WO2013111947A1 - 산화 그래핀의 분리 방법 - Google Patents

산화 그래핀의 분리 방법 Download PDF

Info

Publication number
WO2013111947A1
WO2013111947A1 PCT/KR2012/010970 KR2012010970W WO2013111947A1 WO 2013111947 A1 WO2013111947 A1 WO 2013111947A1 KR 2012010970 W KR2012010970 W KR 2012010970W WO 2013111947 A1 WO2013111947 A1 WO 2013111947A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
graphene
dispersion
salt
concentration
Prior art date
Application number
PCT/KR2012/010970
Other languages
English (en)
French (fr)
Inventor
이해신
홍순형
류성우
이빈
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2013111947A1 publication Critical patent/WO2013111947A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic

Definitions

  • the present invention relates to a method for separating graphene oxide, and more particularly, to a method for separating graphene oxide in a very simple, fast and cheap method.
  • graphene may be prepared by mechanical exfoliation, epitaxial growth, graphite oxide, chemical vapor deposition, or exfoliation using a graphite intercalation compound.
  • the graphene growth technology using chemical vapor deposition can be grown in the presence of metal catalysts such as Ni, Cu, and Pt on wafers larger than 4 inches, and has been developed to a level applicable to high-quality transparent electrodes, but the low yield and high manufacturing cost of graphene are industrial.
  • metal catalysts such as Ni, Cu, and Pt on wafers larger than 4 inches
  • Graphene oxidation is the most widely used method for producing graphene, but it has the advantage of producing a large amount of graphene at a low cost, but due to the extreme redox process, the excellent intrinsic properties of graphene may be significantly reduced (Geng, J. et al. J. Phys. Chem. C (2010) 114, 14433). Therefore, research on transparent electrodes having high conductivity and electrodes of batteries and supercapacitors having energy density and power density without damaging the intrinsic properties such as high electrical conductivity and large specific surface area of graphene have been conducted. In addition, graphene has a half interger quantum effect at a relatively low magnetic field, and there is no energy band gap.
  • the present invention aims to provide a method for separating graphene oxide in a very simple, fast and cheap method.
  • a graphene oxide powder obtained by drying the graphene oxide separated by any one of the above-described separation method.
  • FIG. 1 is a process flow diagram illustrating a method for separating graphene oxide according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a process of separating graphene oxide and graphene quantum dots using an aqueous salt solution from a graphene oxide dispersion.
  • FIG. 3 is an XPS analysis graph of graphene oxide separated in Example 1.
  • FIG. 4 is a Raman analysis graph of graphene oxide separated in Example 1.
  • FIG. 5 is a view showing an atomic force microscope (AFM) photograph of (a) graphene quantum dots and (b) graphene oxide separated in Example 2.
  • AFM atomic force microscope
  • FIG. 6 is a view showing a transmission electron microscope (TEM) image of (a) graphene quantum dots and (b) graphene oxide separated in Example 2.
  • TEM transmission electron microscope
  • FIG. 1 is a process flow diagram illustrating a method for separating graphene oxide according to an embodiment of the present invention.
  • graphene oxide is dispersed in water to form a graphene oxide dispersion.
  • Graphene oxide can be prepared by known methods, for example Brodie, Staudenmaier and Hummers methods.
  • Graphene oxide has a hydrophilic group containing oxygen on its surface, the hydrophilic group may be a carboxyl group, a carbonyl group, an epoxy group, a hydroxyl group.
  • Formation of the graphene oxide dispersion may include a peeling process of the graphene oxide by ultrasonic application.
  • the dispersion is preferably dispersed within about 30 minutes through ultrasonic treatment, and if the treatment time is prolonged, not only the dispersion of graphene oxide but also the bond between the graphene oxide particles may be damaged.
  • graphene oxide is basically hydrophilic particles, it is well dispersed in water. However, when a high concentration of graphene oxide dispersion is made, the interaction between the graphene oxide and the interlayer pi-pie bonds may cause particles to aggregate and become hydrophobic. Thus, a solvent to prevent agglomeration can be added to the graphene oxide dispersion.
  • the solvent is N-methylpyrrolidone (N-methylpyrrolidone), ethylene glycol (ethylene glycol), glycerin (glycerin), dimethylpyrrolidone (dimethylpyrrolidone), acetone (acetone), tetrahydrofuran, acetonitrile ( water miscible solvents such as acetonitrile, dimethylformamide, dimethyl sulphoxide, amine or alcohol.
  • N-methylpyrrolidone N-methylpyrrolidone
  • ethylene glycol ethylene glycol
  • glycerin glycerin
  • dimethylpyrrolidone dimethylpyrrolidone
  • acetone acetone
  • tetrahydrofuran acetonitrile
  • water miscible solvents such as acetonitrile, dimethylformamide, dimethyl sulphoxide, amine or alcohol.
  • the concentration of the graphene oxide dispersion may be 0.0001 to 10 mg / ml, preferably 0.01 to 5 mg / ml. If the concentration is less than 0.0001 mg / ml, it is difficult to separate the precipitate of the graphene oxide precipitated by the salt, and when the concentration is more than 10 mg / ml, the graphene oxide is difficult to disperse in the aqueous solution and aggregation occurs. It is hard to make the dispersion state.
  • a salt is applied to the graphene oxide dispersion so that the dispersed graphene oxides are entangled with each other to precipitate in the graphene oxide dispersion.
  • the salt is dissolved in the graphene oxide dispersion to form an aqueous salt solution.
  • the salt aqueous solution may include at least one salt selected from the group consisting of organic salts and inorganic salts.
  • the salt aqueous solution may include alkali metals such as Li, Na, and K, alkaline earth metals such as Be, Ca, and Mg, transition metals such as Au, Ag, Fe, Cu, Ni, and Co, Al, Ga, and In, and the like.
  • the concentration of the aqueous salt solution may be 0.001mM to 10M according to the concentration of the graphene oxide dispersion, preferably in the range of 0.1mM to 1M based on the dispersion of 1mg / mL graphene oxide concentration. If the concentration is less than 0.1mM in the above range may be difficult to separate because the amount of precipitated graphene oxide is less, and if it exceeds 1M may have difficulty in removing the salt after separation. Increasing the concentration of the salt in the aqueous salt solution may be more precipitated graphene oxide with high hydrophilicity.
  • step S120 the graphene oxide precipitated according to the concentration of the salt in the graphene oxide dispersion is separated from the graphene oxide dispersion.
  • graphene oxide there is a difference in hydrophilicity depending on the degree of functionalization.
  • graphene oxide close to hydrophobicity that is, graphene oxide having poor solubility in water
  • the precipitated graphene oxide is separated by centrifugation, and the salt is dissolved in the remaining graphene oxide dispersion to make the salt solution in a higher concentration. Then, the graphene oxide is precipitated and precipitated again.
  • step S110 and step S120 by increasing the concentration of the salt as described above it may further comprise the step of separating the graphene oxide by chemical composition by repeating step S110 and step S120.
  • FIG. 2 is a diagram illustrating a process of separating graphene oxide and graphene quantum dots using an aqueous salt solution from a graphene oxide dispersion.
  • graphene oxide produced by the human method or the like has a functionalized hydrophilic group.
  • the edge of the graphene oxide may be negatively charged due to the loss of protons by the basicity of the aqueous salt solution.
  • a positively charged salt is adsorbed at the edge of the reduced graphene oxide and is electrically neutral, the graphene oxides are entangled and precipitated by the salting-out effect.
