WO2013111788A1 - 水浄化装置および消毒液製造装置 - Google Patents

水浄化装置および消毒液製造装置 Download PDF

Info

Publication number
WO2013111788A1
WO2013111788A1 PCT/JP2013/051344 JP2013051344W WO2013111788A1 WO 2013111788 A1 WO2013111788 A1 WO 2013111788A1 JP 2013051344 W JP2013051344 W JP 2013051344W WO 2013111788 A1 WO2013111788 A1 WO 2013111788A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
flow path
water
water purification
electrodes
Prior art date
Application number
PCT/JP2013/051344
Other languages
English (en)
French (fr)
Inventor
洗 暢俊
真臣 原田
佐藤 剛
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2013555290A priority Critical patent/JP5909506B2/ja
Publication of WO2013111788A1 publication Critical patent/WO2013111788A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/4617DC only

Definitions

  • the present invention relates to a water purification apparatus and a disinfectant manufacturing apparatus.
  • Unpurified water contains organic substances and bacteria, and in order to obtain purified water, it is necessary to remove these organic substances and bacteria.
  • Purification of water to remove organic substances and bacteria in water is generally performed by diffusing substances such as drugs in water.
  • the purification device is increased in size and the purification cost is increased because it is necessary to add the chemical into the water to be purified and to remove the charged chemical from the purified water after purification.
  • a method of purifying water a method of purifying water by applying a voltage between an anode and a cathode is known (see, for example, Patent Documents 1 to 3).
  • the present invention comprises a septic tank and at least one electrode pair comprising a first electrode and a second electrode to which a direct current voltage is applied, the electrode pair being provided in the septic tank and included in the electrode pair
  • the first and second electrodes to be provided provide a water purification device characterized in that the interval is set to be 0.5 mm or more and 5 mm or less.
  • the water purification apparatus of this invention can also be used as a disinfection liquid manufacturing apparatus.
  • the electrolyte is not added to the water to be treated.
  • a current can be passed between the electrodes by voltage.
  • active species can be generated on the surface of the first electrode and the surface of the second electrode, and the water to be treated can be purified.
  • the distance between the first electrode and the second electrode is 0.5 mm or more, it is possible to prevent a solid material from being clogged between the first electrode and the second electrode and causing a leakage current to flow. .
  • the distance between the first and second electrodes is set to 5 mm or less, so that the first electrode and the second electrode immersed in the water to be treated with less impurities and no added electrolyte It was confirmed that a current can be passed during this period, and the water to be treated can be purified. Moreover, according to this invention, since water can be purified without adding electrolyte, it can suppress that electrolyte deposits on the electrode surface. Furthermore, according to the present invention, since active species such as hydrogen peroxide and ozone can be generated on the surface of the first electrode or the surface of the second electrode, an oxygen-based disinfectant such as hydrogen peroxide or ozone. Can be produced. It has been confirmed by experiments conducted by the inventors that hydrogen peroxide or ozone can be generated. The oxygen-based disinfectant has less persistence than the chlorine-based disinfectant and does not generate harmful chlorine-based organic substances.
  • FIG. 3 is a schematic cross-sectional view of the water purification device taken along a dotted line AA in FIG. 2. It is a schematic sectional drawing which shows the structure of the water purification apparatus of one Embodiment of this invention.
  • FIG. 5 is a schematic cross-sectional view of the water purification device taken along dotted line BB in FIG. 4. It is explanatory drawing of the treated water flow path contained in the water purification apparatus of one Embodiment of this invention.
  • FIG. 1 It is a schematic sectional drawing which shows the structure of the water purification apparatus of one Embodiment of this invention. It is a graph of the current-voltage curve measured in the methylene blue aqueous solution electrolysis experiment 2.
  • FIG. It is a graph which shows the result of the transmittance
  • FIG. It is a graph which shows the result of the transmittance
  • the water purification apparatus of the present invention comprises a purification tank and at least one electrode pair consisting of a first electrode and a second electrode to which a direct current voltage is applied, the electrode pair being provided in the purification tank, The first and second electrodes included in the electrode pair are provided so that the interval is 0.5 mm or more and 5 mm or less.
  • the water purification apparatus of this invention can also be used as a disinfection liquid manufacturing apparatus.
  • the septic tank includes a flow path of water to be purified therein, and the first and second electrodes included in the electrode pair are provided so as to be the flow path therebetween. It is preferable. According to such a structure, the to-be-processed water which flows through a flow path can be purified by applying a voltage between 1st and 2nd electrodes.
  • the first and second electrodes have a wire shape or a rod shape, respectively. According to such a structure, it can be set as the said flow path between the 1st electrode arrange
  • the purification capability of the water purification apparatus can be increased by arranging a large number of electrode pairs including the first electrode and the second electrode. Moreover, the surface area of a 1st electrode and a 2nd electrode can be enlarged, and the purification capability of a water purification apparatus can be made high. Further, by arranging the first electrode and the second electrode substantially in parallel, it is possible to suppress the occurrence of a portion where the electrode interval is narrowed, and it is possible to suppress the current from flowing locally. In addition, by using high linearity for the first electrode and the second electrode, the distance between the first electrode and the second electrode can be made substantially constant, and current can be concentrated at a specific location. Can be suppressed.
  • the flow path is a curved flow path
  • the electrode pair is plural
  • the first and second electrodes included in one electrode pair sandwich the flow path. It is preferable that they are provided facing each other.
  • the to-be-processed water which flows through a flow path can be purified by applying a voltage between a 1st electrode and a 2nd electrode, and it is set as the flow path where the flow path was bent.
  • the first and second electrodes are preferably plate-shaped. According to such a configuration, the flow path can be formed by arranging the plate-like first electrode and the second electrode.
  • the septic tank includes a plurality of flow path forming members that form the flow paths, and the first electrode or the second electrode is provided as a film on the surface of one flow path forming member. It is preferable. According to such a configuration, the flow path can be formed by arranging the flow path forming members, and by applying a voltage between the first electrode and the second electrode, the flow path through the flow path can be increased. Treated water can be purified. Further, since the first electrode and the second electrode are provided as films, the first electrode and the second electrode can be formed with a small amount of electrode material.
  • the first electrode or the second electrode can be provided as a film on the flow path forming member having a high flatness, and the surface of the first electrode or the second electrode can be flattened. Thereby, the flatness and uniformity of the first electrode or the second electrode can be improved.
  • the parallelism between the first electrode and the second electrode can be improved, and current can be prevented from concentrating at a specific location.
  • the flow path has a plurality of branch points and a plurality of junction points. According to such a structure, the probability that the to-be-processed water which flows through the said flow path will contact or approach an electrode can be made high, and the purification capability of a water purification apparatus can be made high.
  • the flow path forming member has a strip shape.
  • the channel can be formed by arranging strip-shaped channel forming members. Further, it can be easily provided so that the distance between the first electrode and the second electrode is constant.
  • one of the first and second electrodes is provided on one surface of one flow path forming member, and the other is provided on the back surface of the one surface. It is preferable.
  • the flow path forming members are stacked at intervals, and by applying a voltage between the first electrode and the second electrode included in the two adjacent flow path forming members, The treated water flowing through the flow path can be purified.
  • the first electrode or the second electrode be provided on both one surface of one flow path forming member and the other surface.
  • the flow path forming members are stacked at intervals, and by applying a voltage between the first electrode and the second electrode included in the two adjacent flow path forming members, The treated water flowing through the flow path can be purified.
  • the flow path forming member has a strip shape, and the plurality of flow path forming members are formed in the strip-shaped flow path forming member arranged in parallel in the vertical direction at intervals. It is preferable that the strip-shaped flow path forming members arranged in parallel in the horizontal direction are alternately stacked.
  • the flow path having a plurality of branch points and a plurality of merge points can be formed, and the probability that the water to be treated flowing through the flow path is in contact with or approaches the first electrode or the second electrode. Can be high.
  • the purification capability of the water purification device can be increased.
  • the first electrode and the second electrode can be installed substantially in parallel, and the current can be prevented from being concentrated at a specific location.
  • the plurality of flow path forming members preferably have a structure in which the flow path forming members are arranged without gaps in a plan view from a direction in which the flow path forming members are stacked. . According to such a structure, the probability that the to-be-processed water which flows through the said flow path will contact or approach a 1st electrode or a 2nd electrode can be made high. Thereby, the purification capability of the water purification device can be increased.
  • the purification tank and the plurality of flow path forming members have a structure in which a part of the purification tank and a purification unit including the flow path forming member are stacked.
  • the purification capability of the water purification device can be changed by adjusting the number of purification units constituting the water purification device.
  • the water to be treated can be purified by applying a voltage between the first electrode and the second electrode.
  • FIGS. 1, 2, 4, and 7 are schematic cross-sectional views showing the configuration of the water purification device or disinfectant manufacturing device of one embodiment of the present invention.
  • 3 is a schematic cross-sectional view of the water purification device or the disinfecting liquid production apparatus taken along the dotted line AA in FIG. 2
  • FIG. 5 is a diagram of the water purification apparatus or the disinfecting liquid production apparatus taken along the dotted line BB in FIG. It is a schematic sectional drawing.
  • the water purification apparatus 23 or the disinfectant manufacturing apparatus of the present embodiment includes a purification tank 1 (water tank) and at least one electrode pair 5 that includes a first electrode 3 and a second electrode 4 to which a DC voltage is applied therebetween.
  • the electrode pair 5 is provided in the septic tank 1 (water tank), and the first and second electrodes 3 and 4 included in the electrode pair 5 are provided so that the interval is 0.5 mm or more and 5 mm or less.
  • the water purifier 23 or the disinfectant manufacturing apparatus of the present embodiment will be described.
  • the septic tank 1 is a water tank for purifying treated water. Moreover, when the water purification apparatus 23 of this embodiment becomes a disinfection liquid manufacturing apparatus, the purification tank 1 becomes a water tank which manufactures disinfection liquid.
  • the septic tank 1 is not particularly limited as long as the water to be treated can be stored or flowed.
  • the septic tank 1 is made of, for example, metal, resin, reinforced plastic, glass, or earthenware.
  • the septic tank 1 includes an electrode pair 5 including a first electrode 3 and a second electrode 4 therein.
  • the septic tank 1 can have an inlet 18 and an outlet 19.
  • untreated water to be treated can be caused to flow into the septic tank 1 from the inlet 18, and the purified water to be treated can be discharged from the discharge port 19.
  • the water to be treated can be flowed into the water tank from the inlet 18, and an oxygen-based disinfectant such as hydrogen peroxide or ozone is supplied from the outlet 19.
  • Disinfecting liquid containing can be discharged.
