WO2013113777A1 - Dispositif de protection cathodique d'une paroi métallique contre la corrosion dans un milieu salin - Google Patents

Dispositif de protection cathodique d'une paroi métallique contre la corrosion dans un milieu salin Download PDF

Info

Publication number
WO2013113777A1
WO2013113777A1 PCT/EP2013/051837 EP2013051837W WO2013113777A1 WO 2013113777 A1 WO2013113777 A1 WO 2013113777A1 EP 2013051837 W EP2013051837 W EP 2013051837W WO 2013113777 A1 WO2013113777 A1 WO 2013113777A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
wall
compartment
metal wall
cation
Prior art date
Application number
PCT/EP2013/051837
Other languages
English (en)
Inventor
Serge Prigent
Original Assignee
Alstom Renewable Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Renewable Technologies filed Critical Alstom Renewable Technologies
Priority to CA2862349A priority Critical patent/CA2862349A1/fr
Priority to EP13705736.0A priority patent/EP2809830A1/fr
Priority to KR1020147024276A priority patent/KR20140122739A/ko
Priority to AU2013214235A priority patent/AU2013214235B2/en
Priority to JP2014555191A priority patent/JP2015505583A/ja
Priority to CN201380007762.8A priority patent/CN104080953A/zh
Publication of WO2013113777A1 publication Critical patent/WO2013113777A1/fr
Priority to US14/341,029 priority patent/US20140332373A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2201/00Type of materials to be protected by cathodic protection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/30Anodic or cathodic protection specially adapted for a specific object
    • C23F2213/31Immersed structures, e.g. submarine structures