  • the precipitated graphene oxide may be separated by filtration or centrifugation to separate graphene having chemically different properties.
  • the precipitation of graphene oxide is completed in the aqueous solution of high concentration of salt, only 10 nm or less of the graphene quantum dots which are not precipitated are dispersed in the aqueous solution, and thus separation between the graphene and the graphene quantum dots is possible.
  • the graphene oxide separated in step S130 may be purified to remove residual salts to separate graphene oxide having a desired chemical composition.
  • the purification can be carried out through dialysis. Separation of the separated graphene oxide and graphene quantum dots in dialysis tube 5-6 times for 12 hours can reduce the concentration of remaining salt to several nM level.
  • the purified graphene oxide may be dried in a vacuum oven and used in powder form, or may be used as it is in a dispersion state.
  • the separation method of the above-described graphene oxide can be applied to the reduced graphene oxide dispersion.
  • the method for separating graphene oxide from the reduced graphene oxide dispersion includes (a) dispersing graphene oxide in water to form a graphene oxide dispersion; (b) reducing the graphene oxide to form a dispersion of reduced graphene oxide having a hydrophilic group remaining at an edge thereof; (c) applying a salt to the reduced graphene oxide dispersion such that the dispersed graphene oxides are entangled with each other to precipitate in the reduced graphene oxide dispersion; (e) separating the graphene oxide precipitated according to the concentration of the salt in the reduced graphene oxide dispersion from the reduced graphene oxide dispersion; And (f) purifying the separated graphene oxides to remove residual salts.
  • Graphene oxide has a stable dispersion in aqueous solution, but due to oxidation reaction, many sp 2 bonds between carbons are broken, thereby degrading conductivity. Therefore, in order to restore conductivity, it is preferable to reduce and remove the functional group generated by the oxidation reaction.
  • hydrazine, NaBH 4 (sodium borohydride), HI (hydrogen iodide), hydroquinone, etc. may be used as a reducing agent for the reduction.
  • various reduction methods such as a method of performing heat treatment using hydrogen, argon, or the like at high temperature may be included as the reduction method.
  • Graphene oxide is well dispersed in water because it is a hydrophilic particle.
  • reduced graphene oxide which reduces graphene oxide, can aggregate into particles and become hydrophobic due to interaction due to interlayer pi-pie bonds as oxygen-containing functional groups are removed. Therefore, a water miscible solvent to prevent agglomeration may be added to the graphene oxide dispersion as in the case of making a high concentration of graphene oxide dispersion.
  • the graphene oxide can be separated according to the degree of functionalization and the separation of the graphene quantum dots produced during the production of graphene oxide is also easy to selectively use according to future applications.
  • water-soluble salts may use at least 0.1 mM salt for a dispersion at a concentration of 1 mg / mL.
  • a dispersion of graphene quantum dots may be obtained, and when dried, graphene quantum dot powder may be obtained.
  • An average size of the graphene quantum dots may be 10 nm or less.
  • graphene oxide can be separated inexpensively and easily and the graphene oxide separated according to the intended use is not only for applications requiring high conductivity, such as transparent electrode materials and transparent display materials, but also graphene quantum dots. It can be applied to next-generation future electronic devices such as semiconductor materials and solar cells that require.
  • the graphene oxide prepared by the human method was dissolved in tertiary distilled water by 1 mg / mL to form a graphene oxide dispersion.
  • the dispersion was sonicated for 30 minutes to produce a uniform graphene oxide dispersion.
  • Graphene oxide separated at 10 mM, 20 mM and 50 mM concentrations as described above was diluted with 10 times distilled water and redispersed for 1 hour using a liquid mixing rod in a low concentration aqueous solution. After separation, the redispersed graphene oxide was placed in a dialysis tube and dialyzed for 6 hours to remove residual salt. The purification process was repeated until the salt was removed at a concentration of several nM or less, replacing the distilled water used for dialysis.
  • Ammonium sulfate, potassium chloride, and iron chloride were dissolved in a concentration of 100 mM in the graphene oxide dispersion prepared according to the preparation, respectively, to prepare aqueous solutions.
  • the salt was then slowly dissolved through a liquid stir bar and precipitated graphene oxide in a beaker for 1 hour.
  • the precipitated graphene oxide was separated by centrifugation, and the graphene quantum dots dispersed on the supernatant were separated in an aqueous solution.
  • the graphene oxide separated at 100 mM concentration was diluted with 10 times distilled water, and the graphene quantum dot aqueous solution was diluted with 3 times distilled water and redispersed for 1 hour using a liquid mixing rod on each aqueous solution. After separation, the redispersed graphene oxide was placed in a dialysis tube and dialyzed for 6 hours to remove residual salt. The purification process was repeated until the salt was removed at a concentration of several nM or less, replacing the distilled water used for dialysis.
  • Example 1 The chemical composition of the graphene oxide separated in Example 1 was analyzed on a silicon substrate.
  • the separated graphene oxide was analyzed for chemical composition by XPS analysis and Raman analysis.
  • FIG. 3 is an XPS analysis graph of graphene oxide separated in Example 1.
  • FIG. 3 Referring to Figure 3, the graphene oxide prepared in the preparation (FIG. 3 (a)) of 10mM (Fig. 3 (b)), 20mM (Fig. 3 (c)), and 50mM ( d)) It can be seen that precipitated in an aqueous salt solution to separate the graphene oxide of each chemical composition. Referring to FIG. 3, it can be seen that graphene oxide having a lot of carbon-carbon bonds is precipitated first in a low concentration of aqueous salt solution. This is because graphene oxides with more carbon-carbon bonds are more likely to aggregate particles together to form hydrophobic precipitates due to the interaction between graphene interlayer ⁇ - ⁇ bonds.
  • FIG. 4 is a Raman analysis graph of graphene oxide separated in Example 1.
  • FIG. 4 Similar to the example of Figure 3 it was confirmed that the graphene precipitated and separated preferentially the high I G / I D ratio in a low concentration aqueous solution.
  • Graphene oxides with high G bands are easily aggregated into hydrophobic molecules due to interactions between inter-graphene interlayer ⁇ - ⁇ bonds, which appear as precipitation at low concentrations of salts.
  • Example 2 The microstructures of graphene oxide and graphene quantum dots separated in Example 2 were placed on a silicon substrate and analyzed by atomic force microscope (AFM) and transmission electron microscope (TEM).
  • AFM atomic force microscope
  • TEM transmission electron microscope
  • FIG. 5 is a view showing an atomic force microscope (AFM) photograph of (a) graphene quantum dots and (b) graphene oxide separated in Example 2.
  • AFM atomic force microscope
  • FIG. 6 is a view showing a transmission electron microscope (TEM) image of (a) graphene quantum dots and (b) graphene oxide separated in Example 2.
  • TEM transmission electron microscope
  • FIG. 6 it was confirmed that graphene quantum dots having a carbon hexagonal grid having a size of 10 nm or less exist in the supernatant.
  • a single layer of graphene oxide having a plate shape having a size of several tens of ⁇ m or more was confirmed.
  • the present invention is applied to the separation technique of graphene oxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

