WO2013113153A1 - 一种荧光分析方法 - Google Patents

一种荧光分析方法 Download PDF

Info

Publication number
WO2013113153A1
WO2013113153A1 PCT/CN2012/070795 CN2012070795W WO2013113153A1 WO 2013113153 A1 WO2013113153 A1 WO 2013113153A1 CN 2012070795 W CN2012070795 W CN 2012070795W WO 2013113153 A1 WO2013113153 A1 WO 2013113153A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
fluorescent substance
fluorescence
antibody
detection
Prior art date
Application number
PCT/CN2012/070795
Other languages
English (en)
French (fr)
Inventor
李久彤
周晓燕
Original Assignee
庞磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 庞磊 filed Critical 庞磊
Priority to PCT/CN2012/070795 priority Critical patent/WO2013113153A1/zh
Publication of WO2013113153A1 publication Critical patent/WO2013113153A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/542Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Definitions

  • the present invention relates to the field of detection technology, and more particularly to a fluorescence analysis method. Background technique
  • the usual method for the analysis of such immunological reactions is: immobilizing the capture antibody on a solid phase carrier, then reacting with the antigen (target protein), washing and then reacting with the labeled antibody, washing, adding a substrate to detect the light signal or directly detecting the fluorescent signal. .
  • Chinese patent application CN200510030659.2 discloses a method for measuring fluorescence quenching of immunocolloidal gold particles, the method comprising: connecting an antibody or antigen of a target substance, that is, a test object, to a microparticle or a micropore to form a solid phase carrier, and adding The sample to be tested is further added with an excess colloidal gold label, and the target in the sample is immunoreacted with an antibody or antigen immobilized on the microparticle or microplate to form a solid phase carrier complex of the antigen antibody, ie, a conjugate, and The colloidal gold label of the reaction is the free substance, the conjugate is separated from the free colloidal gold label, and the fluorescent substance is added to the free substance to quench the fluorescent signal, and the degree of signal quenching is related to the amount of free gold label in the system.
  • the amount of free matter is related to the amount of the target, thereby quantitatively detecting the target.
  • the mechanism of fluorescence quenching of this method is resonance energy transfer, requiring that the fluorophore must be in close proximity ( ⁇ 20 nm) contact with the quencher group and blended into a solution system.
  • the method still has the disadvantages that the process is not easy to automate, the fluorescent material cannot be reused, and the cost is high.
  • an immunoassay method for detecting the presence or absence and/or quantity of a test substance comprising the steps of:
  • the detection solution contains a first conjugate labeled with a quencher for the analyte
  • the phosphor solution contains a fluorescent substance capable of generating fluorescence when irradiated with excitation light.
  • step (c) adding a second conjugate for the analyte to be added to the detection solution of step (b) to form a "first conjugate-test-second conjugate" ternary complex, wherein The first conjugate and the second conjugate can be simultaneously bound to the analyte;
  • step (d) capturing or separating the ternary complex from the detection solution of step (c) such that the ternary complex is separated from the liquid phase of the detection solution;
  • step (e) irradiating the step (d) with a light that excites the fluorescent substance to generate fluorescence, so that the light passes through the detection solution and is irradiated to the fluorescent substance solution independent of the detection solution, thereby causing the fluorescent substance solution to generate fluorescence;
  • step (f) Detecting the fluorescence generated in step (e) to determine the presence or absence and/or quantity of the analyte.
  • the analyte comprises: a protein, a nucleic acid.
  • the analyte is a tumor marker, a viral protein or the like.
  • the tumor marker is selected from the group consisting of alpha fetoprotein (AFP), carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), carbohydrate antigen 19-9 (CA19-9), total Prostate-specific antigen (PSA), free prostate specific antigen (f-PSA), neuron-specific enolase (NSE), sugar chain antigen (CA242), cancer antigen (CA15-3), human chorionic gonadotropin Hormone ( ⁇ -HCG).
  • AFP alpha fetoprotein
  • CEA carcinoembryonic antigen
  • CA125 cancer antigen 125
  • CA19-9 carbohydrate antigen 19-9
  • PSA total Prostate-specific antigen
  • PSA free prostate specific antigen
  • NSE neuron-specific enolase
  • CA242 cancer antigen
  • CA15-3 human chorionic gonadotropin Hormone
  • the fluorescent substance is selected from the group consisting of fluorescein, carboxyfluorescein, 2-methoxyfluorescein, 4, 5-dimethoxyfluorescein, rhodamine, phycoerythrin, Quantum dots, or a combination thereof.
  • the quencher is colloidal gold.
  • the quencher is colloidal gold particles having an average particle diameter of 10 to 70 nm.
  • step (f) fluorescence generated by the fluorescent substance solution and transmitted through the detection solution is detected.
  • the step (f) further comprises: comparing the measured value of the fluorescence with a standard curve or a comparison to determine the amount of the analyte.
  • the analyte is an antigen
  • the first binder and the second binder are antibodies that bind to the antigen simultaneously.
  • the analyte is an antibody
  • the first binder is an antigen that binds to the antibody
  • the second binder is directed to the antibody (antibody) Antibodies, and vice versa.
  • the test substance is a human antibody
  • the first conjugate is the antigen against which the human antibody is directed
  • the second conjugate is a mouse or rabbit-derived antibody against the human antibody.
  • the light is produced by a laser.
  • the light which excites the fluorescent substance to generate fluorescence is transmitted through the detecting solution with an optical path of 0.1 to 50 cm.
  • the optical path is from 0.5 to 10 cm, more preferably from 1.0 to 5.0 cm.
  • the method further comprises the step of making a standard curve by measuring with a known concentration of the test object standard.
  • an immunoassay detecting apparatus for detecting the presence or absence and/or quantity of a test object, the apparatus comprising:
  • a light source for generating excitation light the light source emitting an excitation light that transmits the first container and illuminates the second container, thereby causing the fluorescent substance to generate fluorescence;
  • the light source is a laser.
  • FIG 1 shows the basic principle of the method of the invention.
  • Figure 2 shows the step of forming a "binary complex" with an antibody labeled with a quencher in the method of the invention.
  • Figure 3 shows the step of forming a "sandwich complex" by adding an appropriate amount of an antibody having a capture and separation function after labeling modification in the method of the present invention.
  • Figure 4 shows the steps in which the capture antibody and the "sandwich complex" containing the capture antibody are separated and removed by a suitable method in the method of the present invention.
  • the inventors have developed a liquid sol homogeneous immune reaction system and detection method based on the principle of fluorescence quenching for the first time through extensive and in-depth research.
  • the fluorescent substance is not in contact with the quencher and is completely separated from each other, so that the immunoassay method provided by the present invention has extremely significant advantages, including: the reaction in the liquid sol homogeneous reaction system The reaction is uniform and rapid; the whole process does not need to be washed; the detection sensitivity can be conveniently adjusted according to actual needs, and the quantitative is accurate; the fluorescent substance is repeatedly used, and the reagent cost is reduced. Detection method
  • the basic principle of the detection method of the present invention is shown in FIG.
  • the ultraviolet-visible absorption spectrum of the target analyte overlaps with the excitation or fluorescence spectrum of the fluorescent substance, and the excitation light and the fluorescence are absorbed, and the fluorescence is quenched.
  • the fluorescence intensity meter is Fo
  • the target detection object is the target.
  • a quencher of a fluorescent substance
  • the concentration of the quencher in the right image is 0 or relatively decreases, the degree of quenching of the fluorescent substance is lowered, and the fluorescence is enhanced by Fo, which is denoted as F 1 ;
  • Figure 2 shows the process by which the antibody (primary antibody) labeled with a quencher forms a "binary complex" with the target protein.
  • Stdl 5 is a standard system for detecting a target protein, and there is no target protein in Stdl, and a "binary complex" is not formed.
  • concentration of the target protein gradually increases, the number of "binary complexes" in Std2 ⁇ 5 increases, but the amount of the quencher does not change.
  • Figure 3 shows the addition of an appropriate amount of labeled and modified antibody (second antibody) to form a "sandwich complex". Specifically, after the addition of the separable capture antibody (second antibody) to the target protein, a "first antibody-target protein-separable second antibody-labeled quencher" ternary is formed in the reaction system. "Sandwich Complex”.
  • a particularly preferred detachable capture antibody is a capture antibody conjugated to a magnetic microsphere.
  • the capture antibody can be separated by a magnetic field.
  • Another particularly preferred class of detachable capture antibodies are biotin-conjugated capture antibodies.
  • the capture antibody can be isolated by binding of biotin-avidin.
  • Figure 4 shows the detection of the capture antibody and the "sandwich complex" containing the capture antibody by a suitable method.
