WO2013111312A1 - Photovoltaic device, method for manufacturing same, and photovoltaic module - Google Patents

Photovoltaic device, method for manufacturing same, and photovoltaic module Download PDF

Info

Publication number
WO2013111312A1
WO2013111312A1 PCT/JP2012/051726 JP2012051726W WO2013111312A1 WO 2013111312 A1 WO2013111312 A1 WO 2013111312A1 JP 2012051726 W JP2012051726 W JP 2012051726W WO 2013111312 A1 WO2013111312 A1 WO 2013111312A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
single crystal
silicon substrate
amorphous silicon
crystal silicon
Prior art date
Application number
PCT/JP2012/051726
Other languages
French (fr)
Japanese (ja)
Inventor
剛彦 佐藤
秀一 檜座
雅 酒井
松野 繁
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/051726 priority Critical patent/WO2013111312A1/en
Priority to JP2013555071A priority patent/JP5745653B2/en
Publication of WO2013111312A1 publication Critical patent/WO2013111312A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a photovoltaic device such as a solar cell, a manufacturing method thereof, and a photovoltaic module, and more particularly to a photovoltaic device having a heterojunction, a manufacturing method thereof, and a photovoltaic module.
  • a p-type crystalline silicon substrate having a thickness of about 200 ⁇ m is used to increase the surface texture, n-type impurity diffusion layer, antireflection film, and surface electrode.
  • comb-shaped silver (Ag) electrodes are sequentially formed on the light-receiving surface side of the p-type crystalline silicon substrate.
  • a back electrode for example, an aluminum (Al) electrode
  • Al aluminum
  • the solvent components of the front electrode and the back electrode are volatilized, and the comb Ag electrode penetrates the antireflection film and is connected to the n-type impurity diffusion layer on the light receiving surface side of the p-type crystal silicon substrate. Further, in this firing, a part of the Al electrode diffuses into the p-type crystalline silicon substrate on the non-light-receiving surface side of the p-type crystalline silicon substrate to form a back surface field layer (BSF: Back Surface Field).
  • BSF Back Surface Field
  • This BSF layer forms an internal electric field at the junction surface with the p-type crystalline silicon substrate, pushes minority carriers generated near the BSF layer back into the p-type crystalline silicon substrate, and recombines carriers near the Al electrode. It has a suppressing effect.
  • the BSF layer formed by this diffusion has a thickness of several hundred nm to several ⁇ m when it is formed using a thermal process having an appropriate dopant concentration, and the open circuit voltage due to recombination within the BSF layer. This causes a decrease in short circuit current due to a decrease or light absorption.
  • Patent Documents 1 to 3 describe heterojunction solar cells in which a junction made of a thin impurity-doped silicon layer or a BSF layer is formed on a crystalline silicon substrate via a thin intrinsic semiconductor thin film (i layer). .
  • a thin intrinsic semiconductor thin film i layer.
  • the intrinsic semiconductor layer inserted between the crystalline silicon substrate and the impurity-doped silicon layer suppresses impurity diffusion between heterojunctions and can form a junction with a steep impurity profile, thus forming a good junction interface. A higher open circuit voltage can be obtained.
  • the intrinsic semiconductor thin film and the impurity-doped silicon layer can be formed at a low temperature of about 200 ° C., even when the thickness of the crystalline silicon substrate is thin, stress generated in the crystalline silicon substrate due to heat and warpage of the crystalline silicon substrate can be reduced. Can do. In addition, it can be expected that a decrease in substrate quality can be suppressed even for a crystalline silicon substrate that is easily deteriorated by heat.
  • amorphous silicon (a-Si) is usually used for the intrinsic semiconductor layer, but epitaxial growth may occur on the silicon substrate depending on the film formation conditions.
  • a-Si amorphous silicon
  • the a-Si layer is epitaxially grown on the substrate, defects and strains are likely to occur, so that the passivation effect between the substrate and the a-Si is reduced, resulting in a reduction in interface characteristics and a reduction in open circuit voltage.
  • intrinsic oxygen-containing amorphous silicon has a wider gap than ordinary intrinsic amorphous silicon. Therefore, an intrinsic oxygen-containing amorphous silicon (a-SiO (i)) layer is interposed between the silicon substrate and the impurity doped layer by interposing oxygen between the intrinsic semiconductor layer or the silicon substrate and the intrinsic semiconductor layer. If inserted, resistance is generated when carriers pass through the film due to the potential barrier of the intrinsic oxygen-containing amorphous silicon layer, leading to an increase in series resistance and a decrease in fill factor, resulting in a decrease in photoelectric conversion efficiency. It was.