(a) 산화 그래핀들을 물에 분산시켜 산화 그래핀 분산액을 형성하는 단계; (b) 상기 산화 그래핀 분산액에 염을 인가하여 분산된 상기 산화 그래핀들이 서로 엉겨 상기 산화 그래핀 분산액 내에 석출되도록 하는 단계; (c) 상기 염이 산화 그래핀 분산액 내에 녹아 형성된 상기 염 수용액의 농도에 따라 석출된 상기 산화 그래핀들을 상기 산화 그래핀 분산액으로부터 분리하는 단계; 및 (d) 분리된 상기 산화 그래핀들을 정제하여 잔존 염을 제거하는 단계를 포함하는 산화 그래핀의 분리방법이 제공된다.

Description

산화 그래핀의 분리 방법
본 발명은 산화 그래핀의 분리방법에 관한 것으로, 보다 상세하게는 매우 간단하며 빠르고 값싼 방법으로 산화 그래핀을 분리하는 방법에 관한 것이다.
그래핀은 원래 우리가 잘 알고 있던 흑연(graphite)에서부터 출발한다. 탄소원자층이 여러 층으로 쌓여 이루어져 있는 형태인 흑연에서 한 층을 벗겨내어 그 물성을 물리적인 원리로 분석해 본 결과, 놀라운 전기전도도와 열전도도, 그리고 투명하고 유연한 물성을 지니고 있기 때문에 그래핀은 차세대 신소재로 각광을 받기 시작하였다. 2010년 그래핀을 그래파이트에서 벗겨내어 그 물리적 성질을 명백하게 연구한 러시아 과학자 2명이 노벨 물리학상을 수상함에 따라 그래핀의 물성 및 응용 연구가 더욱 가속을 받고 있다(Geim, A. K., et al., Nature (2007) 6, 183).
일반적으로 그래핀은 물리적 박리(Mechanical exfoliation), 에픽텍시 합성(Epitaxial growth), 그래파이트 산화법(Graphite oxide), 화학증착법(Chemical vapor deposition), 층간화합물(Graphite intercalation compound)을 이용한 박리 등으로 제조할 수 있다. 화학증착법을 이용한 그래핀 성장 기술은 4인치 이상의 웨이퍼에서 Ni, Cu, Pt 등의 금속촉매 존재하에 성장 가능하며, 고품질 투명전극에 적용 가능한 수준까지 발전되었으나 그래핀의 낮은 산출량과 높은 제조비용은 산업적 응용측면에서 한계점이 있다. 이러한 한계점을 극복하기위해 그래핀 산화법 및 층간화합물 박리법을 이용한 그래핀 제조 기술 개발이 활발히 진행되고 있다. 그래핀 산화법은 가장 널리 이용되는 그래핀 제조방법으로서 낮은 비용으로 대량의 그래핀을 제조할 수 있는 장점을 가지고 있지만 극심한 산화환원 공정에 의해 그래핀의 탁월한 고유물성이 현저히 저하될 수 있다(Geng, J. et al. J. Phys. Chem. C (2010) 114, 14433). 그러므로 그래핀의 높은 전기전도도 및 넓은 비표면적 등의 고유물성을 손상을 시키지 않으며 높은 전도도를 가지는 투명 전극 연구 및 에너지 밀도 및 출력 밀도를 가지는 배터리 및 수퍼커패시터의 전극 연구가 수행되고 있다. 또한 그래핀의 경우 비교적 낮은 자기장에서 반정수(half interger) 양자 효과가 나타나며 에너지 밴드갭이 없기 때문에 반도체 소자 등과 같은 곳에 응용하기 위해서 그래핀 양자점(Quantum dot) 연구도 활발히 진행되고 있다(Molitor F, Guttingger J, Stampfer C, Drocher S, Jacobson A, Ihn T, and Ensslin K, "Electronic properties of graphene nanostructures", Journal of Physics: Condensed Matter, 23, 2011, pp.243201001~243201015).
본 발명은 매우 간단하며 빠르고 값싼 방법으로 산화 그래핀을 분리하는 방법을 제공함에 주된 목적이 있다.
본 발명의 일 측면에 따르면, (a) 산화 그래핀들을 물에 분산시켜 산화 그래핀 분산액을 형성하는 단계; (b) 상기 산화 그래핀 분산액에 염을 인가하여 분산된 상기 산화 그래핀들이 서로 엉겨 상기 산화 그래핀 분산액 내에 석출되도록 하는 단계; (c) 상기 염이 산화 그래핀 분산액 내에 녹아 형성된 상기 염 수용액의 농도에 따라 석출된 상기 산화 그래핀들을 상기 산화 그래핀 분산액으로부터 분리하는 단계; 및 (d) 분리된 상기 산화 그래핀들을 정제하여 잔존 염을 제거하는 단계를 포함하는 산화 그래핀의 분리방법이 제공된다.
본 발명의 다른 측면에 따르면, (a) 산화 그래핀들을 물에 분산시켜 산화 그래핀 분산액을 형성하는 단계; (b) 상기 산화 그래핀을 환원시키되, 가장자리에 친수성기가 잔존하는 환원된 산화 그래핀의 분산액을 형성하는 단계; (c) 상기 환원된 산화 그래핀 분산액에 염을 인가하여 분산된 상기 산화 그래핀들이 서로 엉겨 상기 환원된 산화 그래핀 분산액 내에 석출되도록 하는 단계; (e) 상기 환원된 산화 그래핀 분산액 내의 상기 염의 농도에 따라 석출된 상기 산화 그래핀들을 상기 환원된 산화 그래핀 분산액으로부터 분리하는 단계; 및 (f) 분리된 상기 산화 그래핀들을 정제하여 잔존 염을 제거하는 단계를 포함하는 산화 그래핀의 분리방법이 제공된다.
본 발명의 또 다른 측면에 따르면, (a) 가장자리 부분이 친수성기로 개질된 산화 그래핀들의 분산액을 제공하는 단계; (b) 수용성 염의 인가에 의해 상기 분산액 내의 상기 산화 그래핀들이 용해도에 따라 석출되도록 하는 단계; (c) 상기 석출된 산화 그래핀들을 여과 또는 원심분리하여 분리하는 단계; 및 (d) 상기 분리된 산화 그래핀들을 정제하여 잔존 염을 제거하는 단계를 포함하는 산화 그래핀의 분리방법이 제공된다.
