WO2013114738A1 - 超音波洗浄装置及びその電力制御方法 - Google Patents

超音波洗浄装置及びその電力制御方法 Download PDF

Info

Publication number
WO2013114738A1
WO2013114738A1 PCT/JP2012/082337 JP2012082337W WO2013114738A1 WO 2013114738 A1 WO2013114738 A1 WO 2013114738A1 JP 2012082337 W JP2012082337 W JP 2012082337W WO 2013114738 A1 WO2013114738 A1 WO 2013114738A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
value
power value
power
unit
Prior art date
Application number
PCT/JP2012/082337
Other languages
English (en)
French (fr)
Inventor
晋 杉山
Original Assignee
株式会社カイジョー
市川 康司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カイジョー, 市川 康司 filed Critical 株式会社カイジョー
Priority to CN201280039420.XA priority Critical patent/CN103874550B/zh
Publication of WO2013114738A1 publication Critical patent/WO2013114738A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • B06B1/0253Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal taken directly from the generator circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/71Cleaning in a tank

Definitions

  • the present invention relates to an ultrasonic cleaning apparatus that performs ultrasonic cleaning on an object to be cleaned, a power control method thereof, and the like.
  • a conventional ultrasonic cleaning apparatus includes an ultrasonic vibrator, an oscillator, and a power supply unit that apply ultrasonic waves to a cleaning liquid for cleaning an object to be cleaned.
  • the oscillator includes an oscillation unit, a detection unit, and a calculation unit. Yes.
  • An oscillator is electrically connected to the ultrasonic vibrator, and a power supply unit is electrically connected to the oscillator.
  • the electric power oscillated by this oscillating unit is output to the ultrasonic transducer.
  • the output power is detected by the detection unit, and whether the detected power value deviates from the set power value (that is, a power value suitable as power applied to the ultrasonic transducer) is compared by the calculation unit.
  • the power controlled to be the set power value is output to the ultrasonic transducer (see, for example, Patent Document 1).
  • the detector is adjusted by a power calibrator when the ultrasonic cleaning apparatus is manufactured in a factory or the like, so that the power value can be accurately detected.
  • the power value applied to the ultrasonic transducer is detected by the detection unit, the power value is compared with the set power value, and the power value applied to the ultrasonic transducer is compared. Is controlled to become the set power value.
  • the power value can be adjusted to the set power value. As a result, a decrease in the efficiency of ultrasonic cleaning can be suppressed.
  • the detection unit since a device configured as a power meter is not provided in the detection unit inside the oscillator, power management by the detection unit is simplified. In addition, when the ultrasonic vibrator is replaced in the ultrasonic cleaning apparatus, the power value detected by the detection unit may deviate from an accurate value.
  • An object of one embodiment of the present invention is to provide an ultrasonic cleaning apparatus and a power control method thereof that can further improve the reliability of power management.
  • One embodiment of the present invention includes a cleaning liquid that cleans an object to be cleaned, an ultrasonic vibrator that applies ultrasonic waves to the cleaning liquid, an oscillator that is electrically connected to the ultrasonic vibrator, and the ultrasonic vibrator.
  • a power meter for measuring the applied power, and the oscillator controls the ultrasonic vibration by controlling the oscillation unit and the first power oscillated by the oscillation unit to be a set power value.
  • a control unit that outputs to the child, a detection unit that detects the second power output to the ultrasonic transducer by the control unit, and a recording unit that records the first correction value and the second correction value.
  • a calculation unit electrically connected to each of the detection unit, the control unit, the recording unit, and the wattmeter, wherein the calculation unit is a first detected power value detected by the detection unit. Is corrected by the first correction value to obtain a first corrected power value. And deriving a second corrected power value obtained by correcting the measured power value measured by the wattmeter with the second correction value, and comparing the second corrected power value with the first corrected power value.
  • the first correction power value deviates from the second correction power value by a certain value or more, the first correction power value becomes the second correction power value so that the first correction power value becomes the second correction power value.
  • An ultrasonic cleaning apparatus having a function of recording a first correction correction value whose value is corrected in the recording unit.
  • One aspect of the present invention is an ultrasonic cleaning apparatus having a first ultrasonic cleaning apparatus, a second ultrasonic cleaning apparatus, and a wattmeter, wherein the first ultrasonic cleaning apparatus includes a first object to be cleaned.
  • the second ultrasonic cleaning apparatus includes: a second cleaning liquid that cleans a second object to be cleaned; a second ultrasonic vibrator that applies ultrasonic waves to the second cleaning liquid;
  • a second oscillator electrically connected to two ultrasonic transducers, wherein the wattmeter is applied to the first ultrasonic transducer or the second ultrasonic oscillation.
  • the first ultrasonic transducer and the second ultrasonic transducer are for measuring the power applied to the child, and the first ultrasonic transducer and the second ultrasonic transducer are the first switch. And the first oscillator and the second oscillator are electrically connected to the power meter via a second switch, and the first oscillator and the second oscillator are electrically connected to the power meter via a first switch.
  • the first oscillator is controlled so that the first power oscillated by the first oscillating unit and the first oscillating unit becomes a first set power value, and is output to the first ultrasonic transducer.
  • a first control unit a first detection unit that detects a second power output to the first ultrasonic transducer by the first control unit; a first correction value;
  • a first recording unit that records a correction value, and the first detection unit, the first control unit, the first recording unit, and the wattmeter are electrically connected to the wattmeter,
  • a first arithmetic unit electrically connected via two switches, and the first arithmetic unit includes the first arithmetic unit
  • a first corrected power value obtained by correcting the first detected power value detected by the output unit with the first correction value is derived, and the first measured power value measured by the power meter is calculated as the second power value.
  • a second correction power value corrected by the correction value is derived, the second correction power value is compared with the first correction power value, and the first correction power value is calculated from the second correction power value.
  • the first correction correction value obtained by correcting the first correction value so that the first correction power value becomes the second correction power value is recorded in the recording unit.
  • the second oscillator controls the second oscillating unit and the third power oscillated by the second oscillating unit to be a second set power value.
  • a second control unit that outputs to the ultrasonic transducer, and the second control unit outputs the second ultrasonic vibration by the second control unit.
  • One aspect of the present invention is an ultrasonic cleaning apparatus power control method, wherein the ultrasonic cleaning apparatus includes: a cleaning liquid that cleans an object to be cleaned; an ultrasonic vibrator that applies ultrasonic waves to the cleaning liquid; and the ultrasonic vibration.
  • the power control method controls the control unit so that the first power oscillated by the oscillating unit becomes a set power value and outputs the set power value to the ultrasonic transducer.
  • the second power output to the sonic transducer is transmitted by the detection unit.
  • Ultrasonic cleaning device characterized by It is a power control method.
  • an ultrasonic cleaning apparatus and a power control method thereof that can further improve the reliability of power management.
  • FIG. 1 is a schematic diagram illustrating a configuration of an ultrasonic cleaning apparatus according to an aspect of the present invention.
  • the ultrasonic cleaning apparatus includes a cleaning liquid 12 for cleaning the object to be cleaned 11, a cleaning tank 10 in which the cleaning liquid 12 is placed, an ultrasonic vibrator (load) 13 that applies ultrasonic waves to the cleaning liquid 12, and this ultrasonic vibration.
  • An oscillator 14 electrically connected to the child 13, a power supply unit 16 electrically connected to the oscillator 14, a wattmeter 15 for measuring the power applied to the ultrasonic transducer 13, and the wattmeter 15 has a power supply 9 electrically connected to 15.
  • the object to be cleaned 11 may be a semiconductor wafer, a compact disk, a glass substrate, a flat panel display, a thin disk, or a substrate.
  • the wattmeter 15 is preferably calibrated, for example, more preferably calibrated within the past year. Moreover, the wattmeter 15 is good to be able to be easily attached and detached from the ultrasonic cleaning apparatus.
  • the analog output terminal of the wattmeter 15 is electrically connected to the analog input terminal of the oscillator 14.
  • the oscillator 14 includes an oscillation unit 17, a control unit 18, a detection unit 19, a calculation unit 20, and a recording unit 21.
  • the wattmeter 15 is electrically connected to the calculation unit 20.
  • the calculation unit 20 is electrically connected to the control unit 18, the detection unit 19, and the recording unit 21.
  • the detection unit 19 is electrically connected to the control unit 18, and the control unit 18 is electrically connected to the oscillation unit 17.
  • the oscillation signal (first power) oscillated by the oscillation unit 17 is supplied to the control unit 18, and is controlled by the control unit 18 so that the first power becomes the set power value. 2) is output to the ultrasonic transducer 13.
  • the set power value here means a power value suitable as the power applied to the ultrasonic transducer 13, and this suitable power value depends on the temperature, quality, type and amount of the individual ultrasonic transducer, cleaning liquid. Varies depending on the type of cleaning item.
  • the detection unit 19 detects the second power output to the ultrasonic transducer 13 by the control unit 18.
  • the signal A corresponding to the detected first detected power value is input from the detection unit 19 to the calculation unit 20.
  • the computing unit 20 corrects the first detected power value detected by the detecting unit 19 with the correction value ⁇ , and derives the first corrected power value.
  • the first correction power value is derived by calculation (product) of the signal A and the correction value ⁇ , and corresponds to the power value actually output to the ultrasonic transducer 13.
  • the correction value ⁇ is a value that is adjusted by the power calibrator when the ultrasonic cleaning apparatus is manufactured in a factory or the like, so that an accurate power value can be calculated inside the oscillator, and is recorded in the recording unit 21.
  • the arithmetic unit 20 compares the first corrected power value with the set power value, and when obtaining a comparison result that the first corrected power value deviates from the set power value by a certain value or more, controls the comparison result.
  • the constant value may include 0.
  • the control unit 18 controls and outputs the ultrasonic signal to the ultrasonic transducer 13 using the above comparison result so that the power value of the oscillation signal oscillated by the oscillation unit 17 becomes the set voltage value. Thereby, the power value of the signal supplied to the ultrasonic transducer 13 can be made closer to the set power value.
  • the ultrasonic cleaning apparatus of FIG. 1 has a function of further bringing the power value of the signal supplied to the ultrasonic transducer 13 closer to the set power value.
  • the wattmeter 15 measures the second power output to the ultrasonic transducer 13 by the control unit 18.
  • a signal B (voltage) corresponding to the measured power value thus measured is input from the wattmeter 15 to the computing unit 20.
  • the calculation unit 20 corrects the measured power value measured by the wattmeter 15 with the correction value ⁇ , and derives the second corrected power value.