Definitions

  • the invention relates to the cathodic protection of immersed installations in a brackish or saline environment.
  • a sacrificial anode consisting of a more electronegative metal than the one to be protected.
  • a polarization occurs, the shell becoming the cathode of an electrochemical cell and the sacrificial anode becoming the anode of the same cell.
  • M constituents of the sacrificial anode that undergo the effects of corrosion by seawater and not those of the shell.
  • Sacrificial anodes protecting the submerged steel parts of a boat or other fixed gear are usually aluminum-zinc (2-6%) - indium (0.01-0.05%), or aluminum -gallium (0.01%) or zinc alloy-AI (0.1 -0.5%).
  • the disadvantage of this protection is that it releases in the marine environment ions of the metals constituting the sacrificial anodes. If this disadvantage is relatively minimal in the case of boats moving on the open sea, it is to be considered significantly more seriously when the boats are immobilized in a port, because the metals of the anode will accumulate in the water and in the water. the seabed of the parking areas, where they are going to be absorbed by the living beings who stay there.
  • the object of the invention is to provide a solution for preventing the release into the external environment of the cations resulting from the dissolution of an anode of a cathodic protection device.
  • the subject of the invention is a device for cathodic protection of a metal wall against corrosion in a salt medium, comprising an anode and means for connecting said anode to said wall, said anode being at an electrochemical potential. higher than said wall, characterized in that said anode is placed in a compartment delimited by an electron-permeable wall and, possibly, water, comprising:
  • porous outer layer made of a material chosen from: polymer materials, ceramic materials or hydrated inorganic materials;
  • the material constituting said at least one layer being chosen from osmotic membranes, activated carbon, a cation exchange resin such as a zeolite, a nano-cations cation-capturing polymer, cation-capturing mineral compounds such as phyllosilicates and inosilicates, microporous organic semi-permeable nanofiltration membranes of a cation-retaining type.
  • Said wall may also include a membrane trapping negatively charged contaminants.
  • the anode may be a sacrificial anode whose electrochemical potential is naturally greater than that of the metal wall.
  • the device may comprise means for imposing on the anode an electrochemical potential greater than that of the metal wall.
  • connection means of the anode to the metal wall may be in contact with the wall outside the compartment and pass through the porous wall of the compartment.
  • the means for connecting the anode to the metal wall may be in contact with the metal wall inside the compartment, and the porous wall of the compartment is sealingly connected to the metal wall.
  • the device may comprise means for keeping the anode away from the metal wall. It may comprise a plurality of layers having the capacity to capture the cations emitted by the anode during its dissolution, each layer preferably capturing cations different from those picked up in a preferred manner by the other layers.
  • the invention consists in placing the anode in a compartment delimited by a series of porous membranes permeable to at least electrons, or even to water, arranged in layers.
  • the outer layer is constituted by a porous non-metallic membrane, intended to reduce the hydraulic flow in the vicinity of the anode.
  • the other porous layer (s) act as a cation barrier or trap, which prevents cations from dissolution of the anode from escaping out of the compartment into the external environment.
  • the membranes are all permeable to water, the space between the anode and the wall of the compartment fills with water naturally. If at least one of the membranes is not permeable to water but only to electrons, it is necessary, during installation of the device, to fill the compartment with water, preferably with water. seawater to obtain good electrical conductivity, in order to bathe the anode in an electron-conducting medium and to give the compartment its operational form, with internal and external pressures that balance out.
  • a sacrificial anode 3 is disposed in the vicinity of the wall 1, to which it is connected by electrical connectors 4, 5.
  • the sacrificial anode 3 is made around a single steel connector, and in this case, the connectors 4, 5 shown are in fact the two ends of this single connector.
  • the constituent material of the sacrificial anode 3 is conventional for this purpose (Al-In, Al-Ga or Zn alloy for example), and its choice is not a characteristic of the invention.
  • the sacrificial anode 3 is included in a compartment 6 which is delimited by a set of membrane forming layers, and surrounds the anode 3 at a distance, for example, of the order of 1 cm.
  • the outermost layer 7 is a porous electron-permeable layer and, preferably, also water, intended to reduce the hydraulic flow between the external environment and the interior space 8 of the compartment.
  • the material constituting it is selected from polymeric materials, ceramic materials or hydrated inorganic materials.
  • thermoplastic polymers of the polyethylene or high density polyethylene type or industrial mullite or alumina type porcelains.
  • this material is electrically insulating, it must have porosity. Indeed, the polarization of the anode corresponds to the establishment of a small electrochemical circuit, which can only work if the electrons circulate. The open porosity allows the electrons to pass into the liquid even though the layer 7 is insulating.