  • the antibody labeled with the quencher in Std2 ⁇ 5 decreases, the fluorescence quenching decreases, and the fluorescent signal increases accordingly.
  • the method of the present invention further comprises preparing a standard curve and comparing the test result to a standard curve to obtain a measured value.
  • the standard curve can be produced by the following methods:
  • An antibody having a capture and separation function for example, a secondary antibody attached to the magnetic nanoparticle
  • a capture and separation function for example, a secondary antibody attached to the magnetic nanoparticle
  • St1 of FIG. 3 An antibody-target protein-separable second antibody "ternary” sandwich complex
  • the "labeled quencher first antibody-target protein-separable second antibody” ternary complex is completely separated from the solution, and the solution is returned to the container of step 1 under "2.2.1" (Fig. 4 Stdl) ), measuring the fluorescence intensity, denoted as F M ;
  • first container and the second container are depicted as the upper container and the lower container in the drawing, however, the first container and the second container may also be placed horizontally or obliquely.
  • the fluorescent substance which can be used in the present invention is not particularly limited, and a fluorescent substance in which the excitation or emission spectrum is completely or partially overlapped with the visible absorption spectrum of the quencher (e.g., colloidal gold) is suitable for the detection method provided by the present invention.
  • Representative fluorescent materials include, but are not limited to, fluorescein, carboxyfluorescein, 2-methoxyfluorescein, 4, 5-dimethoxyfluorescein, rhodamine, phycoerythrin, quantum dots, or The combination thereof may be such that the excitation or emission spectrum of the fluorescent substance overlaps (or partially overlaps) with the absorption spectrum of the quencher.
  • quencher and “quencher” are used interchangeably and refer to a substance that attenuates the fluorescence emitted by a fluorescent substance.
  • Conjugates e. g., antibodies
  • Conjugates to the analyte can be labeled with a variety of quenchers known in the art.
  • the quenching agent which can be used in the present invention is not particularly limited, and representative quenching agents include, but are not limited to, colloidal gold.
  • a particularly preferred quencher is colloidal gold, especially colloidal gold having a particle size of 20-40 nm.
  • the fluorescent substance and the quenching agent preferably correspond to each other.
  • PE phycoerythrin
  • its maximum emission wavelength is 575 nm, which partially overlaps with the absorption spectrum of 30 nm colloidal gold, so phycoerythrin can be paired with 30 nm colloidal gold.
  • the present invention preferably employs colloidal gold for labeling, wherein the colloidal gold labeling method is a well-established technique in the art.
  • the capture antibody is usually immobilized on a solid phase carrier, so that the capture antibody has the function of separating the "sandwich complex".
  • solid phase carriers include slides, membranes, microplates and various microspheres.
  • the capture antibody can also be labeled with biotin to form a "sandwich complex" followed by streptavidin
  • the (Streptavidin) coated solid phase carrier is combined to provide a separate function.
  • a preferred solid phase support is a nano- or sub-nano-sized microsphere or microparticle.
  • the average particle diameter is less than 200 nm, preferably less than 150 nm, more preferably less than 150 nm.
  • microspheres or particles include, but are not limited to, magnetic microspheres, polyacrylamide microspheres, polystyrene microspheres, glass microspheres, polypropylene microspheres, silicone rubber microspheres, cellulose microspheres, Cross-linked dextran microspheres, or a combination thereof.
  • the light source is used to provide light of a certain emission wavelength, thereby exciting the fluorescent substance to emit fluorescence.
  • any light source that can provide a suitable wavelength can be selected.
  • a preferred source of light is a laser source.
  • the laser source can be produced by methods and equipment conventional in the art, such as a laser. Representative laser examples include, but are not limited to: fiber lasers and the like. Semiconductor lasers, helium neon lasers, argon ion lasers, fiber lasers. Also included are wavelength-selectable lasers, multi-wavelength lasers, and dual-wavelength lasers.
  • the light source provided by the light source preferably comprises an excitation wavelength of the fluorescent substance or is identical or nearly overlapping with the excitation wavelength of the fluorescent substance.
  • the laser wavelength generated by the laser is related to the laser medium. The common laser wavelengths are shown in the following table:
  • the physical size of the antigen, antibody, etc. in the solution is 100 nm, so the reaction is carried out in a homogeneous reaction system of the sol, and the reaction is uniform and rapid;
  • AFP antigen was purchased from Biodesign;
  • f uidMAG-CMX nano magnetic microspheres (particle size lOOnm) were purchased from Chemicell, Germany; 30nm colloidal gold, commercially available;
  • PE Phycoerythrin
  • USB4000-FL USB4000-FL (US Ocean Optics)
  • the liquid layer thickness of the reaction solution in the upper vessel in Figs. 2 and 4 was lcm. 1.
  • microspheres The procedure for immobilizing antibody C2 on -COOH-modified fluidMAG-CMX nanomagnetic microspheres (referred to as microspheres) is as follows:
  • EDC N-ethyl-N'(3-dimethylaminopropyl)-carbodiimide
  • PE phycoerythrin
  • Invitrogen The second largest excitation wavelength of phycoerythrin (PE, Invitrogen) is 532nm, the most colloidal gold with 30nm The large absorption wavelengths almost overlap, and the maximum emission wavelength of PE is 575 nm, which partially overlaps with the absorption spectrum of the 30 nm colloidal gold. Therefore, in the present embodiment, PE is selected as the fluorescent substance in the detection. Dilute PE to 1 ⁇ g/mlc with PBS (pH 7.4)
  • the AFP antigen was diluted to a standard series with PBS (pH 7.4) at concentrations of: 0 ng/ml (Stdl), 5 ng/ml (Std2), 9 ng/ml (Std3), 100 ng/ml (Std4), 500 ng/ml (Std5);
  • the nano magnetic microspheres of the C2 antibody were adhered to the other container wall by vacuum drying in advance, and the "4.2" solution was transferred to the container, and incubated at 37 ° C for 30 min to form a "sandwich composite";
  • the nano magnetic microspheres in "4.3” were separated by a magnetic device, and the solution was returned to a "4.2” container to measure the fluorescence intensity, which was recorded as ;
  • the concentration curve C of the above Stdl ⁇ 55 points is used to obtain Ff/Fo ⁇ i ⁇ S), and the standard curve (Fig. 5) is obtained.
  • the X axis is the concentration, and the y axis is Fw/Fo ⁇ i ⁇ S ⁇ .
  • the standard curve is as follows :
  • Example 2 Detection of alpha-fetoprotein (AFP) in serum The operation of Example 1 was repeated except that the upper container of Fig. 2 was appropriately adjusted so that the liquid layer thickness of the reaction solution was 2 cm, the gold standard antibody solution was 5 ⁇ L, and the calibrator solution was 145 ⁇ L.
  • AFP alpha-fetoprotein
  • Example 3 Detection of alpha-fetoprotein (AFP) in serum ( Figure 2, 4 The thickness of the liquid layer was 4 cm. The operation of Example 1 was repeated except that: The upper container of Fig. 2 was appropriately adjusted so that the liquid layer thickness of the reaction solution was 4 cm, and the gold standard antibody solution was 2.5 ⁇ L. The solution was 147.5 ⁇ L.
  • Example 4 Detection of carcinoembryonic antigen (CEA) in serum
  • the liquid layer thickness of the reaction solution in the upper vessel in Figs. 2 and 4 was 2 cm. Paired antibodies against CEA A1/C9 from Shanghai Second Medical University;
  • CEA antigen is from Biodesign
  • Sreptavidin coated nano magnetic microspheres (particle size 50nm), separation column, magnetic frame are from Germany's Miltenyi company;
  • USB4000-FL USB4000-FL (US Ocean Optics)
  • Light source 532nm laser source
  • the preparation process of the gold standard antibody is the same as that in the first embodiment, and the OD of the gold standard antibody working solution at 532 nm A value of 1.5 corresponds to approximately 36 wg of A1 antibody per ml of gold standard antibody solution.
  • the sub-maximum excitation wavelength of phycoerythrin is 532 nm, which almost overlaps with the maximum absorption wavelength of 30 nm colloidal gold.
  • the maximum emission wavelength of PE is 575 nm, which partially overlaps with the absorption spectrum of 30 nm colloidal gold, so this embodiment PE is used as the fluorescent substance in the detection. Dilute PE to 1 ⁇ g/mlc with PBS (pH 7.4) 4. Draw the standard curve
  • the CEA antigen was diluted to a standard series with PBS (pH 7.4) at concentrations of: 0 ng/ml (Stdl), 4.2 ng/ml (Std2), 15 ng/ml (Std3), 150 ng/ml (Std4), 622 ng/ml (Std5);
  • Another container was previously preliminarily dried under reduced pressure (200 ⁇ l of streptavidin nanomagnetic microspheres were added) Solution) wall attached streptavidin nano magnetic microspheres;
  • Magnetic microsphere capture ie: "Magnetic microspheres - streptavidin-biotin-C9 antigen-A1-colloidal gold"
  • the nano magnetic microspheres were separated by a matching separation device (separation column, magnetic frame), and the solution was returned to the "4.2" container, and the fluorescence intensity was measured and recorded as F ⁇ ;
  • F 1-2 / F 0-2 1.05
  • F F / F ⁇ fO ⁇ Std corresponding to Stdl corresponding to F 1-3 / F ⁇ 3 1.09
  • the concentration curve C of the above Stdl ⁇ 5 5 points is plotted against Fw/ Fo ⁇ i l S) to obtain a standard curve:
  • the method of the present invention differs markedly from the prior art in that the phosphors are not in contact with the quencher, but are independent of each other and completely separate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种荧光分析方法,在荧光物质与淬灭剂相互独立且不接触情况下,进行免疫检测的方法。免疫反应在溶液胶均相反应体系中进行,因此反应均匀迅速、全过程无需洗涤、可调节检测灵敏度、定量准确、荧光物质可重复使用。

