WO2013114523A1 - 超電導マグネット - Google Patents

超電導マグネット Download PDF

Info

Publication number
WO2013114523A1
WO2013114523A1 PCT/JP2012/051931 JP2012051931W WO2013114523A1 WO 2013114523 A1 WO2013114523 A1 WO 2013114523A1 JP 2012051931 W JP2012051931 W JP 2012051931W WO 2013114523 A1 WO2013114523 A1 WO 2013114523A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat conducting
conducting member
superconducting magnet
vacuum vessel
lead
Prior art date
Application number
PCT/JP2012/051931
Other languages
English (en)
French (fr)
Inventor
井上 達也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201280065968.1A priority Critical patent/CN104040650B/zh
Priority to JP2012544998A priority patent/JP5220244B1/ja
Priority to US14/355,367 priority patent/US9431160B2/en
Priority to PCT/JP2012/051931 priority patent/WO2013114523A1/ja
Publication of WO2013114523A1 publication Critical patent/WO2013114523A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors

Definitions

  • the present invention relates to a superconducting magnet.
  • Patent Document 1 Japanese Utility Model Publication No. 63-89212 is a prior art document that discloses an ice removing device for removing ice adhering to a connection terminal connected to a power supply lead.
  • an ice removing device for a superconducting magnet described in Patent Document 1 an ice removing device is inserted from a connecting pipe, and an ice melting part having a high heat capacity is fitted into the connecting terminal to melt ice.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a superconducting magnet capable of removing a solidified substance such as air.
  • a superconducting magnet includes a superconducting coil, a helium tank that houses the superconducting coil and stores liquid helium therein, a radiation shield that surrounds the periphery of the helium tank, a vacuum container that houses the radiation shield, and a helium tank And an exhaust part for exhausting vaporized helium.
  • the superconducting magnet also includes a lead that electrically connects an external power source and the superconducting coil, is detachable from the vacuum vessel, and a connector that connects the lead and the superconducting coil.
  • the superconducting magnet includes a heat conducting member that has one end side in contact with at least one of the connector and the exhaust portion, and the other end side located outside the vacuum vessel, and is detachable from the vacuum vessel.
  • solids such as air can be removed.
  • FIG. 1 is a cross-sectional view showing a configuration of a superconducting magnet according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the superconducting magnet connector according to this embodiment.
  • a superconducting magnet 100 includes a superconducting coil 110 formed by winding a superconducting wire, and helium that houses the superconducting coil 110 and stores liquid helium 150 therein.
  • a tank 120, a radiation shield 130 that surrounds the periphery of the helium tank 120, and a vacuum container 140 that houses the radiation shield 130 are provided.
  • the radiation shield 130 is supported by a support member (not shown) so that heat conduction to the helium tank 120 is reduced.
  • a superconducting coil 110 is wound around the shaft of the helium tank 120.
  • Superconducting coil 110 is cooled by liquid helium 150 stored in helium tank 120.
  • An exhaust pipe 190 that is an exhaust unit for exhausting the vaporized helium is connected to the helium tank 120.
  • the superconducting magnet 100 includes a refrigerator (not shown).
  • the first stage cooling unit of the refrigerator is in contact with the radiation shield 130.
  • the second stage cooling unit which is the tip of the refrigerator, is in contact with the vaporized helium in the helium tank 120, and the vaporized helium is cooled and reliquefied.
  • the superconducting magnet 100 is connected to an external power source 170 for flowing a current through the superconducting coil 110.
  • the superconducting magnet 100 includes a lead 171 that is electrically connected to the external power source 170 and the superconducting coil 110 and can be attached to and detached from the vacuum vessel 140, and a connector 160 that connects the lead 171 and the superconducting coil 110. .
  • the connector 160 includes a connection terminal 161 that electrically connects the lead 171 and the superconducting coil 110, a main body 163 that holds the connection terminal 161 and has thermal conductivity, And an electrically insulating part 162 interposed between the body part 163 and the body part 163.
  • connection terminals 161 penetrate through a rectangular parallelepiped body portion 163 made of metal such as copper. Between the connection terminal 161 and the main body part 163, an electrical insulation part 162 having electrical insulation such as GFRP (Glass fiber reinforced plastics) is disposed.
  • the electrical insulating portion 162 ensures electrical insulation between the connection terminal 161 and the main body portion 163 and between the connected lead 171 and the main body portion 163.