  • the filter 16 may be composed of a plurality of types having different hole diameters. For example, an MF membrane, UF membrane, RO membrane or the like can be used. Thereby, the purification ability of the water purification apparatus 23 can be improved. Solid matter contained in the water to be treated is blocked between the first electrode 3 and the second electrode 4, and leakage current can be prevented from flowing between the first electrode 3 and the second electrode 4.
  • the mesh size of the filter 16 is preferably 0.1 mm or greater and 0.4 mm or less. Accordingly, by setting the mesh size to 0.4 mm or less, solid matter that is clogged between the first electrode and the second electrode can be removed by the filter 16, and the mesh size is set to 0.1 mm or more. By doing, it can suppress that the filter clogs and the inflow of the to-be-processed water to the septic tank 1 is delayed.
  • the filter 16 may be included in a membrane filtration device that communicates with the inlet 18 of the septic tank 1.
  • a membrane filtration device that communicates with the inlet 18 of the septic tank 1.
  • the water to be treated from which impurities have been removed by the filter 16 can flow into the septic tank 1, and leakage current can be prevented from flowing between the first electrode 3 and the second electrode 4.
  • MF membrane microfiltration membrane
  • UF membrane ultrafiltration membrane
  • RO membrane reverse osmosis membrane
  • purified water to be treated can be supplied to the septic tank 1, and oxygen-based removals such as hydrogen peroxide and ozone can be added to the purified water to be treated by applying a voltage to the first and second electrodes.
  • a fungicide can be produced.
  • an oxygen-based disinfectant disinfectant can be produced.
  • the septic tank 1 water tank
  • the septic tank 1 may be provided so as to store or circulate water having an electric conductivity of 1 mS / m or less. This makes it possible to produce an oxygen-based disinfectant solution containing an oxygen-based disinfectant such as hydrogen peroxide or ozone.
  • the electrical conductivity of water be an electrical conductivity in case water is 25 degreeC.
  • the septic tank 1 can have the 1st electrode 3 or the 2nd electrode 4 on the inner wall like FIG. Thereby, the flow path 9 can be formed by the inner wall of the septic tank 1. Moreover, the septic tank 1 may be formed by stacking the purification units 26 as shown in FIG. In this case, it is possible to prevent the water to be treated from leaking by providing the seal member 28 between the two adjacent purification units 26. Two adjacent purification units 26 can be connected by a connection member 29.
  • the electrode pair 5 is provided in the septic tank 1, and the 1st electrode 3 and 2nd electrode 4 which comprise the electrode pair 5 are intervals (shortest distance between electrodes). ) Is 0.5 mm or more and 5 mm or less. Further, the distance between the first electrode 3 and the second electrode 4 may be not less than 0.5 mm and not more than 1 mm. Thereby, even when the impurities contained in the water to be treated are small or even when the water to be treated is purified water, it is possible to pass a current between the electrodes at a low voltage without adding an electrolyte to the water to be treated.
  • active species can be generated on the surface of the first electrode 3 and the surface of the second electrode 4, and the water to be treated can be purified, or a disinfectant can be produced from the water to be treated.
  • oxidation active species such as O 2 , H 2 O 2 , OH radicals, O 3 , and O are generated in the first electrode 3 and the second electrode 4 that become the anode.
  • organic substances contained in the water to be treated can be oxidized, and the water to be treated can be purified.
  • active species such as hydrogen peroxide and ozone generated at the anode serve as an oxygen-based disinfectant, a disinfectant solution can be produced by generating these active species in the water to be treated.
  • the active species generated at the anode has an advantage that it has less persistence than a chlorine-based disinfectant and does not produce harmful chlorine-based organic substances.
  • reducing active species such as H 2 and H are generated in the first electrode 3 and the second electrode 4 which become the cathode.
  • the water to be treated can also be purified by these active species.
  • these active species there are active species that can exist in the water to be treated away from the surface of the first electrode 3 or the second electrode 4, but mainly on the surface of the first electrode 3 or the second electrode 4. Some active species may be present. Since the active species present on the surface of the first electrode 3 or the second electrode 4 are considered to have high activity, the water to be treated can easily contact or approach the surface of the first electrode 3 or the second electrode 4. By doing so, the water to be treated can be purified efficiently.
  • active species such as hydrogen peroxide and ozone that can exist in the water to be treated away from the surface of the first electrode 3 or the second electrode 4, the sterilization ability is high. Disinfectant can be produced.
  • the material of the first electrode 3 and the second electrode 4 is not particularly limited as long as the material functions as an electrode in water to be treated, for example, platinum, stainless steel, titanium, nickel metal, metallic iron, carbon, SrTiO 3, TiO 2, and the like iron oxide, diamond-like carbon (DLC).
  • the first electrode 3 and the second electrode 4 may be electrodes in which a titanium oxide film is formed on metal titanium.
  • the titanium oxide film is, for example, an anodic oxide film or a thermal oxide film.
  • the oxide film which is a passive film may be formed in the surface.
  • the first electrode 3 and the second electrode 4 are provided so that a DC voltage is applied between them by the power supply circuit 7.
  • the first electrode 3 and the power supply circuit 7 can be connected by the wiring 12, and the second electrode 4 and the power supply circuit 7 can be connected by the wiring 12.
  • the several electrode pair 5 is provided in the septic tank 1, these electrode pairs 5 may be connected in parallel.
  • the power supply circuit 7 is not particularly limited as long as it can apply a DC voltage between the first electrode 3 and the second electrode 4, but may be one that can output a DC voltage and outputs an AC voltage.
  • the wiring may be provided with a rectifier diode.
  • the power supply circuit 7 may be provided so that a DC voltage can be applied to the first electrode 3 and the second electrode 4 so that the first electrode 3 becomes an anode, and the first electrode 3 may be made of platinum. By applying a DC voltage to the first electrode 3 and the second electrode 4 by the power supply circuit 7, the water to be treated can be purified.
  • the power supply circuit 7 may include a solar cell. When the power supply circuit 7 includes a solar cell, the photovoltaic power of the solar cell can be supplied to the first electrode 3 and the second electrode 4. This makes it possible to purify water or produce a disinfectant using solar energy.
  • the power supply circuit 7 can change the voltage application method so that the current flowing between the first electrode 3 and the second electrode 4 is sometimes reversed. As a result, the deposits on the first electrode 3 and the second electrode 4 can be detached, and the first electrode 3 and the second electrode 4 can be made longer. Further, the anode and the cathode can be switched by periodically switching the applied polarity applied between the first electrode 3 and the second electrode 4. Thereby, the lifetime of the electrode pair 5 can be extended. In particular, it is preferable when the first electrode 3 and the second electrode 4 are both electrodes mainly composed of titanium. In addition, the power supply circuit 7 sometimes allows an alternating voltage to flow between the first electrode 3 and the second electrode 4.
  • the power supply circuit 7 may be connected to one end of the first electrode 3 or the second electrode 4 by wiring as shown in FIG. 1, and connected to the two ends by wiring as shown in FIG. May be.
  • the shape of the first electrode 3 or the second electrode 4 is a wire shape or a rod shape, a part of the first electrode 3 or the second electrode 4 is deteriorated by connecting the power supply circuit 7 to both ends by wiring. Even in this case, it is possible to prevent electricity from being supplied from the deteriorated portion to the previous portion.
  • a plurality of electrode pairs 5 composed of the first electrode 3 and the second electrode 4 may be provided in the septic tank 1, and the first electrode 3 and the second electrode 4 may be arranged alternately.
  • the shape of the 1st electrode 3 and the 2nd electrode 4 is not specifically limited, For example, they are wire shape, rod shape, plate shape, and film
  • the first electrode 3 and the second electrode 4 have a wire shape or a rod shape, and are arranged so that the electrode closest to the first electrode 3 becomes the second electrode 4.
  • the cross section may be provided in a matrix.
  • the flow path 9 through which the water to be treated flows can be formed between the first electrode 3 and the second electrode 4, and the water to be treated can easily contact or approach the first electrode 3 or the second electrode 4. be able to.
  • the water to be treated can be purified efficiently, and the purification capability of the water purification device 23 can be increased.
  • the first electrode 3 or the second electrode 4 may have high linearity.
  • the 1st electrode 3 and the 2nd electrode 4 can be arrange
  • the first electrode 3 and the second electrode 4 have a strip shape (plate shape), and the first electrodes 3 are arranged at intervals in the vertical direction.
  • the second electrodes 4 may be arranged at intervals, and the plurality of arranged first electrodes 3 and the plurality of second electrodes 4 arranged may be alternately stacked.
  • This makes it easy to make the distance between the first electrode 3 and the second electrode 4 constant, and it is possible to suppress a local current from flowing between the first electrode 3 and the second electrode 4.
  • a flow path 9 through which the water to be treated flows can be formed between the first electrode 3 and the second electrode 4, and the water to be treated flowing through the flow path 9 is in contact with the first or second electrode 3, 4. It becomes easy to approach and the purification efficiency can be increased.
  • the first electrode 3 and the second electrode 4 are the first electrode 3 and the second electrode 4 in a plan view from the direction in which the first and second electrodes 3 and 4 are stacked.
  • the flow path through which the water to be treated flows can be a flow path having a plurality of branch points and junctions, and the probability that the water to be treated contacts or approaches the first electrode 3 or the second electrode 4 is increased. can do.
  • FIG. 6 is an explanatory diagram for explaining the flow path 9 included in the water purifier 23 as shown in FIGS.
  • the water to be treated that has flowed into the septic tank 1 from the inlet 18 flows between the second electrodes 4 and collides with the first electrode 3 to branch the flow.
  • the branched flow flows between the first electrode 3 and the second electrode 4, merges with other flows, flows between the first electrodes 3, and collides with the second electrode 4.
  • the water to be treated is discharged from the discharge port 19. Since the water purification device 23 has such a curved flow path 9, it is possible to increase the probability that the water to be treated contacts or approaches the first electrode 3 or the second electrode 4.
  • Ability can be increased.
  • the first electrode 3 or the second electrode 4 may be formed as a film on the flow path forming member 10.
  • Such first electrode 3 or second electrode 4 can be formed as a film on the flow path forming member 10 by, for example, plating, sputtering, or CVD.
  • the material cost of the first electrode 3 or the second electrode 4 can be reduced.
  • the flow path forming member 10 is not particularly limited as long as the first electrode 3 or the second electrode 4 can be formed thereon.
  • the flow path forming member 10 is made of metal, resin, reinforced plastic, glass, or earthenware.
  • the flow path forming member 10 may have a surface with high flatness.
  • the first electrode 3 or the second electrode 4 By providing the first electrode 3 or the second electrode 4 as a film on the surface, the first electrode 3 or the second electrode 4 can have a surface with high flatness. Thereby, the flatness and uniformity of the first electrode 3 or the second electrode 4 can be improved. Moreover, the parallelism of the 1st electrode 3 and the 2nd electrode 4 can also be improved, and it can suppress that an electric current concentrates on a specific location.
  • the shape of the flow path forming member 10 is, for example, a plate shape or a strip shape. In this case, for example, like the first electrode 3 and the second electrode 4 included in the water purification device 23 shown in FIG. 7, one of the first electrode 3 and the second electrode 4 is a flow path forming member. 10 may be provided on both main surfaces.
  • one of the first electrode 3 and the second electrode 4 is one of the flow path forming members 10 like the first electrode 3 and the second electrode 4 included in the water purification device 23 shown in FIG. It may be provided on the main surface and the other may be provided on another main surface of the flow path forming member 10.