Description

一种荧光分析方法
技术领域
本发明涉及检测技术领域, 更具体地涉及一种荧光分析方法。 背景技术
在检测领域中,常常需要对各类抗原或抗体进行定性或定量检测。现有技术中, 已经以 "双抗夹心" 为基础衍生出多种免疫反应分析方法, 如: 放射免疫法、 酶 联免疫法、 化学发光法、 时间分辨荧光法和荧光免疫法等, 可用于确定病原微生 物, 对人体的特异性蛋白定量检测从而对疾病进行辅助诊断或监测等等, 用途非 常广泛。
这类免疫反应分析方法的通常作法是: 将捕获抗体固定于固相载体, 然后与抗 原(目标蛋白)反应, 洗涤后再与标记抗体反应, 洗涤, 加入底物检测光信号或直 接检测荧光信号。 虽然上述方法的自动化免去了人工洗涤的烦琐, 但液体与固体 之间非均相反应的缺陷常常导致反应不够均匀以及反应不够快速。
中国专利申请 CN200510030659.2公开了一种免疫胶体金粒子荧光淬灭的测量 方法, 该方法包括: 将目标物即被测物的抗体或抗原连接在微小颗粒或微孔上形 成固相载体, 加入被测样品, 再加入过量胶体金标记物, 样品中的目标物与固定 在微颗粒或微孔板上的抗体或抗原进行免疫反应, 形成抗原抗体的固相载体复合 物即结合物, 及未反应的胶体金标记物即游离物, 分离结合物与游离的胶体金标 记物, 在游离物中加入荧光物质, 使得荧光信号淬灭, 信号淬灭的程度与体系中 游离的金标记物量相关, 游离物的量与目标物的量相关, 从而对目标物进行定量 检测。 然而, 该方法的荧光淬灭的机制都是共振能量转移, 要求荧光基团与淬灭 剂基团必须近距离 (<20nm)接触且共混于一个溶液体系。此外, 该方法仍然存在流 程不易自动化、 荧光物质无法重复使用、 和成本偏高等缺点。
因此, 本领域迫切需要开发一种操作简便 (例如, 不必洗涤), 并且反应均匀和 /或快速的检测方法。 发明内容
本发明的目的就是提供一种在检测过程中不必人工洗涤、操作简便且反应均匀 和 /或快速的检测方法。 在本发明的第一方面, 提供了一种检测待测物存在与否和 /或数量的免疫分析方 法, 包括步骤:
(a) 提供一检测溶液和一荧光物质溶液,其中所述的检测溶液和一荧光物质溶液是 相互独立的,所述检测溶液中含有标记有淬灭剂的、针对所述的待测物的第一结合物, 所述的荧光物质溶液中含有在受到激发光线照射时能够产生荧光的荧光物质;
(b) 将待测物或含待测物的样品加入检测溶液, 从而形成 "第一结合物-待测物" 二元复合物;
(c) 将针对所述的待测物的第二结合物加入步骤 (b)的检测溶液中, 从而形成 "第 一结合物-待测物-第二结合物"三元复合物, 其中所述的第一结合物和第二结合物可 同时结合于所述待测物;
(d) 从步骤 (c)的检测溶液中捕获或分离出所述的三元复合物, 从而使得所述三元 复合物与检测溶液的液相分开;
(e) 用可激发荧光物质产生荧光的光线照射步骤 (d)检测溶液, 使得所述光线透过 检测溶液并照射到与检测溶液相互独立的荧光物质溶液,从而使得荧光物质溶液产生 荧光; 和
(f) 检测步骤 (e)产生的荧光, 从而确定待测物存在与否和 /或数量。
在另一优选例中, 所述的待测物包括: 蛋白、 核酸。
在另一优选例中, 所述的待测物是肿瘤标志物、 病毒蛋白等。
在另一优选例中, 所述肿瘤标志物选自下组: 甲胎蛋白 (AFP)、 癌胚抗原 (CEA)、 癌抗原 125(CA125)、 糖抗原 19-9(CA19-9)、 总前列腺特异性抗原 (PSA)、 游离前 列腺特异性抗原 (f-PSA)、 神经原特异性烯醇化酶 (NSE)、 糖链抗原 (CA242)、 癌 抗原 (CA15-3)、 人绒毛膜促性腺激素(β -HCG)。
在另一优选例中, 所述的荧光物质选自下组: 荧光素、 羧基荧光素、 2-甲氧基荧 光素、 4, 5-二甲氧基荧光素、 罗丹明、 藻红蛋白、 量子点、 或其组合。
在另一优选例中, 所述的淬灭剂为胶体金。
在另一优选例中, 所述的淬灭剂是平均粒径为 10-70nm的胶体金颗粒。
在另一优选例中, 在步骤 (f)中, 检测荧光物质溶液产生的且透射通过所述检测溶 液的荧光。
在另一优选例中, 在步骤 (f)中还包括: 将荧光的测量值与标准曲线或对照进行比 较, 从而确定待测物的数量。
在另一优选例中, 所述的待测物是抗原, 且所述的第一结合物和第二结合物是可 同时结合于所述抗原的抗体。 在另一优选例中, 所述的待测物是抗体, 所述的第一结合物是可与所述抗体结 合的抗原, 而所述的第二结合物是针对所述检测物 (抗体)的抗体, 反之亦然。 例如, 当待测物是某种人抗体时, 第一结合物是该人抗体所针对的抗原, 而第二结合物是抗 该人抗体的鼠源或兔源抗体。
在另一优选例中, 所述的光线是激光器产生的。
在另一优选例中, 在步骤 (e)中, 所述的可激发荧光物质产生荧光的光线, 透射通 过检测溶液的光程为 0.1-50厘米。
在另一优选例中, 所述的光程为 0.5-10厘米, 更佳地为 1.0-5.0厘米。
在另一优选例中, 所述的方法还包括用已知浓度的待测物标准品进行测量, 从而 制作标准曲线的步骤。
在本发明的第二方面, 提供了一种用于检测待测物存在与否和 /或数量的免疫分析 检测装置, 所述的装置包括:
(a) 第一容器,所述的第一容器用于放置检测溶液,所述检测溶液中含有标记有淬 灭剂的、 针对所述的待测物的第一结合物;
(b) 第二容器,所述的第二容器用于放置荧光物质溶液,所述的荧光物质溶液中含 有在受到激发光线照射时能够产生荧光的荧光物质;
(c) 用于产生激发光线的光源,所述的光源可发出透射所述第一容器并照射到所述 第二容器的激发光线, 从而使得所述荧光物质产生荧光; 和
(d) 用于检测荧光的检测器。
在另一优选例中, 所述的光源是激光器。
应理解, 在本发明范围内中, 本发明的上述各技术特征和在下文 (如实施例)中 具体描述的各技术特征可以互相组合, 从而构成新的或优选的技术方案。 限于篇 幅, 在此不再一一累述。 附图说明
图 1显示了本发明方法的基本原理。
图 2显示了在本发明方法中, 标记了淬灭剂的抗体与目标蛋白形成"二元复合 物" 的步骤。
图 3显示了在本发明方法中,加入适量的经标记修饰后具备捕获和分离功能的 抗体, 从而形成 "夹心复合物" 的步骤。