본 발명의 또 다른 측면에 따르면, (a) 가장자리 부분이 친수성기로 개질된 산화 그래핀들의 분산액을 제공하는 단계; (b) 상기 분산액에 과량의 수용성 염의 인가에 의해 상기 분산액 내의 상기 산화 그래핀들이 석출되도록 하는 단계; (c) 상기 석출된 산화 그래핀들을 포함한 상기 분산액을 여과 또는 원심분리하여 분리하는 단계; (d) 상기 분리된 분산액의 상등액을 분리하여 그래핀 양자점의 수용액을 얻는 단계; 및 (e) 상기 그래핀 양자점의 수용액을 정제하여 잔존 염을 제거하는 단계를 포함하는 산화 그래핀의 분리방법이 제공된다.
본 발명의 또 다른 측면에 따르면, 상술한 방법 중 어느 하나의 분리방법으로 분리된 산화 그래핀을 건조하여 얻은 산화 그래핀 분말이 제공된다.
도 1은 본 발명의 일 실시예에 따른 산화 그래핀의 분리방법을 나타낸 공정흐름도이다.
도 2는 산화 그래핀 분산액으로부터 염 수용액을 이용한 산화 그래핀의 분리와 그래핀 양자점의 분리 과정을 나타내는 도면이다.
도 3은 실시예 1에서 분리된 산화 그래핀의 XPS 분석 그래프이다.
도 4는 실시예 1에서 분리된 산화 그래핀의 라만(Raman) 분석 그래프이다.
도 5는 실시예 2에서 분리된 (a) 그래핀 양자점과 (b) 산화 그래핀의 원자력현미경(AFM) 사진을 나타낸 도면이다.
도 6은 실시예 2에서 분리된 (a) 그래핀 양자점과 (b) 산화 그래핀의 투과전자현미경(TEM) 사진을 나타낸 도면이다.
이하, 도면을 참조하여 본 발명을 더욱 상세히 설명하고자 한다. 도 1은 본 발명의 일 실시예에 따른 산화 그래핀의 분리방법을 나타낸 공정흐름도이다.
도 1을 참조하면, 단계 S100에서 산화 그래핀을 물에 분산하여 산화 그래핀 분산액을 형성한다. 산화 그래핀은 공지의 방법들, 예를 들어 Brodie, Staudenmaier 및 Hummers 방법들로 제조될 수 있다.
산화 그래핀은 그 표면에 산소를 함유한 친수성기를 구비하고 있으며, 상기 친수성기는 카르복실기, 카르보닐기, 에폭시기, 하이드록시기가 될 수 있다.
상기 산화 그래핀 분산액의 형성은 초음파 인가에 의한 상기 산화 그래핀들의 박리과정을 포함할 수 있다. 상기 분산액은 초음파 처리를 통해 30분 내외로 분산시키는 것이 바람직하며, 이때 처리시간이 길어질 경우 산화 그래핀의 분산 뿐만 아니라 산화 그래핀 입자 간의 결합에 손상이 갈 수 있다.
산화 그래핀은 기본적으로 친수성 입자이기 때문에 물에 잘 분산되어 있다. 하지만 고농도의 산화 그래핀 분산액을 만들 경우 산화 그래핀 간의 층간 파이-파이 결합으로 인한 상호작용으로 입자들끼리 뭉쳐 소수성으로 바뀔 수 있다. 따라서 뭉침을 막기 위한 용매가 산화 그래핀 분산액에 추가될 수 있다. 상기 용매는 N-메틸피롤리돈(N-methylpyrrolidone), 에틸렌 글리콜(ethylene glycol), 글리세린(glycerin), 디메틸피롤리돈(dimethylpyrrolidone), 아세톤(acetone), 테트라히드로프란(tetrahydrofuran), 아세토니트릴(acetonitrile), 디메틸포름아미드(dimethylformamide), 디메틸술폭사이드(dimethyl sulphoxide), 아민(amine) 또는 알콜(alcohol)과 같은 물 혼화성 용매가 될 수 있다.
상기 산화 그래핀 분산액의 농도는 0.0001 내지 10 mg/ml일 수 있으며, 바람직하게는 0.01 내지 5 mg/ml일 수 있다. 상기 범위에서 농도가 0.0001 mg/ml 미만일 경우 염에 의해 석출된 산화 그래핀의 침전을 분리하는데 어려움이 있으며 10 mg/ml 초과일 경우 산화 그래핀이 수용액 상에서 분산되기 어렵고 뭉침(aggregation) 현상이 발생하여 분산액 상태로 만들기 힘들다.
단계 S110에서 상기 산화 그래핀 분산액에 염을 인가하여 분산된 상기 산화 그래핀들이 서로 엉겨 상기 산화 그래핀 분산액 내에 석출되도록 한다. 상기 염은 상기 산화 그래핀 분산액에 녹아 염 수용액을 형성한다. 상기 염 수용액은 유기염 및 무기염으로 이루어진 군 중에서 선택되는 1종 이상인 염을 포함할 수 있다. 예를 들어 상기 염 수용액은 Li, Na, K 등 알칼리 금속, Be, Ca, Mg 등의 알칼리 토금속, Au, Ag, Fe, Cu, Ni, Co 등의 전이금속과 Al, Ga, In 등의 전이후 금속, 및 B, Si, Ge, As 등의 준금속 중에서 선택되는 금속의 이온을 포함할 수 있다. 상기 염 수용액의 농도는 상기 산화 그래핀 분산액의 농도에 따라 0.001mM 내지 10M일 수 있으며, 바람직하게는 1mg/mL 산화그래핀 농도의 분산액을 기준으로 할 경우 0.1mM 내지 1M의 범위일 수 있다. 상기 범위에서 농도가 0.1mM 미만일 경우 침전된 산화 그래핀의 양이 적어 분리하는데 어려움이 있을 수 있으며 상기 1M을 초과할 경우 분리 후 상기 염을 제거하는데 있어서 어려움이 있을 수 있다. 상기 염 수용액 내의 상기 염의 농도를 증가시킴에 따라 친수성이 높은 산화 그래핀이 더 석출될 수 있다.