  • the flow path forming member 10 has, for example, a plate shape as shown in FIG. 1 and may be arranged so as to be stacked at intervals. Moreover, the flow path forming member 10 may have an opening at the end. Accordingly, the gaps of the stacked flow path forming members 10 can be used as the flow paths 9, and the probability that the water to be treated flowing through the flow paths 9 contacts or approaches the first electrode 3 and the second electrode 4. Can be high. As a result, the purification capacity of the water purification device 23 can be increased.
  • the flow path forming member 10 has a strip shape (plate shape), the flow path forming members 10 are arranged in the vertical direction at intervals, and the flow path forming members 10 are spaced in the horizontal direction.
  • the plurality of flow path forming members 10 arranged in the vertical direction and the plurality of flow path forming members 10 arranged in the horizontal direction may be alternately stacked. This makes it easy to make the distance between the first electrode 3 and the second electrode 4 constant, and it is possible to suppress a local current from flowing between the first electrode 3 and the second electrode 4.
  • the clearance gap between the flow path formation members 10 can be used as the flow path 9 through which the water to be treated flows. Efficiency can be increased.
  • the flow path forming member 10 has a structure in which the flow path forming member 10 is arranged without a gap in a plan view from the direction in which the first and second electrodes 3 and 4 are stacked. You may have.
  • the flow path through which the water to be treated flows can be a flow path having a plurality of branch points and junctions, and the probability that the water to be treated contacts or approaches the first electrode 3 or the second electrode 4 is increased. can do.
  • the water to be treated that has flowed into the purification tank 1 from the inlet 18 flows between the flow path forming members 10 and collides with the first electrode 3 to branch the flow.
  • This branched flow flows between the first electrode 3 and the second electrode 4, merges with other flows, flows between the flow path forming members 10, and collides with the second electrode 4.
  • the water to be treated is discharged from the discharge port 19. Since the water purification device 23 has such a curved flow path 9, it is possible to increase the probability that the water to be treated contacts or approaches the first electrode 3 or the second electrode 4.
  • Ability can be increased.
  • the plurality of flow path forming members 10 may be included in the purification unit 26 as shown in FIG.
  • the purification unit 26 can include, for example, a frame portion to be the purification tank 1 and the flow path forming member 10 arranged in parallel in the frame.
  • the water purification device 23 can be formed by stacking the purification units 26 so that the flow path forming members 10 arranged in the vertical direction and the flow path forming members 10 arranged in the horizontal direction are alternately stacked. it can. With such a configuration, the purification ability of the water purification device 23 can be changed by changing the number of purification units 26 to be stacked. That is, the purification capability of the water purification device 23 can be changed according to the required purification capability.
  • Methylene blue aqueous electrolysis experiment 1 In order to investigate the material suitability of the first electrode 3 and the second electrode 4, a methylene blue decomposition experiment was performed. In this experiment, first, a methylene blue stock solution manufactured by Muto Chemical Co., Ltd. was added to tap water to prepare an aqueous solution of about 10 mg / l methylene blue. It was investigated whether the methylene blue aqueous solution became transparent by immersing the anode and cathode shown in Table 1 in this methylene blue aqueous solution and applying a DC voltage between the anode and the cathode.
  • Methylene blue aqueous electrolysis experiment 2 Next, an electrolysis experiment of a methylene blue aqueous solution was performed using Pt wires for the anode and the cathode.
  • a methylene blue stock solution made by Muto Chemical Co., Ltd. was added to pure water to prepare an aqueous methylene blue solution of about 10 mg / l.
  • the anode and cathode made of Pt wire were immersed in a methylene blue aqueous solution prepared using this pure water, the distance between the electrodes was set to 1 mm, 5 mm or 10 mm, and the current-voltage characteristics were examined. The measurement results are shown in FIG. From FIG.
  • FIG. 9 shows a graph of the transmittance of light at a wavelength of 664 nm of an aqueous methylene blue solution after applying a voltage of 100 V between the anode and the cathode and conducting an electrolysis experiment for 30 minutes, 60 minutes, and 120 minutes, respectively. From the graph shown in FIG. 9, when the distance between the electrodes is 10 mm, the electrolysis reaction of methylene blue tends to hardly reach a peak after 60 minutes, but when the distance between the electrodes is 5 mm or less, the electrolysis of methylene blue It can be seen that the reaction proceeds even after 60 minutes. It can also be seen that when the distance between the electrodes is reduced, the electrolysis reaction of methylene blue is more likely to occur.
  • FIG. 10 is a graph showing the transmittance of light at a wavelength of 664 nm of an aqueous methylene blue solution after performing an electrolysis experiment for 30 minutes, 60 minutes, and 120 minutes by applying a voltage of 25 V between the anode and the cathode. From the graph shown in FIG. 10, when the distance between the electrodes is 10 mm, the electrolysis reaction of methylene blue hardly progresses and tends to reach a peak, but when the distance between the electrodes is 5 mm or less, the electrolysis of methylene blue It can be seen that the reaction is progressing. This indicates that even if the applied voltage is a low voltage of 25 V or less, the water can be purified if the distance between the electrodes is 5 mm or less. In particular, when the distance between the electrodes is 1 mm, it can be seen that the effect of decomposition and purification at a lower voltage is more remarkable.
  • Active species measurement experiment 1 an active species measurement experiment was performed to confirm the generation of active species (ozone or hydrogen peroxide). Confirmation of the generation of active species was measured with a coloring reagent (using a pack test manufactured by Kyoritsu Riken Corporation). First, an electrode pair made of stainless steel was immersed in water containing NaCl and HCl as solutes, and a voltage was applied to the electrode pair. In this case, electrode elution occurred and the electrode surface was corroded. Next, an electrode pair made of titanium metal was immersed in water containing NaCl as a solute, and a voltage was applied to the electrode pair. Thereafter, active species contained in the water in which the electrode pair was immersed were measured with a coloring reagent.
  • an electrode pair made of titanium metal was immersed in water containing NaCl and HCl as solutes, and a voltage was applied to the electrode pair. Thereafter, active species contained in the water in which the electrode pair was immersed were measured with a coloring reagent. In this measurement, production of active species was confirmed. Therefore, it was found that the presence of acid (HCl) can promote the generation of active species.
  • an electrode pair made of titanium metal was immersed in pure water with a narrow distance between the electrodes, and a voltage was applied to the electrode pair. Thereafter, active species contained in the water in which the electrode pair was immersed were measured with a coloring reagent. In this measurement, production of active species was confirmed. Therefore, it was found that active species can be generated from pure water when a voltage is applied to the electrode pair.
  • Active species measurement experiment 2 Next, an active species measurement experiment was conducted to examine material suitability of the anode and the cathode.
  • the anode and cathode (electrode pair) shown in Table 2 were immersed in pure water, and a DC voltage was applied between the anode and the cathode for 10 minutes. Thereafter, active species (ozone or hydrogen peroxide) contained in the water in which the electrode pair was immersed were measured with a coloring reagent.
  • active species ozone or hydrogen peroxide
  • SUS is a stainless steel electrode
  • titanium oxide (anodized) is an electrode in which an oxide film is formed on the surface of metallic titanium by anodic oxidation
  • titanium oxide (thermal oxidation) is metallic titanium.
  • This is an electrode having an oxide film formed on the surface thereof by thermal oxidation.
  • An electrode (titanium oxide (anodic oxidation)) in which an oxide film is formed on the surface of metallic titanium by anodic oxidation is obtained by immersing an electrode pair made of metallic titanium for both the anode and the cathode in pure water. Manufactured by applying a voltage of 100 V until slightly white.
  • An electrode titanium oxide (thermal oxidation)
  • an oxide film formed on the surface of metal titanium by thermal oxidation should be heated naturally to about 600 ° C to 700 ° C in the atmosphere, held for 30 minutes, and then naturally cooled. Formed by.
  • Table 2 shows the presence / absence of active species and the amount of active species produced as measured by the coloring reagent.
  • the electrode pair indicated by x is an electrode pair for which the generation of active species could not be confirmed.
  • the electrode pairs showing ⁇ , ⁇ , and ⁇ are electrode pairs in which the generation of active species was confirmed. Further, the electrode pair indicated by ⁇ has a small amount of active species generated, and the electrode pair indicated by ⁇ has a large amount of active species generated.
  • the electrode pair indicated by “ ⁇ ” is an electrode pair that generates less active species than the electrode pair indicated by “ ⁇ ” and generates more active species than the electrode pair indicated by “ ⁇ ”.
  • the amount of active species generated per power consumption is indicated by ⁇ , ⁇ , ⁇ .
  • the power consumption is the amount of power consumed by applying a DC voltage between the anode and the cathode for 10 minutes.
  • the anode is preferably made of at least a surface made of titanium, carbon, iron, or a material containing these elements.
  • the anode is preferably made of a titanium-based material. Active species are also generated by an anode made of diamond-like carbon or iron oxide, but an anode made of a titanium-based material is preferable because it can reduce the cost.
  • the cathode is preferably made of a material whose main component is at least the surface of titanium, iron, nickel, carbon, or an oxide thereof.
  • the cost can be reduced, which is preferable, but the power consumption tends to increase.
  • metal titanium for the cathode because the cost can be reduced and the active species generation efficiency per power consumption can be increased.
  • both the anode and the cathode are electrodes mainly composed of titanium (for example, metal titanium and titanium oxide (anodic oxidation or thermal oxidation)) because the active species generation efficiency is high.
  • titanium for example, metal titanium and titanium oxide (anodic oxidation or thermal oxidation)
  • sintered bodies are used for iron oxide and nickel oxide to maintain their shapes.
  • the amount of current flowing between the anode and the cathode is unstable. In many cases, the amount of current gradually increases as voltage is continuously applied. Tended to decrease. In some cases, the amount of current was about half that immediately after voltage application. This is thought to be because anodization proceeds on the anode surface. Further, when titanium oxide (anodic oxidation) was used for the anode and a voltage was applied between the anode and the cathode, the amount of current flowing between the anode and the cathode was unstable. This is presumably because a reaction in which the anodic oxide film grows by applying a voltage proceeds.
  • Active species measurement experiment 3 Next, the active species measurement experiment was performed by changing the distance between the anode and the cathode (the shortest distance between the electrodes). The experimental method is the same as in the active species measurement experiment 2, and the materials of the anode and the cathode are shown in Table 3 together with the measurement results.
  • the amount of active species generated and the amount of active species generated per power consumption are often increased by setting the shortest distance between the electrodes to 1 mm. all right. Further, it was found that when the shortest distance between the electrodes is increased, the amount of active species generated decreases, but the amount of active species generated per power consumption is large when the shortest distance between the electrodes is 11 mm and 17 mm.
  • the amount of active species generated and the amount of active species generated per unit of power consumption are large by setting the shortest distance between the electrodes to 1 mm.
  • the amount of active species generated per power consumption was about 1.5 times that in the case where titanium oxide (anodic oxidation) was used for the anode and the shortest distance between the electrodes was 1 mm. Further, it was found that when the shortest distance between the electrodes is widened, the amount of active species generated decreases, but the amount of active species generated per power consumption is large when the shortest distance between electrodes is 6 mm and 10 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