图 4显示了在本发明方法中, 采用适宜的方法将捕获抗体及含捕获抗体的"夹 心复合物" 分离去除后进行检测的步骤。 图 5显示了本发明一个实例中得到的标准曲线, 其中 X轴为浓度 (单位 ng/ml), y轴为 Fw/Fw的比值 (i=l〜5)。 具体实施方式
本发明人经过广泛而深入的研究,首次开发了一种基于荧光淬灭原理的液溶胶 均相免疫反应体系和检测方法。 在本发明的检测方法中, 荧光物质与淬灭剂不接 触, 完全相互独立地分开, 从而使得本发明提供的免疫分析方法具有极其显著的 优点, 其中包括: 反应在液溶胶均相反应体系中进行, 因此反应均匀迅速; 全过 程无需洗涤; 可根据实际需要方便地调节检测灵敏度, 且定量准确; 荧光物质重 复使用, 降低了试剂成本。 检测方法
本发明检测方法的基本原理如图 1所示。左侧图中目标检测物的紫外可见吸收 光谱与荧光物质的激发或荧光光谱重叠, 则激发光和荧光被吸收, 荧光被淬灭, 此时的荧光强度计为 Fo, 该目标检测物为该荧光物质的淬灭剂;
若右侧图中淬灭剂的浓度为 0或相对减少, 则对荧光物质的淬灭程度降低, 荧 光较 Fo增强, 记为 F 1 ;
根据 Beer-Lambert定律, 在淬灭剂浓度一定的情况下, 增加液层的厚度, 透光 率降低, 则淬灭程度增加, 对淬灭剂的检测灵敏度将随之提高。
接着, 结合图 2、 3和 4, 进一步阐述本发明的一个定量检测目标蛋白实例的 各步骤。
图 2显示了标记了淬灭剂的抗体 (第一抗体)与目标蛋白形成 "二元复合物" 的 过程。 具体地, 在图 2中, Stdl〜5是检测目标蛋白的标准系, Stdl中没有目标 蛋白, 未形成 "二元复合物" 。 随着目标蛋白的浓度逐渐增加, Std2〜5中 "二元 复合物" 的数量随之增加, 但其中淬灭剂的量并未改变。
图 3显示了加入适量的经标记修饰后具备捕获和分离功能的抗体 (第二抗体), 形成 "夹心复合物" 。 具体地, 在加入了针对目标蛋白的、 可分离的捕获抗体 (第 二抗体)后, 在反应体系中形成 "标记淬灭剂的第一抗体 -目标蛋白-可分离的第二 抗体"三元的 "夹心复合物" 。
一种特别优选的可分离的捕获抗体是与磁性微球偶联的捕获抗体。该捕获抗体 可通过磁场进行分离。 另一类特别优选的可分离的捕获抗体是与生物素偶联的捕获抗体。该捕获抗体 可通过生物素-亲和素的结合而进行分离。
图 4显示了采用适宜的方法将捕获抗体及含捕获抗体的 "夹心复合物"分离去 除后进行检测。 与图 2进行对比, 随着目标蛋白量的增加, Std2〜5中标记了淬灭 剂的抗体随之减少, 荧光淬灭减弱, 相应地荧光信号依次增强。
在另一优选例中, 本发明方法中还包括制作标准曲线, 并将检测结果与标准曲 线进行比较, 从而获得测量值。
例如, 标准曲线的制作可采用以下方法:
将对应于目标蛋白标准曲线的第一个数据点的标准溶液与标记了淬灭剂的抗 体混匀 (形成 "目标蛋白 -标记淬灭剂的第一抗体" 的二元复合物), 加入图 2所示 上方容器中 (Stdl)(该上方容器与下方含荧光物质溶液容器是相互独立或分离的), 并确保激发光能透过该上方容器照射到下方的荧光物质溶液, 测定荧光强度, 记 为 F0-1 ;
向所述上方容器的溶液中加入经标记修饰后具备捕获和分离功能的抗体 (例 如, 连于磁性纳米颗粒的二抗) (见图 3的 Stl)" , 从而形成 "标记淬灭剂的第一 抗体 -目标蛋白-可分离的第二抗体" 三元的 "夹心复合物" 。 在该过程中, 但溶 液体积保持或基本保持不变;
使 "标记淬灭剂的第一抗体 -目标蛋白-可分离的第二抗体"三元复合物与溶 液完全分离, 并使溶液返回 " 2.2.1 "下第 1步的容器中(图 4 Stdl), 测定荧光强度, 记为 FM ;
计算 Fw/ F^J 比值;
同样操作, 分别得到目标蛋白标准系其他点 Fw/ Fo^i S S)的比值, 以标准 系各点浓度值对 F i Fo_i(i= 1〜 5 )比值作图, 得到标准曲线。
应理解, 为了方便起见, 在附图中将第一容器和第二容器的位置画为上方容 器和下方容器, 然而第一容器和第二容器也可以水平放置或倾斜放置。
同样操作, 得到样本的 F^ Fo, 代入标准曲线计算得出样本中目标蛋白的含量。 荧光物质
可用于本发明的荧光物质没有特别限制, 激发或发射光谱与淬灭剂 (如胶体金) 的可见吸收光谱全部或部分重叠的荧光物质均适用于本发明提供的检测方法。 代表性的荧光物质包括 (但并不限于): 荧光素、 羧基荧光素、 2-甲氧基荧光素、 4, 5-二甲氧基荧光素、 罗丹明、 藻红蛋白、 量子点、 或其组合, 只要所述荧光物 质的激发或发射光谱与淬灭剂的吸收光谱重叠 (或部分重叠)即可。 淬灭剂
如本文所用, 术语 "淬灭剂 "和 "淬灭剂"可互换使用, 都指可衰减荧光物质 所发射荧光的物质。
针对待测物的结合物 (如抗体)可用各种本领域已知的淬灭剂进行标记。 可用于 本发明的淬灭剂没有特别限制, 代表性的淬灭剂包括 (但并不限于): 胶体金。
一种特别优选的淬灭剂是胶体金, 尤其是粒径为 20-40nm的胶体金。
应理解, 荧光物质与淬灭剂宜相互对应。 例如, 当选用藻红蛋白 (PE)时, 因其 最大发射波长为 575nm, 与 30nm胶体金的吸收光谱部分重叠, 因此可以将藻红 蛋白与 30nm胶体金配对使用。
在另一优选例中, 本发明优选胶体金进行标记, 其中胶体金标记方法是本领域 的成熟技术。 捕获抗体和固相载体
本领域通常是将捕获抗体固定于固相载体, 从而使该捕获抗体具备分离 "夹心 复合物" 的功能, 常用的固相载体有玻片、 膜片、 酶标板和各种微球。
也可将捕获抗体用生物素 (biotin)标记, 形成 "夹心复合物" 后再与链亲和素
(Streptavidin)包被的固相载体结合, 从而具备分离的功能。
在本发明中, 优选的固相载体是纳米级或亚纳米级的微球或微颗粒。 通常, 其平均粒径小于 200nm, 较佳地小于 150nm, 更佳地小于 150nm。
代表性的微球或颗粒包括 (但并不限于): 磁性微球、 聚丙烯酰胺微球、 聚苯 乙烯微球、 玻璃微球、 聚丙烯微球、 硅橡胶微球、 纤维素微球、 交联葡聚糖微球、 或其组合。 光源
在本发明方法中, 光源用于提供某一发射波长的光线, 从而激发荧光物质发出 荧光。 在本发明中, 可选用任何可以提供合适波长的光源。 一种优选的光源是激光光 源。 激光光源可用本领域常规的方法和设备 (如激光器)产生。 代表性的激光器例 子包括 (但并不限于): 光纤激光器等。 半导体激光器、 氦氖激光器、 氩离子激光 器、 光纤激光器。 还包括波长可选的激光器、 多波长激光器和双波长激光器等。