  • This second correction power value is derived by the calculation (product) of the signal B and the correction value ⁇ , and corresponds to the power value actually output to the ultrasonic transducer 13.
  • the power value measured by the power meter 15 is more accurate than the power value detected by the detection unit 19.
  • the correction value ⁇ is recorded in the recording unit 21.
  • the calculation unit 20 compares the second correction power value with the first correction power value obtained by the detection unit 19 and the calculation unit 20, and the first correction power value is greater than or equal to a certain value from the second correction power value. If it is not, the correction correction value ⁇ ′ obtained by correcting the correction value ⁇ so that the first correction power value becomes the second correction power value is recorded in the recording unit.
  • the correction correction value ⁇ ′ is a correction value that is more accurate than the correction value ⁇ .
  • the correction correction value ⁇ ′ is obtained by correcting the correction value ⁇ so that, for example, the first correction power value and the second correction power value are equal.
  • the constant value may include 0.
  • the calculating unit 20 corrects the first detected power value detected by the detecting unit 19 with the correction value ⁇ , and derives the first corrected power value. It is derived by the calculation (product) of the signal A and the correction value ⁇ , and corresponds to the power value actually output to the ultrasonic transducer 13.
  • the calculation unit 20 detects the second power output to the ultrasonic transducer 13 by the control unit 18 using the detection unit 19, and a signal A corresponding to the detected second detection power value is output from the detection unit 19.
  • a third correction power value is derived by calculation (product) of the input signal A and the correction correction value ⁇ ′, which is input to the calculation unit 20, and the third correction power value is compared with the set power value. When a comparison result is obtained that the third correction power value deviates from the set power value by a certain value or more, this comparison result is output to the control unit 18.
  • the constant value may include 0.
  • the control unit 18 uses the above comparison result to control the power value of the oscillation signal oscillated by the oscillating unit 17 to be a set voltage value, and outputs the result to the ultrasonic transducer 13. Thereby, the power value of the signal supplied to the ultrasonic transducer 13 can be made closer to the set power value.
  • the operation of deriving the correction correction value ⁇ ′ using the wattmeter 15 may be performed automatically, and may be performed every predetermined period. By making the predetermined period extremely short, it is possible to approach the set power value more accurately in almost real time. Further, by using a calibrated calibrator as the wattmeter 15, it is possible to output the ultrasonic transducer 13 with a more accurate power value.
  • the correction correction value is obtained using the wattmeter 15 as described above.
  • the power value detected by the detecting unit 19 can be made a more accurate value.
  • the power control method of the ultrasonic cleaning apparatus will be described in detail with reference to FIG.
  • This power control is performed in the following order (1) to (10).
  • (1) The first power oscillated by the oscillating unit 17 is controlled by the control unit 18 so that the first power is set to the set power value, and is output to the ultrasonic transducer 13.
  • (2) The second electric power controlled by the control unit 18 and output to the ultrasonic transducer 13 is detected by the detection unit 19.
  • the first corrected power value is obtained by correcting the signal A corresponding to the first detected power value detected by the detecting unit 19 with the correction value ⁇ recorded in the recording unit 21 as shown in the following equation (a).
  • PA is derived by the arithmetic unit 20.
  • PA A ⁇ ⁇ (4)
  • the second electric power controlled by the control unit 18 and output to the ultrasonic transducer 13 is measured by the wattmeter 15.
  • the second power output to the ultrasonic transducer 13 is measured by the wattmeter 15 to obtain a first measured power value, and a signal B corresponding to the first measured power value is sent to the computing unit 20.
  • the second correction power value PB is derived by the calculation unit 20 by correcting the signal B as input by the correction value ⁇ recorded in the recording unit 21 according to the following equation (b).
  • (B) PB B ⁇ ⁇ (6)
  • the second correction power value PB is compared with the first correction power value PA by the arithmetic unit 20, and when the first correction power value PA deviates from the second correction power value PB by a certain value or more.
  • the correction correction value ⁇ ′ obtained by automatically correcting the correction value ⁇ so that the first correction power value PA becomes the second correction power value PB is automatically recorded in the recording unit 21.
  • the constant value may include 0.
  • the control unit 18 controls the third power oscillated by the oscillating unit 17 to be a set power value and outputs the set power value to the ultrasonic transducer 13. To do. (8) The fourth power output from the control unit 18 to the ultrasonic transducer 13 is detected by the detection unit 19, and the second detected power value detected by the detection unit 19 is corrected by the correction correction value ⁇ ′. Thus, the third correction power value is derived by the calculation unit 20. (9) When the calculation unit 20 compares the third corrected power value with the set power value, and obtains a comparison result that the third corrected power value deviates from the set power value by a certain value or more, this comparison result Is output to the 18 control unit. (10) The control unit 18 performs control using the above comparison result so that the fifth power oscillated by the oscillation unit 17 becomes the set power value, and outputs the result to the ultrasonic transducer 13.
  • the constant value may include 0.
  • FIG. 2 is a schematic diagram for explaining the power control method of the ultrasonic cleaning apparatus according to one aspect of the present invention.
  • This ultrasonic cleaning apparatus has first to third ultrasonic cleaning apparatuses 31 to 33 and a wattmeter 15.
  • the first ultrasonic cleaning device 31 includes a first cleaning liquid 12a for cleaning the first object to be cleaned (object 1 to be cleaned) 11a, and a first ultrasonic vibrator that applies ultrasonic waves to the first cleaning liquid 12a.
  • the first oscillator 14a has the same configuration as the oscillator 14 shown in FIG.
  • the second ultrasonic cleaning device 32 includes a second cleaning liquid 12b for cleaning the second object to be cleaned (object to be cleaned 2) 11b, and a second ultrasonic vibrator for applying an ultrasonic wave to the second cleaning liquid 12b. (Load 2) 13b and a second oscillator (oscillator 2) 14b electrically connected to the second ultrasonic transducer 13b.
  • the second oscillator 14b has a configuration similar to that of the oscillator 14 shown in FIG.
  • the third ultrasonic cleaning device 33 includes a third cleaning liquid 12c for cleaning the third object to be cleaned (object 3 to be cleaned) 11c, and a third ultrasonic vibrator for applying ultrasonic waves to the third cleaning liquid 12c. (Load 3) 13c and a third oscillator (oscillator 3) 14c electrically connected to the third ultrasonic transducer 13c.
  • the third oscillator 14c has the same configuration as the oscillator 14 shown in FIG.
  • the wattmeter 15 has the same configuration as that of the wattmeter 15 shown in FIG. 1, and the electrical connection with each of the first ultrasonic transducer 13a and the first oscillator 14a is the same as in FIG.
  • the electrical connection between the second ultrasonic transducer 13b and the second oscillator 14b and the wattmeter 15 is also the same as in FIG. 1, and the third ultrasonic transducer 13c and the third oscillator 14c
  • the electrical connection of the wattmeter 15 is the same as in FIG.
  • Only one wattmeter 15 is required for the first to third ultrasonic cleaning apparatuses 31 to 33, and the wattmeter 15 can be easily attached and detached from each of the first to third ultrasonic cleaning apparatuses 31 to 33. It can be done.
  • the first ultrasonic transducer 13a and the first oscillator 14a are electrically connected to the wattmeter 15, and the first power is set to the first by the same method as the oscillator 14 shown in FIG.
  • the electric power value is controlled by the control unit 18 and output to the first ultrasonic transducer 13a.
  • the second power output to the first ultrasonic transducer 13a is detected by the detector 19 in the same manner as the oscillator 14 shown in FIG. 1, and the detected first detected power value is recorded.
  • the first correction power value is derived by the calculation unit 20 by correcting with the correction value ⁇ recorded in the unit 21.
  • the second power output to the first ultrasonic transducer 13a is measured by the wattmeter 15 by the same method as the oscillator 14 shown in FIG. 1, and the measured first measured power value is recorded.
  • the second correction power value is derived by the calculation unit 20 by correcting with the correction value ⁇ recorded in the unit 21.
  • the second correction power value is compared with the first correction power value by the arithmetic unit 20 by the same method as that of the oscillator 14 shown in FIG. 1, and the first correction power value is calculated from the second correction power value. If it is outside the predetermined value, the corrected correction value ⁇ ′ obtained by correcting the first correction value so that the first correction power value becomes the second correction power value is recorded in the recording unit 21.
  • the wattmeter 15 is removed from the first ultrasonic cleaning device 31, and the wattmeter 15 is electrically connected to the second ultrasonic transducer 13b and the second oscillator 14b of the second ultrasonic cleaning device 32, respectively.
  • the second ultrasonic vibration is controlled by the control unit 18 so that the third power oscillated by the oscillation unit 17 becomes the second set power value.
  • the fourth power output to the second ultrasonic transducer 13b is detected by the detection unit 19 in the same manner as the oscillator 14 shown in FIG. 1, and the detected second detected power value is recorded.
  • the third correction power value is derived by the calculation unit 20 by correcting with the correction value ⁇ recorded in the unit 21.
  • the fourth power output to the second ultrasonic transducer 13b is measured by the wattmeter 15 by the same method as the oscillator 14 shown in FIG. 1, and the measured second measured power value is recorded.
  • the fourth correction power value is derived by the calculation unit 20 by correcting with the correction value ⁇ recorded in the unit 21.
  • the fourth correction power value is compared with the third correction power value by the arithmetic unit 20 by the same method as that of the oscillator 14 shown in FIG. 1, and the third correction power value is calculated from the fourth correction power value.
  • the corrected correction value ⁇ ′ obtained by correcting the third correction value so that the third correction power value becomes the fourth correction power value is recorded in the recording unit 21.
  • the wattmeter 15 is removed from the second ultrasonic cleaning device 32, and the wattmeter 15 is electrically connected to the third ultrasonic transducer 13c and the third oscillator 14c of the third ultrasonic cleaning device 33, respectively. Connect to. (11) By the same method as the oscillator 14 shown in FIG. 1, the third ultrasonic vibration is controlled by the control unit 18 so that the fifth power oscillated by the oscillation unit 17 becomes the third set power value. Output to the child 13c. (12) The sixth power output to the third ultrasonic transducer 13c is detected by the detector 19 in the same manner as the oscillator 14 shown in FIG. 1, and the detected third detected power value is recorded.
  • the fifth correction power value is derived by the calculation unit 20 by correcting with the correction value ⁇ recorded in the unit 21.
  • the sixth power output to the third ultrasonic transducer 13c is measured by the wattmeter 15 by the same method as the oscillator 14 shown in FIG. 1, and the measured third measured power value is recorded.
  • the sixth correction power value is derived by the calculation unit 20 by correcting with the correction value ⁇ recorded in the unit 21.
  • the sixth correction power value is compared with the fifth correction power value by the arithmetic unit 20 by the same method as that of the oscillator 14 shown in FIG. 1, and the fifth correction power value is calculated from the sixth correction power value.