 本発明の水浄化装置は、浄化槽と、第1電極および第2電極からなりその間に直流電圧が印加される少なくとも1つの電極対とを備え、前記電極対は、前記浄化槽内に設けられ、前記電極対に含まれる第1および第2電極は、間隔が0.5mm以上5mm以下となるように設けられたことを特徴とする。

Description

水浄化装置および消毒液製造装置
 本発明は、水浄化装置および消毒液製造装置に関する。
 浄化されていない水には有機物や細菌などが含まれており、浄化水を得るためには、これらの有機物や細菌などを除去する必要がある。水中の有機物や細菌を除去する水の浄化は、一般的に水中に薬剤等の物質を拡散させることにより行われている。しかし、薬剤を水中に拡散させて水を浄化した場合、薬剤の一部が浄化した水中に残留してしまうという問題がある。また、薬剤を浄化する水中に投入し、浄化後、投入した薬剤を浄化水から除去するという処理が必要となるため、浄化装置が大型化し、浄化コストが上昇するという問題がある。
 また、水を浄化する方法として、陽極と陰極との間に電圧を印加して水の浄化する方法が知られている(例えば、特許文献1~3参照)。
特開2001-300537号公報 特開2004-195346号公報 特許第3608732号
 しかし、従来の電極間に電圧を印加して水の浄化を行う方法においては、被処理水に電流を流すために、被処理水が不純物を多く含む必要があるか、被処理水に電解質を加える必要があるかまたは電極間に高電圧を印加する必要がある。このため、不純物が少ない水は十分に浄化できない、または装置が大型化してしまうという問題がある。
 本発明は、このような事情に鑑みてなされたものであり、不純物が少なく電解質を加えていない被処理水を、低い印加電圧で浄化することができる水浄化装置を提供する。
 本発明は、浄化槽と、第1電極および第2電極からなりその間に直流電圧が印加される少なくとも1つの電極対とを備え、前記電極対は、前記浄化槽内に設けられ、前記電極対に含まれる第1および第2電極は、間隔が0.5mm以上5mm以下となるように設けられたことを特徴とする水浄化装置を提供する。
 また、本発明の水浄化装置は、消毒液製造装置とすることもできる。
 本発明によれば、浄化槽内に設けられた電極対の電極間距離を5mm以下とすることにより、浄化槽内の被処理水に含まれる不純物が少ない場合でも被処理水に電解質を加えずに低電圧で電極間に電流を流すことができる。このため、第1電極の表面および第2電極の表面において活性種を発生させることができ、被処理水を浄化することができる。
 本発明によれば、第1および第2電極の間隔を0.5mm以上とすることにより、第1電極と第2電極との間に固形物が詰まりリーク電流が流れることを抑制することができる。
 また、本発明の発明者が行った実験により第1および第2電極の間隔を5mm以下とすることにより、不純物が少なく電解質を加えていない被処理水に浸漬した第1電極と第2電極との間に電流を流すことができ、被処理水を浄化することができることが確認された。
 また、本発明によれば、電解質を添加することなく水を浄化することができるため、電解質が電極表面に析出することを抑制することができる。
 さらに、本発明によれば、第1電極の表面または第2電極の表面において過酸化水素やオゾンなどの活性種を発生させることができるため、過酸化水素やオゾンなどの酸素系除菌消毒剤を含む消毒液を製造することができる。なお、過酸化水素またはオゾンを発生させることができることは、発明者が行った実験により確かめられた。なお、酸素系除菌消毒剤は、塩素系消毒剤に比べ残留性が少なく、有害な塩素系有機物の生成がない。
本発明の一実施形態の水浄化装置の構成を示す概略断面図である。 本発明の一実施形態の水浄化装置の構成を示す概略断面図である。 図2の点線A-Aにおける水浄化装置の概略断面図である。 本発明の一実施形態の水浄化装置の構成を示す概略断面図である。 図4の点線B-Bにおける水浄化装置の概略断面図である。 本発明の一実施形態の水浄化装置に含まれる処理水流路の説明図である。 本発明の一実施形態の水浄化装置の構成を示す概略断面図である。 メチレンブルー水溶液電気分解実験2において測定した電流電圧曲線のグラフである。 メチレンブルー水溶液電気分解実験2におけるメチレンブルー溶液の透過率測定の結果を示すグラフである。 メチレンブルー水溶液電気分解実験2におけるメチレンブルー溶液の透過率測定の結果を示すグラフである。
 本発明の水浄化装置は、浄化槽と、第1電極および第2電極からなりその間に直流電圧が印加される少なくとも1つの電極対とを備え、前記電極対は、前記浄化槽内に設けられ、前記電極対に含まれる第1および第2電極は、間隔が0.5mm以上5mm以下となるように設けられたことを特徴とする。
 なお、本発明の水浄化装置は、消毒液製造装置とすることもできる。
 本発明の水浄化装置において、前記浄化槽は、その内部に浄化対象の水の流路を備え、前記電極対に含まれる第1および第2電極は、その間が前記流路となるように設けられことが好ましい。
 このような構成によれば、第1および第2電極間に電圧を印加することにより、流路を流れる被処理水を浄化することができる。
 本発明の水浄化装置において、第1および第2電極は、それぞれワイヤ形状またはロッド形状であることが好ましい。
 このような構成によれば、実質的に平行に配置した第1電極と第2電極との間を前記流路とすることができる。また、このような第1電極および第2電極からなる電極対を多数並べることにより、水浄化装置の浄化能力を高くすることができる。また、第1電極および第2電極の表面積を大きくすることができ、水浄化装置の浄化能力を高くすることができる。また、第1電極と第2電極を実質的に平行に配置することにより、電極間隔が狭くなる部分が生じるのを抑制することができ、電流が局所的に流れるのを抑制することができる。また、第1電極および第2電極に高い直線性を有するものを用いることにより、第1電極と第2電極の間隔を実質的に一定にすることができ、特定箇所に電流が集中するのを抑制することができる。
 本発明の水浄化装置において、前記流路は、曲折した流路であり、前記電極対は、複数であり、1つの電極対に含まれる第1および第2電極は、前記流路を挟んで対向して設けられたことが好ましい。
 このような構成によれば、第1電極と第2電極との間に電圧を印加することにより、流路を流れる被処理水を浄化することができ、流路が曲折した流路とすることにより、被処理水が第1電極または第2電極に接触または近づく確率を高くすることができ、被処理水を効率よく浄化することができる。
 本発明の水浄化装置において、第1および第2電極は、それぞれ板状であることが好ましい。
 このような構成によれば、板状の第1電極および第2電極を並べることにより、前記流路を形成することができる。
 本発明の水浄化装置において、前記浄化槽は、前記流路を形成する複数の流路形成部材を備え、第1電極または第2電極は、1つの流路形成部材の表面に膜として設けられたことが好ましい。
 このような構成によれば、流路形成部材を並べることにより前記流路を形成することができ、第1電極と第2電極との間に電圧を印加することにより、前記流路を流れる被処理水を浄化することができる。また、第1電極と第2電極とを膜として設けるため、少ない電極材料で第1電極および第2電極を形成することができる。また、第1電極または第2電極を平坦度の高い流路形成部材の上に膜として設けることができ、第1電極または第2電極の表面を平坦にすることができる。このことにより、第1電極または第2電極の平坦性、均一性を向上させることができる。また、第1電極と第2電極の平行性も向上させることができ、特定箇所に電流が集中するのを抑制することができる。
 本発明の水浄化装置において、前記流路は、複数の分岐点および複数の合流点を有することが好ましい。
 このような構成によれば、前記流路を流れる被処理水が電極に接触または近づく確率を高くすることができ、水浄化装置の浄化能力を高くすることができる。
 本発明の水浄化装置において、前記流路形成部材は、短冊形状であることが好ましい。
 このような構成によれば、短冊形状の流路形成部材を並べることにより、前記流路を形成することができる。また、容易に、第1電極と第2電極の間隔が一定になるように設けることができる。
 本発明の水浄化装置において、第1および第2電極のうち一方は、1つの流路形成部材の1つの面上に設けられ、他方は、前記1つの面の裏の面上に設けられたことが好ましい。
 このような構成によれば、流路形成部材を間隔をおいて積重させ、隣接する2つの流路形成部材に含まれる第1電極と第2電極との間に電圧を印加することにより、前記流路を流れる被処理水を浄化することができる。
 本発明の水浄化装置において、第1電極または第2電極は、1つの流路形成部材の1つの面上とその裏の面上の両方に設けられたことが好ましい。
 このような構成によれば、流路形成部材を間隔をおいて積重させ、隣接する2つの流路形成部材に含まれる第1電極と第2電極との間に電圧を印加することにより、前記流路を流れる被処理水を浄化することができる。
 本発明の水浄化装置において、前記流路形成部材は、短冊形状であり、前記複数の流路形成部材は、縦方向に並列に間隔をおいて並べられた短冊形状の前記流路形成部材と、横方向に並列に間隔をおいて並べられた短冊形状の前記流路形成部材とが交互に積重された構造を有することが好ましい。
 このような構成によれば、複数の分岐点および複数の合流点を有する前記流路を形成することができ、前記流路を流れる被処理水が第1電極又は第2電極に接触又は近づく確率を高くすることができる。このことにより、水浄化装置の浄化能力を高くすることができる。また、第1電極と第2電極を実質的に平行に設置することができ、特定箇所に電流が集中することを抑制することができる。