  • a-SiO (i) intrinsic oxygen-containing amorphous silicon
  • the present invention has been made in view of the above, and an object thereof is to obtain a photovoltaic device excellent in photoelectric conversion efficiency, a manufacturing method thereof, and a photovoltaic module.
  • a photovoltaic device is obtained by doping an intrinsic oxygen-containing amorphous silicon layer and an impurity directly on a single crystal silicon substrate of one conductivity type.
  • crystal grains whose area in the plane direction of the single crystal silicon substrate increases from the surface of the single crystal silicon substrate to the transparent conductive layer as a starting point are scattered.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the heterojunction solar cell according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the main part showing the configuration of the solar battery cell according to the first embodiment of the present invention.
  • FIG. 3 is a flowchart showing the method for manufacturing the solar battery cell according to the first embodiment of the present invention.
  • FIG. 4 is a vertical cross-sectional TEM image of the sample solar battery cell of the example.
  • FIG. 5: is sectional drawing which shows typically the structure of the board
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the heterojunction solar cell according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the main part showing the configuration of the solar battery cell according to the first embodiment of the present invention.
  • FIG. 3 is a flowchar
  • FIG. 6 is a flowchart showing a method for manufacturing a solar battery cell according to the second embodiment of the present invention.
  • FIG. 7 is sectional drawing which shows typically the structure of the board
  • FIG. 8 is a flowchart showing a method for manufacturing a solar battery cell according to the third embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a heterojunction solar battery cell (hereinafter sometimes referred to as a solar battery cell) that is the photovoltaic device according to the first embodiment.
  • the solar battery cell 10 includes an n-type single crystal silicon substrate 11 and a light-receiving surface side intrinsic amorphous oxygen-containing silicon layer 12 (hereinafter referred to as “light-receiving surface side”) that is sequentially stacked immediately above the light-receiving surface side of the n-type single crystal silicon substrate 11.
  • the solar battery cell 10 includes a back-side intrinsic amorphous silicon layer 16 and a conductive amorphous silicon layer that are sequentially stacked on the surface opposite to the light-receiving surface side (back surface) of the n-type single crystal silicon substrate 11.
  • a back-side transparent conductive layer 18 and a back-side electrode 19 As an n-type amorphous silicon layer 17 doped with a high concentration of impurities, a back-side transparent conductive layer 18 and a back-side electrode 19.
  • FIG. 2 is a cross-sectional view showing the main part of the configuration of the solar battery cell 10.
  • a thin a-SiO (i) layer 12 a thin p-type amorphous silicon layer 13, and a thin light-receiving surface side transparent conductive layer 14 are formed on an n-type single crystal silicon substrate 11. They are stacked in order. Thus, a heterojunction is formed between the n-type single crystal silicon substrate 11 and the thin p-type amorphous silicon layer 13 via the thin a-SiO (i) layer 12.
  • the impurity concentration distribution of the p-type amorphous silicon layer 13 can be freely set, and since the p-type amorphous silicon layer 13 is thin, Carrier recombination and light absorption can be suppressed, and a large short-circuit current can be obtained.
  • the a-SiO (i) layer 12 inserted between the n-type single crystal silicon substrate 11 and the p-type amorphous silicon layer 13 suppresses impurity diffusion between heterojunctions, and has a steep impurity profile. Therefore, a high open circuit voltage can be obtained by forming a good bonding interface.
  • the thin a-SiO (i) layer 12 and the thin p-type amorphous silicon layer 13 can be formed at a low temperature of about 200 ° C., even when the n-type single crystal silicon substrate 11 is thin, As a result, stress generated in the n-type single crystal silicon substrate 11 and warpage of the n-type single crystal silicon substrate 11 can be reduced. In addition, it is possible to suppress a decrease in substrate quality even for the n-type single crystal silicon substrate 11 that is easily deteriorated by heat.
