TWI797602B - 具校正功能的微機電感測裝置 - Google Patents

具校正功能的微機電感測裝置 Download PDF

Info

Publication number
TWI797602B
TWI797602B TW110115515A TW110115515A TWI797602B TW I797602 B TWI797602 B TW I797602B TW 110115515 A TW110115515 A TW 110115515A TW 110115515 A TW110115515 A TW 110115515A TW I797602 B TWI797602 B TW I797602B
Authority
TW
Taiwan
Prior art keywords
spectrum signal
impulse response
signal
finite impulse
sensing
Prior art date
Application number
TW110115515A
Other languages
English (en)
Other versions
TW202242351A (zh
Inventor
蘇中源
郭秦輔
劉良潁
黃肇達
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW110115515A priority Critical patent/TWI797602B/zh
Priority to US17/539,686 priority patent/US12025588B2/en
Publication of TW202242351A publication Critical patent/TW202242351A/zh
Application granted granted Critical
Publication of TWI797602B publication Critical patent/TWI797602B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/014Resonance or resonant frequency

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Gyroscopes (AREA)
  • Pressure Sensors (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一種具校正功能的微機電感測裝置,包含微機電感測器以及積體電路晶片。微機電感測器包含質量塊、至少一驅動電極設置於基板上及至少一感應電極設置於質量塊上,當質量塊產生振動時,感應電極會輸出感測訊號。積體電路晶片包含轉換模組以及校正模組,轉換模組電性連接微機電感測器,校正模組電性連接轉換模組。轉換模組將感測訊號轉換成輸入頻譜訊號,校正模組接收輸入頻譜訊號並將輸入頻譜訊號轉換成輸出頻譜訊號,其中當微機電感測器承受等振幅的振動時且輸入頻譜訊號為非等振幅頻譜訊號時, 輸出頻譜訊號為等振幅頻譜訊號。