 本発明の水浄化装置において、前記複数の流路形成部材は、前記流路形成部材を積重した方向からの平面視において、前記流路形成部材が隙間なく配置された構造を有することが好ましい。
 このような構成によれば、前記流路を流れる被処理水が第1電極又は第2電極に接触又は近づく確率を高くすることができる。このことにより、水浄化装置の浄化能力を高くすることができる。
 本発明の水浄化装置において、前記浄化槽および前記複数の流路形成部材は、前記浄化槽の一部および前記流路形成部材を含む浄化ユニットが積重する構造を有することが好ましい。
 このような構成によれば、水浄化装置を構成する浄化ユニットの数を調整することにより、水浄化装置の浄化能力を変更することができる。
 本発明の水浄化装置において、第1電極が陽極となるように第1および第2電極に直流電圧を印加できる電源回路をさらに備えることが好ましく、第1電極は、白金からなることが好ましい。
 このような構成によれば、第1電極と第2電極との間に電圧を印加することにより、被処理水を浄化することができる。
 以下、本発明の一実施形態を図面を用いて説明する。図面や以下の記述中で示す構成は、例示であって、本発明の範囲は、図面や以下の記述中で示すものに限定されない。
水浄化装置又は消毒液製造装置の構成
 図1、2、4、7は本発明の一実施形態の水浄化装置又は消毒液製造装置の構成を示す概略断面図である。また、図3は、図2の点線A-Aにおける水浄化装置又は消毒液製造装置の概略断面図であり、図5は、図4の点線B-Bにおける水浄化装置又は消毒液製造装置の概略断面図である。
 本実施形態の水浄化装置23又は消毒液製造装置は、浄化槽1(水槽)と、第1電極3および第2電極4からなりその間に直流電圧が印加される少なくとも1つの電極対5とを備え、電極対5は、浄化槽1(水槽)内に設けられ、電極対5に含まれる第1および第2電極3、4は、間隔が0.5mm以上5mm以下となるように設けられたことを特徴とする。
 以下、本実施形態の水浄化装置23又は消毒液製造装置について説明する。
1.浄化槽(水槽)
 浄化槽1は、被処理水を浄化するための水槽である。また、本実施形態の水浄化装置23が消毒液製造装置となる場合、浄化槽1は消毒液を製造する水槽となる。浄化槽1は、被処理水を溜めるまたは流すことができれば特に限定されない。浄化槽1は、例えば、金属製、樹脂製、強化プラスチック製、ガラス製、陶器製である。
 浄化槽1は、その内部に第1電極3および第2電極4からなる電極対5を備える。
 浄化槽1は、流入口18および排出口19を有することができる。このことにより、未浄化の被処理水を流入口18から浄化槽1内に流入させることができ、浄化した被処理水を排出口19から排出することができる。なお、浄化槽1(水槽)において消毒液を製造する場合、被処理水を流入口18から水槽内に流入させることができ、排出口19から過酸化水素またはオゾンなどの酸素系除菌消毒剤を含む消毒液を排出することができる。
 また、図1のように流入口18から浄化槽1内に被処理水を流入させる前に不純物を取り除けるように、フィルター16を設けてもよい。フィルター16は孔径の異なる複数の種類から成っていてもよい。例えば、MF膜やUF膜、RO膜等を使用することができる。このことにより、水浄化装置23の浄化能を向上させることができる。被処理水に含まれる固形物が第1電極3と第2電極4との間に詰まり、第1電極3と第2電極4との間にリーク電流が流れることを防止することができる。
 フィルター16のメッシュサイズは、0.1mm以上0.4mm以下であることが好ましい。このことにより、メッシュサイズを0.4mm以下とすることにより、第1電極と第2電極との間に詰まるような固形物をフィルター16により除去することができ、メッシュサイズを0.1mm以上とすることにより、フィルターが詰まり浄化槽1への被処理水の流入が滞ることを抑制することができる。
 なお、フィルター16は、浄化槽1の流入口18に連通する膜ろ過装置に含まれてもよい。このことにより、フィルター16により不純物が取り除かれた被処理水を浄化槽1に流入させることができ、第1電極3と第2電極4との間にリーク電流が流れることを防止することができる。
 また、浄化槽1(水槽)において消毒液を製造する場合、フィルター16に精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、逆浸透膜(RO膜)を用いることにより、被処理水に含まれる微粒子や菌体などを除去することができる。このことにより、浄化された被処理水を浄化槽1に供給することができ、第1および第2電極に電圧を印加することにより浄化された被処理水中に過酸化水素やオゾンなどの酸素系除菌消毒剤を生成することができる。このことにより、酸素系除菌消毒液を製造することができる。
 浄化槽1(水槽)は、その内部に電気伝導率が1mS/m以下の水を貯溜する又は流通させるように設けられてもよい。このことにより、過酸化水素やオゾンなどの酸素系除菌消毒剤を含む酸素系除菌消毒液を製造することができる。
 なお、水の電気伝導率は、水が25℃である場合の電気伝導率とする。
 浄化槽1は、図1のようにその内壁上に第1電極3または第2電極4を有することができる。このことにより、浄化槽1の内壁により流路9を形成することができる。
 また、浄化槽1は、図7のように、浄化ユニット26が積重することにより形成されてもよい。この場合、隣接する2つの浄化ユニット26間にシール部材28を設けることにより、被処理水が漏れるのを防止することができる。隣接する2つの浄化ユニット26は、接続部材29により、接続することができる。
2.第1電極、第2電極、流路形成部材、電源回路
 電極対5は、浄化槽1内に設けられ、電極対5を構成する第1電極3および第2電極4は、間隔(電極間最短距離)が0.5mm以上5mm以下となるように設けられる。また、第1電極3と第2電極4との間隔は、0.5mm以上1mm以下であってもよい。このことにより、被処理水に含まれる不純物が少ない場合や被処理水が浄化された水である場合でも被処理水に電解質を加えずに低電圧で電極間に電流を流すことができる。このため、第1電極3の表面および第2電極4の表面において活性種を発生させることができ、被処理水を浄化することができる又は被処理水から消毒液を製造することができる。第1電極3および第2電極4のうち、陽極となる方において、O2、H22、OHラジカル、O3、Oなどの酸化活性種が発生すると考えられる。これらの活性種により、被処理水に含まれる有機物を酸化することができ、被処理水を浄化することができる。また、陽極において発生する過酸化水素、オゾンなどの活性種は酸素系除菌消毒剤となるため、これらの活性種を被処理水中に発生させることにより消毒液を製造することができる。また、陽極において発生する活性種は、塩素系除菌消毒剤に比べ残留性が少なく、有害な塩素系有機物を生成しないという利点を有する。
 また、第1電極3および第2電極4のうち、陰極となる方において、H2やHなどの還元活性種が発生すると考えられる。これらの活性種によっても被処理水を浄化することができると考えられる。
 これらの活性種には、第1電極3または第2電極4の表面を離れて被処理水中に存在することができる活性種もあるが、主に第1電極3または第2電極4の表面に存在する活性種もあると考えられる。第1電極3または第2電極4の表面に存在する活性種は高い活性を有すると考えられるため、被処理水が第1電極3又は第2電極4の表面に接触しやすくすることまたは近づきやすくすることにより、被処理水を効率よく浄化することができる。
 また、過酸化水素やオゾンなどの第1電極3または第2電極4の表面を離れて被処理水中に存在することができる活性種を被処理水中に多く生成することにより、除菌能力の高い消毒液を製造することができる。
 第1電極3および第2電極4の材料は、被処理水中で電極として機能する材料であれば特に限定されないが、例えば、白金、ステンレス、金属チタン、金属ニッケル、金属鉄、カーボン、SrTiO3、TiO2、酸化鉄、ダイヤモンドライクカーボン(DLC)などである。また、第1電極3、第2電極4は、金属チタンに酸化チタン被膜が形成された電極であってもよい。酸化チタン被膜は、例えば、陽極酸化膜、熱酸化膜である。電極表面に酸化被膜を形成することにより、電極表面を安定化することができ、安定して活性種を生成することができる。
 なお、電極の材料に金属を用いる場合、その表面に不動態皮膜である酸化物膜が形成されていてもよい。
 第1電極3と第2電極4は、これらの間に電源回路7により直流電圧が印加されるように設けられる。例えば、第1電極3と電源回路7とを配線12で接続し、第2電極4と電源回路7とを配線12で接続することができる。また、浄化槽1内に複数の電極対5が設けられる場合、これらの電極対5は、並列接続されてもよい。電源回路7は、第1電極3と第2電極4との間に直流電圧を印加できるものであれば特に限定されないが、直流電圧を出力できるものであってもよく、交流電圧を出力するもので配線中に整流ダイオードを備えるものであってもよい。
 電源回路7は、第1電極3が陽極となるように第1電極3および第2電極4に直流電圧を印加できるように設けられてもよく、第1電極3は白金からなってもよい。電源回路7により第1電極3と第2電極4とに直流電圧を印加することにより、被処理水を浄化することができる。
 電源回路7は、太陽電池を備えてもよい。電源回路7が太陽電池を備えることにより、太陽電池の光起電力を第1電極3および第2電極4に供給することができる。このことにより、太陽光エネルギーを利用して、水を浄化すること又は消毒液を製造することが可能になる。