  • the shape of the connector 160 and the material of each component are not limited to the above, and are set as appropriate.
  • the superconducting magnet 100 includes a heat conducting member 180 that has one end in contact with the connector 160 and the other end positioned outside the vacuum vessel 140 and is detachable from the vacuum vessel 140. Yes.
  • the heat conducting member 180 includes an L-shaped first heat conducting member 181 fixedly disposed so as to be in contact with the lower surface of the main body 163 of the connector 160 in the helium tank 120, and the first heat conducting member. It is comprised from the rod-shaped 2nd heat conductive member 182 which has a lower end surface which contacts the upper end surface of the member 181.
  • the first heat conducting member 181 is fixed in a non-contact state with the connection terminal 161.
  • the second heat conducting member 182 is detachably supported with respect to the vacuum vessel 140.
  • the first heat conductive member 181 and the second heat conductive member 182 are made of copper. More specifically, the first heat conductive member 181 and the second heat conductive member 182 are made of dephosphorized copper.
  • the configuration and material of the heat conducting member 180 are not limited to the above, and may be integrally formed of a material having thermal conductivity.
  • one end of the rod-shaped heat conducting member may be disposed in contact with the side surface of the main body 163 of the connector 160 and the other end may be positioned outside the vacuum vessel 140.
  • the main body 163 in the direction in which the two connection terminals 161 are arranged, the main body 163 can be heated more uniformly when the first heat conducting member 181 is in contact with the entire length of the main body 163. it can.
  • the operation of the superconducting magnet 100 according to the present embodiment will be described.
  • the liquid helium 150 is cooled to about 4.2K using a refrigerator.
  • air containing nitrogen or oxygen may solidify.
  • the lead 171 cannot be mounted as it is.
  • the second heat conducting member 182 is attached to the vacuum container 140 and the lower end surface of the second heat conducting member 182 is brought into contact with the upper end surface of the first heat conducting member 181. Since the upper end portion of the second heat conducting member 182 is located outside the vacuum vessel 140, the upper end portion of the second heat conducting member 182 absorbs heat from the outside air outside the vacuum vessel 140.
  • the heat absorbed by the upper end portion of the second heat conducting member 182 is conducted from the lower end surface of the second heat conducting member 182 to the first heat conducting member 181.
  • the heat conducted to the first heat conducting member 181 is conducted to the main body 163 of the connector 160. With the heat conducted to the main body portion 163, the solidified material generated near the upper end of the connection terminal 161 can be melted and removed. Since the solidification temperature such as nitrogen or oxygen is considerably lower than the outside air temperature, the solidified material can be reliably removed by heating the connector 160 via the heat conducting member 180 using the outside air as a heat source.
  • the lead 171 After removing the solidified substance, the lead 171 is attached to the vacuum container 140. Thereafter, the second heat conducting member 182 is removed. In this state, by operating the external power supply 170, a current flows through the superconducting coil 110 through the lead 171 and the connector 160.
  • the second heat conducting member 182 is attached to the vacuum container 140.
  • the main body portion 163 is heated by the heat conducting member 180 to melt and remove the solidified material generated in the connection portion 171a. Thereafter, by pulling out the lead 171, it is possible to prevent a load from being applied to the lead 171. Finally, the second heat conducting member 182 is removed from the vacuum container 140.
  • the superconducting magnet 200 according to the present embodiment is different from the superconducting magnet 100 according to the first embodiment only in that a heat conducting member 280 that is in contact with the exhaust part is further provided. Therefore, description of other configurations will not be repeated. .
  • FIG. 3 is a cross-sectional view showing a configuration of a superconducting magnet according to Embodiment 2 of the present invention.
  • the superconducting magnet 200 according to the second embodiment of the present invention has one end in contact with the exhaust pipe 190 and the other end positioned outside the vacuum vessel 140, and is attached to and detached from the vacuum vessel 140.
  • a possible heat conducting member 280 is provided.