  • This outermost layer 7 whose thickness is generally of the order of mm, serves to protect the anode and the other membranes of the compartment 6 against hydraulic abrasion. It must have suitable properties of resistance to wear and impacts, resistance to deformation in the presence of a fluid in motion.
  • the permeability of the layer 7 is, for example, of the order of 10 ml / min for 1 cm 2 of anode surface.
  • the other layer or layers of the wall of the compartment 6 (there are two, 9, 10, in the example shown) is or consist of one or more materials serving as cation traps, and which capture the cations emitted by the sacrificial anode 3 to prevent them from being found in the marine environment 2.
  • materials may be suitable: osmotic membranes, activated carbon powder or granules, a cation exchange resin such as a zeolite, a cation-attracting negative nanocharging cationic polymer, mineral cation-capturing compounds such as phyllosilicates and inosilicates.
  • osmotic membranes activated carbon powder or granules
  • a cation exchange resin such as a zeolite
  • a cation-attracting negative nanocharging cationic polymer such as phyllosilicates and inosilicates.
  • mineral cation-capturing compounds such as phyllosilicates and inosilicates.
  • An activated alumina membrane or a functionally equivalent compound can be added to them, which in turn traps negatively charged contaminants, such as As and fluorides, that could decrease the efficiency of cation-trapping membranes.
  • Semipermeable membranes used in electrolytic ion exchange processes can also be used.
  • Microporous organic semi-permeable nanofiltration membranes of a cation-retaining type may also be suitable.
  • the number of layers of cation sensor materials can be arbitrary, at the user's choice. These layers may advantageously be of multiple natures, each layer species being able, for example, to preferentially absorb one or more of the chemical species that the sacrificial anode 3 is capable of releasing.
  • the thickness of the layers, in particular of the layer 10, can vary from about 1 mm to a few cm, depending on the size of the anode 3 and, therefore, the amount of cations to trap.
  • compartment 6 In the case where the entire wall defining the compartment 6 is permeable to water, the water penetrates inside the compartment 6 and a pressure balance is reached between the inside and the outside of the compartment 6 The compartment 6 thus permanently takes its nominal form and its wall does not undergo crushing which could lead to its rupture.
  • the entire wall defining the compartment 6 is permeable to water. It may be permeable only to electrons, but then pre-filling compartment 6 with water, preferably seawater, is necessary during commissioning of the device according to the invention.
  • the progressive dissolution of the sacrificial anode 3 is carried out without pollution of the external medium by the cations resulting from this dissolution, these being captured by the layer or layers 9, 10.
  • These must have advantageously a total absorption capacity of the various cations and an absorption volume sufficient to not reach saturation before the end of life of the sacrificial anode 3.
  • the electrical conductors 4, 5 are in contact with the metal wall 1 in areas outside the compartment 6. It is necessary to therefore ensure a sealing of the wall of the compartment 6 in the areas where it is crossed by the conductors 4, 5. But alternatively, as shown in Figure 2, the contacts between the conductors 5, 6 and the metal wall 1 may be located inside the compartment 6. The wall of the compartment 6 is then in sealing contact with the metal wall 1 to be protected.
  • the sacrificial anode 3 is not in direct contact with the wall 1 to be protected. This avoids creating short circuits between the anode 3 and at least the area of the wall 1 which is opposite it. In this way, a greater part of the surface of the wall 1 can be protected under the best conditions by the same anode 3.
  • Means for holding the anode 3 away from the wall 1 are therefore provided, preferably (not shown in the figures). But in practice, they can often be constituted by the connectors 4, 5, which are generally made of steel and have due to their material and their dimensions, a sufficient rigidity to achieve the maintenance of the anode 3 at a distance from the wall 1.
  • the invention is also applicable in the case where the anode is not a sacrificial anode in the sense that it naturally has a higher electrochemical potential than that of the wall 1 to be protected, but is placed at this potential by a DC or rectified current generator to which it is connected by conductors which pass through the wall of the compartment 6 sealingly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Dispositif de protection cathodique d'une paroi métallique (1) contre la corrosion dans un milieu salin, comportant une anode et des moyens de connexion (4, 5) de ladite anode à ladite paroi (1), ladite anode étant à un potentiel électrochimique plus élevé que ladite paroi (1), caractérisé en ce que ladite anode est placée dans un compartiment (6) délimité par une paroi perméable aux électrons et, éventuellement, à l'eau, comportant : - une couche extérieure (7) poreuse en un matériau choisi parmi : des matériaux polymères, des matériaux céramiques ou des matériaux inorganiques hydratés; - et au moins une couche (9, 10) poreuse ayant la capacité de capter les cations émis par l'anode lors de sa dissolution, le matériau constituant ladite au moins une couche étant choisi parmi des membranes osmotiques, du charbon actif, une résine échangeuse de cations telle qu'une zéolite, un polymère capteur de cations à nanocharges, des composés minéraux capteurs de cations tels que des phyllosilicates et des inosilicates, des membranes microporeuses organiques semi-perméables de nanofiltration d'un type retenant les cations.