Description

具校正功能的微機電感測裝置
本發明係關於一種具校正功能的微機電感測裝置。
在利用微機電感測器進行感測時,例如用於生產線之設備監控,為了使其在線上(on-line)運作時精確監控機器設備的振動狀態,微機電感測器通常在出廠前、出廠後或運作前都需要進行校正。然而,現有的校正技術不但需耗費大量時間,更降低了機器設備及產線的生產效率。
舉例而言,微機電感測器可能會因感測器本身的製造誤差、電訊號讀取誤差而使其輸出量測結果發生誤差,因此在微機電感測器出廠前廠商會先對其進行校正。然而,在校正時,工廠人員是將整批的感測器一一設置於振動測試設備(shaker)上以進行校正,此需耗費大量的時間成本及人力成本。
另外,在微機電感測器已出廠且運作過後,可能會因微機電感測器本身材料老化、使用環境的溫度改變或是待測機器設備具有多個振動頻率等原因,造成感測結果產生誤差。此情況下,為了校正微機電感測器,需暫停產線的運作以將感測器從機器設備上拆卸下來,再將感測器送回原廠校正,其中斷產線的運作而顯著地影響了產線的生產效率。
鑒於上述,本發明提供一種以滿足上述需求的具校正功能的微機電感測裝置。
依據本發明一實施例的一種具校正功能的微機電感測裝置,包含:一微機電感測器,包含:一質量塊,至少一可動驅動電極設置於該質量塊上,至少一固定驅動電極設置於一基板上,至少一可動感應電極設置於該質量塊上,以及至少一固定感應電極設置於該基板上,其中當該質量塊產生一振動時,該至少一可動感應電極及該至少一固定感應電極會輸出一感測訊號;以及一積體電路晶片,包含:一轉換模組,電性連接該微機電感測器,其中該轉換模組將該感測訊號轉換成一輸入頻譜訊號,以及一校正模組,電性連接該轉換模組,其中該校正模組接收該輸入頻譜訊號並將該輸入頻譜訊號轉換成一輸出頻譜訊號;其中,當該微機電感測器承受一等振幅的振動時且該輸入頻譜訊號為非等振幅頻譜訊號時,該輸出頻譜訊號為等振幅頻譜訊號。
依據本發明一實施例的一種具校正功能的微機電感測裝置,包含:一微機電感測器,包含:一質量塊,至少一可動驅動電極設置於該質量塊上,至少一固定驅動電極設置於一基板上,至少一可動感應電極設置於該質量塊上,以及至少一固定感應電極設置於該基板上,其中當質量塊產生一振動時,該至少一可動感應電極及該至少一固定感應電極會輸出一感測訊號;以及一積體電路晶片,包含:一轉換模組,電性連接該微機電感測器,其中該轉換模組將該感測訊號轉換成一輸入頻譜訊號,以及一校正模組,電性連接該轉換模組,並包含一振動訊號產生器,其中,該校正模組接收該輸入頻譜訊號並將該輸入頻譜訊號轉換成一輸出頻譜訊號,當該微機電感測器承受一等振幅的振動且該輸入頻譜訊號為非等振幅頻譜訊號時,該輸出頻譜訊號為等振幅頻譜訊號。
依據本發明一實施例的一種具校正功能的微機電感測裝置,包含一微機電感測器以及一積體電路晶片,該微機電感測器包含一質量塊、設置於該質量塊上的至少一可動驅動電極、設置於一基板上的至少一固定驅動電極、設置於該質量塊上的至少一可動感應電極,以及設置於該基板上的至少一固定感應電極,其中該積體電路晶片包含:一轉換模組,包含:一增益放大元件,電性連接該至少一可動感應電極及該至少一固定感應電極以接收一感測訊號;以及一類比數位轉換元件,電性連接該增益放大元件,其中該感測訊號經過該增益放大元件及類比數位轉換元件轉換為一輸入頻譜訊號;以及一校正模組,包含:一音調控制電路,產生一等振幅頻譜訊號並將該等振幅頻譜訊號傳遞至該至少一可動驅動電極及該至少一固定驅動電極以驅動該質量塊產生振動,進而使該至少一可動感應電極及該至少一固定感應電極輸出該感測訊號,一有限脈衝響應濾波器,電性連接該類比數位轉換元件,該有限脈衝響應濾波器依據一組有限脈衝響應係數對該輸入頻譜訊號執行訊號轉換,以產生一輸出頻譜訊號,以及一係數計算元件,電性連接該有限脈衝響應濾波器,其中,當該微機電感測器承受一等振幅的振動時,該係數計算元件依據該輸入頻譜訊號及一目標頻譜訊號計算出該組有限脈衝響應係數,該係數計算元件並傳輸該組有限脈衝響應係數至該有限脈衝響應濾波器,該目標頻譜訊號在每一頻率點上之振幅與該輸入頻譜訊號在相對應的該每一頻率點上之振幅互為倒數。
綜上所述,依據本發明一或多個實施例所示的具有校正功能的微機電感測裝置,利用有限脈衝響應濾波器對輸入頻譜訊號進行校正,因此可在不同的頻率點上,得到準確的振幅值。因此,本發明的一個或多個實施例,可以擴大微機電感測器的使用頻率範圍。此外,依據本發明一或多個實施例所示的具有校正功能的微機電感測裝置具有振動訊號產生器,因此不需要將微機電感測裝置設置在振動測試設備上,即能求得所需的有限脈衝響應係數,進而能將微機電感測裝置直接設置於待測物上,立即對待測物產生的振動訊號進行校正。如此便能減少微機電感測裝置的校正流程與校正時間。此外,因依據本發明一或多個實施例所示的具有校正功能的微機電感測裝置會取得對應不同溫度及頻率的有限脈衝響應係數,故可以降低微機電感測裝置在對待測物進行振動量測時,不會受到環境溫度的影響,進而能夠產生準確的感測結果。
以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。
以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。
本發明所示的具校正功能的微機電(microelectromechanical)感測裝置的運作階段可以分為(1)校正係數產生階段及(2)感測值校正階段。該微機電感測裝置在工廠內製造完成後,需進行產品的品質檢測後,才能出廠銷售。在廠內進行品質檢測時,該微機電感測裝置自己即能進行校正係數產生階段而無需設置於振動測試機台上。校正係數產生後,會儲存於該微機電感測裝置中。該微機電感測裝置在完成品質檢測後,即可出廠進行銷售。使用者在購買該微機電感測裝置後,會將它設置於待測物(例如:生產線上的生產機器、汽車及飛機等交通工具)上,以進行待測物的振動量測。此時,該微機電感測裝置會進行感測值校正階段。在此階段,該微機電感測裝置會依據所儲存的校正係數對初始的感測值進行校正而輸出一準確的感測值。
本發明所示的具校正功能的微機電感測裝置在出廠後及設置於待測物上後,也可以自己進行校正係數產生階段及感測值校正階段。如此,該微機電感測裝置在不同環境使用時,可以先產生適應該環境的校正係數。然後,該微機電感測裝置可依據此適應該環境的校正係數對初始的感測值進行校正,而輸出一準確的感測值。換言之,該微機電感測裝置在不同環境下使用時,皆能得到一準確的感測值。
請參考圖1,圖1係依據本發明之實施例所繪示的具校正功能的微機電感測裝置的平面示意圖。微機電感測裝置M包含一微機電感測器10以及一積體電路晶片20。微機電感測器10及積體電路晶片20分別設置於一基板(圖未示)上且微機電感測器10與積體電路晶片20彼此電性連接。在另一實施中,微機電感測器10以及積體電路晶片20可以集成為單一的系統整合晶片(system on chip,SOC)。
如圖1所示,微機電感測器10包含一質量塊101、至少一固定驅動電極DE1及至少一固定感應電極1021,其中至少一固定驅動電極DE1及至少一固定感應電極1021分別設置於基板(圖未示)上。此外,微機電感測器10包含至少一可動驅動電極DE2及至少一可動感應電極1022,至少一可動驅動電極DE2及至少一可動感應電極1022分別設置於質量塊101上且至少一可動驅動電極DE2及至少一可動感應電極1022彼此電性絕緣。圖1示出的固定驅動電極DE1及固定感應電極1021的數量分別為兩個,可動驅動電極DE2及可動感應電極1022的數量亦分別為兩個,然本發明不對固定驅動電極DE1、固定感應電極1021、可動驅動電極DE2及可動感應電極1022的實際數量予以限制。