在优选例中, 光源提供的光线宜包含荧光物质的激发波长, 或者与荧光物质的 激发波长相同或几乎重叠。 激光器产生的激光波长与激光介质有关, 常见的激光 波长见下表:
Figure imgf000008_0001
本发明检测方法的主要优点包括:
(a) 溶液中抗原抗体等的物理大小均 100nm,故反应在液溶胶均相反应体系中 进行, 反应均匀迅速;
(b) 检测全过程无需洗涤;
(c) 检测中使用的荧光物质可重复循环使用, 降低了试剂成本;
(d) 可方便地调节检测灵敏度, 且定量准确。 下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说明本 发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方法, 通 常按照常规条件如 Sambrook等人, 分子克隆:实验室手册 (New York: Cold Spring Harbor Laboratory Press, 1989)中所述的条件, 或按照制造厂商所建议的条件。 除 非另外说明, 否则重量份和百分比按重量计。 试剂和设备:
针对 AFP的成对抗体 G4/C2购自上海第二医科大学;
AFP抗原购自 Biodesign;
f uidMAG-CMX纳米磁性微球 (粒径为 lOOnm)购自德国 Chemicell公司; 30nm的胶体金, 市售品;
藻红蛋白(PE)购自 Invitrogen公司;
检测器: USB4000-FL (美国海洋光学公司)
光源: 532nm激光光源。 实施例 1: 血清中甲胎蛋白 (AFP)的检测
在本实施例中, 对于图 2、 4中上方容器中的反应溶液的液层厚度为 lcm。 1、 金标抗体的制备
1.1 胶体金 -抗体保存液
Figure imgf000009_0001
加水溶解后用 6N HCL 调 pH至 7.4, 补水至 250ml, 用 0.45 μ m滤膜过滤后,
8°C保存。
1.2 工作液
Figure imgf000009_0002
加水溶解后用 6N HCL 调 pH至 7.0〜7.5补水至 1000ml, 用 0.45 μ m滤膜过 滤后, 4〜8°C保存。
1.3 金标抗体的制备
1.3.1 取 20〜30nm颗粒胶体金液 20ml, 在磁力搅拌下缓慢加入已纯化的 G4 抗体 1.0ml(0.6mg/ml), 在室温下搅拌 30min;
1.3.2 力卩 10%的 BSA 0.8ml (终浓度 0·4%), 室温搅拌 5min;
1.3.3 力卩 10%的1¾0 0.411 1(终浓度0.2%), 室温搅拌 5min;
1.3.4 12000〜1500r/min离心 60〜40min, 小心吸离心上清, 沉淀溶于 2ml保存 液中, 用 0.45 μ ιη滤膜过滤, 置 4°C保存备用;
1.3.5 将上述金标抗体溶液用工作液稀释至在 532nm处的 O.D值为 1.5, 得到 金标抗体工作溶液, 每毫升金标抗体溶液约相当于 30 μ g G4抗体。
2、 标记 C2抗体使具有捕获功能
将抗体 C2固定于 -COOH修饰的 fluidMAG-CMX纳米磁性微球 (简称微球)步 骤如下:
2.1 取微球混悬液 0.34ml, 13000转离心 5min, 弃上清;
2.2
称取 EDC [N-ethyl-N'(3-dimethylaminopropyl)-carbodiimide] 10.25mg, 力卩入灭菌 水 0.15ml, 混匀后加入微球中, 轻轻振荡;
2.3 室温避光反应 lOmin;
2.4 加入 1ml纯水清洗 2次(13000转离心 5min), 弃上清;
2.5 加入 0.25ml纯水重悬;
2.6 加入 C2抗体 4.6 μ l(l lmg/ml, 约 50.6 w g), 混匀;
2.7 室温避光反应 2小时;
2.8 磷酸盐缓冲液 (PBS,pH7.4)洗涤 3次, 每次 lml;
2.9 弃去上清, 沉淀用 500 w l PBS重悬, 每微升微球悬液相当于 0.1 μ g C2抗 体。 3、 荧光物质溶液的配制
藻红蛋白(PE, Invitrogen公司)的次大激发波长为 532nm, 与 30nm胶体金的最 大吸收波长几乎重叠, PE的最大发射波长为 575nm, 与 30nm胶体金的吸收光谱 部分重叠, 故在本实施例中选用 PE作为检测中的荧光物质。 用 PBS(pH7.4)稀释 PE至 1 μ g/mlc
4、 标准曲线的绘制
4.1 AFP标准溶液的配制
用 PBS(pH7.4)将 AFP抗原稀释成标准系列, 浓度为: 0 ng/ml (Stdl)、 5 ng/ml (Std2)、 9 ng/ml (Std3)、 100 ng/ml (Std4)、 500 ng/ml (Std5);
4.2 形成二元复合物
取 1.5 O.D的金标抗体溶液 10μ 1、 Std2140wl混匀, 加入图 2中所示的上方 容器中, 使液层厚度为 lcm, 测定荧光强度, 记为 Fo_2;
4.3 形成三元复合物
预先用减压干燥的方法使另一容器壁附着固定了 C2抗体的纳米磁性微球, 将 "4.2" 溶液转移至该容器, 37°C孵育 30min, 形成 "夹心复合物" ;
4.4 分离纳米磁性微球
用磁力装置分离 "4.3" 中的纳米磁性微球, 使溶液返回 "4.2" 的容器中, 测 定荧光强度, 记为 ;
F1-2/ F0-2=1.02 同样操作, 得到 Stdl X寸应的 Fw/Fo.fO ^ Std3 X寸应的 F1-3/F0-3=1.03、 Std4 对应的
Figure imgf000011_0001
Std5对应的 F1-5/F。-5=1.68;
以上述 Stdl〜55个点的浓度 C对 Fw/Fo^i^ S), 得到标准曲线(图 5), 图 中 X轴为浓度, y轴为 Fw/Fo^i^ S^ 该标准曲线如下:
Y = 0.0008x +1.004, 2 = 0.9971 。
5、 样本检测
用血清样本替代标准系列溶液, 重复 4.2〜4.5步骤, 将?^?。代入标准曲线, 测得 6个样本的 AFP值分别为: 6.2、 8.9、 12.6、 40.8、 112.3、 235.6ng/mL 实施例 2: 血清中甲胎蛋白 (AFP)的检测 重复实施例 1的操作, 不同点仅在于: 是将图 2的上方容器做适当的调整, 使 反应溶液的液层厚度为 2cm, 金标抗体溶液 5 μ L, 校准品溶液 145 μ L。