Description

Dispositif de protection cathodique d'une paroi métallique contre la
corrosion dans un milieu salin
L'invention concerne la protection cathodique des installations immergées dans un milieu saumâtre ou salin.
La protection des coques métalliques de bateaux ou des parties métalliques contre la corrosion par l'eau de mer est, de façon classique, souvent assurée par une anode sacrificielle, constituée par un métal plus électronégatif que celui qui est à protéger. Lorsque le bateau et son anode sacrificielle sont immergés dans l'eau de mer, une polarisation intervient, la coque devenant la cathode d'une cellule électrochimique et l'anode sacrificielle devenant l'anode de cette même cellule. En conséquence, ce sont les constituants métalliques de l'anode sacrificielle qui subissent les effets de la corrosion par l'eau de mer et non ceux de la coque. Ces constituants M sont libérés dans l'eau de mer sous forme de cations selon la réaction M→ Mn+ + n e .
Les anodes sacrificielles protégeant les parties immergées en acier d'un bateau ou de tout autre engin navigant ou installation fixe sont généralement en aluminium-zinc (2-6%)-indium (0,01 -0,05%), ou en aluminium-gallium (0,01 %) ou en alliage de zinc-AI (0,1 -0,5%). L'inconvénient de cette protection est qu'elle relâche dans le milieu marin des ions des métaux constituant les anodes sacrificielles. Si cet inconvénient est relativement minime dans le cas de bateaux se déplaçant en pleine mer, il est à considérer sensiblement plus sérieusement lorsque les bateaux sont immobilisés dans un port, car les métaux de l'anode vont s'accumuler dans l'eau et dans les fonds marins des zones de stationnement, où ils vont être absorbés par les êtres vivants qui y séjournent. Le problème se pose aussi pour les installations fixes telles que les plateformes pétrolières et les éoliennes « off-shore ». Il est donc impératif de trouver des solutions efficaces et économiques permettant d'éviter autant que possible cette libération de métaux nocifs dans le milieu extérieur, d'autant que les évolutions de la législation sur la protection environnementale pourraient rendre l'utilisation de solutions de maîtrise des rejets d'anodes sacrificielles obligatoire dans certaines circonstances.
Une solution alternative à l'utilisation d'une anode sacrificielle telle qu'on vient de la décrire est de réaliser cette anode en un matériau non forcément plus électropositif que le matériau à protéger (ce peut être de l'acier, de la fonte, du graphite, des oxydes métalliques...), mais auquel on impose, de façon constante ou cyclique, un potentiel électrique au moyen d'un générateur de courant continu ou redressé. Ce potentiel rend l'anode plus apte à être corrodée que la paroi à protéger. Cette technique est lourde à mettre en place, surtout dans des zones de l'installation qui sont difficiles d'accès, mais est efficace pour des installations de grande taille principalement. Cette technique est connue sous le nom de « protection cathodique à courant imposé » (PCCI en abrégé).
Le but de l'invention est de proposer une solution permettant d'éviter la libération dans le milieu extérieur des cations résultant de la dissolution d'une anode d'un dispositif de protection cathodique.
A cet effet, l'invention a pour objet un dispositif de protection cathodique d'une paroi métallique contre la corrosion dans un milieu salin, comportant une anode et des moyens de connexion de ladite anode à ladite paroi, ladite anode étant à un potentiel électrochimique plus élevé que ladite paroi, caractérisé en ce que ladite anode est placée dans un compartiment délimité par une paroi perméable aux électrons et, éventuellement, à l'eau, comportant :
- une couche extérieure poreuse en un matériau choisi parmi : des matériaux polymères, des matériaux céramiques ou des matériaux inorganiques hydratés ;
- et au moins une couche poreuse ayant la capacité de capter les cations émis par l'anode lors de sa dissolution, le matériau constituant ladite au moins une couche étant choisi parmi des membranes osmotiques, du charbon actif, une résine échangeuse de cations telle qu'une zéolite, un polymère capteur de cations à nanocharges, des composés minéraux capteurs de cations tels que des phyllosilicates et des inosilicates, des membranes microporeuses organiques semi-perméables de nanofiltration d'un type retenant les cations.
Ladite paroi peut comporter également une membrane piégeant les contaminants chargés négativement.
L'anode peut être une anode sacrificielle dont le potentiel électrochimique est naturellement supérieur à celui de la paroi métallique.
Sinon, le dispositif peut comporter des moyens pour imposer à l'anode un potentiel électrochimique supérieur à celui de la paroi métallique.
Les moyens de connexion de l'anode à la paroi métallique peuvent être au contact de la paroi à l'extérieur du compartiment et traversent de façon étanche la paroi poreuse du compartiment.