微機電感測器10包含彈性元件(圖未示)及設置於一基板上的固定座(圖未示)。彈性元件(圖未示)連接質量塊101及固定座(圖未示)而使質量塊101懸浮於基板(圖未示)上。當質量塊101產生一振動時,設置於基板(圖未示)上的固定感應電極1021與質量塊101上的可動感應電極1022之間的間距會改變,因而造成可動感應電極1022與固定感應電極1021之間的電容改變,進而輸出一對應該振動的感測訊號MS。
積體電路晶片20包含一轉換模組210以及一校正模組220。轉換模組210電性連接微機電感測器10的固定感應電極1021的輸出端且透過質量塊101電性連接可動感應電極1022的輸出端。校正模組220電性連接轉換模組210。轉換模組210從微機電感測器10接收感測訊號MS或MS*,並將感測訊號MS或MS*轉換成一輸入頻譜(input spectrum)訊號ADO(i)或ADO*(i)。校正模組220從轉換模組210接收輸入頻譜訊號,並將輸入頻譜訊號轉換成一輸出頻譜訊號FO(i)或FO*(i)。在進行校正係數產生階段時,當微機電感測器10承受之振動的振幅為等振幅且感測訊號MS轉換後的輸入頻譜訊號ADO(i)為非等振幅頻譜訊號時,則輸出頻譜訊號FO(i)為等振幅的頻譜訊號。更仔細地說,當微機電感測器10承受之振動的振幅為等振幅且輸入頻譜訊號為非等振幅頻譜訊號時,這表示微機電感測器10所輸出的感測訊號MS是不正確的。在此情況下,校正模組220可將此不正確的非等振幅頻譜訊號(輸入頻譜訊號)校正為正確的等振幅的頻譜訊號(輸出頻譜訊號)。
另需特別說明的是,在感測值校正階段,質量塊101所產生的振動例如是由待測物的振動而產生。在校正係數產生階段,質量塊101所產生的振動是由校正模組220中的振動訊號產生器驅動固定驅動電極DE1及可動驅動電極DE2而產生。以下段落將更詳細揭露校正係數產生階段及感測值校正階段的運作情境。
請參考圖2A。圖2A係依據本發明在校正係數產生階段的第一實施例之微機電感測裝置示意圖,其中圖中每個方塊的箭頭代表此方塊的訊號輸出方向。在此實施例中,積體電路晶片20的轉換模組210包含一增益放大元件2101及一類比數位轉換元件(analog-to-digital converter,ADC)2102。增益放大元件2101電性連接於固定感應電極1021及可動感應電極1022的輸出端。類比數位轉換元件2102電性連接於增益放大元件2101的輸出端,其中增益放大元件2101例如為類比前端(analog front end,AFE)元件。
校正模組220包含一振動訊號產生器2201、一有限脈衝響應(finite impulse response,FIR)濾波器2202、一係數計算元件2203以及一參數控制元件2204,其中係數計算元件2203及參數控制元件2204皆可以為特定應用積體電路(Application Specific Integrated Circuit;ASIC)或微處理器(microprocessor)。振動訊號產生器2201電性連接於固定驅動電極DE1及可動驅動電極DE2。有限脈衝響應濾波器2202電性連接於類比數位轉換元件2102的輸出端。係數計算元件2203電性連接於類比數位轉換元件2102的輸出端及參數控制元件2204。參數控制元件2204電性連接於增益放大元件2101固定感應電極1021及可動感應電極1021的輸出端,以及電性連接於有限脈衝響應濾波器2202。
如圖2A所示,本實施例在校正係數產生階段時,振動訊號產生器2201,例如是音調(Tone)控制元件,可以產生一振動頻譜訊號T(i),並輸出振動頻譜訊號T(i)至該至少一固定驅動電極DE1及該至少一可動驅動電極DE2,以使固定驅動電極DE1與可動驅動電極DE2之間產生等效電容,進而驅動質量塊101振動。在本實施例中,振動頻譜訊號T(i)較佳為一等振幅頻譜訊號。振動頻譜訊號T(i)包含在頻域上具有相等振幅的多個工作頻率,而該些工作頻率可以是同時存在,或是以分時的方式分別存在於多個時段中(即在每一該些時段內輸出一個頻率的訊號)。固定感應電極1021及可動感應電極1022則是用於感測質量塊101的振動並輸出對應該振動的一感測訊號MS。質量塊101上的可動感應電極1022可相對於固定感應電極1021移動。當質量塊101受固定驅動電極DE1及可動驅動電極DE2所產生的靜電力驅動而振動時,質量塊101上的可動感應電極1022與固定感應電極1021之間的等效電容值會發生變化,進而輸出一輸出感測訊號MS。
增益放大元件2101及類比數位轉換元件2102接收固定感應電極1021及可動感應電極1022輸出的感測訊號MS,以將感測訊號MS乘上增益值並執行類比/數位轉換以產生輸入頻譜訊號ADO(i)。增益放大元件2101電性連接於參數控制元件2204,以由參數控制元件2204控制增益放大元件2101的增益值。所述的增益值可以是1或其他數值,本發明不對增益值予以限制。在未繪示的一實施例中,係數計算元件2203電性連接振動訊號產生器2201,以取得振動訊號產生器2201輸出的振動頻譜訊號T(i)。係數計算元件2203亦可以預存振動頻譜訊號T(i)。
據此,在校正係數產生階段時,微機電感測器M1承受的振動為等振幅振動,係數計算元件2203可利用輸入頻譜訊號ADO(i)中位於每一頻率點上之振幅的倒數形成一如圖3C所示的新的頻譜訊號。係數計算元件2203可將此一新的頻譜訊號設定為有限脈衝響應濾波器2202目標頻譜訊號FTO(i)。係數計算元件2203可依據此目標頻譜訊號FTO(i)及輸入頻譜訊號ADO(i)計算出一組有限脈衝響應係數(FIR Coefficient;FIR Co.)。此組有限脈衝響應係數(FIR Co.)可供有限脈衝響應濾波器2202在感測值校正階段時,對輸入頻譜訊號進行校正。更仔細地說,係數計算元件2203將上述有限脈衝響應係數(FIR Co.)傳輸至參數控制元件2204後,參數控制元件2204儲存所述的有限脈衝響應係數(FIR Co.)。參數控制元件2204輸出有限脈衝響應係數(FIR Co.)至有限脈衝響應濾波器2202,以使有限脈衝響應濾波器2202在接收輸入頻譜訊號ADO(i)後,可以輸出一輸出頻譜訊號FO(i)。當有限脈衝響應濾波器2202的輸出頻譜訊號FO(i)為一等振幅輸出頻譜訊號(如圖3D所示),本實施例的微機電感測裝置即完成了校正係數產生階段。上述等振幅的輸出頻譜訊號FO(i)是有限脈衝響應濾波器2202使用上述有限脈衝響應係數(FIR Co.)將輸入頻譜訊號ADO(i)轉換後並輸出的結果。另外,在另一實施例中,參數控制元件2204所執行的儲存/輸出有限脈衝響應係數(FIR Co.)亦可以是由係數計算元件2203執行。