단계 S120에서 상기 산화 그래핀 분산액 내의 상기 염의 농도에 따라 석출된 상기 산화 그래핀들을 상기 산화 그래핀 분산액으로부터 분리한다. 산화 그래핀의 경우 기능기화된 정도에 따라 친수성에 차이가 있다. 그리하여 소수성에 가까운 산화 그래핀, 즉 물에 대한 용해도가 떨어지는 산화 그래핀의 경우 저농도의 염 수용액 하에서 먼저 침전이 일어나게 된다. 다음 침전된 산화 그래핀을 원심분리로 분리해내고 남은 산화 그래핀 분산액에 염을 녹여 좀더 고농도의 염 수용액 조건으로 만들면 산화 그래핀이 다시 석출되어 침전된다.
일 실시예에 따르면, 이와 같이 상기 염의 농도를 증가시키면서 단계 S110 및 단계 S120을 반복하여 상기 산화 그래핀들을 화학적 조성별로 분리시키는 단계를 더 포함할 수 있다.
도 2는 산화 그래핀 분산액으로부터 염 수용액을 이용한 산화 그래핀의 분리와 그래핀 양자점의 분리 과정을 나타내는 도면이다. 예를 들어, 휴머 방법 등에 의해 제조된 산화 그래핀은 기능기화된 친수성기를 가지고 있다. 도 2를 참조하면, 염 수용액의 염기성에 의해 친수성기가 양성자를 잃음으로써 산화 그래핀의 가장자리 부분이 음전하를 띌 수 있다. 한편 양전하를 띄는 염이 환원된 산화 그래핀의 가장자리에 흡착되어 전기적으로 중성이 되면 염석 효과(salting-out effect)에 의해 산화 그래핀들이 엉겨 침전하게 된다.
이렇게 염 수용액의 농도를 높여 침전된 산화 그래핀을 여과 또는 원심분리로 분리함으로써 화학적으로 다른 성질을 가지는 그래핀을 분리해 낼 수 있다. 최종적으로 고농도의 염 수용액에서 산화 그래핀의 침전이 완료되면 수용액 상에는 침전되지 않은 10nm 이하 크기의 그래핀 양자점만 분산되어 남게 되어 그래핀과 그래핀 양자점간의 분리가 가능하다.
단계 S130에서 분리된 상기 산화 그래핀들을 정제하여 잔존 염을 제거함으로써 원하는 화학적 조성을 갖는 산화 그래핀을 분리해낼 수 있다. 상기 정제는 투석(dialysis)을 통해 수행될 수 있다. 분리된 산화 그래핀과 그래핀 양자점을 투석 튜브에서 12시간씩 5-6번 투석시킴으로써 잔존 염의 농도를 수 nM 수준으로 낮출 수 있다. 이렇게 정제된 산화 그래핀은 진공오븐에서 말려져 분말형태로도 사용이 가능하고 분산액 상태 그대로 사용하는 것도 가능하다.
일 실시예에 따르면, 상술한 산화 그래핀의 분리방법은 환원된 산화 그래핀 분산액에도 적용할 수 있다. 환원된 산화 그래핀 분산액으로부터 산화 그래핀을 분리하는 방법은 (a) 산화 그래핀들을 물에 분산시켜 산화 그래핀 분산액을 형성하는 단계; (b) 상기 산화 그래핀을 환원시키되, 가장자리에 친수성기가 잔존하는 환원된 산화 그래핀의 분산액을 형성하는 단계; (c) 상기 환원된 산화 그래핀 분산액에 염을 인가하여 분산된 상기 산화 그래핀들이 서로 엉겨 상기 환원된 산화 그래핀 분산액 내에 석출되도록 하는 단계; (e) 상기 환원된 산화 그래핀 분산액 내의 상기 염의 농도에 따라 석출된 상기 산화 그래핀들을 상기 환원된 산화 그래핀 분산액으로부터 분리하는 단계; 및 (f) 분리된 상기 산화 그래핀들을 정제하여 잔존 염을 제거하는 단계를 포함할 수 있다.
산화 그래핀은 수용액 상에서 안정적인 분산 형태를 가지고 있으나 산화 반응으로 인하여 탄소 간 sp2 결합이 많이 끊어져 있어 전도성이 저하된다. 따라서 전도성을 회복하기 위해 산화반응으로 생긴 기능기를 환원시켜 제거하는 것이 바람직하다. 이때 환원을 위해 환원제로서 하이드라진(hydrazine), NaBH4(sodium borohydride), HI(hydrogen iodide), 하이드로퀴논 등을 사용할 수 있다. 또는 환원방법으로서 고온에서 수소, 아르곤 등을 사용하는 열처리를 하는 방법 등 다양한 환원방법이 포함될 수 있다.
산화 그래핀은 친수성 입자이기 때문에 물에 잘 분산되어 있다. 하지만 산화 그래핀을 환원시킨 환원된 산화 그래핀(reduced graphene oxide, RGO)은 산소가 함유된 기능기가 제거되면서 층간 파이-파이 결합으로 인한 상호작용으로 입자들끼리 뭉쳐 소수성으로 바뀔 수 있다. 따라서 고농도의 산화 그래핀 분산액을 만들 경우와 마찬가지로 뭉침을 막기 위한 물 혼화성 용매가 산화 그래핀 분산액에 추가될 수 있다.
본 발명의 일 실시예에 따르면, 상기 산화 그래핀은 기능기화된 정도에 따라 분리가 가능하며 산화 그래핀 제조시 제조되는 그래핀 양자점의 분리 또한 가능하여 향후 응용 분야에 따라 선택적 사용이 용이 하다.
예를 들어, 산화 그래핀 분산액에 과량의 수용성 염을 인가하면 친수성이 낮은 대부분의 산화 그래핀이 분산액 중에 석출되고, 이를 원심분리하여 침전시키면 상등액에는 미세한 친수성이 그래핀 양자점이 잔존하게 된다. 과량의 수용성 염은 1mg/mL 농도의 분산액에 대해 0.1mM 이상의 염을 사용할 수 있다. 상기 상등액으로부터 잔존 염을 제거하는 정제과정을 거치면 그래핀 양자점의 분산액을 얻을 수 있고, 이를 건조하면 그래핀 양자점 분말을 얻을 수 있다. 상기 그래핀 양자점의 평균적인 크기는 10nm 이하일 수 있다.
상술한 방법에 따르면, 산화 그래핀이 값싸고 용이하게 분리될 수 있으며 원하는 용도에 따라 분리된 산화 그래핀은 투명 전극 소재 및 투명 디스플레이 소재 등과 같이 고 전도도를 필요로 하는 응용 분야뿐만 아니라 그래핀 양자점을 필요로 하는 반도체 소재 및 태양 전지와 같은 차세대 미래 전자 소자에 응용될 수 있다.
이하, 본 발명을 실시예를 통해 더욱 자세히 설명하고자 하나 하기 실시예는 이해를 돕기 위해 제시되는 것으로, 본 발명의 사상이 하기 실시예로만 한정되는 것은 아니다