 また、電源回路7は、時々第1電極3と第2電極4との間に流れる電流が逆方向になるように電圧印加方法を変えることができる。このことにより、第1電極3および第2電極4の付着物を脱離させることができ、第1電極3および第2電極4を長持ちさせることができる。
 また、第1電極3と第2電極4との間に印加する印加極性を定期的に切り替えることにより、陽極と陰極を切り替えることができる。このことにより、電極対5の寿命を延ばすことができる。特に、第1電極3と第2電極4とが共にチタンを主成分とする電極である場合に好ましい。
 また、電源回路7は、時々第1電極3と第2電極4との間に交流電圧を流すことができる。このことにより、第1電極3および第2電極4の付着物を脱離させることができ、第1電極3および第2電極4を長持ちさせることができる。
 また、電源回路7は、図1のように第1電極3または第2電極4の一方の端部と配線により接続してもよく、図3のように2つの端部とそれぞれ配線により接続してもよい。特に、第1電極3または第2電極4の形状がワイヤ形状またはロッド形状の場合、その両端に電源回路7が配線により接続することにより、第1電極3または第2電極4の一部が劣化した場合でも、その劣化した部分から先の部分に電気が供給されなくなることを防止することができる。
 第1電極3および第2電極4からなる電極対5は浄化槽1内に複数設けられてもよく、第1電極3と第2電極4は、交互に並ぶように配置されてもよい。
 第1電極3および第2電極4の形状は、特に限定されないが、例えば、ワイヤ形状、ロッド形状、板状、膜状である。
 第1電極3および第2電極4は、例えば、図2、3に示したように、ワイヤ形状またはロッド形状を有し、第1電極3に最近接する電極が第2電極4となるように配置され、断面がマトリックス状となるように設けられてもよい。このことにより、第1電極3と第2電極4との間を被処理水が流れる流路9とすることができ、被処理水が第1電極3または第2電極4に接触または近づきやすくすることができる。このことにより、被処理水を効率よく浄化することができ、水浄化装置23の浄化能力を高くすることができる。
 また、第1電極3または第2電極4は、高い直線性を有してもよい。このことにより、第1電極3と第2電極4を実質的に平行に配置することができ、電極間距離が狭くなる部分が生じることを抑制することができる。このことにより、電流が局所的に流れるのを抑制することができる。
 第1電極3および第2電極4は、例えば、図4、5に示したように、短冊形状(板状)であり、縦方向に第1電極3が間隔をおいて並べられ、横方向に第2電極4が間隔をおいて並べられ、並べられた複数の第1電極3と並べられた複数の第2電極4とが交互に積重されてもよい。このことにより、第1電極3と第2電極4との間隔を一定にしやすくなり、第1電極3と第2電極4との間に局所的な電流が流れることを抑制することができる。
 また、第1電極3と第2電極4との間を被処理水が流れる流路9とすることができ、流路9を流れる被処理水が第1または第2電極3、4に接触または近づきやすくなり、浄化効率を高くすることができる。
 また、第1電極3および第2電極4は、図4、5に示したように、第1および第2電極3、4を積重した方向からの平面視において、第1電極3および第2電極4が隙間なく配置された構造を有してもよい。このことにより、被処理水が流れる流路を、複数の分岐点と合流点を有する流路とすることができ、被処理水が第1電極3または第2電極4に接触または近づく確率を高くすることができる。
 図6は、図4、5に示したような水浄化装置23が有する流路9を説明するための説明図である。流入口18から浄化槽1内に流入した被処理水は、第2電極4の間を流れ、第1電極3にぶつかり流れが分岐する。この分岐した流れは第1電極3と第2電極4との間を流れ、他の流れと合流し第1電極3の間を流れ第2電極4にぶつかる。このような流れを繰り返し、排出口19から被処理水が排出される。水浄化装置23がこのような曲折した流路9を有することにより、被処理水が第1電極3または第2電極4に接触または近づく確率を高くすることができ、水浄化装置23の水浄化能力を高くすることができる。
 第1電極3または第2電極4は、例えば、図1、7に示したように、流路形成部材10の上に膜として形成されてもよい。このような第1電極3または第2電極4は、たとえばめっき、スパッタリングまたはCVD法により流路形成部材10の上に膜として形成することができる。このように、第1電極3または第2電極4を膜とすることにより、第1電極3または第2電極4の材料コストを低減することができる。
 流路形成部材10は、その上に第1電極3または第2電極4を形成することができれば特に限定されないが、例えば、金属製、樹脂製、強化プラスチック製、ガラス製、陶器製である。また、流路形成部材10は、高い平坦度の表面を有してもよい。この表面上に第1電極3または第2電極4を膜として設けることにより、第1電極3または第2電極4が平坦度の高い表面を有することができる。このことにより、第1電極3または第2電極4の平坦性、均一性を向上させることができる。また、第1電極3と第2電極4の平行性も向上させることができ、特定箇所に電流が集中するのを抑制することができる。
 流路形成部材10の形状は、例えば、板状または短冊形状である。この場合、例えば、図7に示した水浄化装置23に含まれる第1電極3および第2電極4のように、第1電極3および第2電極4のうちどちらか一方が、流路形成部材10の両主要面上に設けられてもよい。又、例えば、図1に示した水浄化装置23に含まれる第1電極3および第2電極4のように、第1電極3および第2電極4のうち一方が流路形成部材10の1つの主要面上に設けられ、他方が流路形成部材10のもう1つの主要面上に設けられてもよい。
 流路形成部材10は、例えば、図1のように板状であり、間隔をおいて積重するように配置されてもよい。また、流路形成部材10は端部に開口を有してもよい。このことにより、積重された流路形成部材10のそれぞれの隙間を流路9とすることができ、流路9を流れる被処理水が第1電極3および第2電極4に接触または近づく確率を高くすることができる。このことにより、水浄化装置23の浄化能力を高くすることができる。
 流路形成部材10は、例えば図7のように、短冊形状(板状)であり、縦方向に流路形成部材10が間隔をおいて並べられ、横方向に流路形成部材10が間隔をおいて並べられ、縦方向に並べられた複数の流路形成部材10と横方向に並べられた複数の流路形成部材10とが交互に積重されてもよい。このことにより、第1電極3と第2電極4との間隔を一定にしやすくなり、第1電極3と第2電極4との間に局所的な電流が流れることを抑制することができる。また、流路形成部材10の隙間を被処理水が流れる流路9とすることができ、流路9を流れる被処理水が第1または第2電極3、4に接触または近づきやすくなり、浄化効率を高くすることができる。
 また、流路形成部材10は、図7に示したように、第1および第2電極3、4を積重した方向からの平面視において、流路形成部材10が隙間なく配置された構造を有してもよい。このことにより、被処理水が流れる流路を、複数の分岐点と合流点を有する流路とすることができ、被処理水が第1電極3または第2電極4に接触または近づく確率を高くすることができる。
 また、図7に示した水浄化装置23において、流入口18から浄化槽1内に流入した被処理水は、流路形成部材10の間を流れ、第1電極3にぶつかり流れが分岐する。この分岐した流れは第1電極3と第2電極4との間を流れ、他の流れと合流し流路形成部材10の間を流れ第2電極4にぶつかる。このような流れを繰り返し、排出口19から被処理水が排出される。水浄化装置23がこのような曲折した流路9を有することにより、被処理水が第1電極3または第2電極4に接触または近づく確率を高くすることができ、水浄化装置23の水浄化能力を高くすることができる。
 また、複数の流路形成部材10は、図7に示すように、浄化ユニット26に含まれてもよい。浄化ユニット26は、例えば、浄化槽1となる枠部分と、枠の中に並列に配置された流路形成部材10を含むことができる。縦方向に並んだ流路形成部材10と、横方向に並んだ流路形成部材10とが交互に積重するように、浄化ユニット26を積重することにより水浄化装置23を形成することができる。このような構成により、積層する浄化ユニット26の数を変えることにより水浄化装置23の浄化能を変更することができる。つまり要求される浄化能に応じて、水浄化装置23の浄化能を変えることができる。
メチレンブルー水溶液電気分解実験1
 第1電極3と第2電極4の材料適性を調べるためにメチレンブルー分解実験を行った。
 本実験では、まず、水道水中に武藤化学(株)製のメチレン青原液を添加し、約10mg/lのメチレンブルー水溶液を調製した。
 このメチレンブルー水溶液に表1に示した陽極と陰極とを浸漬し、陽極と陰極との間に直流電圧を印加することにより、メチレンブルー水溶液が透明になるかどうかを調べた。
Figure JPOXMLDOC01-appb-T000001
 表1のうち、陽極にPt、陰極にSrTiO3単結晶を用いた場合、陽極にPt、陰極にTiO2単結晶を用いた場合および陽極にPt、陰極にPtを用いた場合においてメチレンブルー水溶液が透明になることが確認された。他の電極を用いた場合、陽極と陰極との間に電流が流れなかったり、電極が腐食したりした。
 このことにより、陽極にPtを用いることにより、メチレンブルーを分解できることが確認された。
メチレンブルー水溶液電気分解実験2
 次に、陽極および陰極にPt線を用い、メチレンブルー水溶液の電気分解実験を行った。