  • fine irregularities 11a are formed on the surface of the n-type single crystal silicon substrate 11 on the light receiving surface side. Then, in the vertical cross section perpendicular to the in-plane direction of the n-type single crystal silicon substrate 11, the fine unevenness 11 a starts as a starting point and reaches the light-receiving surface-side transparent conductive layer 14 in the film thickness direction, from the n-type single crystal silicon substrate 11 to the light-receiving surface. Inverted triangular epitaxial growth layers 21 that electrically connect up to the side transparent conductive layer 14 with low resistance are formed scattered in the in-plane direction of the n-type single crystal silicon substrate 11.
  • the a-SiO (i) layer 12 Since the a-SiO (i) layer 12 has a wider gap than the normal p-type amorphous silicon layer 13, the a-SiO (i) layer 12 has an a ⁇ between the n-type single crystal silicon substrate 11 and the p-type amorphous silicon layer 13. Inserting the SiO (i) layer 12 causes resistance when carriers pass through the film due to the potential barrier of the a-SiO (i) layer 12, leading to an increase in series resistance and a decrease in fill factor, resulting in a decrease in photoelectric conversion efficiency. To do.
  • light receiving surface side transparent conductive layer 14 is reached in the film thickness direction starting from fine irregularities 11a, and from n-type single crystal silicon substrate 11 to light receiving surface side transparent conductive layer 14.
  • Epitaxially grown layers 21 that are electrically connected to each other are formed scattered in the in-plane direction of the n-type single crystal silicon substrate 11.
  • the area of the epitaxial growth layer 21 in the in-plane direction of the n-type single crystal silicon substrate 11 has a shape that increases from the n-type single crystal silicon substrate 11 side toward the light-receiving surface side transparent conductive layer 14 side.
  • the epitaxial growth layer 21 in which a part of the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13 is epitaxially grown and crystallized (crystal grains) has a lower resistance than the case where the silicon layer is amorphous. It becomes. And since this crystal particle contacts the light-receiving surface side transparent conductive layer 14 in a wide area, the electrical connection of the p-type amorphous silicon layer 13 and the light-receiving surface side transparent conductive layer 14 becomes favorable.
  • the epitaxial growth layer 21 obtained by crystallizing the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13 can increase the electric conductivity and reduce the potential barrier. It is possible to suppress an increase in series resistance up to the light receiving surface side transparent conductive layer 14 and a decrease in fill factor.
  • the silicon film crystallized by epitaxial growth reduces the passivation effect on the n-type single crystal silicon substrate 11.
  • the epitaxial growth layers 21 epitaxially grown on the a-SiO (i) layer 12 on the n-type single crystal silicon substrate 11 are scattered and arranged in the in-plane direction of the n-type single crystal silicon substrate 11. Then, it is connected to the n-type single crystal silicon substrate 11 in a narrow region. Therefore, the electrical connection and fill factor between the p-type amorphous silicon layer 13 and the light-receiving surface side transparent conductive layer 14 can be improved without reducing the passivation effect on the n-type single crystal silicon substrate 11.
  • the p-type amorphous silicon layer 13 of the epitaxial growth layer 21 is epitaxially grown with respect to the area where the portion of the epitaxial growth layer 21 where the a-SiO (i) layer 12 is epitaxially grown contacts the n-type single crystal silicon substrate 11. Since the area where the portion thus made contacts the light-receiving surface side transparent conductive layer 14 is 10 times or more larger, the fill factor can be reliably improved without deteriorating the passivation effect on the n-type single crystal silicon substrate 11.
  • FIG. 3 is a flowchart illustrating a method for manufacturing the solar battery cell 10 according to the first embodiment.
  • an n-type single crystal silicon substrate 11 having a resistivity of 1 ⁇ cm and a plane orientation of (100) as a substrate is prepared, and wire saw damage during slicing is removed in an alkaline solution (step S10).
  • etching is performed in a depth region of about 50 nm to 2 ⁇ m from the surface again in an alkaline solution, so that the height and width are about 3 nm to 5 nm. Fine irregularities 11a are formed (step S20, step S30).
  • Isopropyl alcohol adhering to the surface of the n-type single crystal silicon substrate 11 by the immersion process in isopropyl alcohol partially acts as an etching mask during etching in an alkaline solution, and can form the fine irregularities 11a. . That is, an organic solvent is applied to the surface of the n-type single crystal silicon substrate 11, and then the n-type single crystal silicon substrate 11 is etched with an alkaline solution. Fine irregularities 11 a can be formed on the surface of the type single crystal silicon substrate 11.