<제조예>
산화 그래핀 분산액 제조
휴머 방법에 의해 제조된 산화 그래핀을 3차 증류수에 1mg/mL만큼 녹여 산화 그래핀 분산액을 형성하였다. 다음 산화 그래핀를 박리하여 균일한 단층의 산화 그래핀으로 만들기 위해 분산액을 30분 동안 초음파 처리하여 균일한 산화 그래핀 분산액을 제조하였다.
<실시예 1>
그래핀 분산액의 분류
제조예에 의해서 제조된 산화 그래핀 분산액에 각 염의 종류를 달리하여 황산 암모늄, 염화 칼륨, 염화 철을 각각 10mM 농도로 녹여 여러 종류의 염 수용액들을 만들었다. 이후 액체 혼합 막대(stir bar)를 통해 염을 천천히 녹이며 1시간 동안 비커에서 산화 그래핀을 석출시켰다. 석출된 산화 그래핀은 원심분리를 통해 분리해 내고, 상등액인 산화 그래핀이 분산되어 있는 분산액에는 황산 암모늄, 염화 칼륨, 염화 철을 각각 20mM 농도로 녹여 여러 염 수용액들을 만들었다. 이후 동일한 방법으로 액체 혼합 막대(stir bar)를 통해 염을 천천히 녹이며 1시간 동안 비커에서 산화 그래핀을 석출시킨 후 원심분리를 통해 분리했다. 이후 황산 암모늄, 염화 칼륨, 염화 철을 각각 50mM 농도로 녹여 선행 과정을 반복하여 석출된 산화 그래핀을 분리했다.
산화 그래핀의 정제
상기와 같이 10mM, 20mM 그리고 50mM 농도에서 분리된 산화 그래핀은 10배의 증류수에 의해 희석되어 저농도염 수용액 상에서 액체 혼합 막대를 이용해 1시간 동안 재분산되었다. 분리 후 재분산된 산화 그래핀을 투석 튜브에 담아 6시간 동안 투석하여 잔존 염을 제거하였다. 정제 과정은 투석에 쓰이는 3차 증류수를 교환하며 수 nM 이하의 농도로 염이 제거될 때까지 반복했다.
<실시예 2>
그래핀 양자점의 분리
제조예에 의해서 제조된 산화 그래핀 분산액에 황산 암모늄, 염화 칼륨, 염화 철을 각각 100mM 농도로 녹여 수용액들을 만들었다. 이후 액체 혼합 막대(stir bar)를 통해 염을 천천히 녹이며 1시간 동안 비커에서 산화 그래핀을 석출시켰다. 석출된 산화 그래핀은 원심 분리를 통해 분리하고, 상등액 상에 분산되어 있는 그래핀 양자점을 수용액 상태로 분리했다.
그래핀 양자점의 정제
상기와 같이 100mM 농도에서 분리된 산화 그래핀은 10배의 증류수에 의해 희석되고, 그래핀 양자점 수용액은 3배의 증류수에 의해 희석되어 각각 수용액 상에서 액체 혼합 막대를 이용해 1시간 동안 재분산되었다. 분리 후 재분산된 산화 그래핀을 투석 튜브에 담아 6시간 동안 투석하여 잔존 염을 제거하였다. 정제 과정은 투석에 쓰이는 3차 증류수를 교환하며 수 nM 이하의 농도로 염이 제거될 때까지 반복했다.
<시험예 1>
산화 그래핀의 화학적 조성 분석
실시예 1에서 분리된 산화 그래핀의 화학적 조성을 실리콘 기판 위에서 분석하였다. 분리된 산화 그래핀은 XPS 분석과 Raman 분석을 통해 화학적 조성이 분석 되었다.
도 3은 실시예 1에서 분리된 산화 그래핀의 XPS 분석 그래프이다. 도 3을 참조하면, 제조예에서 제조된 산화 그래핀(도 3의 (a))이 10mM(도 3의 (b)), 20mM(도 3의 (c)), 그리고 50mM(도 3의 (d)) 염 수용액에서 침전되어 각각의 화학적 조성의 산화 그래핀으로 분리된 것을 확인할 수 있다. 도 3을 참조하면, 저농도의 염 수용액에서 탄소-탄소 결합이 많은 산화 그래핀이 먼저 침전되는 것을 확인 할 수 있다. 이것은 탄소-탄소 결합이 많은 산화 그래핀일수록 그래핀 간의 층간 π-π 결합으로 인한 상호작용으로 입자들끼리 뭉쳐 소수성 침전물을 만들기 쉽기 때문이다.
도 4는 실시예 1에서 분리된 산화 그래핀의 라만(Raman) 분석 그래프이다. 도 3의 예와 유사하게 저농도의 염 수용액에서 IG/ID 비율이 높은 그래핀이 우선적으로 침전되어 분리되는 결과를 확인하였다. G 밴드가 높은 산화 그래핀의 경우 그래핀간 층간 π-π 결합에 의한 상호작용으로 소수성 분자로 뭉치기 쉬우며 이는 저농도의 염에서 침전으로 나타난다.
<시험예 2>
산화 그래핀과 그래핀 양자점의 미세조직 분석
실시예 2에서 분리된 산화 그래핀과 그래핀 양자점의 미세조직을 실리콘 기판 위에 놓고 원자력현미경(AFM)과 투과 전자현미경(TEM)으로 분석하였다.
도 5는 실시예 2에서 분리된 (a) 그래핀 양자점과 (b) 산화 그래핀의 원자력현미경(AFM) 사진을 나타낸 도면이다. 도 5를 참조하면, 산화 그래핀 분산액으로부터 10nm 이하의 크기를 가지는 그래핀 양자점과 수십 ㎛ 이상의 크기를 가지는 산화 그래핀이 분리된 것을 볼 수 있다.
도 6은 실시예 2에서 분리된 (a) 그래핀 양자점과 (b) 산화 그래핀의 투과전자현미경(TEM) 사진을 나타낸 도면이다. 도 6을 참조하면, 10nm 이하의 크기의 탄소 육각 격자를 가지는 그래핀 양자점이 상등액에 존재함을 확인하였다. 또한 산화 그래핀 분산액으로부터 석출되어 분리된 침전물에서는 수십 ㎛ 이상의 크기를 가지는 플레이트 형태를 가지는 단일 층의 산화 그래핀을 확인할 수 있었다.
이상에서는 도면 및 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 기술적 사상으로부터 벗어나지 않는 범위 내에서 개시된 실시예들을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
본 발명은 산화 그래핀의 분리 기술에 적용된다.