  • the corrected correction value ⁇ ′ obtained by correcting the fifth correction value so that the fifth correction power value becomes the sixth correction power value is recorded in the recording unit 21.
  • the power control of each of the first to third ultrasonic cleaning apparatuses 31 to 33 can be performed by one wattmeter 15 by the work of replacing one wattmeter 15.
  • the power control of the first to third ultrasonic cleaning devices 31 to 33 can be automatically adjusted based on the same standard.
  • one aspect of the present invention is applied to the power control method of the ultrasonic cleaning apparatus having the first to third ultrasonic cleaning apparatuses 31 to 33.
  • two or four or more One embodiment of the present invention can also be applied to a power control method for an ultrasonic cleaning apparatus having the ultrasonic cleaning apparatus.
  • FIG. 3 is a schematic diagram illustrating a configuration of an ultrasonic cleaning apparatus according to an aspect of the present invention.
  • This ultrasonic cleaning apparatus has first to third ultrasonic cleaning apparatuses 31 to 33 and an automatic switching wattmeter 34.
  • the automatic switching wattmeter 34 includes a wattmeter 15, a first switch 35, and a second switch 36.
  • the wattmeter 15 has the same configuration as the wattmeter 15 shown in FIG.
  • Each of the first to third ultrasonic cleaning apparatuses 31 to 33 has the same configuration as each of the first to third ultrasonic cleaning apparatuses 31 to 33 shown in FIG. That is, the first to third objects to be cleaned 11a to 11c, the first to third cleaning liquids 12a to 12c, the first to third ultrasonic transducers 13a to 13c, and the first to third oscillators 14a to 14c. Is the same as that shown in FIG.
  • the wattmeter 15 is a power applied to the first ultrasonic transducer (load 1) 13a, a power applied to the second ultrasonic transducer (load 2) 13b, or a third ultrasonic vibration.
  • the child (load 3) 13c is measured.
  • the first to third ultrasonic transducers 13 a to 13 c are electrically connected to the wattmeter 15 via the first switch 35.
  • the first to third oscillators (oscillator 1, oscillator 2, oscillator 3) 14a to 14c are electrically connected to the wattmeter 15 through the second switch.
  • the calculation unit 20 of the first oscillator 14a is electrically connected to the detection unit 19, the control unit 18, and the recording unit 21 of the first oscillator 14a, and is electrically connected to the wattmeter 15 via the second switch 36. Connected.
  • the computing unit 20 of the first oscillator 14 a derives a first corrected power value obtained by correcting the first detected power value detected by the detecting unit 19 with the correction value ⁇ , and the first corrected power value measured by the wattmeter 15 is derived.
  • a second corrected power value obtained by correcting the measured power value of the first corrected power value by the correction value ⁇ is derived, the second corrected power value is compared with the first corrected power value, and the first corrected power value is the second corrected power value.
  • the recording unit 21 has a function of recording a corrected correction value ⁇ ′ obtained by correcting the correction value ⁇ so that the first correction power value becomes the second correction power value.
  • the signal A corresponding to the first detected power value detected by the detection unit 19 of the first oscillator 14a is input to the calculation unit 20, and the first correction power value is calculated from the signal A and the correction value ⁇ . Derived by (product). Further, the signal B corresponding to the first measured power value measured by the wattmeter 15 is input to the calculation unit 20, and the second corrected power value is derived by the calculation (product) of the signal B and the correction value ⁇ .
  • the corrected correction value ⁇ ′ is obtained by correcting the correction value ⁇ so that the first correction power value and the second correction power value are equal.
  • the calculation unit 20 of the second oscillator 14b is electrically connected to the detection unit 19, the control unit 18, and the recording unit 21 of the second oscillator 14b, and is electrically connected to the wattmeter 15 via the second switch 36. Connected.
  • the computing unit 20 of the second oscillator 14 b derives a fourth corrected power value obtained by correcting the third detected power value detected by the detecting unit 19 with the correction value ⁇ , and the second corrected power value measured by the wattmeter 15 is derived.
  • a fifth corrected power value obtained by correcting the measured power value of the second corrected power value by the correction value ⁇ is derived, the fifth corrected power value is compared with the fourth corrected power value, and the fourth corrected power value is the fifth corrected power value.
  • the recording unit 21 has a function of recording the corrected correction value ⁇ ′ obtained by correcting the correction value ⁇ so that the fourth correction power value becomes the fifth correction power value.
  • the signal A corresponding to the third detected power value detected by the detection unit 19 of the second oscillator 14b is input to the calculation unit 20, and the fourth correction power value is calculated from the signal A and the correction value ⁇ . Derived by (product). Further, the signal B corresponding to the second measured power value measured by the wattmeter 15 is input to the calculation unit 20, and the fifth corrected power value is derived by the calculation (product) of the signal B and the correction value ⁇ .
  • the corrected correction value ⁇ ′ is obtained by correcting the correction value ⁇ so that the fourth correction power value and the fifth correction power value are equal.
  • the arithmetic unit 20 of the third oscillator 14c is electrically connected to the detection unit 19, the control unit 18, and the recording unit 21 of the third oscillator 14c, and is electrically connected to the wattmeter 15 via the second switch 36. Connected.
  • the computing unit 20 of the third oscillator 14 c derives a seventh corrected power value obtained by correcting the fifth detected power value detected by the detecting unit 19 with the correction value ⁇ , and the third corrected power value measured by the wattmeter 15 is derived.
  • An eighth corrected power value obtained by correcting the measured power value of the first corrected power value by the correction value ⁇ is derived, the eighth corrected power value is compared with the seventh corrected power value, and the seventh corrected power value is the eighth corrected power value.
  • the recording unit 21 has a function of recording the corrected correction value ⁇ ′ obtained by correcting the correction value ⁇ so that the seventh correction power value becomes the eighth correction power value.
  • the signal A corresponding to the fifth detected power value detected by the detection unit 19 of the third oscillator 14c is input to the calculation unit 20, and the seventh correction power value is calculated from the signal A and the correction value ⁇ . Derived by (product). Further, the signal B corresponding to the third measured power value measured by the wattmeter 15 is input to the calculation unit 20, and the eighth corrected power value is derived by the calculation (product) of the signal B and the correction value ⁇ .
  • the corrected correction value ⁇ ′ is obtained by correcting the correction value ⁇ so that the seventh correction power value and the eighth correction power value are equal.
  • the calculation unit 20 of the first oscillator 14a derives a third correction power value obtained by correcting the second detection power value detected by the detection unit 19 of the first oscillator 14a with the correction correction value ⁇ ′. 3 is compared with the first set power value, and when the first comparison result that the third corrected power value deviates from the first set power value by a certain value or more is obtained, The comparison result is output to the control unit 18.
  • a signal A corresponding to the second detected power value detected by the detection unit 19 of the first oscillator 14a is input to the calculation unit 20, and the third correction power value is the signal A and the corrected correction value ⁇ ′. It is derived by the operation (product) of
  • the control unit 18 of the first oscillator 14a performs control using the first comparison result so that the first power oscillated by the oscillation unit 17 of the first oscillator 14a becomes the first set voltage value. Output to the first ultrasonic transducer 13a.
  • the arithmetic unit 20 of the second oscillator 14b derives a sixth correction power value obtained by correcting the fourth detection power value detected by the detection unit 19 of the second oscillator 14b with the correction correction value ⁇ ′. 6 is compared with the second set power value, and when the second comparison result that the sixth corrected power value deviates from the second set power value by a certain value or more is obtained, The comparison result is output to the control unit 18.
  • the signal A corresponding to the fourth detected power value detected by the detection unit 19 of the second oscillator 14b is input to the calculation unit 20, and the sixth correction power value is the signal A and the corrected correction value ⁇ ′. It is derived by the operation (product) of
  • the control unit 18 of the second oscillator 14b performs control using the second comparison result so that the third power oscillated by the oscillation unit 17 of the second oscillator 14b becomes the second set voltage value. Output to the second ultrasonic transducer 13b.
  • the arithmetic unit 20 of the third oscillator 14c derives a ninth correction power value obtained by correcting the sixth detection power value detected by the detection unit 19 of the third oscillator 14c with the correction correction value ⁇ ′. If the third correction power value is compared with the third set power value, and the third comparison result that the ninth correction power value deviates from the third set power value by a certain value or more is obtained, The comparison result is output to the control unit 18.
  • the signal A corresponding to the sixth detected power value detected by the detection unit 19 of the third oscillator 14c is input to the calculation unit 20, and the ninth correction power value is the signal A and the corrected correction value ⁇ ′. It is derived by the operation (product) of
  • the control unit 18 of the third oscillator 14c performs control while using the third comparison result so that the third power oscillated by the oscillation unit 17 of the third oscillator 14c becomes the third set voltage value. Output to the third ultrasonic transducer 13c.
  • First and second switches 35 and 36 are connected to electrically connect the first ultrasonic transducer 13a and the first oscillator 14a of the first ultrasonic cleaning device 31 to the wattmeter 15 respectively. Switch. In other words, the first ultrasonic transducer 13a and the wattmeter 15 are electrically connected by the first switch 35, and the wattmeter 15 and the first oscillator 14a are electrically connected by the second switch 36. . (5) First and second switches 35 and 36 are connected to electrically connect the second ultrasonic transducer 13b and the second oscillator 14b of the second ultrasonic cleaning device 32 to the wattmeter 15 respectively. Switch.
  • the second ultrasonic transducer 13b and the wattmeter 15 are electrically connected by the first switch 35, and the wattmeter 15 and the second oscillator 14b are electrically connected by the second switch 36. . (10)
  • the first and second switches 35 and 36 are connected so that the wattmeter 15 is electrically connected to the third ultrasonic transducer 13c and the third oscillator 14c of the third ultrasonic cleaning device 33, respectively.
  • Switch. In other words, the first ultrasonic transducer 13c and the wattmeter 15 are electrically connected by the first switch 35, and the wattmeter 15 and the third oscillator 14c are electrically connected by the second switch 36. .
  • connection with the wattmeter 15 can be automatically switched in the order of the first ultrasonic cleaning device 31 to the third ultrasonic cleaning device 33.
  • one aspect of the present invention is applied to the ultrasonic cleaning apparatus having the first to third ultrasonic cleaning apparatuses 31 to 33.
  • two or four or more ultrasonic cleaning apparatuses are used. It is also possible to apply one embodiment of the present invention to an ultrasonic cleaning apparatus having the first to third ultrasonic cleaning apparatuses 31 to 33.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