 本実験では、まず、純水中に武藤化学(株)製のメチレン青原液を添加し、約10mg/lのメチレンブルー水溶液を調製した。
 Pt線からなる陽極および陰極をこの純水を用いて調製したメチレンブルー水溶液に浸漬し、電極間距離を1mm、5mmまたは10mmとし、電流電圧特性を調べた。
 この測定結果を図8に示す。図8から、電極間距離が10mmの場合では、陽極と陰極との間に100Vの電圧を印加しても電流が0.45mA程度しか流れなかったのに対し、電極間距離を5mmの場合では、陽極と陰極との間に100Vの電圧を印加したとき約0.75mAの電流が流れ、電極間距離を1mmの場合では、陽極と陰極との間に100Vの電圧を印加したとき約2.14mAの電流が流れた。このことにより、電極間距離を5mm以下とすることにより、陽極と陰極との間に電流を流すことができることが確認された。
 次に、Pt線からなる陽極および陰極をこの純水を用いて調製したメチレンブルー水溶液に浸漬し、電極間距離を1mm、5mmまたは10mmとした場合に、陽極と陰極に25Vまたは100Vの電圧を印加し、メチレンブルー水溶液の電気分解実験を行った。また、電圧印加時間は、30分、60分、120分としてそれぞれ電気分解実験を行った。これらの電気分解実験後のメチレンブルー水溶液の透過率を島津製作所製Multi Spec-1500を用いて測定した。
 図9に陽極と陰極との間に100Vの電圧を印加して30分、60分、120分それぞれ電気分解実験を行った後のメチレンブルー水溶液の波長664nmの光の透過率のグラフを示す。
 図9に示したグラフから、電極間距離を10mmとした場合メチレンブルーの電気分解反応は60分後はほとんど進まず頭打ちとなる傾向にあるが、電極間距離を5mm以下とした場合メチレンブルーの電気分解反応は60分後でも進んでいることがわかる。また、電極間距離を狭くするとメチレンブルーの電気分解反応はより起こりやすくなることがわかる。
 図10に陽極と陰極との間に25Vの電圧を印加して30分、60分、120分それぞれ電気分解実験を行った後のメチレンブルー水溶液の波長664nmの光の透過率のグラフを示す。
 図10に示したグラフから電極間距離を10mmとした場合メチレンブルーの電気分解反応はほとんど進まず頭打ちとなる傾向が顕著になっているが、電極間距離を5mm以下とした場合ではメチレンブルーの電気分解反応が進んでいることがわかる。これは印加電圧が25V以下の低電圧でも、電極間距離が5mm以下であれば水の浄化が可能であることを示している。特に、電極間距離を1mmとした場合では更に低電圧での分解浄化効果が顕著であることがわかる。
活性種測定実験1
 次に、活性種(オゾンまたは過酸化水素)の生成を確認するために活性種測定実験を行った。活性種の生成確認は、発色試薬により測定した(株式会社共立理化学研究所製パックテストを使用)。
 まず、溶質としてNaClとHClとを含む水にステンレスからなる電極対を浸漬し、電極対に電圧を印加した。この場合、電極溶出が生じ電極表面が腐食した。
 次に、溶質としてNaClを含む水に金属チタンからなる電極対を浸漬し、電極対に電圧を印加した。その後、電極対を浸漬した水に含まれる活性種を発色試薬により測定した。しかし、活性種の生成は確認できなかった。
 次に、溶質としてNaClとHClとを含む水に金属チタンからなる電極対を浸漬し、電極対に電圧を印加した。その後、電極対を浸漬した水に含まれる活性種を発色試薬により測定した。この測定では、活性種の生成が確認された。従って、酸(HCl)の存在によって活性種の生成が促進できることがわかった。
 次に、金属チタンからなる電極対を極間距離を狭くして純水に浸漬し、電極対に電圧を印加した。その後、電極対を浸漬した水に含まれる活性種を発色試薬により測定した。この測定では、活性種の生成が確認された。従って、電極対に電圧を印加すると純水から活性種が生成できることがわかった。
活性種測定実験2
 次に、陽極と陰極の材料適性を調べるために活性種測定実験を行った。
 本実験では、純水中に表2に示した陽極と陰極(電極対)を浸漬し、陽極と陰極との間に直流電圧を10分間印加した。その後、電極対を浸漬した水に含まれる活性種(オゾンまたは過酸化水素)を発色試薬により測定した。このような活性種測定実験を表2に示した18種類の電極対について行った。
Figure JPOXMLDOC01-appb-T000002
 表2に示した電極のうち、SUSはステンレスの電極であり、酸化チタン(陽極酸化)は金属チタンの表面に陽極酸化により酸化被膜を形成した電極であり、酸化チタン(熱酸化)は金属チタンの表面に熱酸化により酸化被膜を形成した電極である。
 金属チタンの表面に陽極酸化により酸化被膜を形成した電極(酸化チタン(陽極酸化))は、陽極、陰極共に金属チタンからなる電極対を純水中に浸漬し、陽極側の金属チタンの表面が少し白くなるまで100Vの電圧を印加することにより製造した。
 金属チタンの表面に熱酸化により酸化被膜を形成した電極(酸化チタン(熱酸化))は、金属チタンを大気中において約600℃~700℃に加熱し、30分保持した後、自然冷却することにより形成した。
 表2には発色試薬により測定した活性種生成の有無および活性種生成量を示している。×を示した電極対は、活性種の生成が確認できなかった電極対である。△、○、◎を示した電極対は、活性種の生成が確認できた電極対である。また、△を示した電極対は活性種の生成量が少なく、◎を示した電極対は活性種の生成量が多い。○を示した電極対は、◎を示した電極対よりも活性種の生成量が少なく、△を示した電極対よりも活性種の生成量が多い電極対である。
 また、表2には、消費電力量あたりの活性種生成量を△、○、◎で示している。消費電力量は、陽極と陰極との間に直流電圧を10分間印加することにより消費される電力量である。
 これらの記号は、表3でも同様である。
 表2に示したように、陽極に酸化ニッケル、SUS、金属ニッケル、カーボンを用いると活性種が生成されにくく、陽極に金属チタン、ダイヤモンドライクカーボン、酸化チタン(陽極酸化)、酸化チタン(熱酸化)、酸化鉄を用いると活性種が生成されやすいことがわかった。
 このことから、陽極は、少なくとも表面がチタン、炭素、鉄またはこれらの元素を含む材料からなることが好ましい。
 また、陽極は、チタン系材料からなることが好ましい。ダイヤモンドライクカーボンまたは酸化鉄からなる陽極でも、活性種は生成するが、チタン系材料からなる陽極のほうがコストを低くすることができ好ましい。
 表2に示したように、陰極には、金属チタン、酸化鉄、SUS、酸化ニッケル、金属ニッケル、ダイヤモンドライクカーボン、酸化鉄、カーボン(炭素棒)を使用できることがわかった。
 このことから、陰極は、少なくとも表面がチタン、鉄、ニッケル、炭素またはそれらの酸化物を主成分とする材料からなることが好ましい。
 また、陰極に炭素棒を用いるとコストを低くすることができ、好ましいが消費電力量が増大する傾向にあった。
 また、陰極に金属チタンを用いると、コストを低くすることができ、かつ、消費電力量あたりの活性種生成効率を高くすることができ、好ましい。
 さらに、陽極および陰極の両方をチタンを主成分とする電極(例えば、金属チタン、酸化チタン(陽極酸化又は熱酸化))とすると、活性種生成効率が高いため好ましい。
 なお、酸化鉄および酸化ニッケルは形状を保つため焼結体を用いる。
 また、陽極に金属チタンを用い陽極と陰極との間に電圧を印加すると、陽極と陰極との間に流れる電流量が不安定であり、多くの場合、電圧を印加し続けると電流量は徐々に減少する傾向にあった。電流量が電圧印加直後に比べて半分程度となる場合もあった。これは、陽極表面において陽極酸化が進むためと考えられる。
 また、陽極に酸化チタン(陽極酸化)を用い、陽極と陰極との間に電圧を印加すると、陽極と陰極との間に流れる電流量は不安定であった。これは、電圧印加により陽極酸化膜が成長する反応が進行するためと考えられる。
 また、陽極に酸化チタン(熱酸化)を用い陽極と陰極との間に電圧を印加すると、電流量は非常に安定していた。また、陽極に用いた酸化チタン(熱酸化)の実験前後の表面変化もほとんどなかった。
活性種測定実験3
 次に、陽極と陰極との間隔(極間最短距離)を変えて活性種測定実験を行った。実験方法は、活性種測定実験2と同じであり、陽極と陰極の材料は、測定結果と共に表3に示す。
Figure JPOXMLDOC01-appb-T000003
 陽極に酸化チタン(陽極酸化)を陰極に金属チタンを用いた電極対による実験では、極間最短距離を1mmとすることにより、活性種生成量、消費電力あたりの活性種生成量共に多いことがわかった。また、極間最短距離を広くすると、活性種生成量は減少するが、消費電力量あたりの活性種生成量は極間最短距離を11mm、17mmとすると多いことがわかった。
 陽極に酸化チタン(熱酸化)を陰極に金属チタンを用いた電極対による実験では、極間最短距離を1mmとすることにより、活性種生成量、消費電力量あたりの活性種生成量共に多いことがわかった。なお、この場合の消費電力量あたりの活性種生成量は、陽極に酸化チタン(陽極酸化)を用い極間最短距離を1mmとして実験した場合に比べ、約1.5倍であった。
 また、極間最短距離を広くすると、活性種生成量は減少するが、消費電力量あたりの活性種生成量は極間最短距離を6mm、10mmとすると多いことがわかった。
 1: 浄化槽(水槽)  3:第1電極  4:第2電極  5:電極対  7:電源回路  9:処理水流路  10:流路形成部材  12:配線  15:導水管  16:フィルター  18:流入口  19:排出口  23:水浄化装置(消毒液製造装置)  26:浄化ユニット  28:シール部材  29:接続部材