Claims (15)

  1. (a) 산화 그래핀들을 물에 분산시켜 산화 그래핀 분산액을 형성하는 단계;
    (b) 상기 산화 그래핀 분산액에 염을 인가하여 분산된 상기 산화 그래핀들이 서로 엉겨 상기 산화 그래핀 분산액 내에 석출되도록 하는 단계;
    (c) 상기 염이 산화 그래핀 분산액 내에 녹아 형성된 상기 염 수용액의 농도에 따라 석출된 상기 산화 그래핀들을 상기 산화 그래핀 분산액으로부터 분리하는 단계; 및
    (d) 분리된 상기 산화 그래핀들을 정제하여 잔존 염을 제거하는 단계를 포함하는 산화 그래핀의 분리방법.
  2. 제1 항에 있어서,
    상기 산화 그래핀의 표면에 산소가 포함된 친수성기가 포함된 산화 그래핀의 분리방법.
  3. 제1 항에 있어서,
    상기 산화 그래핀 분산액의 형성은 초음파 인가에 의한 상기 산화 그래핀들의 박리과정을 포함하는 산화 그래핀의 분리방법.
  4. 제1 항에 있어서,
    상기 산화 그래핀 분산액의 농도는 0.0001 내지 10 mg/ml인 산화 그래핀의 분리방법.
  5. 제1 항에 있어서,
    상기 염 수용액은 유기염 및 무기염으로 이루어진 군 중에서 선택되는 1종 이상인 염을 포함하는 산화 그래핀의 분리방법.
  6. 제1 항에 있어서,
    상기 염 수용액은 알칼리 금속, 알칼리 토금속, 전이금속, 전이후 금속, 및 준금속으로 이루어진 군 중에서 선택되는 1종 이상의 금속의 이온을 포함하는 산화 그래핀의 분리방법.
  7. 제1 항에 있어서,
    상기 염의 농도를 증가시킴에 따라 친수성이 높은 산화 그래핀이 더 석출되는 산화 그래핀의 분리방법.
  8. 제1 항에 있어서,
    상기 염 수용액의 농도는 1mg/mL 산화그래핀 농도의 분산액을 기준으로 할 경우 0.1mM 내지 1M인 산화 그래핀의 분리방법.
  9. 제1 항에 있어서,
    (e) 상기 염의 농도를 증가시키면서 상기 (b) 단계 및 상기 (c) 단계를 반복하여 상기 산화 그래핀들을 화학적 조성별로 분리시키는 단계를 더 포함하는 산화그래핀의 분리방법.
  10. 제1 항에 있어서,
    상기 정제는 투석을 통해 수행되는 산화 그래핀의 분리방법.
  11. (a) 산화 그래핀들을 물에 분산시켜 산화 그래핀 분산액을 형성하는 단계;
    (b) 상기 산화 그래핀을 환원시키되, 가장자리에 친수성기가 잔존하는 환원된 산화 그래핀의 분산액을 형성하는 단계;
    (c) 상기 환원된 산화 그래핀 분산액에 염을 인가하여 분산된 상기 산화 그래핀들이 서로 엉겨 상기 환원된 산화 그래핀 분산액 내에 석출되도록 하는 단계;
    (e) 상기 환원된 산화 그래핀 분산액 내의 상기 염의 농도에 따라 석출된 상기 산화 그래핀들을 상기 환원된 산화 그래핀 분산액으로부터 분리하는 단계; 및
    (f) 분리된 상기 산화 그래핀들을 정제하여 잔존 염을 제거하는 단계를 포함하는 산화 그래핀의 분리방법.
  12. (a) 가장자리 부분이 친수성기로 개질된 산화 그래핀들의 분산액을 제공하는 단계;
    (b) 수용성 염의 인가에 의해 상기 분산액 내의 상기 산화 그래핀들이 용해도에 따라 석출되도록 하는 단계;
    (c) 상기 석출된 산화 그래핀들을 여과 또는 원심분리하여 분리하는 단계; 및
    (d) 상기 분리된 산화 그래핀들을 정제하여 잔존 염을 제거하는 단계를 포함하는 산화 그래핀의 분리방법.
  13. (a) 가장자리 부분이 친수성기로 개질된 산화 그래핀들의 분산액을 제공하는 단계;
    (b) 상기 분산액에 과량의 수용성 염의 인가에 의해 상기 분산액 내의 상기 산화 그래핀들이 석출되도록 하는 단계;
    (c) 상기 석출된 산화 그래핀들을 포함한 상기 분산액을 여과 또는 원심분리하여 분리하는 단계;
    (d) 상기 분리된 분산액의 상등액을 분리하여 그래핀 양자점의 수용액을 얻는 단계; 및
    (e) 상기 그래핀 양자점의 수용액을 정제하여 잔존 염을 제거하는 단계를 포함하는 산화 그래핀의 분리방법.
  14. 제13 항에 있어서,
    상기 그래핀 양자점의 크기는 10nm 이하인 산화 그래핀의 분리방법.
  15. 제1 항 내지 제14 항 중 어느 한 항의 분리방법으로 분리된 산화 그래핀을 건조하여 얻은 산화 그래핀 분말.
PCT/KR2012/010970 2012-01-26 2012-12-15 산화 그래핀의 분리 방법 WO2013111947A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120007858A KR101370425B1 (ko) 2012-01-26 2012-01-26 산화 그래핀의 분리 방법
KR10-2012-0007858 2012-01-26