【課題】電力管理の信頼性をより高めることができる超音波洗浄装置を提供する。 【解決手段】超音波洗浄装置は、被洗浄物(11)、洗浄液(12)、超音波振動子(13)、発振器(14)、電源部(16)及び電力計(15)を具備し、発振器(14)は、発振部(17)と、発振部(17)によって発振された第1の電力が設定電力値になるように制御して超音波振動子(13)へ出力する制御部(18)と、制御部(18)によって超音波振動子(13)へ出力されている第2の電力を検出する検出部(19)と、演算部(20)を有し、演算部(20)は、第1の検出電力値を補正値αによって補正した第1の補正電力値を導出し、電力計(15)によって測定された測定電力値を補正値βによって補正した第2の補正電力値を導出し、第1の補正電力値が第2の補正電力値から一定値以上外れている場合は、第1の補正電力値が第2の補正電力値になるように補正値αを修正した修正補正値α'を記録部(21)に記録する機能を有する。

Description

超音波洗浄装置及びその電力制御方法
 本発明は、被洗浄物に超音波洗浄を行う超音波洗浄装置及びその電力制御方法等に関する。
 従来の超音波洗浄装置は、被洗浄物を洗浄する洗浄液に超音波を与える超音波振動子、発振器及び電源部を有しており、この発振器は発振部、検出部及び演算部を有している。超音波振動子には発振器が電気的に接続されており、発振器には電源部が電気的に接続されている。この発振部によって発振された電力が超音波振動子へ出力されるようになっている。この出力されている電力は検出部によって検出され、この検出された電力値が設定電力値(即ち超音波振動子に印加される電力として適した電力値)と外れているかが演算部によって比較される。そして、超音波振動子へ出力される電力値が設定電力値と外れている場合は、設定電力値になるように制御した電力が超音波振動子へ出力される(例えば特許文献1参照)。
 超音波振動子に実際に印加される電力を設定電力値にするには、超音波振動子に印加される電力を検出部によって正確に検出する必要がある。この検出部は、工場等で超音波洗浄装置を製造した際に電力校正器によって調整されることで、電力値を正確に検出できるようにしている。
 上記のように従来の超音波洗浄装置では、超音波振動子に印加される電力値を検出部によって検出し、その電力値と設定電力値を比較し、超音波振動子に印加される電力値が設定電力値になるように制御する。これにより、環境条件(例えば洗浄液の温度、質、種類や被洗浄物の種類)等によって超音波振動子に印加される電力が変化しても、その電力値を設定電力値に合わせることができ、その結果、超音波洗浄の効率低下を抑制することができる。
 しかしながら、発振器内部の検出部には、電力計として構成された機器が設けられているわけではないため、その検出部による電力管理は簡易的なものになる。また、超音波洗浄装置において超音波振動子を交換した場合は、検出部によって検出される電力値が正確な値からずれる場合も考えられる。
特開2000-49619号公報
 本発明の一態様は、電力管理の信頼性をより高めることができる超音波洗浄装置及びその電力制御方法を提供することを課題とする。
 本発明の一態様は、被洗浄物を洗浄する洗浄液と、前記洗浄液に超音波を与える超音波振動子と、前記超音波振動子に電気的に接続された発振器と、前記超音波振動子に印加されている電力を測定する電力計と、を具備し、前記発振器は、発振部と、前記発振部によって発振された第1の電力が設定電力値になるように制御して前記超音波振動子へ出力する制御部と、前記制御部によって前記超音波振動子へ出力されている第2の電力を検出する検出部と、第1の補正値及び第2の補正値を記録する記録部と、前記検出部、前記制御部、前記記録部及び前記電力計それぞれに電気的に接続された演算部と、を有し、前記演算部は、前記検出部によって検出された第1の検出電力値を前記第1の補正値によって補正した第1の補正電力値を導出し、前記電力計によって測定された測定電力値を前記第2の補正値によって補正した第2の補正電力値を導出し、前記第2の補正電力値を前記第1の補正電力値と比較し、前記第1の補正電力値が前記第2の補正電力値から一定値以上外れている場合は、前記第1の補正電力値が前記第2の補正電力値になるように前記第1の補正値を修正した第1の修正補正値を前記記録部に記録する機能を有することを特徴とする超音波洗浄装置である。
 本発明の一態様は、第1の超音波洗浄装置、第2の超音波洗浄装置及び電力計を有する超音波洗浄装置であって、前記第1の超音波洗浄装置は、第1の被洗浄物を洗浄する第1の洗浄液と、前記第1の洗浄液に超音波を与える第1の超音波振動子と、前記第1の超音波振動子に電気的に接続された第1の発振器と、を有し、前記第2の超音波洗浄装置は、第2の被洗浄物を洗浄する第2の洗浄液と、前記第2の洗浄液に超音波を与える第2の超音波振動子と、前記第2の超音波振動子に電気的に接続された第2の発振器と、を有し、前記電力計は、前記第1の超音波振動子に印加されている電力または前記第2の超音波振動子に印加されている電力を測定するものであり、前記第1の超音波振動子及び前記第2の超音波振動子は第1のスイッチを介して前記電力計に電気的に接続されており、前記第1の発振器及び前記第2の発振器は第2のスイッチを介して前記電力計に電気的に接続されており、前記第1の発振器は、第1の発振部と、前記第1の発振部によって発振された第1の電力が第1の設定電力値になるように制御して前記第1の超音波振動子へ出力する第1の制御部と、前記第1の制御部によって前記第1の超音波振動子へ出力されている第2の電力を検出する第1の検出部と、第1の補正値及び第2の補正値を記録する第1の記録部と、前記第1の検出部、前記第1の制御部、前記第1の記録部及び前記電力計それぞれに電気的に接続され、前記電力計に前記第2のスイッチを介して電気的に接続された第1の演算部と、を有し、前記第1の演算部は、前記第1の検出部によって検出された第1の検出電力値を前記第1の補正値によって補正した第1の補正電力値を導出し、前記電力計によって測定された第1の測定電力値を前記第2の補正値によって補正した第2の補正電力値を導出し、前記第2の補正電力値を前記第1の補正電力値と比較し、前記第1の補正電力値が前記第2の補正電力値から一定値以上外れている場合は、前記第1の補正電力値が前記第2の補正電力値になるように前記第1の補正値を修正した第1の修正補正値を前記記録部に記録する機能を有し、前記第2の発振器は、第2の発振部と、前記第2の発振部によって発振された第3の電力が第2の設定電力値になるように制御して前記第2の超音波振動子へ出力する第2の制御部と、前記第2の制御部によって前記第2の超音波振動子へ出力されている第4の電力を検出する第2の検出部と、第3の補正値及び第4の補正値を記録する第2の記録部と、前記第2の検出部、前記第2の制御部、前記第2の記録部及び前記電力計それぞれに電気的に接続され、前記電力計に前記第2のスイッチを介して電気的に接続された第2の演算部と、を有し、前記第2の演算部は、前記第2の検出部によって検出された第3の検出電力値を前記第3の補正値によって補正した第4の補正電力値を導出し、前記電力計によって測定された第2の測定電力値を前記第4の補正値によって補正した第5の補正電力値を導出し、前記第5の補正電力値を前記第4の補正電力値と比較し、前記第4の補正電力値が前記第5の補正電力値から一定値以上外れている場合は、前記第4の補正電力値が前記第5の補正電力値になるように前記第3の補正値を修正した第2の修正補正値を前記記録部に記録する機能を有することを特徴とする超音波洗浄装置である。
 本発明の一態様は、超音波洗浄装置の電力制御方法において、前記超音波洗浄装置は、被洗浄物を洗浄する洗浄液と、前記洗浄液に超音波を与える超音波振動子と、前記超音波振動子に電気的に接続された発振器と、前記発振器及び前記超音波振動子に電気的に接続された電力計と、を有し、前記発振器は、発振部と、前記発振部に電気的に接続された制御部と、前記制御部に電気的に接続された検出部と、前記検出部及び前記制御部それぞれに電気的に接続された演算部と、前記演算部に電気的に接続された記録部と、を有し、前記電力制御方法は、前記発振部によって発振された第1の電力が設定電力値になるように前記制御部によって制御して前記超音波振動子へ出力し、前記超音波振動子へ出力した第2の電力を前記検出部によって検出し、前記検出部によって検出した第1の検出電力値を前記記録部に記録された第1の補正値によって補正することにより第1の補正電力値を前記演算部によって導出し、前記超音波振動子へ出力した前記第2の電力を前記電力計によって測定し、前記電力計によって測定した第1の測定電力値を前記記録部に記録された第2の補正値によって補正することにより第2の補正電力値を前記演算部によって導出し、前記演算部によって前記第2の補正電力値を前記第1の補正電力値と比較し、前記第1の補正電力値が前記第2の補正電力値から一定値以上外れている場合は、前記第1の補正電力値が前記第2の補正電力値になるように前記第1の補正値を修正した第1の修正補正値を前記記録部に記録することを特徴とする超音波洗浄装置の電力制御方法である。
 本発明の一態様によれば、電力管理の信頼性をより高めることができる超音波洗浄装置及びその電力制御方法を提供できる。
本発明の一態様に係る超音波洗浄装置の構成を示す概略図である。 本発明の一態様に係る超音波洗浄装置の電力制御方法を説明するための概略図である。 本発明の一態様に係る超音波洗浄装置の構成を示す概略図である。
 以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 (第1の実施形態)
 図1は、本発明の一態様に係る超音波洗浄装置の構成を示す概略図である。
 超音波洗浄装置は、被洗浄物11を洗浄する洗浄液12と、この洗浄液12が入れられた洗浄槽10と、洗浄液12に超音波を与える超音波振動子(負荷)13と、この超音波振動子13に電気的に接続された発振器14と、この発振器14に電気的に接続された電源部16と、超音波振動子13に印加されている電力を測定する電力計15と、この電力計15に電気的に接続された電源9を有している。なお、被洗浄物11は、半導体ウェーハ、コンパクトディスク、ガラス基板、フラットパネルディスプレイ、薄肉ディスク又は基板などであってもよい。
 電力計15は、校正されたものであることが好ましく、例えば過去1年以内に校正されたものであることがより好ましい。また、電力計15は、超音波洗浄装置から容易に取り付け、取り外しが行えるようになっているとよい。
 電力計15のアナログ出力端子は発振器14のアナログ入力端子に電気的に接続されている。発振器14は、発振部17、制御部18、検出部19、演算部20及び記録部21を有している。電力計15は演算部20に電気的に接続されている。
 演算部20は、制御部18、検出部19及び記録部21に電気的に接続されている。検出部19は制御部18に電気的に接続されており、制御部18は発振部17に電気的に接続されている。
 発振部17によって発振された発振信号(第1の電力)が制御部18に供給され、第1の電力が設定電力値になるように制御部18によって制御され、その制御された制御信号(第2の電力)が超音波振動子13へ出力される。ここでの設定電力値は、超音波振動子13に印加される電力として適した電力値を意味し、この適した電力値は、個々の超音波振動子、洗浄液の温度、質、種類や被洗浄物の種類などによって異なる。
 検出部19は、制御部18によって超音波振動子13へ出力されている第2の電力を検出する。この検出した第1の検出電力値に対応する信号Aは検出部19から演算部20へ入力される。