  • one end of the rod-like heat conducting member 280 is arranged so as to be in contact with a part of the outer periphery of the port 190 a of the exhaust pipe 190 and the other end is located outside the vacuum vessel 140.
  • the heat conducting member 280 is supported so as to be detachable from the vacuum vessel 140.
  • the heat conducting member 280 is made of copper. More specifically, the heat conducting member 280 is formed from dephosphorized copper. However, the material of the heat conducting member 280 is not limited to this, and any material having heat conductivity may be used.
  • a pressure sensor (not shown) for measuring the pressure in the helium tank 120 is attached to the helium tank 120.
  • the pressure in the helium tank 120 becomes equal to or higher than a predetermined pressure, it is determined that the opening 190a of the exhaust pipe 190 is blocked by the solidified material, and the heat conducting member 280 is attached to the vacuum container 140. Since the upper end portion of the heat conducting member 280 is located outside the vacuum vessel 140, the upper end portion of the heat conducting member 280 absorbs heat from outside air outside the vacuum vessel 140.
  • the heat absorbed by the upper end portion of the heat conducting member 280 is conducted from the lower end portion of the heat conducting member 280 to the exhaust pipe 190. Due to the heat conducted to the exhaust pipe 190, the solidified material generated in the vicinity of the mouth 190 a of the exhaust pipe 190 can be melted and removed.
  • the heat conducting member 280 is removed.
  • the superconducting coil 110 can be stably cooled by removing the solidified matter generated in the exhaust part by the above method. As a result, the superconducting magnet 200 can be operated stably.
  • the superconducting magnet 300 according to the present embodiment is different from the superconducting magnet 100 according to the first embodiment only in that a heat conducting member 380 that is in contact with both the connector and the exhaust portion is provided. Do not repeat.
  • FIG. 4 is a cross-sectional view showing a configuration of a superconducting magnet according to Embodiment 3 of the present invention.
  • the superconducting magnet 300 according to the third embodiment of the present invention is in contact with the main body 163 and the exhaust pipe 190 of the connector 160 in the vacuum container 140 on one end side, and the other end side is the vacuum container.
  • a heat conducting member 380 that is located outside 140 and can be attached to and detached from the vacuum vessel 140 is provided.
  • the heat conducting member 380 includes an L-shaped first heat conducting member 381 fixedly disposed so as to be in contact with the lower surface of the main body 163 of the connector 160 in the helium tank 120, and the first heat conducting member. It is composed of a rod-shaped second heat conducting member 382 having a lower end surface that comes into contact with the upper end surface of the member 381.
  • the first heat conducting member 381 is fixed in a non-contact state with the connection terminal 161.
  • the second heat conducting member 382 is detachably supported with respect to the vacuum container 140.
  • the first heat conducting member 381 and the second heat conducting member 382 are made of copper. More specifically, the first heat conducting member 381 and the second heat conducting member 382 are made of dephosphorized copper.
  • the configuration and material of the heat conductive member 380 are not limited to the above, and may be integrally formed of a material having thermal conductivity.
  • one end of the rod-like heat conducting member is placed in contact with the side surface of the main body 163 of the connector 160 and part of the outer periphery of the port 190a of the exhaust pipe 190, and the other end is disposed outside the vacuum vessel 140. May be.
  • the main body portion 163 is heated by the heat conducting member 380 to melt and remove the solidified matter generated in the connection portion 171a, and the solidified matter generated near the mouth 190a of the exhaust pipe 190 is melted. Can be removed.
  • the superconducting magnet 300 further includes a heating unit 370 that heats the other end side of the second heat conducting member 382.
  • a heating unit 370 various heaters such as a resistance heater or a warm air heater can be used. By heating the second heat conducting member 382 by the heating unit 370, the time required for melting the solidified product can be shortened.
  • the superconducting magnet 300 does not necessarily include the heating unit 370.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 超電導マグネットは、超電導コイル(110)と、超電導コイル(110)を収納して内部に液体ヘリウム(150)を貯留するヘリウム槽(120)と、ヘリウム槽(120)の周囲を囲む輻射シールド(130)と、輻射シールド(130)を収納する真空容器(140)と、ヘリウム槽(120)に接続され、気化したヘリウムを排気する排気部(190)と、外部電源(170)と超電導コイル(110)とを電気的に接続し、真空容器(140)に対して着脱可能なリード(171)と、リード(171)と超電導コイル(110)とを接続するコネクタ(160)と、一端側がコネクタ(160)および排気部(190)の少なくとも一方に接触し、かつ、他端側が真空容器(140)の外側に位置し、真空容器(140)に対して着脱可能な熱伝導部材(180,280,380)とを備える。