  • isopropyl alcohol may be applied to the surface of the n-type single crystal silicon substrate 11 by a spray method, a spin coat method, or the like.
  • a silazane-based organic solvent, a surfactant, or the like may be used as a material used as an etching mask. In this case, the same unevenness as described above can be formed.
  • the fine irregularities 11a are formed after the wire saw damage removing process in order to reduce the influence of the metal contamination in the wire saw damage.
  • the wire saw damage is not removed.
  • the n-type single crystal silicon substrate 11 may be immersed in isopropyl alcohol and then etched with an alkaline solution to serve as both removal of wire saw damage and formation of fine irregularities 11a.
  • an a- film having a film thickness of about 2 nm to 3 nm is formed in an RF plasma CVD chamber of 13.56 to 60 MHz.
  • the SiO (i) layer 12 is formed on the light receiving surface side of the n-type single crystal silicon substrate 11 (step S40).
  • the reaction gas flow rate is silane 10 to 100 sccm, hydrogen 500 to 1000 sccm, carbon dioxide gas 5 Film formation was performed at ⁇ 20 sccm, and an a-SiO (i) layer 12 was formed by RF plasma CVD.
  • an inverted triangular epitaxial growth layer starting from the fine irregularities 11 a on the surface of the n-type single crystal silicon substrate 11 is formed in the a-SiO (i) layer 12. Formed in the direction.
  • This epitaxial growth layer on which a-SiO (i) is epitaxially grown is formed to be exposed from the surface of the a-SiO (i) layer 12.
  • a p-type amorphous silicon layer 13 having a thickness of about 20 nm is formed on the a-SiO (i) layer 12 in an RF plasma CVD chamber of 13.56-60 MHz (step S50).
  • the reaction gas flow rate is 5 to 50 sccm for silane, 500 to 2000 sccm for hydrogen, and 1% in an atmosphere with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., and a gas pressure of 400 to 600 Pa.
  • Film formation was performed with diborane diluted with hydrogen at 10 to 50 sccm, and a p-type amorphous silicon layer 13 was formed by RF plasma CVD.
  • an inverted triangular epitaxial growth layer is formed in the p-type amorphous silicon layer 13 from the surface of the epitaxial growth layer formed in the a-SiO (i) layer 12 inside the p-type amorphous silicon layer 13. It is formed in the film thickness direction.
  • the fine unevenness 11a on the surface of the n-type single crystal silicon substrate 11 reaches the light-receiving surface side transparent conductive layer 14 as a starting point, and the n-type single crystal silicon substrate 11 to the light-receiving surface side transparent conductive layer 14 are electrically connected.
  • An inverted triangular epitaxial growth layer 21 connected with a low resistance is formed.
  • a back side intrinsic amorphous silicon layer 16 having a film thickness of about 2 nm to 3 nm is formed on the back side of the n-type single crystal silicon substrate 11 in an RF plasma CVD chamber of 13.56 to 60 MHz (step S60).
  • film formation is performed with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., a gas pressure of 400 to 600 Pa, a reactive gas flow rate of 10 to 100 sccm, and hydrogen of 500 to 1000 sccm.
  • the back side intrinsic amorphous silicon layer 16 was formed by RF plasma CVD.
  • an n-type amorphous silicon layer 17 which is a back surface high-concentration impurity doped silicon layer having a film thickness of about 20 nm is formed on the back side intrinsic amorphous silicon layer 16 in a 13.56 to 60 MHz RF plasma CVD chamber.
  • a BSF structure is formed on the back side of the n-type single crystal silicon substrate 11 (step S70).
  • the reaction gas flow rate is 5 to 50 sccm for silane, 50 to 200 sccm for hydrogen, and 1% in an atmosphere with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., and a gas pressure of 400 to 600 Pa.
  • Film formation was performed with phosphine diluted with hydrogen at 10 to 50 sccm to form an n-type amorphous silicon layer 17.
  • annealing (forming gas annealing) is performed at 200 ° C. for 10 minutes in an inert gas atmosphere containing 5% hydrogen (step S80). Suppression of recombination due to hydrogen at the substrate interface of the n-type single crystal silicon substrate 11 by annealing at a temperature equal to or higher than the temperature at which the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13 are formed. The effect can be improved.