 演算部20は、検出部19によって検出した第1の検出電力値を補正値αによって補正し、第1の補正電力値を導出する。この第1の補正電力値は、信号Aと補正値αの演算(積)によって導出され、超音波振動子13へ実際に出力されている電力値に相当する。
 補正値αは、工場等で超音波洗浄装置を製造した際に電力校正器によって調整され、正確な電力値を発振器内部で演算できるようにした値であり、記録部21に記録されている。
 演算部20は、第1の補正電力値を設定電力値と比較し、第1の補正電力値が設定電力値から一定値以上外れているという比較結果を得た場合は、この比較結果を制御部18に出力する。なお、一定値は0を含んでもよい。
 制御部18は、発振部17によって発振された発振信号の電力値が設定電圧値になるように上記の比較結果を利用しながら制御して超音波振動子13へ出力する。これにより、超音波振動子13へ供給される信号の電力値が設定電力値により近づけることができる。
 図1の超音波洗浄装置には、超音波振動子13へ供給される信号の電力値をさらに設定電力値に近づける機能がある。
 電力計15は、制御部18によって超音波振動子13へ出力されている第2の電力を測定する。この測定した測定電力値に対応する信号B(電圧)は電力計15から演算部20へ入力される。
 演算部20は、電力計15によって測定した測定電力値を補正値βによって補正し、第2の補正電力値を導出する。この第2の補正電力値は、信号Bと補正値βの演算(積)によって導出され、超音波振動子13へ実際に出力されている電力値に相当する。ただし、電力計15は検出部19に比べて電力測定の信頼性が高いため、電力計15によって測定された電力値は、検出部19によって検出された電力値に比べて正確である。なお、補正値βは、記録部21に記録されている。
 演算部20は、第2の補正電力値を検出部19及び演算部20によって求められた第1の補正電力値と比較し、第1の補正電力値が第2の補正電力値から一定値以上外れている場合は、第1の補正電力値が第2の補正電力値になるように補正値αを修正した修正補正値α'を記録部に記録する。修正補正値α'は、補正値αに比べてより正確な補正値である。修正補正値α'は、例えば第1の補正電力値と第2の補正電力値が等しくなるように補正値αを修正したものである。なお、一定値は0を含んでもよい。
 演算部20は、検出部19によって検出した第1の検出電力値を補正値αによって補正し、第1の補正電力値を導出する。信号Aと補正値αの演算(積)によって導出され、超音波振動子13へ実際に出力されている電力値に相当する。
 演算部20は、制御部18によって超音波振動子13へ出力されている第2の電力を検出部19によって検出し、この検出した第2の検出電力値に対応する信号Aが検出部19から演算部20へ入力され、この入力された信号Aと修正補正値α'の演算(積)によって第3の補正電力値を導出し、この第3の補正電力値を設定電力値と比較し、第3の補正電力値が設定電力値から一定値以上外れているという比較結果を得た場合は、この比較結果を制御部18に出力する。なお、一定値は0を含んでもよい。
 制御部18は、発振部17によって発振された発振信号の電力値が設定電圧値になるように上記の比較結果を利用しながら制御して超音波振動子13へ出力する。これにより、超音波振動子13へ供給される信号の電力値を設定電力値にさらに近づけることができる。
 上記のように電力計15を用いて修正補正値α'を導出する作業は、自動的に行われるとよく、所定期間毎に行うとよい。所定期間を極端に短くすることにより、ほぼリアルタイムでより正確に設定電力値に近づけることができる。また、電力計15として校正された校正器を使用することにより、より正確な電力値で超音波振動子13へ出力することができる。
 また、超音波洗浄装置において超音波振動子13を交換した場合に、検出部19によって検出される電力値が正確な値からずれたとしても、上記のように電力計15を用いて修正補正値α'を導出し、この修正補正値α'を記録部21に記録することにより、検出部19によって検出される電力値をより正確な値とすることができる。
 次に、超音波洗浄装置の電力制御方法について図1を参照しつつ詳細に説明する。この電力制御は、以下の(1)~(10)の順に行われる。
 (1)発振部17によって発振された第1の電力が設定電力値になるように制御部18によって制御して超音波振動子13へ出力する。
 (2)制御部18によって制御して超音波振動子13へ出力した第2の電力を検出部19によって検出する。
 (3)検出部19によって検出した第1の検出電力値に対応する信号Aを記録部21に記録された補正値αによって下記式(a)のように補正することにより第1の補正電力値PAを演算部20によって導出する。
  (a)PA=A×α
 (4)制御部18によって制御して超音波振動子13へ出力した第2の電力を電力計15によって測定する。
 (5) 超音波振動子13へ出力した第2の電力を電力計15によって測定し、第1の測定電力値が得られ、この第1の測定電力値に対応する信号Bが演算部20に入力され、信号Bを記録部21に記録された補正値βによって下記式(b)のように補正することにより第2の補正電力値PBを演算部20によって導出する。
  (b)PB=B×β
 (6)演算部20によって第2の補正電力値PBを第1の補正電力値PAと比較し、第1の補正電力値PAが第2の補正電力値PBから一定値以上外れている場合は、下記式(c)のように第1の補正電力値PAが第2の補正電力値PBになるように補正値αを自動修正した修正補正値α'を記録部21に自動的に記録する。なお、一定値は0を含んでもよい。
  (c)自動調整アルゴリズム PB=PA=A×α'
 (7)修正補正値α'を記録部21に記録した後に、発振部17によって発振された第3の電力が設定電力値になるように制御部18によって制御して超音波振動子13へ出力する。
 (8)制御部18から超音波振動子13へ出力した第4の電力を検出部19によって検出し、この検出部19によって検出した第2の検出電力値を修正補正値α'によって補正することにより第3の補正電力値を演算部20によって導出する。
 (9)演算部20によって第3の補正電力値を設定電力値と比較し、第3の補正電力値が設定電力値から一定値以上外れているという比較結果を得た場合は、この比較結果を18制御部に出力する。
 (10)発振部17によって発振された第5の電力が設定電力値になるように制御部18によって上記の比較結果を利用しながら制御して超音波振動子13へ出力する。なお、一定値は0を含んでもよい。
 (第2の実施形態)
 図2は、本発明の一態様に係る超音波洗浄装置の電力制御方法を説明するための概略図である。
 この超音波洗浄装置は、第1~第3の超音波洗浄装置31~33及び電力計15を有している。
 第1の超音波洗浄装置31は、第1の被洗浄物(被洗浄物1)11aを洗浄する第1の洗浄液12aと、第1の洗浄液12aに超音波を与える第1の超音波振動子(負荷1)13aと、第1の超音波振動子13aに電気的に接続された第1の発振器(発振器1)14aを有する。第1の発振器14aは図1に示す発振器14と同様の構成を有している。
 第2の超音波洗浄装置32は、第2の被洗浄物(被洗浄物2)11bを洗浄する第2の洗浄液12bと、第2の洗浄液12bに超音波を与える第2の超音波振動子(負荷2)13bと、第2の超音波振動子13bに電気的に接続された第2の発振器(発振器2)14bを有する。第2の発振器14bは図1に示す発振器14と同様の構成を有している。
 第3の超音波洗浄装置33は、第3の被洗浄物(被洗浄物3)11cを洗浄する第3の洗浄液12cと、第3の洗浄液12cに超音波を与える第3の超音波振動子(負荷3)13cと、第3の超音波振動子13cに電気的に接続された第3の発振器(発振器3)14cを有する。第3の発振器14cは図1に示す発振器14と同様の構成を有している。
 電力計15は、図1に示す電力計15と同様の構成を有し、且つ第1の超音波振動子13a及び第1の発振器14aそれぞれとの電気的接続についても図1と同様である。また、第2の超音波振動子13b及び第2の発振器14bそれぞれと電力計15の電気的接続についても図1と同様であり、第3の超音波振動子13c及び第3の発振器14cそれぞれと電力計15の電気的接続についても図1と同様である。
 第1乃至第3の超音波洗浄装置31~33に対して電力計15が一つあればよく、第1乃至第3の超音波洗浄装置31~33それぞれにおいて電力計15を容易に取り付け、取り外しできるようになっている。
 次に、上記の超音波洗浄装置の電力制御方法について説明する。この電力制御は、以下の(1)~(14)の順に行われる。
 (1)第1の超音波振動子13a及び第1の発振器14aそれぞれと電力計15を電気的に接続させ、図1に示す発振器14と同様の方法により、第1の電力が第1の設定電力値になるように制御部18によって制御して第1の超音波振動子13aへ出力する。
 (2)第1の超音波振動子13aへ出力した第2の電力を、図1に示す発振器14と同様の方法により、検出部19によって検出し、この検出した第1の検出電力値を記録部21に記録された補正値αによって補正することにより第1の補正電力値を演算部20によって導出する。
 (3)第1の超音波振動子13aへ出力した第2の電力を、図1に示す発振器14と同様の方法により、電力計15によって測定し、その測定した第1の測定電力値を記録部21に記録された補正値βによって補正することにより第2の補正電力値を演算部20によって導出する。
 (4) 図1に示す発振器14と同様の方法により、演算部20によって第2の補正電力値を第1の補正電力値と比較し、第1の補正電力値が第2の補正電力値から一定値以上外れている場合は、第1の補正電力値が第2の補正電力値になるように第1の補正値を修正した修正補正値α'を記録部21に記録する。
 (5)第1の超音波洗浄装置31から電力計15を取り外し、この電力計15を第2の超音波洗浄装置32の第2の超音波振動子13b及び第2の発振器14bそれぞれと電気的に接続させる。
 (6) 図1に示す発振器14と同様の方法により、発振部17によって発振された第3の電力が第2の設定電力値になるように制御部18によって制御して第2の超音波振動子13bへ出力する。
 (7)第2の超音波振動子13bへ出力した第4の電力を、図1に示す発振器14と同様の方法により、検出部19によって検出し、この検出した第2の検出電力値を記録部21に記録された補正値αによって補正することにより第3の補正電力値を演算部20によって導出する。
 (8)第2の超音波振動子13bへ出力した第4の電力を、図1に示す発振器14と同様の方法により、電力計15によって測定し、その測定した第2の測定電力値を記録部21に記録された補正値βによって補正することにより第4の補正電力値を演算部20によって導出する。
 (9) 図1に示す発振器14と同様の方法により、演算部20によって第4の補正電力値を第3の補正電力値と比較し、第3の補正電力値が第4の補正電力値から一定値以上外れている場合は、第3の補正電力値が第4の補正電力値になるように第3の補正値を修正した修正補正値α'を記録部21に記録する。
 (10)第2の超音波洗浄装置32から電力計15を取り外し、この電力計15を第3の超音波洗浄装置33の第3の超音波振動子13c及び第3の発振器14cそれぞれと電気的に接続させる。
 (11) 図1に示す発振器14と同様の方法により、発振部17によって発振された第5の電力が第3の設定電力値になるように制御部18によって制御して第3の超音波振動子13cへ出力する。
 (12)第3の超音波振動子13cへ出力した第6の電力を、図1に示す発振器14と同様の方法により、検出部19によって検出し、この検出した第3の検出電力値を記録部21に記録された補正値αによって補正することにより第5の補正電力値を演算部20によって導出する。