Description

超電導マグネット
 本発明は、超電導マグネットに関する。
 電源供給リードと接続される接続用端子に付着した氷を除去する氷除去器具を開示した先行文献として、実開昭63-89212号公報(特許文献1)がある。特許文献1に記載された超電導マグネットの氷除去器具においては、氷除去器具を接続用配管から挿入し、高熱容量の氷融解部を接続用端子に嵌着することにより氷を溶かしている。
実開昭63-89212号公報
 リードを真空容器から着脱する際、真空容器内のヘリウム槽に空気などが浸入する。ヘリウム槽内に浸入した空気は、ヘリウム槽内の液体ヘリウムにより冷却されて凝固する。リードと接続端子との接続部において凝固が発生すると、リードを真空容器から引き抜くことができなくなる。無理にリードを引き抜いた場合には、リードが破損する。この場合、氷除去器具を用いて凝固物を除去することができない。
 また、ヘリウム槽に接続された排気部において凝固が発生すると、気化したヘリウムを排出できなくなり、超電導コイルを安定して冷却することができなくなる。
 本発明は上記の問題点に鑑みてなされたものであって、空気などの凝固物を除去できる超電導マグネットを提供することを目的とする。
 本発明に基づく超電導マグネットは、超電導コイルと、超電導コイルを収納して内部に液体ヘリウムを貯留するヘリウム槽と、ヘリウム槽の周囲を囲む輻射シールドと、輻射シールドを収納する真空容器と、ヘリウム槽に接続され、気化したヘリウムを排気する排気部とを備える。また、超電導マグネットは、外部電源と超電導コイルとを電気的に接続し、真空容器に対して着脱可能なリードと、リードと超電導コイルとを接続するコネクタとを備える。さらに、超電導マグネットは、一端側がコネクタおよび排気部の少なくとも一方に接触し、かつ、他端側が真空容器の外側に位置し、真空容器に対して着脱可能な熱伝導部材を備える。
 本発明によれば、空気などの凝固物を除去できる。
本発明の実施形態1に係る超電導マグネットの構成を示す断面図である。 同実施形態に係る超電導マグネットのコネクタの構成を示す断面図である。 本発明の実施形態2に係る超電導マグネットの構成を示す断面図である。 本発明の実施形態3に係る超電導マグネットの構成を示す断面図である。
 以下、本発明の実施形態1に係る超電導マグネットについて図面を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
 (実施形態1)
 図1は、本発明の実施形態1に係る超電導マグネットの構成を示す断面図である。図2は、本実施形態に係る超電導マグネットのコネクタの構成を示す断面図である。
 図1に示すように、本発明の実施形態1に係る超電導マグネット100は、超電導線を巻き回して形成された超電導コイル110と、超電導コイル110を収納して内部に液体ヘリウム150を貯留するヘリウム槽120と、ヘリウム槽120の周囲を囲む輻射シールド130と、輻射シールド130を収納する真空容器140とを備えている。輻射シールド130は、図示しない支持部材によりヘリウム槽120への熱伝導が少なくなるように支持されている。
 ヘリウム槽120の軸部に超電導コイル110が巻き付けられている。ヘリウム槽120の内部に貯留された液体ヘリウム150により超電導コイル110が冷却される。
 ヘリウム槽120には、気化したヘリウムを排気する排気部である排気管190が接続されている。排気管190には、ヘリウム槽120内の圧力が所定の圧力以上となった場合に開くように設定されたバルブ191が取り付けられている。
 超電導マグネット100は、図示しない冷凍機を備えている。冷凍機の第1段目の冷却部は、輻射シールド130に接している。冷凍機の先端部である第2段目の冷却部は、ヘリウム槽120内において気化したヘリウムと接しており、気化したヘリウムを冷却して再液化する。
 超電導マグネット100には、超電導コイル110に電流を流すための外部電源170が接続される。超電導マグネット100は、外部電源170と超電導コイル110とを電気的に接続して真空容器140に対して着脱可能なリード171と、リード171と超電導コイル110とを接続するコネクタ160とを備えている。
 図2に示すように、コネクタ160は、リード171と超電導コイル110とを電気的に接続する接続端子161と、接続端子161を保持して熱伝導性を有する本体部163と、接続端子161と本体部163との間に介在する電気絶縁部162とを含む。
 具体的には、銅などの金属からなる直方体状の本体部163を2本の接続端子161が貫通している。接続端子161と本体部163との間に、GFRP(Glass fiber reinforced plastics)などの電気絶縁性を有する電気絶縁部162が配置されている。電気絶縁部162により、接続端子161と本体部163との間、および、接続されたリード171と本体部163との間の電気絶縁が確保される。ただし、コネクタ160の形状および各構成の材料は上記に限られず、適宜設定される。