结果, 在此条件下得到的标准曲线方程为:
Y = 0.0024x +1.061 , 2 = 0.9986 用血清样本替代标准系列溶液, 重复 4.2〜4.5步骤, 将?! 。代入标准曲线, 测得 6个样本的 AFP值分别为: 5.2、 9.6、 10.6、 40.1、 121.3、 246.6ng/mL 实施例 3: 血清中甲胎蛋白 (AFP)的检测 (图 2、 4中的液层厚度为 4cm) 重复实施例 1的操作, 不同点仅在于: 是将图 2的上方容器做适当的调整, 使 反应溶液的液层厚度为 4cm, 金标抗体溶液 2.5 μ L, 校准品溶液 147.5 μ L。
结果, 在此条件下得到的标准曲线方程为:
Υ = 0·0031χ +1.0611, 2 = 0.9982 用血清样本替代标准系列溶液, 重复 4.2〜4.5步骤, 将?^ ?。代入标准曲线, 测得 6个样本的 AFP值分别为: 6.8、 8.6、 11.8、 43.8、 127.3、 228.6ng/mL
随着实施例 1、 2和 3图 2中反应液层的厚度逐渐增加, 3条标准曲线的斜率 相应地也逐渐增加, 即检测灵敏度增加。 这提示, 本发明方法可根据实际需要方 便地调节检测灵敏度。 实施例 4: 血清中癌胚抗原 (CEA)的检测
在本实施例中, 对于图 2、 4中上方容器中的反应溶液的液层厚度为 2cm。 针对 CEA的成对抗体 A1/C9来自上海第二医科大学;
CEA抗原来自 Biodesign;
Sreptavidin包被的纳米磁性微球 (粒径为 50nm)、分离柱、磁架均来自德国美天 旎(Miltenyi)公司;
30nm的胶体金为市售品;
藻红蛋白(PE)来自 Invitrogen公司;
检测器: USB4000-FL (美国海洋光学公司)
光源: 532nm激光光源
1、 金标抗体的制备
金标抗体的制备过程与实施例 1相同, 金标抗体工作溶液在 532nm处的 O.D 值为 1.5, 每毫升金标抗体溶液约相当于 36 w g A1抗体。
2、 生物素标记 C9抗体
2.1 C9抗体预处理
Figure imgf000013_0001
2.2 生物素标记反应
取上述预处理的 C9抗体溶液 25 μ L, 加入 25 μ L的 lmg/ml NHSS-生物素 DMSO溶液, 混匀, 4°C冰箱避光反应 2小时。 透析过夜备用。
3、 荧光物质溶液的配制
藻红蛋白(PE, Invitrogen公司)的次大激发波长为 532nm, 与 30nm胶体金的最 大吸收波长几乎重叠, PE的最大发射波长为 575nm, 与 30nm胶体金的吸收光谱 部分重叠, 所以本实施例中选用 PE作为检测中的荧光物质。 用 PBS(pH7.4)稀释 PE至 1 μ g/mlc 4、 标准曲线的绘制
4.1 CEA标准溶液的配制
用 PBS(pH7.4)将 CEA抗原稀释成标准系列,浓度为: 0 ng/ml (Stdl)、 4.2 ng/ml (Std2), 15 ng/ml (Std3)、 150 ng/ml (Std4)、 622 ng/ml (Std5);
4.2 形成夹心复合物
取 1.5 O.D的金标抗体溶液 10 μ 1、 Std2 140 μ 1、 生物素标记的 C9抗体溶液 2 μ 1, 混匀, 形成有 "生物素 -C9 抗原一 A1-胶体金 " 的夹心复合物, 加入图 2所 示的容器中, 使液层厚度为 2cm, 测定荧光强度, 记为 Fo_2 ;
4.3 分离夹心复合物
预先用减压干燥的方法使另一容器 (加入了 200 μ 1的链亲和素纳米磁性微球 溶液)壁附着链亲和素纳米磁性微球;
将 " 4.2 "溶液转移至该容器, 并使链亲和素 (Streptavidin)纳米磁性微球充分 溶于溶液中, 室温静置 lmin, 通过链亲和素-生物素的连接, 夹心复合物被纳米 磁性微球捕获, 即: "磁性微球 -链亲和素一生物素 -C9 抗原一 A1-胶体金"
用配套的分离装置 (分离柱、 磁架)分离纳米磁性微球, 并使溶液返回 " 4.2 " 的容器中, 测定荧光强度, 记为 F^;
F1-2/ F0-2=1.05 同样操作, 得到 Stdl对应的 Fw/ F^fO ^ Std3对应的 F1-3/ F^3=1.09、 Std4 对应的 Fi Fo.44.33、 Std5 X寸应的 F1-5/ F。-5=1.99;
以上述 Stdl〜5 5个点的浓度 C对 Fw/ Fo^i l S)作图, 得到标准曲线:
Y=0.0015x + 1.0467 , 2=0.9903 。
5、 样本检测
用血清样本替代标准系列溶液, 重复 4.2〜4.5步骤, 将?^ ?。代入标准曲线, 测得 6个样本的 CEA值分别为: 8.2、 3.9、 32.6、 20.8、 103.3、 21 1.6ng/ml。 讨论
现有技术中已报道了基于荧光淬灭原理的免疫反应分析方法。 荧光淬灭的机 制都是共振能量转移, 要求荧光基团与淬灭剂基团必须近距离 ( 20nm)接触, 共 混于一个溶液体系(J.Phys.Chem.B 2005, 109, 19604 19612; Anal.Chem. 2006, 78, 1 104 1 106; Analytica Chimica Acta 583(2007)40 - 44; Chem.Commun., 2009,2559 - 2561; Nano Letters, 2009, 9, 12, 4558-4563; 、 Analytica Chimica Acta646 (2009) 1 19 - 122)。
然而, 本发明方法与现有技术的显著区别在于: 荧光物质与淬灭剂不接触, 而是相互独立, 完全分开。 这使得本发明提供的免疫分析方法具有一些突出的优 点, 其中包括: 液溶胶 (溶液中抗原抗体等的物理大小均 100nm)均相反应体系; 反应均匀迅速; 全过程无需洗涤; 可根据实际需要方便地调节检测灵敏度; 荧光 物质重复使用, 降低了试剂成本。
在本发明提及的所有文献都在本申请中引用作为参考, 就如同每一篇文献被 单独引用作为参考那样。 此外应理解, 在阅读了本发明的上述讲授内容之后, 本 领域技术人员可以对本发明作各种改动或修改, 这些等价形式同样落于本申请所 附权利要求书所限定的范围。