在上述校正係數產生階段中,參數控制元件2204所儲存的有限脈衝響應係數(FIR Co.)可應用於感測值校正階段。請參考圖2B,圖2B係依據本發明在感測值校正階段時的第一實施例所繪示的微機電感測裝置的示意圖。在感測值校正階段時,本實施例的微機電感測裝置M1設置於待測物上,並承受此待測物所引起的振動。值得注意的是,此待測物所引起的振動並不一定是等振幅的振動。微機電感測裝置M1中的微機電感測器10感測到此振動後,會輸出一感測訊號MS*。感測訊號MS*在經過增益放大元件2101及類比數位轉換元件2102的處理後,會成為一輸入頻譜訊號ADO*(i)。參數控制元件2204可以根據此感測訊號MS*,輸出有限脈衝響應係數(FIR Co.)至有限脈衝響應濾波器2202。有限脈衝響應濾波器2202利用所述的有限脈衝響應係數(FIR Co.)可將輸入至有限脈衝響應濾波器2202的輸入頻譜訊號ADO*(i)校正為一準確的輸出頻譜訊號FO*(i)。更進一步說,若輸入頻譜訊號ADO*(i)沒有經過本實施例中有限脈衝響應濾波器2202的校正,則所得到的感測訊號會有一定程度的誤差。此誤差的來源可能是多方面的,例如微機電感測器10的製程誤差、微機電感測器10材料的老化或微機電感測裝置使用環境的改變。另需說明的是,在感測值校正階段,微機電感測裝置M1是用於感測待測物所引起的振動,因此振動訊號產生器2201在感測值校正階段並不會運作。
為了更詳細說明係數計算元件2203計算出有限脈衝響應係數及參數控制元件2204儲存有限脈衝響應係數的實現方式,請再回到圖2A並一併參考圖3A到圖3D及圖4。圖3A到圖3D係繪示多個頻譜訊號的示例圖。圖4係依據本發明一實施例所繪示的微機電感測裝置在校正係數產生階段的運作方法的流程圖。詳細的步驟說明,如下所述。
步驟S101:以振動訊號產生器輸出振動頻譜訊號至可動驅動電極及固定驅動電極以驅動質量塊。步驟S103:以可動感應電極及固定感應電極感測質量塊的振動並輸出對應該振動的感測訊號。步驟S105:以轉換模組轉換感測訊號並輸出一輸入頻譜訊號。
如前所述,圖3A所示的振動頻譜訊號T(i)在頻域上具有相等振幅的多個工作頻率。微機電感測器10的固定感應電極1021及可動感應電極1022輸出的感測訊號MS可能因各種因素(例如:製程變異、材料老化或使用環境改變)而產生誤差。因此,轉換模組210轉換感測訊號MS而輸出的輸入頻譜訊號ADO(i)就不會是一等振幅的頻譜訊號,而會是為如圖3B所示的一非等振幅的頻譜訊號。
步驟S107:以係數計算元件基於輸入頻譜訊號計算出有限脈衝響應係數(FIR Co.)。步驟S109:以參數控制元件儲存有限脈衝響應係數。
在步驟S107中,係數計算元件2203可以將輸入頻譜訊號ADO(i)在各個頻率點上之振幅的倒數作為如圖3C所示的目標頻譜訊號FTO(i)在各個相對應頻譜上的增益值。當目標頻譜訊號FTO(i)求得後,係數計算元件2203可依據此目標頻譜訊號FTO(i)及輸入頻譜訊號ADO(i)計算出一組有限脈衝響應係數(FIR Coefficient;FIR Co.)。
為了計算出有限脈衝響應係數,係數計算元件2203可以是電性連接於振動訊號產生器2201以接收振動頻譜訊號T(i)並取得振動頻譜訊號T(i)在一預定頻域上的每個頻率值及相對應的振幅值。詳細而言,若係數計算元件2203取得的振動頻譜訊號T(i)的各振幅值已被標準化(normalized),則係數計算元件2203可以直接將輸入頻譜訊號ADO(i)在每一個頻率的振幅值的倒數值作為目標頻譜訊號FTO(i)在每一個相對應之頻率的增益值(gain)。舉例來說,若輸入頻譜訊號ADO(i)的頻率點分別是
Figure 02_image001
Figure 02_image003
Figure 02_image005
….
Figure 02_image007
且對應各頻率點的振幅分別是A1、A2、A3…..An,則目標頻譜訊號FTO(i)在頻率點
Figure 02_image001
Figure 02_image003
Figure 02_image005
….
Figure 02_image007
上相對應的增益值分別是1/A1、1/A2、1/A3…..1/An。
若係數計算元件2203取得的振動頻譜訊號T(i)的各振幅值未被標準化,則係數計算元件2203取得目標頻譜訊號FTO(i)的方式可以是先將振動頻譜訊號T(i)在每個頻率的振幅值除以輸入頻譜訊號ADO(i)在每個頻率的振幅值。然後將在每個頻率的相除結果作為目標頻譜訊號FTO(i)在每一個頻率的增益值。舉例來說,若振動頻譜訊號T(i)的頻率點分別是
Figure 02_image001
’、
Figure 02_image009
Figure 02_image011
….
Figure 02_image013
且對應各頻率點的振幅分別是A1’、A2’、A3’…An’,則係數計算元件2203可以先將振動頻譜訊號T(i)的振幅值A1’、A2’、A3’…An’除以輸入頻譜訊號ADO(i)的振幅值A1、A2、A3…An。相除的結果即為A1’/A1、A2’/A2、A3’/A3…An’/An。接著,係數計算元件2203可以將A1’/A1、A2’/A2、A3’/A3…An’/An作為增益值。
在取得目標頻譜訊號FTO(i)在每一個頻率的增益值後,係數計算元件2203接著根據該些增益值執行一帶通脈衝響應濾波運算,以計算出在每一個頻率的有限脈衝響應係數。具體而言,係數計算元件2203是以如下式(1)計算帶通(bandpass)濾波係數
Figure 02_image015
,再根據帶通濾波係數
Figure 02_image015
計算出有限脈衝響應係數(FIR Co.)。請參考式(1),每個頻段的中心點即為頻率點
Figure 02_image017
,而帶通濾波係數
Figure 02_image015
及根據帶通濾波係數
Figure 02_image015
計算出的有限脈衝響應係數即是包含頻率點
Figure 02_image017
的頻段的係數。然有限脈衝響應係數有多種的計算方式,詳細的內容可以參考文獻「Digital Signal Processing: Fundamentals and Applications(Second Edition),作者Lizhe Tan與Jean Jiang」的第七章(Chapter 7: Finite Impulse Response Filter Design)。下文將對式(1)進行詳細的說明。
需先說明的是,上文中雖然皆是以一個頻率對應一個振幅進行說明,然上述的一個頻率較佳為一個頻段。並且,因「一個訊號(脈衝)」實際上是由一個頻段內的多個不同振幅連接而成,故下述的「訊號」是指在一個頻段上有不同振幅的訊號,而該頻段的中心即為所述頻率點。在式(1)中,
Figure 02_image015
為帶通濾波係數,
Figure 02_image019
即為所述目標頻譜訊號FTO(i)在各頻率點
Figure 02_image017
的增益值;
Figure 02_image021
為頻率點
Figure 02_image017
與訊號邊界值之間的採樣數,其中每個頻段的中心即為頻率點
Figure 02_image017
Figure 02_image023
為以頻率點
Figure 02_image017
為中心的頻段上的總採樣數);
Figure 02_image025
Figure 02_image027
分別為頻率點
Figure 02_image017
的截止頻率。以頻率點
Figure 02_image003
為例,
Figure 02_image025
Figure 02_image027
即分別為:
Figure 02_image029
Figure 02_image031