 図1に示すように、超電導マグネット100は、一端側がコネクタ160に接触し、かつ、他端側が真空容器140の外側に位置し、真空容器140に対して着脱可能な熱伝導部材180を備えている。
 本実施形態においては、熱伝導部材180は、ヘリウム槽120内においてコネクタ160の本体部163の下面と接触するように固定配置されたL字状の第1熱伝導部材181と、第1熱伝導部材181の上端面と接触する下端面を有する棒状の第2熱伝導部材182とから構成されている。
 なお、第1熱伝導部材181は、接続端子161とは非接触の状態で固定されている。第2熱伝導部材182は、真空容器140に対して着脱可能に支持されている。第1熱伝導部材181および第2熱伝導部材182は、銅から形成されている。より具体的には、第1熱伝導部材181および第2熱伝導部材182は、脱燐酸銅から形成されている。
 熱伝導部材180の構成および材料は上記に限られず、熱伝導性を有する材料で一体に形成されていてもよい。たとえば、棒状の熱伝導部材の一端をコネクタ160の本体部163の側面に接触させ、他端を真空容器140の外側に位置するように配置してもよい。
 ただし、本実施形態のように、2本の接続端子161が並ぶ方向において、第1熱伝導部材181を本体部163の全長にわたって接触させた方が、本体部163をより均一に加熱することができる。
 以下、本実施形態に係る超電導マグネット100の動作について説明する。
 まず、リード171および第2熱伝導部材182を装着していない状態で、冷凍機を用いて液体ヘリウム150を4.2K程度まで冷却する。この時、窒素または酸素などを含む空気が凝固する可能性がある。リード171と接続される接続端子161の上端付近で凝固が発生した場合、そのままではリード171を装着することができない。
 そこで、真空容器140に第2熱伝導部材182を装着して、第2熱伝導部材182の下端面を第1熱伝導部材181の上端面に接触させる。第2熱伝導部材182の上端部は真空容器140の外側に位置しているため、第2熱伝導部材182の上端部は真空容器140の外側の外気から熱を吸収する。
 第2熱伝導部材182の上端部で吸収された熱は、第2熱伝導部材182の下端面から第1熱伝導部材181に伝導される。第1熱伝導部材181に伝導された熱は、コネクタ160の本体部163に伝導される。本体部163に伝導された熱により、接続端子161の上端付近に生じた凝固物を融解させて除去することができる。窒素または酸素などの凝固温度は外気温に比較してかなり低いため、外気を熱源として熱伝導部材180を介してコネクタ160を加熱することにより、確実に凝固物を除去することができる。
 凝固物を除去した後、真空容器140にリード171を装着する。その後、第2熱伝導部材182を取り外す。この状態で、外部電源170を作動させることにより、リード171およびコネクタ160を通じて超電導コイル110に電流を流す。
 超電導マグネット100の磁場強度が定格磁場まで上昇して外部電源170からの電流供給が不要となってリード171を引き抜く際には、リード171と接続端子161との接続部171aにおいて凝固が発生している可能性があるため、まず、真空容器140に第2熱伝導部材182を装着する。
 上述したように、熱伝導部材180により本体部163を加熱して、接続部171aに生じた凝固物を融解させて除去する。その後、リード171を引き抜くことにより、リード171に負荷がかかることを防止できる。最後に、第2熱伝導部材182を真空容器140から取り外す。
 上記の方法でリード171を着脱することにより、接続端子161および接続部171aに生じた凝固物によってリード171が着脱不能となることを防止できる。
 以下、本発明の実施形態2に係る超電導マグネットについて図面を参照して説明する。なお、本実施形態に係る超電導マグネット200は、排気部と接触した熱伝導部材280がさらに設けられている点のみ実施形態1に係る超電導マグネット100と異なるため、他の構成については説明を繰り返さない。
 (実施形態2)
 図3は、本発明の実施形態2に係る超電導マグネットの構成を示す断面図である。図3に示すように、本発明の実施形態2に係る超電導マグネット200は、一端側が排気管190に接触し、かつ、他端側が真空容器140の外側に位置し、真空容器140に対して着脱可能な熱伝導部材280を備えている。
 本実施形態においては、棒状の熱伝導部材280の一端を排気管190の口190aの外周の一部に接触させ、他端を真空容器140の外側に位置するように配置している。
 熱伝導部材280は、真空容器140に対して着脱可能に支持されている。熱伝導部材280は、銅から形成されている。より具体的には、熱伝導部材280は、脱燐酸銅から形成されている。ただし、熱伝導部材280の材料はこれに限られず、熱伝導性を有する材料であればよい。
