光信号パルス間の時間間隔を変更するのに代え、チャンネル(Ch1)~チャンネル(ChN)からのN個の光信号パルス毎に、他の光信号パルスとは異なる波長とする光パルスを少なくともひとつ挿入する。
 この実施例では、図10A(送信側)に示されるように、信号生成部14において、本来の情報を伝達するチャンネル(Ch1)~チャンネル(ChN)に加え、チャンネル(ChN+1)の電気信号を形成し、チャンネル(ChN+1)に対応する電気/光変換部15のうち、チャンネル(Ch1)~チャンネル(ChN)に対応する光送信機は、例えば波長λ1を出力し、チャンネル(ChN+1)に対応する光送信機は、波長λ2のパルス列を出力するようにする。すなわち、光時分割多重化部16から、Nチャンネル分のデータ(黒の波形)毎に、他波長のパルス光が介在する信号がOTDM信号として出力されることになる。
 このようにして形成されたOTDM信号は、データパルスとクロックパルスを含むものとなり、図10B(受信側)に示されるように、受信側において、分波器17、λ2を透過するフィルタ23に入力され、波長λ2の光信号パルスのみが抽出され、光受信器19、PLL回路20によりクロック周波数f0[Hz]を抽出することが可能となる。
 一方、分波器17から、λ1を透過するフィルタ24を介して抽出された波長λ1の光信号パルスは、チャンネル(Ch1)~チャンネル(ChN)からの光信号パルスを、分波器25を介して、OTDM信号分割部21に出力され、受信側で信号データとして処理される。
 なお、図10Bに示されるように、フィルタ24によりチャンネル(ChN+1)からの波長λ2の光信号パルスを取り除くことにより、空パルスが形成されたOTDM信号を、分波器25を介して光受信器19に送り、実施例1と同様に、空パルスにより時間間隔を他の光信号パルス間と異なるものとすることにより、PLL回路20によりシンボルレートf0を抽出するようにしてもよい。
 以上説明したように本発明によれば、N本のチャンネルからの光信号パルスのうち、隣り合う光信号パルスのいずれかの間に、予め定められた時間間隔のいずれとも異なる時間間隔を設定したり、N本のチャンネル(Ch1~ChN)からの光信号パルスの間隔を周期的に変化させたり、さらには、波長が異なる光信号パルスを挿入することにより、OTDM信号の強度スペクトルにクロック周波数成分を付加することができる。これにより、光パルスの位相を用いて情報伝送するPSK方式においても、通常のOTDM伝送と全く同じシステム構成でOTDM信号にチャンネル識別情報を載せることができる。しかも、受信側では超高速光デバイスなどを用いずに通常の電子回路でクロック抽出が可能になる。
 このため、例えば、近年研究が進んでいるスーパーハイビジョン用映像信号を伝送するための通信システムなどに広く採用されることが期待できる。
1   多チャンネル信号送信機
2   光送信機
3   多重化装置
4   分割装置
5   光クロック抽出部
6   短パルス光源
7   OTDM信号生成部
8   光クロック抽出部
9   多チャンネル信号生成部
10  MUX・チャンネル識別情報付与部
11  位相変調検出部
12  クロック抽出部
13  OTDM信号分割部
14  信号生成部
15  電気/光変換部
16  光時分割多重化部
17  分波器
18  クロック抽出部
19  光受信機
20  PLL回路
21  OTDM信号分割部
22  分周器
23  フィルタ(λ1を透過)
24  フィルタ(λ2を透過)
25  分波器

Claims (4)