Figure 02_image033
-式(1)
換言之,在將一個訊號視為一個點(如圖3A~3D所示)的情況下,
Figure 02_image035
;在將一個訊號視為分布於一個頻段內的情況下,該訊號即包含
Figure 02_image035
(頻段中心點)及
Figure 02_image037
(除了中心點以外的其餘訊號點)兩種狀態,且
Figure 02_image021
越大時
Figure 02_image015
越精確。故根據帶通濾波係數
Figure 02_image015
計算出的有限脈衝響應係數(FIR Co.)可使輸出頻譜訊號FO(i)在頻段中心點
Figure 02_image017
左右兩側的訊號的振幅趨近於振動頻譜訊號T(i)在頻率點
Figure 02_image017
上的振幅。
此外,多個頻段可以組成一個頻域,而每個頻段具有一個帶通濾波響應(bandpass filter response)。因此,一個頻域(涵蓋
Figure 02_image001
Figure 02_image003
Figure 02_image005
….)的有限脈衝響應濾波器2202之有限脈衝響應即包含每一該些頻段(
Figure 02_image001
Figure 02_image003
Figure 02_image005
….)的帶通濾波脈衝響應。在該頻域(涵蓋
Figure 02_image001
Figure 02_image003
Figure 02_image005
….)中,單一頻段的帶通濾波脈衝響應係數
Figure 02_image015
即包含該頻段對應的帶通濾波器的多個脈衝響應係數。舉例而言,假設所述頻段的中心點為
Figure 02_image001
,該頻段(以
Figure 02_image001
為中心)的帶通濾波脈衝響應係數以BP0表示。在
Figure 02_image039
的情況下,該頻段(以
Figure 02_image001
為中心)的帶通濾波脈衝響應係數可以是包含
Figure 02_image041
。總而言之,一個頻域(涵蓋
Figure 02_image001
Figure 02_image003
Figure 02_image005
….)的有限脈衝響應濾波器2202的有限脈衝響應係數是由該些頻段(
Figure 02_image001
Figure 02_image003
Figure 02_image005
….)的帶通濾波脈衝響應係數結合而成。
進一步舉例說明,以涵蓋6個頻段(中心頻率
Figure 02_image017
, n=0~5,即
Figure 02_image001
Figure 02_image003
Figure 02_image005
Figure 02_image043
Figure 02_image045
Figure 02_image047
)之有限脈衝響應濾波器2202為例,其有限脈衝響應是由頻段為
Figure 02_image001
Figure 02_image003
Figure 02_image005
Figure 02_image043
Figure 02_image045
Figure 02_image047
的多個帶通濾波脈衝響應結合而成。在時域上,有限脈衝響應濾波器2202的輸出頻譜訊號可以
Figure 02_image049
表示,輸出頻譜訊號
Figure 02_image049
的計算方式可以為如下式(2):
Figure 02_image051
-式(2) 其中t為每個頻段(
Figure 02_image001
Figure 02_image003
Figure 02_image005
Figure 02_image043
Figure 02_image045
Figure 02_image047
)對應的時間點,BP0(t)、BP1(t)、BP2(t)、BP3(t)、BP4(t)、BP5(t)為頻段為
Figure 02_image001
Figure 02_image003
Figure 02_image005
Figure 02_image043
Figure 02_image045
Figure 02_image047
的帶通濾波器在時間點t之輸出訊號。
各帶通濾波器之輸出訊號BP n(t)可表示為如下式(3):
Figure 02_image053
-式(3) ,其中ADO即為類比數位轉換元件2102輸出的輸入頻譜訊號ADO(i)。
Figure 02_image055
為例的情況下,頻段
Figure 02_image017
的帶通濾波器之輸出即為:
Figure 02_image057
。因此,在
Figure 02_image055
,且有限脈衝響應濾波器2202之頻段數量為5(頻段之中心頻率分別為
Figure 02_image001
Figure 02_image003
Figure 02_image005
Figure 02_image043
Figure 02_image045
Figure 02_image047
)的情況下,有限脈衝響應濾波器2202的輸出訊號FO(t)可進一步表示成:
Figure 02_image059
其中,
Figure 02_image061
Figure 02_image063
Figure 02_image065
Figure 02_image067
Figure 02_image069
即分別為有限脈衝響應濾波器2202之有限脈衝響應係數
Figure 02_image071
Figure 02_image073
Figure 02_image075
Figure 02_image077
Figure 02_image079
,有限脈衝響應濾波器2202的輸出訊號FO(t)可進一步廣義表示為:
Figure 02_image081
, 其中
Figure 02_image083
為有限脈衝響應係數,並可廣義表示為:
Figure 02_image085
,其中N+1為有限脈衝響應濾波器2202之頻段數量,
Figure 02_image087
Figure 02_image089
Figure 02_image091
之間的整數,其中
Figure 02_image093
是依據式(1)計算取得。
在參數控制元件2204取得有限脈衝響應係數後,參數控制元件2204可以進一步將有限脈衝響應係數傳送至有限脈衝響應濾波器2202。有限脈衝響應濾波器2202依據該有限脈衝響應係數對輸入頻譜訊號進行補償以輸出一輸出頻譜訊號至一終端裝置。使用者即可藉由輸出頻譜訊號,判斷有限脈衝響應濾波器2202輸出的輸出頻譜訊號是否為一等振幅頻譜訊號。若終端裝置上的輸出頻譜訊號為如圖3D所示的輸出頻譜訊號FO(i),則可確認藉由參數控制元件2204所存的有限脈衝響應係數為正確的有限脈衝響應係數。
請接著參考圖5,圖5係依據本發明的第二實施例所繪示的微機電感測裝置的功能示意圖。圖5的微機電感測裝置M2有部分相同於圖2A及2B所示的微機電感測裝置M1。惟不同處在於,圖5所示的微機電感測裝置M2的微機電感測器10’更包含一加熱器103及一溫度感測器104。加熱器103可以電性連接於參數控制元件2204或是獨立設置在微機電感測器M2內,本發明不對加熱器103的電性連接關係予以限制,而溫度感測器104可以是電性連接於參數控制元件2204。