Les moyens de connexion de l'anode à la paroi métallique peuvent être au contact de la paroi métallique à l'intérieur du compartiment, et la paroi poreuse du compartiment est connectée de manière étanche à la paroi métallique.
Le dispositif peut comporter des moyens pour maintenir l'anode à distance de la paroi métallique. Il peut comporter une pluralité de couches ayant la capacité de capter les cations émis par l'anode lors de sa dissolution, chaque couche captant de façon privilégiée des cations différents de ceux captés de façon privilégiée par les autres couches.
Comme on l'aura compris, l'invention consiste à placer l'anode dans un compartiment délimité par une série de membranes poreuses perméables au moins aux électrons, voire aussi à l'eau, disposées en couches. La couche extérieure est constituée par une membrane non-métallique poreuse, destinée à réduire le flux hydraulique au voisinage de l'anode. La ou les autres couches poreuses joue(nt) le rôle d'une barrière ou d'un piège à cations, qui empêche les cations issus de la dissolution de l'anode de s'échapper hors du compartiment dans le milieu extérieur.
Si les membranes sont toutes perméables à l'eau, l'espace séparant l'anode de la paroi du compartiment se remplit d'eau naturellement. Si au moins l'une des membranes n'est pas perméable à l'eau mais seulement aux électrons, il est nécessaire, lors de l'installation du dispositif, de réaliser un remplissage du compartiment par de l'eau, de préférence par de l'eau de mer pour obtenir une bonne conductivité électrique, afin de faire baigner l'anode dans un milieu conducteur des électrons et de conférer au compartiment sa forme opérationnelle, avec des pressions interne et externe qui s'équilibrent.
L'invention sera mieux comprise à la lecture de la description qui suit, donnée en référence aux figures annexées suivantes :
- la figure 1 qui montre schématiquement en coupe longitudinale un premier exemple de mise en œuvre de l'invention ;
- la figure 2 qui montre schématiquement en coupe longitudinale un deuxième exemple de mise en œuvre de l'invention.
Sur la figure 1 , on a représenté une paroi métallique 1 appartenant à une installation implantée dans un milieu marin 2, telle qu'une plate-forme pétrolière ou une éolienne. Mais cette paroi 1 pourrait aussi être la coque d'un bateau, ou de tout autre engin navigant. De manière connue, une anode sacrificielle 3 est disposée au voisinage de la paroi 1 , à laquelle elle est reliée par des connecteurs électriques 4, 5. En général, comme dans l'art antérieur, l'anode sacrificielle 3 est réalisée autour d'un connecteur en acier unique, et dans ce cas, les connecteurs 4, 5 représentés sont en fait les deux extrémités de ce connecteur unique. Le matériau constitutif de l'anode sacrificielle 3 est classique à cet effet (Al-ln, Al-Ga ou alliage de Zn par exemple), et son choix n'est pas une caractéristique de l'invention. Selon l'invention, l'anode sacrificielle 3 est incluse dans un compartiment 6 qui est délimité par un ensemble de membranes formant des couches, et entoure l'anode 3 à une distance, par exemple, de l'ordre de 1 cm.
La couche la plus extérieure 7 est une couche poreuse perméable aux électrons et, de préférence, aussi à l'eau, destinée à réduire le flux hydraulique entre le milieu extérieur et l'espace intérieur 8 du compartiment. Le matériau qui la constitue est sélectionné parmi des matériaux polymères, des matériaux céramiques ou des matériaux inorganiques hydratés.
Comme exemples de tels matériaux on peut citer, non limitativement, des polymères thermoplastiques du type polyéthylène ou polyéthylène haute densité, ou des porcelaines de type mullite ou alumine industrielles.
Si ce matériau est isolant électriquement, il doit présenter une porosité. En effet, la polarisation de l'anode correspond à l'établissement d'un petit circuit électrochimique, qui ne peut fonctionner que si les électrons circulent. La porosité ouverte permet aux électrons de passer dans le liquide même si la couche 7 est isolante.
Cette couche la plus extérieure 7, dont l'épaisseur est généralement de l'ordre du mm, a pour fonction de protéger l'anode et les autres membranes du compartiment 6 contre l'abrasion hydraulique. Elle doit présenter des propriétés adaptées de résistance à l'usure et aux impacts, de résistance à la déformation en présence d'un fluide en mouvement.
La perméabilité de la couche 7 est, par exemple, de l'ordre de 10 ml/min pour 1 cm2 de surface d'anode.