 (13)第3の超音波振動子13cへ出力した第6の電力を、図1に示す発振器14と同様の方法により、電力計15によって測定し、その測定した第3の測定電力値を記録部21に記録された補正値βによって補正することにより第6の補正電力値を演算部20によって導出する。
 (14) 図1に示す発振器14と同様の方法により、演算部20によって第6の補正電力値を第5の補正電力値と比較し、第5の補正電力値が第6の補正電力値から一定値以上外れている場合は、第5の補正電力値が第6の補正電力値になるように第5の補正値を修正した修正補正値α'を記録部21に記録する。
 本実施形態によれば、第1の実施形態と同様の効果を得ることができる。
 また、本実施形態によれば、一つの電力計15を付け替える作業により、一つの電力計15によって第1~第3の超音波洗浄装置31~33それぞれの電力制御を行うことができる。その結果、第1~第3の超音波洗浄装置31~33の電力制御を同一基準で自動調整することができる。
 なお、本実施形態では、第1~第3の超音波洗浄装置31~33を有する超音波洗浄装置の電力制御方法に本発明の一態様を適用しているが、2つまたは4つ以上の超音波洗浄装置を有する超音波洗浄装置の電力制御方法に本発明の一態様を適用することも可能である。
 また、上記の電力制御を行う前に、電力計15を校正しておくことが好ましく、例えば過去1年以内に電力計15を校正することが好ましい。
 (第3の実施形態)
 図3は、本発明の一態様に係る超音波洗浄装置の構成を示す概略図である。
 この超音波洗浄装置は、第1~第3の超音波洗浄装置31~33及び自動切換電力計34を有している。この自動切換電力計34は、電力計15、第1のスイッチ35及び第2のスイッチ36を有している。電力計15は、図1に示す電力計15と同様の構成を有する。
 第1~第3の超音波洗浄装置31~33それぞれは、図2に示す第1~第3の超音波洗浄装置31~33それぞれと同様の構成を有する。つまり、第1~第3の被洗浄物11a~11c、第1~第3の洗浄液12a~12c、第1~第3の超音波振動子13a~13c、第1~第3の発振器14a~14cは、図2に示すものと同様である。
 電力計15は、第1の超音波振動子(負荷1)13aに印加されている電力、第2の超音波振動子(負荷2)13bに印加されている電力、または第3の超音波振動子(負荷3)13cを測定するものである。
 第1~第3の超音波振動子13a~13cは第1のスイッチ35を介して電力計15に電気的に接続されている。第1~第3の発振器(発振器1、発振器2、発振器3)14a~14cは第2のスイッチ36を介して電力計15に電気的に接続されている。
 第1の発振器14aの演算部20は、第1の発振器14aの検出部19、制御部18及び記録部21それぞれに電気的に接続され、且つ電力計15に第2のスイッチ36を介して電気的に接続されている。
 第1の発振器14aの演算部20は、検出部19によって検出された第1の検出電力値を補正値αによって補正した第1の補正電力値を導出し、電力計15によって測定された第1の測定電力値を補正値βによって補正した第2の補正電力値を導出し、第2の補正電力値を第1の補正電力値と比較し、第1の補正電力値が第2の補正電力値から一定値以上外れている場合は、第1の補正電力値が第2の補正電力値になるように補正値αを修正した修正補正値α'を記録部21に記録する機能を有する。
 なお、第1の発振器14aの検出部19によって検出された第1の検出電力値に対応する信号Aは演算部20に入力され、第1の補正電力値は、信号Aと補正値αの演算(積)によって導出される。
 また、電力計15によって測定された第1の測定電力値に対応する信号Bは演算部20に入力され、第2の補正電力値は、信号Bと補正値βの演算(積)によって導出される。
 また、修正補正値α'は、第1の補正電力値と第2の補正電力値が等しくなるように補正値αを修正したものである。
 第2の発振器14bの演算部20は、第2の発振器14bの検出部19、制御部18及び記録部21それぞれに電気的に接続され、且つ電力計15に第2のスイッチ36を介して電気的に接続されている。
 第2の発振器14bの演算部20は、検出部19によって検出された第3の検出電力値を補正値αによって補正した第4の補正電力値を導出し、電力計15によって測定された第2の測定電力値を補正値βによって補正した第5の補正電力値を導出し、第5の補正電力値を第4の補正電力値と比較し、第4の補正電力値が第5の補正電力値から一定値以上外れている場合は、第4の補正電力値が第5の補正電力値になるように補正値αを修正した修正補正値α'を記録部21に記録する機能を有する。
 なお、第2の発振器14bの検出部19によって検出された第3の検出電力値に対応する信号Aは演算部20に入力され、第4の補正電力値は、信号Aと補正値αの演算(積)によって導出される。
 また、電力計15によって測定された第2の測定電力値に対応する信号Bは演算部20に入力され、第5の補正電力値は、信号Bと補正値βの演算(積)によって導出される。
 また、修正補正値α'は、第4の補正電力値と第5の補正電力値が等しくなるように補正値αを修正したものである。
 第3の発振器14cの演算部20は、第3の発振器14cの検出部19、制御部18及び記録部21それぞれに電気的に接続され、且つ電力計15に第2のスイッチ36を介して電気的に接続されている。
 第3の発振器14cの演算部20は、検出部19によって検出された第5の検出電力値を補正値αによって補正した第7の補正電力値を導出し、電力計15によって測定された第3の測定電力値を補正値βによって補正した第8の補正電力値を導出し、第8の補正電力値を第7の補正電力値と比較し、第7の補正電力値が第8の補正電力値から一定値以上外れている場合は、第7の補正電力値が第8の補正電力値になるように補正値αを修正した修正補正値α'を記録部21に記録する機能を有する。
 なお、第3の発振器14cの検出部19によって検出された第5の検出電力値に対応する信号Aは演算部20に入力され、第7の補正電力値は、信号Aと補正値αの演算(積)によって導出される。
 また、電力計15によって測定された第3の測定電力値に対応する信号Bは演算部20に入力され、第8の補正電力値は、信号Bと補正値βの演算(積)によって導出される。
 また、修正補正値α'は、第7の補正電力値と第8の補正電力値が等しくなるように補正値αを修正したものである。
 第1の発振器14aの演算部20は、第1の発振器14aの検出部19によって検出された第2の検出電力値を修正補正値α'によって補正した第3の補正電力値を導出し、第3の補正電力値を第1の設定電力値と比較し、第3の補正電力値が第1の設定電力値から一定値以上外れているという第1の比較結果を得た場合は、第1の比較結果を制御部18に出力する機能を有する。なお、第1の発振器14aの検出部19によって検出された第2の検出電力値に対応する信号Aが演算部20に入力され、第3の補正電力値は、信号Aと修正補正値α'の演算(積)によって導出される。
 第1の発振器14aの制御部18は、第1の発振器14aの発振部17によって発振された第1の電力が第1の設定電圧値になるように第1の比較結果を利用しながら制御して前記第1の超音波振動子13aへ出力するものである。
 第2の発振器14bの演算部20は、第2の発振器14bの検出部19によって検出された第4の検出電力値を修正補正値α'によって補正した第6の補正電力値を導出し、第6の補正電力値を第2の設定電力値と比較し、第6の補正電力値が第2の設定電力値から一定値以上外れているという第2の比較結果を得た場合は、第2の比較結果を制御部18に出力する機能を有する。なお、第2の発振器14bの検出部19によって検出された第4の検出電力値に対応する信号Aは演算部20に入力され、第6の補正電力値は、信号Aと修正補正値α'の演算(積)によって導出される。
 第2の発振器14bの制御部18は、第2の発振器14bの発振部17によって発振された第3の電力が第2の設定電圧値になるように第2の比較結果を利用しながら制御して第2の超音波振動子13bへ出力するものである。
 第3の発振器14cの演算部20は、第3の発振器14cの検出部19によって検出された第6の検出電力値を修正補正値α'によって補正した第9の補正電力値を導出し、第9の補正電力値を第3の設定電力値と比較し、第9の補正電力値が第3の設定電力値から一定値以上外れているという第3の比較結果を得た場合は、第3の比較結果を制御部18に出力する機能を有する。なお、第3の発振器14cの検出部19によって検出された第6の検出電力値に対応する信号Aは演算部20に入力され、第9の補正電力値は、信号Aと修正補正値α'の演算(積)によって導出される。
 第3の発振器14cの制御部18は、第3の発振器14cの発振部17によって発振された第3の電力が第3の設定電圧値になるように第3の比較結果を利用しながら制御して第3の超音波振動子13cへ出力するものである。
 次に、上記の超音波洗浄装置の電力制御方法について説明するが、第2の実施形態の(1)~(14)の順に行われる電力制御方法と異なる部分についてのみ説明する。
 (1) 第1の超音波洗浄装置31の第1の超音波振動子13a及び第1の発振器14aそれぞれと電力計15を電気的に接続するように第1及び第2のスイッチ35,36を切り替える。言い換えると、第1のスイッチ35によって第1の超音波振動子13aと電力計15を電気的に接続させ、且つ第2のスイッチ36によって電力計15と第1の発振器14aを電気的に接続させる。
 (5)第2の超音波洗浄装置32の第2の超音波振動子13b及び第2の発振器14bそれぞれと電力計15を電気的に接続するように第1及び第2のスイッチ35,36を切り替える。言い換えると、第1のスイッチ35によって第2の超音波振動子13bと電力計15を電気的に接続させ、且つ第2のスイッチ36によって電力計15と第2の発振器14bを電気的に接続させる。
 (10)第3の超音波洗浄装置33の第3の超音波振動子13c及び第3の発振器14cそれぞれと電力計15を電気的に接続するように第1及び第2のスイッチ35,36を切り替える。言い換えると、第1のスイッチ35によって第3の超音波振動子13cと電力計15を電気的に接続させ、且つ第2のスイッチ36によって電力計15と第3の発振器14cを電気的に接続させる。
 本実施形態によれば、第2の実施形態と同様の効果を得ることができる。
 また、本実施の形態では、電力計15との接続を第1の超音波洗浄装置31から第3の超音波洗浄装置33の順に自動的に切り替えることができる。
 なお、本実施形態では、第1~第3の超音波洗浄装置31~33を有する超音波洗浄装置に本発明の一態様を適用しているが、2つまたは4つ以上の超音波洗浄装置を有する超音波洗浄装置に本発明の一態様を適用することも可能である。
 また、上記の電力制御を行う前に、電力計15を校正しておくことが好ましく、例えば過去1年以内に電力計15を校正することが好ましい。
 9…電源
10…洗浄槽
11…被処理物
11a…第1の被処理物(被処理物1)
11b…第2の被処理物(被処理物2)
11c…第3の被処理物(被処理物3)
12…洗浄液
12a…第1の洗浄液
12b…第2の洗浄液
12c…第3の洗浄液
13…負荷(超音波振動子)
13a…負荷1(第1の超音波振動子)
13b…負荷2(第2の超音波振動子)
13c…負荷3(第3の超音波振動子)
14…発振器
14a…発振器1(第1の発振器)
14b…発振器2(第2の発振器)
14c…発振器3(第3の発振器)
15…電力計
16…電源部
17…発振部
18…制御部
19…検出部
20…演算部
21…記録部
31…第1の超音波洗浄装置
32…第2の超音波洗浄装置
33…第3の超音波洗浄装置
34…自動切換電力計
35…第1のスイッチ
36…第2のスイッチ