  1.  シンボルレートがf0[baud/秒]の光パルス信号(RZ信号)を出力する光送信機をN個用い、多重化装置によりそれらN本のパラレル光信号を時間をずらして重ねることでシリアル信号に変換して送信し、該受信機において受信信号をパラレル信号に分離しチャンネル毎の信号処理を行う光時分割多重伝送システムにおいて、
     前記多重化装置が、前記N本のチャンネル(Ch1~ChN)からの光信号パルスのうち、隣り合う光信号パルスのいずれかの間に特定の時間間隔を設定して光信号パルスの多重化を行うとともに、前記受信機が前記特定の時間間隔に基づいて、クロック周波数f0[Hz]を抽出し、チャンネル毎の信号処理を行うことを特徴とする光時分割多重伝送システム。
  2.  前記N個の光送信機が、前記チャンネル(Ch1~ChN)のN本から、等間隔に光信号パルスを出力するものであり、前記多重化装置において、前記N本のチャンネル(Ch1~ChN)からの隣り合う光信号パルスのいずれかの間に、光信号パルスが存在しない時間間隔を生成することを特徴とする請求項1に記載の光時分割多重伝送システム。
  3.  シンボルレートがf0[baud/秒]の光パルス信号(RZ信号)を出力する光送信機をN個用い、多重化装置によりそれらN本のパラレル光信号を時間をずらして重ねることでシリアル信号に変換して送信し、該受信機において受信信号をパラレル信号に分離しチャンネル毎の信号処理を行う光時分割多重伝送システムにおいて、
     前記多重化装置が、前記チャンネル(Ch1~ChN)からのN本光信号パルスに対し、M本(ただし、MはN約数)毎に、隣り合う光信号パルス間の時間間隔を周期的に変化させて光信号パルスの多重化を行うとともに、前記受信機が前記M本毎の周期に基づいて、前記クロック周波数f0を抽出し、チャンネル毎の信号処理を行うことを特徴とする光時分割多重伝送システム。
  4.  シンボルレートがf0[baud/秒]の光パルス信号(RZ信号)を出力する光送信機をN個用い、多重化装置によりそれらN本のパラレル光信号を時間をずらして重ねることでシリアル信号に変換して送信し、該受信機において受信信号をパラレル信号に分離しチャンネル毎の信号処理を行う光時分割多重伝送システムにおいて、
     前記光送信機の少なくとも1つから出力される光信号パルスの波長を、他の前記光送信機から出力される光信号パルスの波長と異ならせるとともに、前記受信機が前記波長が異なる光信号パルスからの光信号パルスに基づいて、前記シンボルレートf0を抽出し、チャンネル毎の信号処理を行うことを特徴とする光時分割多重伝送システム。
     
     
PCT/JP2013/050882 2012-01-30 2013-01-18 光時分割多重伝送システム WO2013114965A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012016123 2012-01-30
JP2012-016123 2012-01-30

Publications (1)

Publication Number Publication Date
WO2013114965A1 true WO2013114965A1 (ja) 2013-08-08

Family

ID=48905007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050882 WO2013114965A1 (ja) 2012-01-30 2013-01-18 光時分割多重伝送システム

Country Status (2)