La ou les autres couches de la paroi du compartiment 6 (il y en a deux, 9, 10, dans l'exemple représenté) est ou sont constituées par un ou des matériaux servant de pièges à cations, et qui captent les cations émis par l'anode sacrificielle 3 pour éviter qu'ils ne se retrouvent dans le milieu marin 2. A cet effet, divers types de matériaux peuvent convenir : des membranes osmotiques, du charbon actif en poudre ou en granulés, une résine échangeuse de cations telle qu'une zéolite, un polymère capteur de cations à nanocharges négatives attirant les cations, des composés minéraux capteurs de cations tels que les phyllosilicates et les inosilicates. De tels matériaux figurent parmi ceux couramment utilisés en traitement et adoucissement de l'eau pour piéger ou échanger des cations. On peut leur ajouter une membrane en alumine activée ou en un composé fonctionnellement équivalent, qui, quant à elle, piège les contaminants chargés négativement, comme As et les fluorures, qui pourraient diminuer l'efficacité des membranes piégeant les cations. Des membranes semi-perméables mises en œuvre dans des procédés électrolytiques d'échange d'ions sont également utilisables.
Des membranes microporeuses organiques semi-perméables de nanofiltration d'un type retenant les cations peuvent aussi convenir.
Le nombre de couches de matériaux capteurs de cations peut être quelconque, au choix de l'utilisateur. Ces couches peuvent avantageusement être de multiples natures, chaque espèce de couche pouvant, par exemple, absorber de manière privilégiée une ou plusieurs des espèces chimiques que l'anode sacrificielle 3 est susceptible de libérer.
Par exemple, on peut prévoir :
- une couche externe 9 perméable aux éléments chimiques de rayon inférieur à
1 ,5 À et imperméable aux éléments chimiques de rayon supérieur à 1 ,5 À tels que Ca, K, Mg, Na ;
- et une couche interne 10 perméable aux éléments chimiques de rayon inférieur à 1 ,1 À tels que O, Cl, N (qui vont donc pouvoir pénétrer dans l'espace intérieur 8 du compartiment 6 ou en sortir, ce qui ne présente pas d'inconvénients), et imperméable aux éléments chimiques de rayon supérieur à 1 ,1 À tels que Al, Zn, Ga, In, donc les principaux éléments que peut émettre l'anode 3 sous forme de cations, et dont on ne souhaite pas qu'ils soient libérés dans le milieu environnant ; l'épaisseur des couches, notamment de la couche 10, peut varier de environ 1 mm à quelques cm, en fonction de la taille de l'anode 3 et, donc, de la quantité de cations à piéger.
Dans le cas où l'ensemble de la paroi délimitant le compartiment 6 est perméable à l'eau, l'eau pénètre à l'intérieur du compartiment 6 et un équilibre des pressions est atteint entre l'intérieur et l'extérieur du compartiment 6. Le compartiment 6 prend donc en permanence sa forme nominale et sa paroi ne subit pas d'écrasement qui pourrait conduire à sa rupture.
Comme on l'a dit, il n'est pas obligatoire que l'ensemble de la paroi définissant le compartiment 6 soit perméable à l'eau. Elle peut n'être perméable qu'aux électrons, mais alors un pré-remplissage du compartiment 6 par de l'eau, de préférence de l'eau de mer, est nécessaire lors de la mise en service du dispositif selon l'invention.
Grâce à l'invention, la dissolution progressive de l'anode sacrificielle 3 s'effectue sans pollution du milieu extérieur par les cations résultant de cette dissolution, ceux-ci étant captés par la ou les couches 9, 10. Celles-ci doivent avoir avantageusement une capacité totale d'absorption des divers cations et un volume d'absorption suffisants pour ne pas parvenir à saturation avant la fin de vie de l'anode sacrificielle 3.
Dans l'exemple représenté sur la figure 1 , les conducteurs électriques 4, 5 sont au contact de la paroi métallique 1 dans des zones situées hors du compartiment 6. Il faut donc assurer une étanchéité de la paroi du compartiment 6 dans les zones où elle est traversée par les conducteurs 4, 5. Mais en variante, comme représenté sur la figure 2, les contacts entre les conducteurs 5, 6 et la paroi métallique 1 peuvent être situés à l'intérieur du compartiment 6. La paroi du compartiment 6 est alors en contact étanche avec la paroi métallique 1 à protéger.
Comme représenté sur les figures, il est préférable que l'anode sacrificielle 3 ne soit pas au contact direct de la paroi 1 à protéger. On évite ainsi de créer des courts- circuits entre l'anode 3 et au moins la zone de la paroi 1 qui est en regard d'elle. De cette façon, une plus grande partie de la surface de la paroi 1 peut être protégée dans les meilleures conditions par une même anode 3. Des moyens de maintien de l'anode 3 à distance de la paroi 1 sont donc prévus, de préférence (non représentés sur les figures). Mais dans la pratique, ils pourront souvent être constitués par les connecteurs 4, 5, qui sont généralement en acier et présentent du fait de leur matériau et de leurs dimensions, une rigidité suffisante pour réaliser le maintien de l'anode 3 à distance de la paroi 1 .
En variante, l'invention est aussi applicable au cas où l'anode n'est pas une anode sacrificielle au sens où elle a naturellement un potentiel électrochimique plus élevé que celui de la paroi 1 à protéger, mais est placée à ce potentiel par un générateur de courant continu ou redressé auquel elle est connectée par des conducteurs qui traversent la paroi du compartiment 6 de manière étanche.