  • a light-receiving surface side transparent conductive layer 14 made of indium tin oxide (ITO) having a thickness of about 70 nm to 90 nm is formed on the p-type amorphous silicon layer 13 by sputtering.
  • the back side transparent conductive layer 18 made of indium tin oxide (ITO) with a film thickness of about 70 nm to 90 nm is formed on the n-type amorphous silicon layer 17 by sputtering (step S90).
  • a silver (Ag) electrode is formed on the light receiving surface side transparent conductive layer 14 by screen printing and heated to form the light receiving surface side collector electrode 15. Further, silver (Ag) with a film thickness of about 100 nm is formed on the entire surface of the back surface side transparent conductive layer 18 by a sputtering method to form the back surface electrode 19 (step S100).
  • the heterojunction solar cell 10 according to the first embodiment is manufactured.
  • Example 1 a heterojunction solar cell was produced by the above process.
  • a conventional heterojunction solar cell was fabricated by the same process as above except that immersion in isopropyl alcohol and formation of fine irregularities by etching in alkali were not performed after the wire saw damage removing step.
  • Example 1 in which the fine irregularities 11a are formed on the surface of the n-type single crystal silicon substrate 11, the n-type single crystal silicon in the vertical section perpendicular to the in-plane direction of the n-type single crystal silicon substrate 11 is obtained.
  • An inverted triangle shape that reaches the light-receiving surface side transparent conductive layer 14 starting from the fine irregularities 11a on the surface of the substrate 11 and electrically connects the n-type single crystal silicon substrate 11 to the light-receiving surface side transparent conductive layer 14 with low resistance.
  • the epitaxial growth layer 21 was confirmed.
  • FIG. 4 is a vertical cross-sectional TEM image of the sample of Example 1. Fine irregularities having a height difference of about 3 nm to 5 nm are formed on the surface of the n-type single crystal silicon substrate 11, and the p-type amorphous silicon is formed from the a-SiO (i) layer 12 on a relatively large region of the height difference. An inverted triangular epitaxial growth layer 21 is formed over the layer 13. Such a shape is achieved by selecting the alkali etching conditions in the formation process of the fine irregularities 11a of the n-type single crystal silicon substrate 11 and the formation conditions of the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13. Has been.
  • the inverted triangular epitaxial growth layer 21 has a p-type amorphous silicon layer 13 whose growth rate in the (111) direction is high in the n-type single crystal silicon substrate 11 whose principal surface has a (100) plane orientation.
  • the epitaxial growth layer 21 can receive light in an area 10 times or more larger than the area in contact with the starting point (the fine irregularities 11a) of the surface of the n-type single crystal silicon substrate 11.
  • the shape is in contact with the surface-side transparent conductive layer 14. That is, when the surface orientation of the main surface of the n-type single crystal silicon substrate 11 is the (100) plane, the fine irregularities 11a are formed on the surface of the n-type single crystal silicon substrate 11 using the anisotropy. Becomes easy.
  • the crystal grains of the a-SiO (i) layer 12 are also epitaxially grown on the main surface of the n-type single crystal silicon substrate 11, so that the n-type single crystal silicon is utilized by utilizing the film formation conditions with a high (111) plane growth rate. Crystal grains whose area increases in the film thickness direction from the surface of the substrate 11 through the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13 to the light-receiving surface side transparent conductive layer 14 can be formed. .
  • An advantage of this shape is that the potential barrier of the a-SiO (i) layer 12 itself is reduced.
  • the conductivity can be further improved by epitaxially growing a part of the p-type amorphous silicon layer 13.
  • the epitaxial growth layer 21 receives light in such a shape that the area of the epitaxial growth layer 21 in the in-plane direction of the n-type single crystal silicon substrate 11 is widened in the film thickness direction from the n-type single crystal silicon substrate 11 side to the light-receiving surface side transparent conductive layer 14 side. By connecting to the surface side transparent conductive layer 14, it contributes also to the improvement of the contact resistance.
  • An amorphous intrinsic oxygen-containing silicon film has an effect of suppressing recombination on the substrate surface.
  • the region of the epitaxial growth layer 21 is small at the interface of the n-type single crystal silicon substrate 11. It is preferable.