詳言之,在振動訊號產生器2201輸出振動頻譜訊號T(i)之前(即在步驟S101前),加熱器103可以先將微機電感測裝置M2的溫度維持在一預設溫度範圍。所述預設溫度範圍較佳為微機電感測裝置實際設置在待測物上時,待測物工作時的溫度範圍。因此,藉由加熱器103先將微機電感測裝置M2的溫度維持在一預設溫度範圍後,微機電感測裝置M2所求得的有限脈衝響應係數將使微機電感測裝置M2在量測在所述溫度範圍內工作的待測物時,會得到更準確的振動頻譜。
當微機電感測裝置M2在不同工作溫度下運作時,其感測結果會受到溫度影響而產生誤差。因此,為了克服此問題,在校正係數產生階段時,加熱器103可以在多個時間範圍內,將微機電感測裝置M2的溫度分別維持在多個不同的溫度範圍。然後,振動訊號產生器2201即可在所述多個不同的溫度範圍下分別輸出振動頻譜訊號T(i)。接著,微機電感測裝置M2可按照圖4的步驟,求得不同的溫度範圍下的多組有限脈衝響應係數或多個有限脈衝響應係數。具體而言,以一個振動頻譜訊號T(i)對應一個頻域為例,當感測訊號MS為多個頻率的複合訊號時,一個頻域可以對應到多組有限脈衝響應係數,且每組有限脈衝響應係數是對應到一個溫度範圍。當感測訊號MS為分時訊號時,一個頻率可以對應到多個有限脈衝響應係數,且每個有限脈衝響應係數是對應到一個溫度範圍。換言之,一個頻域可以同時對應到在不同溫度範圍下的多組有限脈衝響應係數且一個頻率可以同時對應到在不同溫度範圍下的多個有限脈衝響應係數。參數控制元件2204儲存頻率/頻域、有限脈衝響應係數、溫度範圍的實際數值及三者的對應關係。
舉例而言,同樣在振動訊號產生器2201輸出振動頻譜訊號T(i)之前(即在步驟S101前),加熱器103(由參數控制元件2204控制)可以將微機電感測裝置M2的溫度維持在第一溫度範圍。溫度感測器104感測微機電感測裝置M2的溫度以取得第一溫度範圍並將第一溫度範圍傳輸至參數控制元件2204。參數控制元件2204取得對應第一溫度範圍的第一組有限脈衝響應係數。接著加熱器103將微機電感測裝置M2的溫度維持在第二溫度範圍。溫度感測器104感測微機電感測裝置M2的溫度以取得第二溫度範圍並將第二溫度範圍傳輸至參數控制元件2204,以取得對應第二溫度範圍的第二組有限脈衝響應係數,其中第一溫度範圍不同於第二溫度範圍。以此類推,微機電感測裝置M2可以取得多組的溫度相依的有限脈衝響應係數。
據此,在感測值校正階段(振動訊號產生器2201不運作),溫度感測器104會先感測微機電感測裝置M2的環境溫度(即待測物的工作溫度),然後參數控制元件2204輸出對應該同溫度範圍的一個有限脈衝響應係數或一組有限脈衝響應係數。更清楚地說,微機電感測裝置M2的加熱器103及溫度感測器104可使微機電感測裝置M2取得溫度相依的有限脈衝響應係數,進而使微機電感測裝置M2在各溫度範圍下都能有準確的量測結果。
請參考圖6圖6係依據本發明的第三實施例所繪示的微機電感測裝置M3的功能示意圖。圖6的微機電感測裝置M3有部分相同於圖2A及2B所示的微機電感測裝置M1。惟不同處在於,圖6所示的微機電感測裝置M3的校正模組220’可以省略如圖2A及2B的微機電感測裝置M1的振動訊號產生器2201的設置。當校正模組220’可以僅包含有限脈衝響應濾波器2202、係數計算元件2203及參數控制元件2204時,可以降低積體電路晶片20’的整體面積,進而降低積體電路晶片20’的製造成本且同時縮小微機電感測裝置M3的整體體積。另需特別說明的是,雖然在感測值校正階段,固定驅動電極DE1、可動驅動電極DE2及係數計算元件2203暫不運作,微機電感測裝置M3仍保留固定驅動電極DE1、可動驅動電極DE2及係數計算元件2203的設置。如此,就可以讓微機電感測裝置M3在出廠後,只要使固定驅動電極DE1及可動驅動電極DE2電性外接至另一具有振動訊號產生器的裝置(例如具有圖2A及2B中之振動訊號產生器2201的外接裝置),微機電感測裝置M3就能夠以前述校正係數產生階段的方式更新參數控制元件2204所存的有限脈衝響應係數。因此,微機電感測裝置M3藉著外接振動訊號產生器的方式,同樣能更新在不同使用環境的有限脈衝響應係數,以使微機電感測裝置M3在不同的使用環境下,仍能準確的量測出待測物的振動。
此外,圖6所示的微機電感測裝置M3的微機電感測器10亦可以包含如圖5所示的加熱器103與溫度感測器104。因此,在校正係數產生階段,參數控制元件2204即可儲存與溫度相依的有限脈衝響應係數。在感測值校正階段,參數控制元件2204即可輸出與溫度相依的有限脈衝響應係數至有限脈衝響應濾波器2202,取得及輸出與溫度相依的有限脈衝響應係數的詳細實現方式已於圖5說明,故不再於此贅述。
綜上所述,依據本發明一或多個實施例所示的具有校正功能的微機電感測裝置,利用有限脈衝響應濾波器對輸入頻譜訊號進行校正,因此可在不同的頻率點上,得到準確的振幅值。因此,本發明的一個或多個實施例,可以擴大微機電感測器的使用頻率範圍。此外,依據本發明一或多個實施例所示的具有校正功能的微機電感測裝置具有振動訊號產生器,因此不需要將微機電感測裝置設置在振動測試設備上,即能求得所需的有限脈衝響應係數,進而能將微機電感測裝置直接設置於待測物上,立即對待測物產生的振動訊號進行校正。如此便減少微機電感測裝置的校正流程與校正時間。此外,因依據本發明一或多個實施例所示的具有校正功能的微機電感測裝置會取得對應不同溫度及頻率的有限脈衝響應係數,故可以降低微機電感測裝置在對待測物進行振動量測時,不會受到環境溫度的影響,進而能夠產生準確的感測結果。
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。
M、M1、M2、M3:微機電感測裝置 10、10’:微機電感測器 DE1:固定驅動電極 DE2:可動驅動電極 101:質量塊 1021:固定感應電極 1022:可動感應電極 103:加熱器 104:溫度感測器 20、20’:積體電路晶片 210:轉換模組 2101:增益放大元件 2102:類比數位轉換元件 220、220’:校正模組 2201:振動訊號產生器 2202:有限脈衝響應濾波器 2203:係數計算元件 2204:參數控制元件 MS、MS*:感測訊號 T(i):振動頻譜訊號 ADO(i)、ADO*(i):輸入頻譜訊號 FTO(i):目標頻譜訊號 FO(i)、FO*(i):輸出頻譜訊號
圖1係依據本發明的校正係數產生階段及感測值校正階段的實施例所繪示的具校正功能的微機電感測裝置的示意圖。 圖2A係依據本發明的校正係數產生階段的第一實施例所繪示的微機電感測裝置的示意圖。 圖2B係依據本發明的感測值校正階段的第一實施例所繪示的微機電感測裝置的示意圖。 圖3A到圖3D係繪示多個頻譜訊號的示例圖。 圖4係依據本發明一實施例所繪示的微機電感測裝置在校正係數產生階段的運作方法的流程圖。 圖5係依據本發明的校正係數產生階段的第二實施例所繪示的微機電感測裝置的示意圖。 圖6係依據本發明的校正係數產生階段及感測值校正階段的第三實施例所繪示的微機電感測裝置的示意圖。
M:微機電感測裝置
10:微機電感測器
DE1:固定驅動電極
DE2:可動驅動電極
101:質量塊
1021:固定感應電極
1022:可動感應電極
20:積體電路晶片
210:轉換模組
220:校正模組
MS、MS*:感測訊號
ADO(i)、ADO*(i):輸入頻譜訊號
FO(i)、FO*(i):輸出頻譜訊號