Claims

REVENDICATIONS
1 . - Dispositif de protection cathodique d'une paroi métallique (1 ) contre la corrosion dans un milieu salin, comportant une anode et des moyens de connexion (4, 5) de ladite anode à ladite paroi (1 ), ladite anode étant à un potentiel électrochimique plus élevé que ladite paroi (1 ), caractérisé en ce que ladite anode est placée dans un compartiment (6) délimité par une paroi perméable aux électrons et, éventuellement, à l'eau, comportant :
- une couche extérieure (7) poreuse en un matériau choisi parmi : des matériaux polymères, des matériaux céramiques ou des matériaux inorganiques hydratés ;
- et au moins une couche (9, 10) poreuse ayant la capacité de capter les cations émis par l'anode lors de sa dissolution, le matériau constituant ladite au moins une couche étant choisi parmi des membranes osmotiques, du charbon actif, une résine échangeuse de cations telle qu'une zéolite, un polymère capteur de cations à nanocharges, des composés minéraux capteurs de cations tels que des phyllosilicates et des inosilicates, des membranes microporeuses organiques semi-perméables de nanofiltration d'un type retenant les cations.
2. - Dispositif selon la revendication 1 , caractérisé en ce que ladite paroi (1 ) comporte également une membrane piégeant les contaminants chargés négativement.
3.- Dispositif selon la revendication 1 ou 2, caractérisé en ce que l'anode est une anode sacrificielle (3) dont le potentiel électrochimique est naturellement supérieur à celui de la paroi métallique (1 ).
4. - Dispositif selon la revendication 1 ou 2, caractérisé en ce qu'il comporte des moyens pour imposer à l'anode un potentiel électrochimique supérieur à celui de la paroi métallique (1 ).
5. - Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que les moyens de connexion (4, 5) de l'anode à la paroi métallique (1 ) sont au contact de la paroi à l'extérieur du compartiment (6) et en ce qu'ils traversent de façon étanche la paroi poreuse du compartiment (6).
6.- Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que les moyens de connexion (4, 5) de l'anode à la paroi métallique (1 ) sont au contact de la paroi métallique (1 ) à l'intérieur du compartiment (6), et en ce que la paroi poreuse du compartiment (6) est connectée de manière étanche à la paroi métallique (1 ).
7.- Dispositif selon l'une des revendications 1 à 6, caractérisé en ce qu'il comporte des moyens pour maintenir l'anode à distance de la paroi métallique (1 ).
8.- Dispositif selon l'une des revendications 1 à 7, caractérisé en ce qu'il comporte une pluralité de couches (9,10) ayant la capacité de capter les cations émis par l'anode lors de sa dissolution, chaque couche (9, 10) captant de façon privilégiée des cations différents de ceux captés de façon privilégiée par les autres couches.
PCT/EP2013/051837 2012-02-01 2013-01-31 Dispositif de protection cathodique d'une paroi métallique contre la corrosion dans un milieu salin WO2013113777A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2862349A CA2862349A1 (fr) 2012-02-01 2013-01-31 Dispositif de protection cathodique d'une paroi metallique contre la corrosion dans un milieu salin
EP13705736.0A EP2809830A1 (fr) 2012-02-01 2013-01-31 Dispositif de protection cathodique d'une paroi métallique contre la corrosion dans un milieu salin
KR1020147024276A KR20140122739A (ko) 2012-02-01 2013-01-31 염수 환경에서 부식에 대해 금속벽의 전기 방식을 위한 디바이스
AU2013214235A AU2013214235B2 (en) 2012-02-01 2013-01-31 Device for the cathodic protection of a metal wall against corrosion in a saline environment
JP2014555191A JP2015505583A (ja) 2012-02-01 2013-01-31 塩性環境における腐食に対する金属壁の陰極保護装置
CN201380007762.8A CN104080953A (zh) 2012-02-01 2013-01-31 用于金属壁的阴极保护以防在盐性环境中腐蚀的装置
US14/341,029 US20140332373A1 (en) 2012-02-01 2014-07-25 Device for the cathodic protection of a metal wall against corrosion in a saline environment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1250946A FR2986241B1 (fr) 2012-02-01 2012-02-01 Dispositif de protection cathodique d'une paroi metallique contre la corrosion dans un milieu salin
FR1250946 2012-02-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/341,029 Continuation US20140332373A1 (en) 2012-02-01 2014-07-25 Device for the cathodic protection of a metal wall against corrosion in a saline environment

Publications (1)

Publication Number Publication Date
WO2013113777A1 true WO2013113777A1 (fr) 2013-08-08

Family

ID=47748580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/051837 WO2013113777A1 (fr) 2012-02-01 2013-01-31 Dispositif de protection cathodique d'une paroi métallique contre la corrosion dans un milieu salin

Country Status (10)

Country Link
US (1) US20140332373A1 (fr)
EP (1) EP2809830A1 (fr)
JP (1) JP2015505583A (fr)
KR (1) KR20140122739A (fr)
CN (1) CN104080953A (fr)
AU (1) AU2013214235B2 (fr)
CA (1) CA2862349A1 (fr)
CL (1) CL2014002004A1 (fr)
FR (1) FR2986241B1 (fr)
WO (1) WO2013113777A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668221A (zh) * 2013-12-16 2014-03-26 国家电网公司 变电站接地网防蚀保护施工方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103643238B (zh) * 2013-11-27 2016-01-06 中交天津港湾工程研究院有限公司 一种保障牺牲阳极正常运行的装置
CN106992280A (zh) * 2017-04-12 2017-07-28 北京新能源汽车股份有限公司 一种电动汽车的电池系统及电动汽车
US11053653B2 (en) * 2017-08-04 2021-07-06 Ørsted Wind Power A/S Cathodic protection for offshore wind turbine steel support structures
CN111534822B (zh) * 2020-05-11 2022-04-26 中国船舶科学研究中心 一种基于生物阳极的深海装备阴极保护装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505826A (en) * 1994-11-30 1996-04-09 Haglin; Patrick G. Hydrophilic anode corrosion control system
DE102008037597A1 (de) * 2008-11-27 2010-06-02 Webasto Ag Opferanode für eine mobile Absorptionskälteanlage