Claims (12)

  1.  被洗浄物を洗浄する洗浄液と、
     前記洗浄液に超音波を与える超音波振動子と、
     前記超音波振動子に電気的に接続された発振器と、
     前記超音波振動子に印加されている電力を測定する電力計と、
    を具備し、
     前記発振器は、
      発振部と、
      前記発振部によって発振された第1の電力が設定電力値になるように制御して前記超音波振動子へ出力する制御部と、
      前記制御部によって前記超音波振動子へ出力されている第2の電力を検出する検出部と、
      第1の補正値及び第2の補正値を記録する記録部と、
      前記検出部、前記制御部、前記記録部及び前記電力計それぞれに電気的に接続された演算部と、を有し、
     前記演算部は、前記検出部によって検出された第1の検出電力値を前記第1の補正値によって補正した第1の補正電力値を導出し、前記電力計によって測定された測定電力値を前記第2の補正値によって補正した第2の補正電力値を導出し、前記第2の補正電力値を前記第1の補正電力値と比較し、前記第1の補正電力値が前記第2の補正電力値から一定値以上外れている場合は、前記第1の補正電力値が前記第2の補正電力値になるように前記第1の補正値を修正した第1の修正補正値を前記記録部に記録する機能を有することを特徴とする超音波洗浄装置。
  2.  請求項1において、
     前記演算部は、前記検出部によって検出された第2の検出電力値を前記第1の修正補正値によって補正した第3の補正電力値を導出し、前記第3の補正電力値を前記設定電力値と比較し、前記第3の補正電力値が前記設定電力値から一定値以上外れているという比較結果を得た場合は前記比較結果を前記制御部に出力する機能を有し、
     前記制御部は、前記発振部によって発振された前記第1の電力が前記設定電圧値になるように前記比較結果を利用しながら制御して前記超音波振動子へ出力することを特徴とする超音波洗浄装置。
  3.  請求項2において、
     前記検出部によって検出された前記第1の検出電力値に対応する第1の信号が前記演算部に入力され、前記第1の補正電力値は、前記第1の信号と前記第1の補正値の演算によって導出され、
     前記電力計によって測定された前記測定電力値に対応する第2の信号が前記演算部に入力され、前記第2の補正電力値は、前記第2の信号と前記第2の補正値の演算によって導出され、
     前記第1の修正補正値は、前記第1の補正電力値と前記第2の補正電力値が等しくなるように前記第1の補正値を修正したものであり、
     前記検出部によって検出された前記第2の検出電力値に対応する第3の信号が前記演算部に入力され、前記第3の補正電力値は、前記第3の信号と前記第1の修正補正値の演算によって導出されることを特徴とする超音波洗浄装置。
  4.  第1の超音波洗浄装置、第2の超音波洗浄装置及び電力計を有する超音波洗浄装置であって、
     前記第1の超音波洗浄装置は、
      第1の被洗浄物を洗浄する第1の洗浄液と、
      前記第1の洗浄液に超音波を与える第1の超音波振動子と、
      前記第1の超音波振動子に電気的に接続された第1の発振器と、を有し、
     前記第2の超音波洗浄装置は、
      第2の被洗浄物を洗浄する第2の洗浄液と、
      前記第2の洗浄液に超音波を与える第2の超音波振動子と、
      前記第2の超音波振動子に電気的に接続された第2の発振器と、を有し、
     前記電力計は、前記第1の超音波振動子に印加されている電力または前記第2の超音波振動子に印加されている電力を測定するものであり、
     前記第1の超音波振動子及び前記第2の超音波振動子は第1のスイッチを介して前記電力計に電気的に接続されており、
     前記第1の発振器及び前記第2の発振器は第2のスイッチを介して前記電力計に電気的に接続されており、
     前記第1の発振器は、
      第1の発振部と、
      前記第1の発振部によって発振された第1の電力が第1の設定電力値になるように制御して前記第1の超音波振動子へ出力する第1の制御部と、
      前記第1の制御部によって前記第1の超音波振動子へ出力されている第2の電力を検出する第1の検出部と、
      第1の補正値及び第2の補正値を記録する第1の記録部と、
      前記第1の検出部、前記第1の制御部及び前記第1の記録部それぞれに電気的に接続され、前記電力計に前記第2のスイッチを介して電気的に接続された第1の演算部と、を有し、
     前記第1の演算部は、前記第1の検出部によって検出された第1の検出電力値を前記第1の補正値によって補正した第1の補正電力値を導出し、前記電力計によって測定された第1の測定電力値を前記第2の補正値によって補正した第2の補正電力値を導出し、前記第2の補正電力値を前記第1の補正電力値と比較し、前記第1の補正電力値が前記第2の補正電力値から一定値以上外れている場合は、前記第1の補正電力値が前記第2の補正電力値になるように前記第1の補正値を修正した第1の修正補正値を前記第1の記録部に記録する機能を有し、
     前記第2の発振器は、
      第2の発振部と、
      前記第2の発振部によって発振された第3の電力が第2の設定電力値になるように制御して前記第2の超音波振動子へ出力する第2の制御部と、
      前記第2の制御部によって前記第2の超音波振動子へ出力されている第4の電力を検出する第2の検出部と、
      第3の補正値及び第4の補正値を記録する第2の記録部と、
      前記第2の検出部、前記第2の制御部及び前記第2の記録部それぞれに電気的に接続され、前記電力計に前記第2のスイッチを介して電気的に接続された第2の演算部と、を有し、
     前記第2の演算部は、前記第2の検出部によって検出された第3の検出電力値を前記第3の補正値によって補正した第4の補正電力値を導出し、前記電力計によって測定された第2の測定電力値を前記第4の補正値によって補正した第5の補正電力値を導出し、前記第5の補正電力値を前記第4の補正電力値と比較し、前記第4の補正電力値が前記第5の補正電力値から一定値以上外れている場合は、前記第4の補正電力値が前記第5の補正電力値になるように前記第3の補正値を修正した第2の修正補正値を前記第2の記録部に記録する機能を有することを特徴とする超音波洗浄装置。
  5.  請求項4において、
     前記第1の演算部は、前記第1の検出部によって検出された第2の検出電力値を前記第1の修正補正値によって補正した第3の補正電力値を導出し、前記第3の補正電力値を前記第1の設定電力値と比較し、前記第3の補正電力値が前記第1の設定電力値から一定値以上外れているという第1の比較結果を得た場合は前記第1の比較結果を前記第1の制御部に出力する機能を有し、
     前記第1の制御部は、前記第1の発振部によって発振された前記第1の電力が前記第1の設定電圧値になるように前記第1の比較結果を利用しながら制御して前記第1の超音波振動子へ出力するものであり、
     前記第2の演算部は、前記第2の検出部によって検出された第4の検出電力値を前記第2の修正補正値によって補正した第6の補正電力値を導出し、前記第6の補正電力値を前記第2の設定電力値と比較し、前記第6の補正電力値が前記第2の設定電力値から一定値以上外れているという第2の比較結果を得た場合は前記第2の比較結果を前記第2の制御部に出力する機能を有し、
     前記第2の制御部は、前記第2の発振部によって発振された前記第3の電力が前記第2の設定電圧値になるように前記第2の比較結果を利用しながら制御して前記第2の超音波振動子へ出力するものであることを特徴とする超音波洗浄装置。
  6.  請求項5において、
     前記第1の検出部によって検出された前記第1の検出電力値に対応する第1の信号が前記第1の演算部に入力され、前記第1の補正電力値は、前記第1の信号と前記第1の補正値の演算によって導出され、
     前記電力計によって測定された前記第1の測定電力値に対応する第2の信号が前記第1の演算部に入力され、前記第2の補正電力値は、前記第2の信号と前記第2の補正値の演算によって導出され、
     前記第1の修正補正値は、前記第1の補正電力値と前記第2の補正電力値が等しくなるように前記第1の補正値を修正したものであり、
     前記第1の検出部によって検出された前記第2の検出電力値に対応する第3の信号が前記第1の演算部に入力され、前記第3の補正電力値は、前記第3の信号と前記第1の修正補正値の演算によって導出され、
     前記第2の検出部によって検出された前記第3の検出電力値に対応する第4の信号が前記第2の演算部に入力され、前記第4の補正電力値は、前記第4の信号と前記第3の補正値の演算によって導出され、
     前記電力計によって測定された前記第2の測定電力値に対応する第5の信号が前記第2の演算部に入力され、前記第5の補正電力値は、前記第5の信号と前記第4の補正値の演算によって導出され、
     前記第2の修正補正値は、前記第4の補正電力値と前記第5の補正電力値が等しくなるように前記第3の補正値を修正したものであり、
     前記第2の検出部によって検出された前記第4の検出電力値に対応する第6の信号が前記第2の演算部に入力され、前記第6の補正電力値は、前記第6の信号と前記第2の修正補正値の演算によって導出されたものであることを特徴とする超音波洗浄装置。
  7.  請求項1乃至6のいずれか一項において、
     前記電力計は校正されたものであることを特徴とする超音波洗浄装置。
  8.  超音波洗浄装置の電力制御方法において、
     前記超音波洗浄装置は、
      被洗浄物を洗浄する洗浄液と、
      前記洗浄液に超音波を与える超音波振動子と、
      前記超音波振動子に電気的に接続された発振器と、
      前記発振器及び前記超音波振動子に電気的に接続された電力計と、を有し、
     前記発振器は、
      発振部と、
      前記発振部に電気的に接続された制御部と、
      前記制御部に電気的に接続された検出部と、
      前記検出部及び前記制御部それぞれに電気的に接続された演算部と、
      前記演算部に電気的に接続された記録部と、を有し、
     前記電力制御方法は、
      前記発振部によって発振された第1の電力が設定電力値になるように前記制御部によって制御して前記超音波振動子へ出力し、
      前記超音波振動子へ出力した第2の電力を前記検出部によって検出し、
      前記検出部によって検出した第1の検出電力値を前記記録部に記録された第1の補正値によって補正することにより第1の補正電力値を前記演算部によって導出し、
      前記超音波振動子へ出力した前記第2の電力を前記電力計によって測定し、
      前記電力計によって測定した第1の測定電力値を前記記録部に記録された第2の補正値によって補正することにより第2の補正電力値を前記演算部によって導出し、
      前記演算部によって前記第2の補正電力値を前記第1の補正電力値と比較し、前記第1の補正電力値が前記第2の補正電力値から一定値以上外れている場合は、前記第1の補正電力値が前記第2の補正電力値になるように前記第1の補正値を修正した第1の修正補正値を前記記録部に記録することを特徴とする超音波洗浄装置の電力制御方法。
  9.  請求項8において、
     前記第1の修正補正値を前記記録部に記録した後に、
     前記発振部によって発振された第3の電力が前記設定電力値になるように前記制御部によって制御して前記超音波振動子へ出力し、
     前記超音波振動子へ出力した第4の電力を前記検出部によって検出し、
     前記検出部によって検出した第2の検出電力値を前記第1の修正補正値によって補正することにより第3の補正電力値を前記演算部によって導出し、
     前記演算部によって前記第3の補正電力値を前記設定電力値と比較し、前記第3の補正電力値が前記設定電力値から一定値以上外れているという比較結果を得た場合は前記比較結果を前記制御部に出力し、
     前記発振部によって発振された第5の電力が前記設定電力値になるように前記制御部によって前記比較結果を利用しながら制御して前記超音波振動子へ出力することを特徴とする超音波洗浄装置の電力制御方法。
  10.  超音波洗浄装置の電力制御方法において、
     前記超音波洗浄装置は、第1の超音波洗浄装置、第2の超音波洗浄装置及び電力計を有し、
     前記第1の超音波洗浄装置は、
      第1の被洗浄物を洗浄する第1の洗浄液と、
      前記第1の洗浄液に超音波を与える第1の超音波振動子と、
      前記第1の超音波振動子に電気的に接続された第1の発振器と、を有し、
     前記第1の発振器は、
      第1の発振部と、
      前記第1の発振部に電気的に接続された第1の制御部と、
      前記第1の制御部に電気的に接続された第1の検出部と、
      前記第1の検出部及び前記第1の制御部それぞれに電気的に接続された第1の演算部と、
      前記第1の演算部に電気的に接続された第1の記録部と、を有し、
     前記第2の超音波洗浄装置は、
      第2の被洗浄物を洗浄する第2の洗浄液と、
      前記第2の洗浄液に超音波を与える第2の超音波振動子と、
      前記第2の超音波振動子に電気的に接続された第2の発振器と、を有し、
     前記第2の発振器は、
      第2の発振部と、
      前記第2の発振部に電気的に接続された第2の制御部と、
      前記第2の制御部に電気的に接続された第2の検出部と、
      前記第2の検出部及び前記第2の制御部それぞれに電気的に接続された第2の演算部と、
      前記第2の演算部に電気的に接続された第2の記録部と、を有し、
     前記電力制御方法は、
      前記第1の超音波振動子及び前記第1の発振器それぞれと前記電力計を電気的に接続させ、
      前記第1の発振部によって発振された第1の電力が第1の設定電力値になるように前記第1の制御部によって制御して前記第1の超音波振動子へ出力し、
      前記第1の超音波振動子へ出力した第2の電力を前記第1の検出部によって検出し、
      前記第1の検出部によって検出した第1の検出電力値を前記第1の記録部に記録された第1の補正値によって補正することにより第1の補正電力値を前記第1の演算部によって導出し、
      前記第1の超音波振動子へ出力した前記第2の電力を前記電力計によって測定し、
      前記電力計によって測定した第1の測定電力値を前記第1の記録部に記録された第2の補正値によって補正することにより第2の補正電力値を前記第1の演算部によって導出し、
      前記第1の演算部によって前記第2の補正電力値を前記第1の補正電力値と比較し、前記第1の補正電力値が前記第2の補正電力値から一定値以上外れている場合は、前記第1の補正電力値が前記第2の補正電力値になるように前記第1の補正値を修正した第1の修正補正値を前記第1の記録部に記録し、
      前記第2の超音波振動子及び前記第2の発振器それぞれと前記電力計を電気的に接続させ、
      前記第2の発振部によって発振された第3の電力が第2の設定電力値になるように前記第2の制御部によって制御して前記第2の超音波振動子へ出力し、
      前記第2の超音波振動子へ出力した第4の電力を前記第2の検出部によって検出し、
      前記第2の検出部によって検出した第2の検出電力値を前記第2の記録部に記録された第3の補正値によって補正することにより第3の補正電力値を前記第2の演算部によって導出し、
      前記第2の超音波振動子へ出力した前記第4の電力を前記電力計によって測定し、
      前記電力計によって測定した第2の測定電力値を前記第2の記録部に記録された第4の補正値によって補正することにより第4の補正電力値を前記第2の演算部によって導出し、
      前記第2の演算部によって前記第4の補正電力値を前記第3の補正電力値と比較し、前記第3の補正電力値が前記第4の補正電力値から一定値以上外れている場合は、前記第3の補正電力値が前記第4の補正電力値になるように前記第3の補正値を修正した第2の修正補正値を前記第2の記録部に記録することを特徴とする超音波洗浄装置の電力制御方法。
  11.  請求項10において、
     前記第1の超音波振動子及び前記第1の発振器それぞれと前記電力計を電気的に接続させることは、第1のスイッチによって前記第1の超音波振動子と前記電力計を電気的に接続させ、且つ第2のスイッチによって前記電力計と前記第1の発振器を電気的に接続させることであり、
     前記第2の超音波振動子及び前記第2の発振器それぞれと前記電力計を電気的に接続させることは、前記第1のスイッチによって前記第2の超音波振動子と前記電力計を電気的に接続させ、且つ前記第2のスイッチによって前記電力計と前記第2の発振器を電気的に接続させることを特徴とする超音波洗浄装置の電力制御方法。
  12.  請求項8乃至11のいずれか一項において、
     前記電力制御を行う前に、前記電力計を校正することを特徴とする超音波洗浄装置の電力制御方法。
PCT/JP2012/082337 2012-01-30 2012-12-13 超音波洗浄装置及びその電力制御方法 WO2013114738A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280039420.XA CN103874550B (zh) 2012-01-30 2012-12-13 超声波清洗装置及其功率控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012016484A JP5226141B1 (ja) 2012-01-30 2012-01-30 超音波洗浄装置及びその電力制御方法
JP2012-016484 2012-01-30