Claims

权利要求书
1. 一种检测待测物存在与否和 /或数量的免疫分析方法, 其特征在于, 包括步骤:
(a) 提供一检测溶液和一荧光物质溶液,其中所述的检测溶液和一荧光物质溶液是 相互独立的,所述检测溶液中含有标记有淬灭剂的、针对所述的待测物的第一结合物, 所述的荧光物质溶液中含有在受到激发光线照射时能够产生荧光的荧光物质;
(b) 将待测物或含待测物的样品加入检测溶液, 从而形成 "第一结合物-待测物" 二元复合物;
(c) 将针对所述的待测物的第二结合物加入步骤 (b)的检测溶液中, 从而形成 "第 一结合物-待测物-第二结合物"三元复合物, 其中所述的第一结合物和第二结合物可 同时结合于所述待测物;
(d) 从步骤 (c)的检测溶液中捕获或分离出所述的三元复合物, 从而使得所述三元 复合物与检测溶液的液相分开;
(e) 用可激发荧光物质产生荧光的光线照射步骤 (d)检测溶液, 使得所述光线透过 检测溶液并照射到与检测溶液相互独立的荧光物质溶液,从而使得荧光物质溶液产生 荧光;
(f) 检测步骤 (e)产生的荧光, 从而确定待测物存在与否和 /或数量。
2. 如权利要求 1所述的方法, 其特征在于, 所述的待测物包括: 蛋白、 核酸。
3. 如权利要求 1所述的方法, 其特征在于, 所述的荧光物质选自下组: 荧光素、 羧基荧光素、 2-甲氧基荧光素、 4, 5-二甲氧基荧光素、 罗丹明、 藻红蛋白、 量子 点、 或其组合。
4. 如权利要求 1所述的方法, 其特征在于, 所述的淬灭剂为胶体金。
5. 如权利要求 1所述的方法, 其特征在于, 在步骤 (f)中, 检测荧光物质溶液产生 的且透射通过所述检测溶液的荧光。
6. 如权利要求 1所述的方法, 其特征在于, 在步骤 (f)中还包括: 将荧光的测量值 与标准曲线或对照进行比较, 从而确定待测物的数量。
7. 如权利要求 1所述的方法, 其特征在于, 所述的待测物是抗原, 且所述的第一 结合物和第二结合物是可同时结合于所述抗原的抗体。
8. 如权利要求 1所述的方法, 其特征在于, 在步骤 (e)中, 所述的可激发荧光物质 产生荧光的光线, 透射通过检测溶液的光程为 0.1-50厘米。
9. 一种用于检测待测物存在与否和 /或数量的免疫分析检测装置, 其特征在于, 所 述的装置包括:
(a) 第一容器,所述的第一容器用于放置检测溶液,所述检测溶液中含有标记有淬 灭剂的、 针对所述的待测物的第一结合物;
(b) 第二容器,所述的第二容器用于放置荧光物质溶液,所述的荧光物质溶液中含 有在受到激发光线照射时能够产生荧光的荧光物质;
(c) 用于产生激发光线的光源,所述的光源可发出透射所述第一容器并照射到所述 第二容器的激发光线, 从而使得所述荧光物质产生荧光; 和
(d) 用于检测荧光的检测器。
10. 如权利要求 9所述的装置, 其特征在于, 所述的光源是激光器。
PCT/CN2012/070795 2012-01-31 2012-01-31 一种荧光分析方法 WO2013113153A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/070795 WO2013113153A1 (zh) 2012-01-31 2012-01-31 一种荧光分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/070795 WO2013113153A1 (zh) 2012-01-31 2012-01-31 一种荧光分析方法