 以下、本実施形態に係る超電導マグネット200において、排気部に生じた凝固物を除去する動作について説明する。
 ヘリウム槽120には、ヘリウム槽120内の圧力を測定する図示しない圧力センサーが取り付けられている。ヘリウム槽120に接続された排気管190の口190aにおいて凝固が発生すると、気化したヘリウムを排出できなくなり、ヘリウム槽120内の圧力が高くなる。
 ヘリウム槽120内の圧力が所定の圧力以上となった場合、排気管190の口190aが凝固物によって閉塞していると判断して、熱伝導部材280を真空容器140に装着する。熱伝導部材280の上端部は真空容器140の外側に位置しているため、熱伝導部材280の上端部は真空容器140の外側の外気から熱を吸収する。
 熱伝導部材280の上端部で吸収された熱は、熱伝導部材280の下端部から排気管190に伝導される。排気管190に伝導された熱により、排気管190の口190aの近傍に生じた凝固物を融解させて除去することができる。
 凝固物を除去することにより排気管190から排気されてヘリウム槽120内の圧力が低下したことを確認した後、熱伝導部材280を取り外す。
 上記の方法で排気部に生じた凝固物を除去することにより、超電導コイル110を安定して冷却することができる。その結果、超電導マグネット200を安定して動作させることができる。
 以下、本発明の実施形態3に係る超電導マグネットについて図面を参照して説明する。なお、本実施形態に係る超電導マグネット300は、コネクタおよび排気部の両方と接触した熱伝導部材380が設けられている点のみ実施形態1に係る超電導マグネット100と異なるため、他の構成については説明を繰り返さない。
 (実施形態3)
 図4は、本発明の実施形態3に係る超電導マグネットの構成を示す断面図である。図4に示すように、本発明の実施形態3に係る超電導マグネット300は、一端側である真空容器140内においてコネクタ160の本体部163および排気管190に接触し、かつ、他端側が真空容器140の外側に位置し、真空容器140に対して着脱可能な熱伝導部材380を備えている。
 本実施形態においては、熱伝導部材380は、ヘリウム槽120内においてコネクタ160の本体部163の下面と接触するように固定配置されたL字状の第1熱伝導部材381と、第1熱伝導部材381の上端面と接触する下端面を有する棒状の第2熱伝導部材382とから構成されている。
 なお、第1熱伝導部材381は、接続端子161とは非接触の状態で固定されている。第2熱伝導部材382は、真空容器140に対して着脱可能に支持されている。第1熱伝導部材381および第2熱伝導部材382は、銅から形成されている。より具体的には、第1熱伝導部材381および第2熱伝導部材382は、脱燐酸銅から形成されている。
 熱伝導部材380の構成および材料は上記に限られず、熱伝導性を有する材料で一体に形成されていてもよい。たとえば、棒状の熱伝導部材の一端をコネクタ160の本体部163の側面、および、排気管190の口190aの外周の一部に接触させ、他端を真空容器140の外側に位置するように配置してもよい。
 この構成により、熱伝導部材380により本体部163を加熱して、接続部171aに生じた凝固物を融解させて除去するとともに、排気管190の口190aの近傍に生じた凝固物を融解させて除去することができる。
 その結果、接続端子161および接続部171aに生じた凝固物によってリード171が着脱不能となることを防止するとともに、超電導コイル110を安定して冷却することができる。
 また、本実施形態に係る超電導マグネット300は、第2熱伝導部材382の他端側を加熱する加熱部370をさらに備えている。加熱部370としては、抵抗加熱ヒータまたは温風ヒータなど種々のヒータを用いることができる。加熱部370により第2熱伝導部材382を加熱することにより、凝固物を融解させるために必要な時間を短縮することができる。ただし、超電導マグネット300は、必ずしも加熱部370を備えなくてもよい。
 なお、今回開示した上記実施形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、請求の範囲の記載に基づいて画定される。また、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 100,200,300 超電導マグネット、110 超電導コイル、120 ヘリウム槽、130 輻射シールド、140 真空容器、150 液体ヘリウム、160 コネクタ、161 接続端子、162 電気絶縁部、163 本体部、170 外部電源、171 リード、171a 接続部、180,280,380 熱伝導部材、181,381 第1熱伝導部材、182,382 第2熱伝導部材、190 排気管、190a 口、191 バルブ、370 加熱部。