Claims (18)

  1. 一種具校正功能的微機電感測裝置,包含:一微機電感測器,包含:一質量塊,至少一可動驅動電極設置於該質量塊上,至少一固定驅動電極設置於一基板上,至少一可動感應電極設置於該質量塊上,以及至少一固定感應電極設置於該基板上,其中當該質量塊產生一振動時,該至少一可動感應電極及該至少一固定感應電極會輸出一感測訊號;以及一積體電路晶片,包含:一轉換模組,電性連接該微機電感測器,其中該轉換模組將該感測訊號轉換成一輸入頻譜訊號,以及一校正模組,電性連接該轉換模組,其中該校正模組接收該輸入頻譜訊號並將該輸入頻譜訊號轉換成一輸出頻譜訊號;其中,當該微機電感測器承受一等振幅的振動時且該輸入頻譜訊號為非等振幅頻譜訊號時,該輸出頻譜訊號為等振幅頻譜訊號。
  2. 如請求項1所述的具校正功能的微機電感測裝置,其中該校正模組包含一有限脈衝響應濾波器,該有限脈衝響應濾波器電性連接該轉換模組,該有限脈衝響應濾波器依據一組有限脈衝響應係數對該輸入頻譜訊號執行訊號處理以產生該輸出頻譜訊號。
  3. 如請求項2所述的具校正功能的微機電感測裝置,其中該轉換模組包含一增益放大元件及一類比數位轉換元件,該增益放大元件電性連接該至少一可動感應電極及至少一固定感應電極,該類比數位轉換元件電性連接該增益放大元件及該有限脈衝響應濾波器。
  4. 如請求項3所述的具校正功能的微機電感測裝置,其中該校正模組包含一係數計算元件,該係數計算元件電性連接該有限脈衝響應濾波器,當該微機電感測器承受一等振幅的振動時,該係數計算元件依據該輸入頻譜訊號及一目標頻譜訊號執行運算,以產生該有限脈衝響應係數,該目標頻譜訊號在每一頻率點上之振幅與該輸入頻譜訊號在相對應的該頻率點上之振幅互為倒數。
  5. 如請求項4所述的具校正功能的微機電感測裝置,其中該校正模組還包含一參數控制元件,該係數計算元件電 性連接該參數控制元件,該參數控制元件電性連接該有限脈衝響應濾波器,該參數控制元件從該係數計算元件接收並儲存該組有限脈衝響應係數,該參數控制元件更輸出該組有限脈衝響應係數至該有限脈衝響應濾波器。
  6. 如請求項5所述的具校正功能的微機電感測裝置,其中該微機電感測器還包含一加熱器及一溫度感測器,該加熱器及該溫度感測器電性連接該參數控制元件。
  7. 如請求項4所述的具校正功能的微機電感測裝置,其中該校正模組還包含一振動訊號產生器,該振動訊號產生器產生一振動頻譜訊號並將該振動頻譜訊號傳遞至該至少一可動驅動電極及該至少一固定驅動電極以驅動該質量塊產生振動。
  8. 如請求項7所述的具校正功能的微機電感測裝置,其中該振動頻譜訊號為等振幅頻譜訊號。
  9. 如請求項7所述的具校正功能的微機電感測裝置,其中該振動訊號產生器為音調控制電路。
  10. 一種具校正功能的微機電感測裝置,包含:一微機電感測器,包含:一質量塊,至少一可動驅動電極設置於該質量塊上, 至少一固定驅動電極設置於一基板上,至少一可動感應電極設置於該質量塊上,以及至少一固定感應電極設置於該基板上,其中當質量塊產生一振動時,該至少一可動感應電極及該至少一固定感應電極會輸出一感測訊號;以及一積體電路晶片,包含:一轉換模組,電性連接該微機電感測器,其中該轉換模組將該感測訊號轉換成一輸入頻譜訊號,以及一校正模組,電性連接該轉換模組,並包含一振動訊號產生器,其中,該校正模組接收該輸入頻譜訊號並將該輸入頻譜訊號轉換成一輸出頻譜訊號,當該微機電感測器承受一等振幅的振動且該輸入頻譜訊號為非等振幅頻譜訊號時,該輸出頻譜訊號為等振幅頻譜訊號。
  11. 如請求項10所述的具校正功能的微機電感測裝置,其中該振動訊號產生器產生一振動頻譜訊號並將該振動頻譜訊號傳遞至該至少一可動驅動電極及該至少一固定驅動電極以驅動該質量塊產生該振動,該振動頻譜訊號為等振幅頻譜訊號。
  12. 如請求項10所述的具校正功能的微機電感測裝置,其中該振動訊號產生器為音調控制電路。
  13. 如請求項10所述的具校正功能的微機電感測裝置,其中該校正模組包含一有限脈衝響應濾波器,該有限脈衝響應濾波器電性連接該轉換模組,該有限脈衝響應濾波器依據一組有限脈衝響應係數對該輸入頻譜訊號執行訊號轉換,以產生該輸出頻譜訊號。
  14. 如請求項10所述的具校正功能的微機電感測裝置,其中該轉換模組包含一增益放大元件及一類比數位轉換元件,該增益放大元件電性連接該至少一感應電極,該類比數位轉換元件電性連接該增益放大元件及該校正模組。
  15. 一種具校正功能的微機電感測裝置,包含一微機電感測器以及一積體電路晶片,該微機電感測器包含一質量塊、設置於該質量塊上的至少一可動驅動電極、設置於一基板上的至少一固定驅動電極、設置於該質量塊上的至少一可動感應電極,以及設置於該基板上的至少一固定感應電極,其中該積體電路晶片包含:一轉換模組,包含: 一增益放大元件,電性連接該至少一可動感應電極及該至少一固定感應電極以接收一感測訊號;以及一類比數位轉換元件,電性連接該增益放大元件,其中該感測訊號經過該增益放大元件及類比數位轉換元件轉換為一輸入頻譜訊號;以及一校正模組,包含:一音調控制電路,產生一等振幅頻譜訊號並將該等振幅頻譜訊號傳遞至該至少一可動驅動電極及該至少一固定驅動電極以驅動該質量塊產生振動,進而使該至少一可動感應電極及該至少一固定感應電極輸出該感測訊號,一有限脈衝響應濾波器,電性連接該類比數位轉換元件,該有限脈衝響應濾波器依據一組有限脈衝響應係數對該輸入頻譜訊號執行訊號轉換,以產生一輸出頻譜訊號,以及一係數計算元件,電性連接該有限脈衝響應濾波器,其中,當該微機電感測器承受一等振幅的振動時,該係數計算元件依據該輸入頻譜訊號及一目標頻譜訊號計算出該組有限脈衝響應係數,該係數計算元件並傳輸該組有限脈衝響應係數至該有限脈衝響應濾波器,該目標頻譜訊號在每一頻 率點上之振幅與該輸入頻譜訊號在相對應的該每一頻率點上之振幅互為倒數。
  16. 如請求項15所述的具校正功能的微機電感測裝置,其中該微機電感測器更包含一加熱器電性連接於該校正模組,該加熱器用以在該音調控制電路傳輸該等振幅頻譜訊號至該至少一可動驅動電極及該至少一固定驅動電極時,該將微機電感測裝置的溫度維持在一預設溫度範圍。
  17. 如請求項15所述的具校正功能的微機電感測裝置,其中該微機電感測器更包含一溫度感測器電性連接於該校正模組,在該音調控制電路傳輸該等振幅頻譜訊號至該至少一可動驅動電極及該至少一固定驅動電極時,該溫度感測器用以感測在該微機電感測裝置的一環境溫度,並將該環境溫度輸出至該校正模組,該校正模組即儲存該組有限脈衝響應係數及該環境溫度。
  18. 如請求項15所述的具校正功能的微機電感測裝置,其中該組有限脈衝響應係數是多組有限脈衝響應係數,該微機電感測器更包含一溫度感測器用以感測該微機電感測裝置的一環境溫度,該溫度感測器並輸出該環境溫度至該校正模組,該有限脈衝響應濾波器係接收該些組有限脈衝響應係數中對應該環境溫度的一者。
TW110115515A 2021-04-29 2021-04-29 具校正功能的微機電感測裝置 TWI797602B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110115515A TWI797602B (zh) 2021-04-29 2021-04-29 具校正功能的微機電感測裝置
US17/539,686 US12025588B2 (en) 2021-04-29 2021-12-01 Microelectromechanical sensing apparatus with calibration function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110115515A TWI797602B (zh) 2021-04-29 2021-04-29 具校正功能的微機電感測裝置