Publications (1)

Publication Number Publication Date
WO2013113153A1 true WO2013113153A1 (zh) 2013-08-08

Family

ID=48904364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070795 WO2013113153A1 (zh) 2012-01-31 2012-01-31 一种荧光分析方法

Country Status (1)

Country Link
WO (1) WO2013113153A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352930A (zh) * 2015-12-01 2016-02-24 深圳市绿诗源生物技术有限公司 基于amf为荧光素标记物的双酚a荧光偏振免疫分析检测方法
CN105486672A (zh) * 2016-01-20 2016-04-13 西南大学 Afm1荧光增敏剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773281A (zh) * 2005-10-20 2006-05-17 上海交通大学 免疫胶体金粒子荧光淬灭的测量方法
JP2010014637A (ja) * 2008-07-07 2010-01-21 Fujifilm Corp 気相においてfret法を用いた分子間の相互作用の検知方法、及び有害物質除去材
CN101806802A (zh) * 2010-04-29 2010-08-18 华中科技大学 基于荧光共振能量转移的多组分同时检测的均相免疫分析方法
CN102033057A (zh) * 2010-11-17 2011-04-27 苏州康立达纳米生物工程有限公司 基于多功能聚合物和荧光共振能量转移的抗体检测方法
CN102401829A (zh) * 2010-09-17 2012-04-04 李久彤 一种基于荧光淬灭原理的免疫反应分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773281A (zh) * 2005-10-20 2006-05-17 上海交通大学 免疫胶体金粒子荧光淬灭的测量方法
JP2010014637A (ja) * 2008-07-07 2010-01-21 Fujifilm Corp 気相においてfret法を用いた分子間の相互作用の検知方法、及び有害物質除去材
CN101806802A (zh) * 2010-04-29 2010-08-18 华中科技大学 基于荧光共振能量转移的多组分同时检测的均相免疫分析方法
CN102401829A (zh) * 2010-09-17 2012-04-04 李久彤 一种基于荧光淬灭原理的免疫反应分析方法
CN102033057A (zh) * 2010-11-17 2011-04-27 苏州康立达纳米生物工程有限公司 基于多功能聚合物和荧光共振能量转移的抗体检测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352930A (zh) * 2015-12-01 2016-02-24 深圳市绿诗源生物技术有限公司 基于amf为荧光素标记物的双酚a荧光偏振免疫分析检测方法
CN105486672A (zh) * 2016-01-20 2016-04-13 西南大学 Afm1荧光增敏剂
CN105486672B (zh) * 2016-01-20 2018-06-05 西南大学 Afm1荧光增敏剂

Similar Documents

Publication Publication Date Title
Goryacheva et al. Nanosized labels for rapid immunotests
KR101195957B1 (ko) 표면증강 라만 산란 복합 프로브 및 이를 이용하여 표적 물질을 검출하는 방법
Zhao et al. Sensitive detection of protein biomarkers using silver nanoparticles enhanced immunofluorescence assay
JP5994890B2 (ja) アナライト検出プローブ
Zhao et al. based laser induced fluorescence immunodevice combining with CdTe embedded silica nanoparticles signal enhancement strategy
US9720003B2 (en) Assay for Troponin I using magnetic labels
Qian et al. A high-throughput homogeneous immunoassay based on Förster resonance energy transfer between quantum dots and gold nanoparticles
JP5720248B2 (ja) 表面プラズモンおよび蛍光共鳴エネルギー転移を利用した免疫アッセイ
JP3890019B2 (ja) 生物分析的アッセイ
JP6083849B2 (ja) 試料中の標的物質を検出又は定量する方法及びキット
JP5428322B2 (ja) プラズモン励起センサを用いたアッセイ法
CN102401829B (zh) 一种基于荧光淬灭原理的免疫反应分析方法
JP5006459B1 (ja) 標識用複合粒子
Farka et al. Nanoparticle‐based bioaffinity assays: from the research laboratory to the market
Zhou et al. Lanthanide-Doped Upconversion-Linked Immunosorbent Assay for the Sensitive Detection of Carbohydrate Antigen 19-9
Calucho et al. Nanoparticle-based lateral flow assays
CN113189078B (zh) 一种靶向药物的高通量筛选方法
Li et al. Simultaneous fluoroimmunoassay of two tumor markers based on CdTe quantum dots and gold nanocluster coated-silica nanospheres as labels
US10060923B2 (en) Ultra-fast pathogen toxin detection assay based on microwave-accelerated metal-enhanced fluorescence
WO2013113153A1 (zh) 一种荧光分析方法
JPWO2015122391A1 (ja) 量子ドット蛍光増強免疫測定法
Kong et al. A disposable label-free electrochemiluminescent immunosensor for transferrin detection based on a luminol-reduced gold nanoparticle-modified screen-printed carbon electrode
CN113125420B (zh) 基于化学发光的多元分析光子晶体芯片及其制备方法和应用
Zhou et al. Design of Sensitive Biocompatible Quantum‐Dots Embedded in Mesoporous Silica Microspheres for the Quantitative Immunoassay of Human Immunodeficiency Virus‐1 Antibodies
Zhang et al. A straightforward and sensitive “ON–OFF” fluorescence immunoassay based on silicon-assisted surface enhanced fluorescence

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/11/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12867564

Country of ref document: EP

Kind code of ref document: A1