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839341B1 (fr) * 1968-04-19 1973-11-22
JPS4839701B1 (fr) * 1969-08-27 1973-11-26
JPS52117247A (en) * 1976-03-29 1977-10-01 Tokyo Keiki Kk Anode box for external electric power anticorrosion system
JPS62247088A (ja) * 1986-04-18 1987-10-28 Matsushita Electric Ind Co Ltd 給水装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505826A (en) * 1994-11-30 1996-04-09 Haglin; Patrick G. Hydrophilic anode corrosion control system
DE102008037597A1 (de) * 2008-11-27 2010-06-02 Webasto Ag Opferanode für eine mobile Absorptionskälteanlage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668221A (zh) * 2013-12-16 2014-03-26 国家电网公司 变电站接地网防蚀保护施工方法

Also Published As

Publication number Publication date
US20140332373A1 (en) 2014-11-13
AU2013214235B2 (en) 2015-08-20
KR20140122739A (ko) 2014-10-20
EP2809830A1 (fr) 2014-12-10
CN104080953A (zh) 2014-10-01
FR2986241B1 (fr) 2014-02-21
CA2862349A1 (fr) 2013-08-08
AU2013214235A1 (en) 2014-08-28
CL2014002004A1 (es) 2014-11-21
JP2015505583A (ja) 2015-02-23
FR2986241A1 (fr) 2013-08-02

Similar Documents

Publication Publication Date Title
EP2809830A1 (fr) Dispositif de protection cathodique d'une paroi métallique contre la corrosion dans un milieu salin
JP7025083B2 (ja) 撥水性多孔質膜を備えた水溶液供給装置
EP2839057B1 (fr) Procede de protection galvanique d'une structure en beton arme
US20140335392A1 (en) Bi-polar protected electrodes and multi-cell stacks
CA2879659C (fr) Element de tuyauterie a base de fer pour canalisation enterree, comprenant un revetement exterieur
JP2012519075A (ja) バラスト水処理用電解装置及び同装置の処理システム
US9932237B2 (en) Chemical stabilization of graphite surfaces
DK156836B (da) Anode med en stor lineaer udstraekning til katodisk beskyttelse
Bai et al. A dual-mode rechargeable lithium–bromine/oxygen fuel cell
JP6199028B2 (ja) 空気マグネシウム電池
JP2015125830A (ja) 空気マグネシウム電池
CA1249977A (fr) Procede pour orienter et accelerer la formation de concretions en milieu marin et dispositif pour sa mise en oeuvre
US20160301086A1 (en) Positive electrode for air battery, and air battery using the positive electrode
JP6305192B2 (ja) 空気マグネシウム電池
WO2016083718A1 (fr) Traitement anticorrosif de structures portantes immergées
FR3031347A1 (fr) Protection cathodique d'une structure metallique creuse, contre la corrosion
FR3092094A1 (fr) Contenant étanche destiné à être immergé dans de l’eau de mer à ouverture d’accès fermée par un obturateur
FR2938555A1 (fr) Systeme de protection cathodique contre la corrosion de structures metalliques
FR2882279A1 (fr) Dispositif de traitement de sol subaquatique
EP0449735A1 (fr) Réacteur de dépollution électrolytique
WO2013104725A1 (fr) Pile à combustible microbienne avec cathode facilement échangeable
FR3041435A1 (fr) Dispositif pour la mesure du potentiel electrochimique d'une structure contenant du metal, telle qu'une structure en beton arme, soumise a une protection cathodique
JP2005158631A (ja) 鉛蓄電池用の触媒栓及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13705736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2862349

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2014002004

Country of ref document: CL

ENP Entry into the national phase

Ref document number: 2014555191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013705736

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013214235

Country of ref document: AU

Date of ref document: 20130131

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147024276

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201405139

Country of ref document: ID