Publications (1)

Publication Number Publication Date
WO2013111947A1 true WO2013111947A1 (ko) 2013-08-01

Family

ID=48873637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010970 WO2013111947A1 (ko) 2012-01-26 2012-12-15 산화 그래핀의 분리 방법

Country Status (2)

Country Link
KR (1) KR101370425B1 (ko)
WO (1) WO2013111947A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880081A (zh) * 2021-11-03 2022-01-04 北京石墨烯技术研究院有限公司 石墨烯的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101797737B1 (ko) * 2015-11-16 2017-11-14 주식회사 포스코 기능기화된 그래핀 나노플레이트렛, 그래핀 나노플레이트렛의 기능기화 방법, 및 기능기화된 그래핀 나노플레이트렛의 크기 별 분리 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110077606A (ko) * 2009-12-30 2011-07-07 한국원자력연구원 유기용매를 이용한 그래핀 제조방법 및 이에 따라 제조되는 그래핀
KR20110079469A (ko) * 2009-12-31 2011-07-07 한국과학기술원 염을 이용한 흑연 층간 화합물 제조에 의한 그래핀 제조 방법
KR20110115085A (ko) * 2010-04-14 2011-10-20 한국과학기술원 그라핀/금속 나노 복합 분말 및 이의 제조 방법
KR20110119429A (ko) * 2010-04-27 2011-11-02 국립대학법인 울산과학기술대학교 산학협력단 흑연의 가장자리 기능화에 의한 그래핀의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110077606A (ko) * 2009-12-30 2011-07-07 한국원자력연구원 유기용매를 이용한 그래핀 제조방법 및 이에 따라 제조되는 그래핀
KR20110079469A (ko) * 2009-12-31 2011-07-07 한국과학기술원 염을 이용한 흑연 층간 화합물 제조에 의한 그래핀 제조 방법
KR20110115085A (ko) * 2010-04-14 2011-10-20 한국과학기술원 그라핀/금속 나노 복합 분말 및 이의 제조 방법
KR20110119429A (ko) * 2010-04-27 2011-11-02 국립대학법인 울산과학기술대학교 산학협력단 흑연의 가장자리 기능화에 의한 그래핀의 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880081A (zh) * 2021-11-03 2022-01-04 北京石墨烯技术研究院有限公司 石墨烯的制备方法

Also Published As

Publication number Publication date
KR101370425B1 (ko) 2014-03-06
KR20130086838A (ko) 2013-08-05

Similar Documents

Publication Publication Date Title
JP5739452B2 (ja) 脱バンドル化したナノチューブの分散および回収
CN102387922B (zh) 剥离的碳纳米管、其制备方法及由此获得的产品
Fernández-Merino et al. Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films
JP5613230B2 (ja) アルカリ金属曝露によってカーボンナノチューブから製造されるグラフェンナノリボン
KR101299863B1 (ko) 용액 중의 단일 및 다중 그래핀층의 안정한 분산물
CN102066245B (zh) 石墨烯分散体的制备方法
KR101294223B1 (ko) 대면적 그래핀 필름의 제조방법
CN102906016A (zh) 制备基于石墨烯的二维夹层纳米材料的方法
CN105518183A (zh) 石墨烯和石墨烷的生产
Gui et al. Lamellar MXene: A novel 2D nanomaterial for electrochemical sensors
Lu et al. Stable Aqueous Suspension and Self‐Assembly of Graphite Nanoplatelets Coated with Various Polyelectrolytes
US20120289613A1 (en) Emulsions, compositions and devices including graphene oxide, and methods for using same
US20240158919A1 (en) Method for aluminum electroless deposition
WO2013111947A1 (ko) 산화 그래핀의 분리 방법
Hsu et al. Synthesis and characterization of nano silver-modified graphene/PEDOT: PSS for highly conductive and transparent nanocomposite films
Han et al. The surface chemistry of graphene-based materials: functionalization, properties, and applications
Kang et al. Fabrication of stable aqueous dispersions of graphene using gellan gum as a reducing and stabilizing agent and its nanohybrids
Yang et al. Preparation, characterization, and electrochemical performances of graphene/Ni (OH) 2 hybrid nanomaterials
Shayesteh-Zeraati Synthesis of Multifunctional One-dimensional and Two-dimensional Highly Conductive Nanomaterials for Charge Storage Applications
WO2019047164A1 (zh) 一种氧化石墨烯的制备方法
CN110814332B (zh) 一种银纳米线后处理方法
Ahmad et al. Graphene-Based Composite Nanostructures: Synthesis, Properties, and Applications
Lai et al. Research progress of graphene-based composite materials
Kim Purification and Preparation of Single-Walled Carbon Nanotube Films
CN117623289A (zh) 一种孔结构可调控的多孔石墨烯及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866473

Country of ref document: EP

Kind code of ref document: A1