Claims (4)

  1.  超電導コイル(110)と、
     前記超電導コイル(110)を収納して内部に液体ヘリウム(150)を貯留するヘリウム槽(120)と、
     前記ヘリウム槽(120)の周囲を囲む輻射シールド(130)と、
     前記輻射シールド(130)を収納する真空容器(140)と、
     前記ヘリウム槽(120)に接続され、気化したヘリウムを排気する排気部(190)と、
     外部電源(170)と前記超電導コイル(110)とを電気的に接続し、前記真空容器(140)に対して着脱可能なリード(171)と、
     前記リード(171)と前記超電導コイル(110)とを接続するコネクタ(160)と、
     一端側が前記コネクタ(160)および前記排気部(190)の少なくとも一方に接触し、かつ、他端側が前記真空容器(140)の外側に位置し、前記真空容器(140)に対して着脱可能な熱伝導部材(180,280,380)と
    を備える、超電導マグネット。
  2.  前記熱伝導部材(380)の他端側を加熱する加熱部(370)をさらに備える、請求項1に記載の超電導マグネット。
  3.  前記コネクタ(160)は、前記リード(171)と前記超電導コイル(110)とを電気的に接続する接続端子(161)と、前記接続端子(161)を保持して熱伝導性を有する本体部(163)と、前記接続端子(161)と前記本体部(163)との間に介在する電気絶縁部(162)とを含む、請求項1または2に記載の超電導マグネット。
  4.  前記熱伝導部材(180)が銅を含む、請求項1に記載の超電導マグネット。
PCT/JP2012/051931 2012-01-30 2012-01-30 超電導マグネット WO2013114523A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280065968.1A CN104040650B (zh) 2012-01-30 2012-01-30 超导磁体
JP2012544998A JP5220244B1 (ja) 2012-01-30 2012-01-30 超電導マグネット
US14/355,367 US9431160B2 (en) 2012-01-30 2012-01-30 Superconducting magnet
PCT/JP2012/051931 WO2013114523A1 (ja) 2012-01-30 2012-01-30 超電導マグネット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/051931 WO2013114523A1 (ja) 2012-01-30 2012-01-30 超電導マグネット

Publications (1)

Publication Number Publication Date
WO2013114523A1 true WO2013114523A1 (ja) 2013-08-08

Family

ID=48778738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051931 WO2013114523A1 (ja) 2012-01-30 2012-01-30 超電導マグネット

Country Status (4)