Publications (1)

Publication Number Publication Date
WO2013114738A1 true WO2013114738A1 (ja) 2013-08-08

Family

ID=48904797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082337 WO2013114738A1 (ja) 2012-01-30 2012-12-13 超音波洗浄装置及びその電力制御方法

Country Status (4)

Country Link
JP (1) JP5226141B1 (ja)
CN (1) CN103874550B (ja)
TW (1) TWI476054B (ja)
WO (1) WO2013114738A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004113846A (ja) * 2002-09-24 2004-04-15 Honda Electronic Co Ltd 超音波洗浄装置用発振器
JP2004251845A (ja) * 2003-02-21 2004-09-09 Toshiba Corp 音圧測定装置及び圧測定方法
JP2007292625A (ja) * 2006-04-26 2007-11-08 Hitachi Kokusai Denki Engineering:Kk 超音波音圧測定装置
JP2008219420A (ja) * 2007-03-02 2008-09-18 Shimada Phys & Chem Ind Co Ltd 超音波発振器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4813961B1 (ja) * 1967-12-13 1973-05-02
WO2008035581A1 (en) * 2006-09-22 2008-03-27 Kaijo Corporation Ultrasonic cleaning apparatus
CN1986086A (zh) * 2006-12-22 2007-06-27 上海集成电路研发中心有限公司 半导体硅片的清洗装置及清洗方法
CN201579230U (zh) * 2009-10-23 2010-09-15 河北先河环保科技股份有限公司 水下光学测量分析仪的微型超声波清洗装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004113846A (ja) * 2002-09-24 2004-04-15 Honda Electronic Co Ltd 超音波洗浄装置用発振器
JP2004251845A (ja) * 2003-02-21 2004-09-09 Toshiba Corp 音圧測定装置及び圧測定方法
JP2007292625A (ja) * 2006-04-26 2007-11-08 Hitachi Kokusai Denki Engineering:Kk 超音波音圧測定装置
JP2008219420A (ja) * 2007-03-02 2008-09-18 Shimada Phys & Chem Ind Co Ltd 超音波発振器

Also Published As

Publication number Publication date
TWI476054B (zh) 2015-03-11
JP5226141B1 (ja) 2013-07-03
CN103874550A (zh) 2014-06-18
TW201341072A (zh) 2013-10-16
CN103874550B (zh) 2015-10-14
JP2013154291A (ja) 2013-08-15

Similar Documents

Publication Publication Date Title
JP7265106B2 (ja) 欠陥又は劣化を検出するためのインピーダンス監視を備える超音波レンズクリーニングシステム
WO2007055320A1 (ja) 超音波探触子及び超音波診断装置
US8847896B2 (en) Adaptive high dynamic range surface capacitive touchscreen controller
JP6671150B2 (ja) 物理量検出回路、電子機器および移動体
CN108931292B (zh) 用于校准至少一个传感器的方法
US20190339370A1 (en) Ultrasonic apparatus
WO2010050393A1 (ja) 角速度センサ
JP5348408B2 (ja) 物理量検出装置、物理量検出装置の異常診断システム及び物理量検出装置の異常診断方法
KR102020628B1 (ko) 초음파 센서의 구동 주파수 최적화 장치 및 그 방법
JP5226141B1 (ja) 超音波洗浄装置及びその電力制御方法
US10041796B2 (en) Method for inspecting physical quantity sensor and method for manufacturing physical quantity sensor
CN112964242A (zh) 一种石英音叉陀螺表头机械耦合误差测试系统及测试方法
JP2010286371A (ja) 物理量検出装置、物理量検出装置の異常診断システム及び物理量検出装置の異常診断方法
JP3998589B2 (ja) 音圧測定装置及び圧測定方法
JP6528523B2 (ja) 物理量センサー用回路、物理量センサー、及び物理量センサーの製造方法
JP2008309803A (ja) 超音波振動子および超音波流量計
KR101346166B1 (ko) 유량측정모듈, 유량측정모듈을 구비하는 유량측정장치 및 유량측정방법
JP5589171B2 (ja) 物理量検出装置用回路
JP2007240286A (ja) 計測方法および計測装置
JP2004347369A (ja) 超音波振動子および超音波流量計
JP2006250643A (ja) 角速度センサの異常検出装置
JP2011142444A (ja) 圧電発振器の製造方法、圧電発振器
TWI797602B (zh) 具校正功能的微機電感測裝置
JP5765544B2 (ja) 物理量検出装置、物理量検出装置の異常診断システム及び物理量検出装置の異常診断方法
JP2004259983A (ja) 超音波洗浄装置及び超音波洗浄方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867330

Country of ref document: EP

Kind code of ref document: A1