Publications (2)

Publication Number Publication Date
TW202242351A TW202242351A (zh) 2022-11-01
TWI797602B true TWI797602B (zh) 2023-04-01

Family

ID=83999451

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110115515A TWI797602B (zh) 2021-04-29 2021-04-29 具校正功能的微機電感測裝置

Country Status (2)

Country Link
US (1) US12025588B2 (zh)
TW (1) TWI797602B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201435305A (zh) * 2013-03-01 2014-09-16 Ind Tech Res Inst 具指插式彈簧的微機電裝置
US20170023429A1 (en) * 2015-04-20 2017-01-26 Infineon Technologies Ag System and Method for a MEMS Sensor
US20190072635A1 (en) * 2017-09-01 2019-03-07 Samsung Electronics Co., Ltd. Sound direction detection sensor including multi-resonator array

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6915215B2 (en) * 2002-06-25 2005-07-05 The Boeing Company Integrated low power digital gyro control electronics
US9032777B2 (en) 2011-09-16 2015-05-19 Robert Bosch Gmbh Linearity enhancement of capacitive transducers by auto-calibration using on-chip neutralization capacitors and linear actuation
EP2647952B1 (en) * 2012-04-05 2017-11-15 Fairchild Semiconductor Corporation Mems device automatic-gain control loop for mechanical amplitude drive
US9702897B2 (en) 2012-10-08 2017-07-11 Northrop Grumman Systems Corporation Dynamic self-calibration of an accelerometer system
US9410806B2 (en) 2013-08-26 2016-08-09 Robert Bosch Gmbh System and method for gyroscope zero-rate-offset drift reduction through demodulation phase error correction
US9874581B2 (en) 2015-05-15 2018-01-23 Honeywell International Inc. In-situ bias correction for MEMS accelerometers
US10365104B2 (en) 2016-05-11 2019-07-30 Murata Manufacturing Co., Ltd. Digital controller for a MEMS gyroscope
TWI689708B (zh) 2018-12-24 2020-04-01 財團法人工業技術研究院 具監測功能的振動感測器及其振動訊號監測方法
US11175138B2 (en) * 2019-06-26 2021-11-16 Stmicroelectronics, Inc. MEMS gyroscope control circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201435305A (zh) * 2013-03-01 2014-09-16 Ind Tech Res Inst 具指插式彈簧的微機電裝置
US20170023429A1 (en) * 2015-04-20 2017-01-26 Infineon Technologies Ag System and Method for a MEMS Sensor
US20190072635A1 (en) * 2017-09-01 2019-03-07 Samsung Electronics Co., Ltd. Sound direction detection sensor including multi-resonator array

Also Published As

Publication number Publication date
US20220365040A1 (en) 2022-11-17
TW202242351A (zh) 2022-11-01
US12025588B2 (en) 2024-07-02

Similar Documents

Publication Publication Date Title
JP4822453B2 (ja) 超音波探触子及び超音波診断装置
CN112595352B (zh) 骨声纹传感器的校准方法、装置、设备及可读存储介质
CN106644052B (zh) 一种微振镜的反馈系统及方法
EP3855620B1 (en) Method and apparatus for improving mems accelerometer frequency response
TWI797602B (zh) 具校正功能的微機電感測裝置
CN110907029B (zh) 振动感测装置的校准方法
CN110412438A (zh) 生成包括晶体振荡器的测试产品的晶体模型的方法和系统
CN115267345A (zh) 具校正功能的微机电感测装置
KR20150043664A (ko) 초음파 센서의 구동 주파수 최적화 장치 및 그 방법
Mende et al. Sensors with digital output–a metrological challenge
CN109579976A (zh) 一种压电式加速度传感器灵敏度系数校验方法
CN109738093B (zh) 用于微机电器件应力检测的片上谐振梁结构及检测方法
JPS61501654A (ja) 圧力補正型差圧センサと方法
CN111366111A (zh) 一种利用三个lgs声表面波谐振器组成的应变传感器及测试方法
CN112649087B (zh) 基于声振解耦的噪声传感器振动灵敏度校准方法及装置
CN112326018A (zh) 振动传感器的测试方法及振动传感器
JP2001165765A (ja) 振動分布測定装置
RU2466368C1 (ru) Способ определения динамических характеристик тензометрического преобразователя давления (варианты)
RU2643685C1 (ru) Пьезоэлектрический измерительный преобразователь вибрации с внутренним возбуждением деформации и способы его калибровки
CN113382349B (zh) 一种测试装置的校准方法、装置及计算机可读存储介质
CN111880092B (zh) Chirp信号Hammerstein模型系统辨识方法
JP6931637B2 (ja) 圧電型加速度センサ
Hermawanto Acoustic Measurement Traceability
RU2705747C1 (ru) Комплекс устройств для измерения параметров механических колебаний высокотемпературных объектов
RU2558636C2 (ru) Вибродатчик с элементом цифровой калибровки