Country Link
US (1) US9431160B2 (ja)
JP (1) JP5220244B1 (ja)
CN (1) CN104040650B (ja)
WO (1) WO2013114523A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163021A1 (ja) * 2015-04-10 2016-10-13 三菱電機株式会社 超電導マグネット
CN104835612B (zh) * 2015-05-25 2017-03-08 奥泰医疗系统有限责任公司 一种超导磁体多分支传导冷却结构
JP6602716B2 (ja) * 2016-03-30 2019-11-06 ジャパンスーパーコンダクタテクノロジー株式会社 超電導マグネット装置
JP6546115B2 (ja) * 2016-03-30 2019-07-17 ジャパンスーパーコンダクタテクノロジー株式会社 超電導マグネット装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134063U (ja) * 1985-02-08 1986-08-21
JPS61134064U (ja) * 1985-02-08 1986-08-21
JPH02150003A (ja) * 1988-09-02 1990-06-08 General Electric Co <Ge> 超電導回路用動力操作接触装置
WO2001057886A1 (fr) * 2000-01-31 2001-08-09 Fujitsu Limited Unite d'emission de signal thermiquement isolee et dispositif d'emission de signal supraconducteur

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134064A (ja) * 1984-12-05 1986-06-21 Hitachi Ltd 半導体装置
JPH0510371Y2 (ja) 1985-06-22 1993-03-15
JPS624162U (ja) 1985-06-24 1987-01-12
JPS6389212U (ja) 1986-12-01 1988-06-10
US5430423A (en) * 1994-02-25 1995-07-04 General Electric Company Superconducting magnet having a retractable cryocooler sleeve assembly
US5636888A (en) 1995-01-10 1997-06-10 Drafto Corporation Remote-controlled latch assembly
JPH09139308A (ja) * 1995-11-14 1997-05-27 Hitachi Medical Corp 超電導磁石装置及びその着磁方法
US7305845B2 (en) 2004-03-05 2007-12-11 General Electric Company System and method for de-icing recondensor for liquid cooled zero-boil-off MR magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134063U (ja) * 1985-02-08 1986-08-21
JPS61134064U (ja) * 1985-02-08 1986-08-21
JPH02150003A (ja) * 1988-09-02 1990-06-08 General Electric Co <Ge> 超電導回路用動力操作接触装置
WO2001057886A1 (fr) * 2000-01-31 2001-08-09 Fujitsu Limited Unite d'emission de signal thermiquement isolee et dispositif d'emission de signal supraconducteur

Also Published As

Publication number Publication date
US20140274724A1 (en) 2014-09-18
CN104040650B (zh) 2016-09-14
CN104040650A (zh) 2014-09-10
JP5220244B1 (ja) 2013-06-26
JPWO2013114523A1 (ja) 2015-05-11
US9431160B2 (en) 2016-08-30

Similar Documents

Publication Publication Date Title
KR102199796B1 (ko) 유도 가열 방식으로 에어로졸을 생성하는 장치 및 시스템
JP5220244B1 (ja) 超電導マグネット
JP5007841B2 (ja) 超電導線材の接続方法および接続装置
JP5005582B2 (ja) 超電導電流リードの製造方法
WO2008032118A1 (en) A cryostat containing electrical equipment and a method of assembly thereof
JP6104007B2 (ja) 電流供給装置
JP5940361B2 (ja) 超電導電流リードの製造方法及び超電導電流リード及び超電導マグネット装置
JP5977261B2 (ja) 超伝導線間の極低抵抗接続部と該接続部の形成方法
JP6084490B2 (ja) 超電導装置
CN110739115B (zh) 一种超导磁体的电流引线
CN207710057U (zh) 一种热电偶快速焊接装置
CN203696181U (zh) 一种新型电烙铁
CN107894093A (zh) 一种可分离式ptc加热器
CN209371371U (zh) 蓄热组件及蓄热设备
US20130098896A1 (en) Heater Rod Comprising a Casing in Which at Least One Electrical Resistance Heating Element is Mounted
CN209295451U (zh) 万向式智能温控电加热装置
CN205342134U (zh) 超导缆真空锡焊系统
US20190006087A1 (en) Arrangement of electrical conductors and method for manufacturing an arrangement of electrical conductors
CN208222811U (zh) 一种可分离式ptc加热器
CN104759726A (zh) 带底部端子封装元器件的解焊方法
CN206919661U (zh) 一种电磁熔解炉
JP2013143474A (ja) 超電導マグネット装置及びその電流リード
CN201018858Y (zh) 加热蒸发装置
CN205488952U (zh) 焊端子固定装置
CN202720939U (zh) 一种新型的大功率制冷电机引出连接线

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012544998

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867517

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14355367

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867517

Country of ref document: EP

Kind code of ref document: A1