Country Link
JP (2) JPWO2013114965A1 (ja)
WO (1) WO2013114965A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105530067A (zh) * 2015-12-08 2016-04-27 京信通信技术(广州)有限公司 一种并行加扰装置及并行加扰方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451834A (en) * 1987-08-24 1989-02-28 Nippon Telegraph & Telephone Optical multiplex transmission system
JPH08307390A (ja) * 1995-04-28 1996-11-22 Kansai Electric Power Co Inc:The 光パルス時間多重化方法及びその装置
JPH11239116A (ja) * 1998-02-20 1999-08-31 Nippon Telegr & Teleph Corp <Ntt> 光信号処理装置
JP2004282290A (ja) * 2003-03-14 2004-10-07 National Institute Of Information & Communication Technology クロック同期信号伝送システム、データ伝送システム及びこれらの方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329393A (en) * 1992-10-15 1994-07-12 At&T Bell Laboratories Optical Nyquist rate multiplexer and demultiplexer
JPH07336299A (ja) * 1994-06-14 1995-12-22 Oki Electric Ind Co Ltd 光交換方法および光交換機
FR2765055B1 (fr) * 1997-06-23 1999-09-24 Alsthom Cge Alcatel Procede et dispositif pour concatener des informations binaires et application a la transmission optique de paquets
JP3732192B2 (ja) * 2003-06-10 2006-01-05 沖電気工業株式会社 光時分割多重通信方法及び光時分割多重通信装置
JP5139159B2 (ja) * 2008-06-04 2013-02-06 独立行政法人情報通信研究機構 データ伝送システム及び方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451834A (en) * 1987-08-24 1989-02-28 Nippon Telegraph & Telephone Optical multiplex transmission system
JPH08307390A (ja) * 1995-04-28 1996-11-22 Kansai Electric Power Co Inc:The 光パルス時間多重化方法及びその装置
JPH11239116A (ja) * 1998-02-20 1999-08-31 Nippon Telegr & Teleph Corp <Ntt> 光信号処理装置
JP2004282290A (ja) * 2003-03-14 2004-10-07 National Institute Of Information & Communication Technology クロック同期信号伝送システム、データ伝送システム及びこれらの方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105530067A (zh) * 2015-12-08 2016-04-27 京信通信技术(广州)有限公司 一种并行加扰装置及并行加扰方法
CN105530067B (zh) * 2015-12-08 2018-04-27 京信通信系统(中国)有限公司 一种并行加扰装置及并行加扰方法

Also Published As

Publication number Publication date
JP2015201880A (ja) 2015-11-12
JPWO2013114965A1 (ja) 2015-05-11
JP6074823B2 (ja) 2017-02-08

Similar Documents

Publication Publication Date Title
US8249459B2 (en) Method and apparatus for generating time-division multiplexed encoded transmission signal
US10148351B2 (en) Optical channel monitoring using expanded-spectrum pilot tone
JP5786565B2 (ja) 光多重装置および光ネットワークシステム
Lowery et al. Flexible all-optical frequency allocation of OFDM subcarriers
EP3090497B1 (en) System and method for pilot tone modulation by data bias
Du et al. Flexible all-optical OFDM using WSSs
EP2779497B1 (en) All-Optical Regeneration System for Optical Wavelength Division Multiplexed Communication Systems
EP3267605A1 (en) A method and central network device for establishing an embedded optical communication channel in an optical wdm transmission system
CN107408988B (zh) 用于ofdm信号与奈奎斯特-wdm信号之间的全光转换的方法和装置
JP6074823B2 (ja) 光時分割多重伝送システム
EP2916472B1 (en) All-optical orthogonal frequency division multiplexing (ofdm) transmitter
EP1408631B1 (en) Optical transmitter
JP6070062B2 (ja) 光送信システムおよび制御方法
JP5269697B2 (ja) 光受信器及び光伝送システム
Al-Rawachy et al. Experimental demonstration of real-time add/drop operations in DSP-enabled flexible ROADMs for converging fixed and mobile networks
JP5385858B2 (ja) 光直交周波数分割多重光信号の生成方法及び生成装置
JP5761704B2 (ja) 光時分割多重伝送方法及び光時分割多重伝送システム
CN103001724B (zh) Oofdm信号中光子载波的光分插复用方法及光分插复用器
JP5141431B2 (ja) Otdm信号分離装置及び方法
CN112615677B (zh) 基于深度学习的非正交波分复用时域鬼成像方法和系统
Deng et al. Experimental demonstration and performance evaluation of flexible add/drop operations of DSP-switched ROADMs for cloud access networks
Hillerkuss et al. Low-complexity optical FFT scheme enabling Tbit/s all-optical OFDM communication
Meier et al. Low Bandwidth Detection of High Data Rate Nyquist Signals
Richter et al. Generation of ultra-dense superchannels using frequency conversion in optical fibers
JP2016025395A (ja) 光送信装置、無線送信装置及び無線受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556305

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743350

Country of ref document: EP

Kind code of ref document: A1