Claims (19)

  1.  浄化槽と、第1電極および第2電極を有しその間に直流電圧が印加される少なくとも1つの電極対とを備え、
     前記電極対は、前記浄化槽内に設けられ、
     前記電極対に含まれる第1および第2電極は、該第1電極と第2電極との間隔が0.5mm以上5mm以下となるように設けられたことを特徴とする水浄化装置。
  2.  前記浄化槽は、その内部に浄化対象の水の流路を備え、
     前記電極対に含まれる第1および第2電極は、該第1電極と第2電極との間が前記流路となるように設けられた請求項1に記載の水浄化装置。
  3.  前記第1および第2電極の少なくとも一方は、板状、ワイヤ形状またはロッド形状である請求項1または2に記載の水浄化装置。
  4.  前記流路は、曲折した流路であり、
     前記電極対は、複数であり、
     1つの電極対に含まれる第1および第2電極は、前記流路を挟んで対向して設けられた請求項2に記載の水浄化装置。
  5.  前記第1および第2電極は、それぞれ板状である請求項4に記載の水浄化装置。
  6.  前記浄化槽は、前記流路を形成する複数の流路形成部材を備え、
     前記第1電極または第2電極は、1つの流路形成部材の表面に膜として設けられた請求項4に記載の水浄化装置。
  7.  前記流路は、複数の分岐点および複数の合流点を有する請求項6に記載の水浄化装置。
  8.  前記流路形成部材は、短冊形状である請求項6または7に記載の水浄化装置。
  9.  前記第1および第2電極のうち一方は、1つの流路形成部材の1つの面上に設けられ、他方は、前記1つの面の裏の面上に設けられた請求項8に記載の水浄化装置。
  10.  前記第1電極または第2電極は、1つの流路形成部材の1つの面上とその裏の面上の両方に設けられた請求項8に記載の水浄化装置。
  11.  前記流路形成部材は、短冊形状であり、
     前記複数の流路形成部材は、縦方向に並列に間隔をおいて並べられた短冊形状の前記流路形成部材と、横方向に並列に間隔をおいて並べられた短冊形状の前記流路形成部材とが交互に積重された構造を有する請求項6~10のいずれか1つに記載の水浄化装置。
  12.  前記複数の流路形成部材は、前記流路形成部材を積重した方向からの平面視において、前記流路形成部材が隙間なく配置された構造を有する請求項11に記載の水浄化装置。
  13.  前記浄化槽および前記複数の流路形成部材は、前記浄化槽の一部および前記流路形成部材を含む浄化ユニットが積重する構造を有する請求項6~12のいずれか1つに記載の水浄化装置。
  14.  前記電極対に含まれる第1および第2電極は、該第1電極と第2電極との間隔が0.5mm以上1mm以下となるように設けられた請求項1~13のいずれか1つに記載の水浄化装置。
  15.  前記電極対に含まれる第1電極または第2電極は、白金、チタンまたは酸化チタンを含む陽極である請求項1~14のいずれか1つに記載の水浄化装置。
  16.  前記第1および第2電極の少なくとも一方は、表面に酸化チタン膜を有し、
     前記酸化チタン膜は、陽極酸化膜または熱酸化膜である請求項1~15のいずれか1つに記載の水浄化装置。
  17.  前記第1および第2電極に電圧を印加する電源を備え、
     該電源は、交流電圧を印加することができるまたは前記第1および第2電極に印加する電圧の極性を切り替えることができる請求項1~16のいずれか1つに記載の水浄化装置。
  18.  水槽と、第1電極および第2電極を有しその間に直流電圧が印加される少なくとも1つの電極対とを備え、
     前記電極対は、前記水槽内に設けられ、
     前記電極対に含まれる第1および第2電極は、該第1電極と第2電極との間隔が0.5mm以上5mm以下となるように設けられたことを特徴とする消毒液製造装置。
  19.  前記水槽は、その内部に電気伝導率が1mS/m以下の水を貯溜する又は流通させるように設けられた請求項18に記載の消毒液製造装置。
PCT/JP2013/051344 2012-01-23 2013-01-23 水浄化装置および消毒液製造装置 WO2013111788A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013555290A JP5909506B2 (ja) 2012-01-23 2013-01-23 水浄化装置および消毒液製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012011123 2012-01-23
JP2012-011123 2012-01-23

Publications (1)

Publication Number Publication Date
WO2013111788A1 true WO2013111788A1 (ja) 2013-08-01

Family

ID=48873503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051344 WO2013111788A1 (ja) 2012-01-23 2013-01-23 水浄化装置および消毒液製造装置

Country Status (2)

Country Link
JP (1) JP5909506B2 (ja)
WO (1) WO2013111788A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623577U (ja) * 1985-02-27 1987-01-10
JPS6283485A (ja) * 1985-10-07 1987-04-16 Res Dev Corp Of Japan 淡水の無隔膜直接電解方法
JPH0474879A (ja) * 1990-07-16 1992-03-10 Permelec Electrode Ltd 次亜塩素酸塩製造用電解装置
JP2000093691A (ja) * 1998-07-24 2000-04-04 Mitsubishi Electric Corp 電界による殺菌機能を備えた洗濯機
JP2002186969A (ja) * 2000-12-19 2002-07-02 Tominaga Oil Pump Mfg Co Ltd 電解水生成方法および装置
JP2002292369A (ja) * 2001-03-30 2002-10-08 Terumo Corp 電解水供給装置、および電解水の生成方法
JP2005138044A (ja) * 2003-11-07 2005-06-02 Sanyo Electric Co Ltd 電解水生成装置
JP2008264718A (ja) * 2007-04-23 2008-11-06 Noritz Corp ホルムアルデヒド除去装置及びこれを備えた給湯装置
JP2008302328A (ja) * 2007-06-08 2008-12-18 National Univ Corp Shizuoka Univ 酸化チタン膜成形部材の製造方法、光触媒、光電極、および水処理装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165956A (ja) * 1996-12-16 1998-06-23 Hitachi Plant Eng & Constr Co Ltd 有機成分の除去方法及び装置
CN1229282C (zh) * 1999-03-15 2005-11-30 大神设计株式会社 含有机物的废水的处理方法和装置
JP3631174B2 (ja) * 2001-07-12 2005-03-23 三洋電機株式会社 洗濯機、及び洗浄機
JP2003024680A (ja) * 2001-07-12 2003-01-28 Sanyo Electric Co Ltd 洗濯機
EP1741675A1 (en) * 2005-07-05 2007-01-10 Adept Water Technologies A/S Water treatment method and apparatus
JP2007046129A (ja) * 2005-08-11 2007-02-22 Sanyo Electric Co Ltd 電解用電極及び電解用電極の製造方法
JP4688622B2 (ja) * 2005-10-03 2011-05-25 三洋電機株式会社 オゾン発生機能を有する電気機器
JP2007224351A (ja) * 2006-02-22 2007-09-06 Sanyo Electric Co Ltd 電解用電極及びその製造方法及びそれを用いた電解方法
JP2009061409A (ja) * 2007-09-07 2009-03-26 Sanyo Electric Co Ltd 電解装置
JP2010042386A (ja) * 2007-09-11 2010-02-25 Sanyo Electric Co Ltd 電解処理装置
JP2009190016A (ja) * 2008-02-13 2009-08-27 Linxross Inc 水浄化処理用電解キャパシター内のバイオフィルム除去及び防止方法
WO2011117350A1 (de) * 2010-03-25 2011-09-29 Basf Se Elektrochemisches textilwaschverfahren
JP4734664B1 (ja) * 2010-09-17 2011-07-27 田中貴金属工業株式会社 電解用電極、オゾン電解生成用陽極、過硫酸電解生成用陽極及びクロム電解酸化用陽極

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623577U (ja) * 1985-02-27 1987-01-10
JPS6283485A (ja) * 1985-10-07 1987-04-16 Res Dev Corp Of Japan 淡水の無隔膜直接電解方法
JPH0474879A (ja) * 1990-07-16 1992-03-10 Permelec Electrode Ltd 次亜塩素酸塩製造用電解装置
JP2000093691A (ja) * 1998-07-24 2000-04-04 Mitsubishi Electric Corp 電界による殺菌機能を備えた洗濯機
JP2002186969A (ja) * 2000-12-19 2002-07-02 Tominaga Oil Pump Mfg Co Ltd 電解水生成方法および装置
JP2002292369A (ja) * 2001-03-30 2002-10-08 Terumo Corp 電解水供給装置、および電解水の生成方法
JP2005138044A (ja) * 2003-11-07 2005-06-02 Sanyo Electric Co Ltd 電解水生成装置
JP2008264718A (ja) * 2007-04-23 2008-11-06 Noritz Corp ホルムアルデヒド除去装置及びこれを備えた給湯装置
JP2008302328A (ja) * 2007-06-08 2008-12-18 National Univ Corp Shizuoka Univ 酸化チタン膜成形部材の製造方法、光触媒、光電極、および水処理装置

Also Published As

Publication number Publication date
JP5909506B2 (ja) 2016-04-26
JPWO2013111788A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
US8980079B2 (en) Electrolytic cell for ozone production
JP4220978B2 (ja) 電極、オゾン生成装置、及び、オゾン生成方法
JP5913693B1 (ja) 電解装置及び電解オゾン水製造装置
US20080156642A1 (en) System for the Disinfection of Low-Conductivity Liquids
TW406059B (en) Method of water electrolysis
CA2649873A1 (en) Method, apparatus and plant for desalinating saltwater using concentration difference energy
US20120031763A1 (en) Electrodialyzer
WO2012156668A1 (en) Electrode assembly and an electrochemical cell comprising the same
TW201240923A (en) Electrical purification apparatus and methods of manufacturing same
JP6511053B2 (ja) 同心状電極対を装備した電解セル
GB2490913A (en) A method for producing ozone from an electrochemical cell where the electrodes can be cleaned through reversing the electrode polarity
TW201730377A (zh) 電解水生成裝置
JP2014217820A (ja) 電解水生成装置
JP2009052105A (ja) オゾン水生成装置
JP5909506B2 (ja) 水浄化装置および消毒液製造装置
JP4819026B2 (ja) 電気式脱イオン水製造装置および脱イオン水製造方法
JP6132234B2 (ja) 電解水生成装置
WO2017010372A1 (ja) 電解槽及び電解水生成装置
WO2017006912A1 (ja) 電解槽及び電解水生成装置
JP5019422B2 (ja) 生活用水供給方法及び装置
CN104797339A (zh) 电化学分离装置
JP6220957B1 (ja) ダイヤモンド電極、ダイヤモンド電極の製造方法及び電解水生成装置
JP2015000388A (ja) 電解水生成装置
JP4535514B1 (ja) 銀イオン溶液製造方法及びその装置
KR20190061197A (ko) 수소수 전기분해조와 그 수소수의 이용방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555290

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13740563

Country of ref document: EP

Kind code of ref document: A1