  • the inverted triangular epitaxial growth layer 21 of the p-type amorphous silicon layer 13 is formed by overlapping crystals grown from different growth regions when the region of the epitaxial growth layer 21 spreads in the surrounding amorphous region. Defects are likely to occur. When a defect occurs in the epitaxial growth layer, the open circuit voltage is lowered.
  • the regions of the inverted triangular epitaxial growth layer 21 are separated from each other by n-type single crystal silicon while maintaining a distance at which the crystals grown from different growth regions do not contact each other in the plane of the n-type single crystal silicon substrate 11. It is preferable that they are arranged so as to spread in the plane of the substrate 11. Specifically, the distance between the inverted triangular substrate-side vertices is preferably larger than 1.5 times the thickness of the p-type amorphous silicon layer and smaller than 500 nm.
  • the solar cell by changing the distance between the epitaxial growth layers, if it is smaller than 1.5 times the thickness of the p-type amorphous silicon layer, an overlap with the adjacent epitaxial crystal layer occurs and defects are easily formed. When it is larger than 500 nm, the series resistance is not sufficiently reduced.
  • the thickness of the a-SiO (i) layer 12 is 2 to 3 nm, and the height difference of the fine unevenness 11a is 3 nm to 5 nm, but the height difference of the fine unevenness is the a-SiO (i) layer 12. Is required to be smaller than twice the film thickness of the a-SiO (i) layer 12. The uniformity of the growth of the a-SiO (i) layer 12 in the plane of the n-type single crystal silicon substrate 11 is disturbed by the fine irregularities 11a, which contributes to the formation of the epitaxial growth layer 21.
  • the a-SiO (i) layer 12 is less disturbed, and the epitaxial growth layer 21 is formed starting from the fine irregularities 11a. It will not be done. If the height difference of the fine irregularities 11a is larger than twice the film thickness of the a-SiO (i) layer 12, the a-SiO (i) layer 12 uniformly covers the fine irregularities 11a, so that the epitaxial growth layer 21 is not formed.
  • the current-voltage characteristics of the sample of Example 1 and the sample of Comparative Example 1 were evaluated by irradiation with light of 100 mW / cm 2 in the AM1.5 spectrum.
  • the open circuit voltage was 715 mV and the fill factor was 0.75.
  • the open circuit voltage is 715 mV
  • the fill factor is 0.79
  • the value of the open circuit voltage is the same by forming the fine irregularities 11 a on the surface of the n-type single crystal silicon substrate 11. Although it was a value, the fill factor was 0.04 high.
  • Embodiment 1 a heterojunction solar cell excellent in photoelectric conversion efficiency can be realized.
  • the conductivity type of the substrate is n-type, but it may be p-type.
  • FIG. FIG. 5 is a cross-sectional view schematically illustrating the configuration of the substrate surface on the light-receiving surface side of the solar battery cell that is the photovoltaic device according to the second embodiment.
  • the solar cell according to the second embodiment is in accordance with the first embodiment, except that the surface of the n-type single crystal silicon substrate 11 has a pyramid texture, and an epitaxial growth layer 21 is provided in the gap of the pyramid texture. It has the same configuration as the solar battery cell 10. Therefore, below, it demonstrates paying attention to the characteristic part of the photovoltaic cell concerning Embodiment 2.
  • a random pyramid texture 31 is formed on the surface of an n-type single crystal silicon substrate 11 as shown in FIG.
  • the epitaxial growth layer 21 described in the first embodiment is provided on the flat inter-texture flat portion 32 which is a gap between the respective pyramidal textures 31 (not shown).
  • fine irregularities 11a are formed on the surface of the inter-texture flat portion 32, and the epitaxial growth layer 21 starts from the fine irregularities 11a on the surface of the inter-texture flat portion 32. It is formed by epitaxial growth. That is, the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13 are provided with the epitaxial growth layers 21 that are formed starting from minute irregularities on the surface of the inter-texture flat portion 32. .
  • the light receiving surface side from the n-type single crystal silicon substrate 11 provided with the epitaxial growth layer 21 similarly to the solar battery 10 according to the first embodiment, the light receiving surface side from the n-type single crystal silicon substrate 11 provided with the epitaxial growth layer 21.
  • the effect of reducing the series resistance up to the transparent conductive layer 14 and the effect of suppressing the reduction of the fill factor are obtained.
  • FIG. 6 is a flowchart showing a method for manufacturing a solar battery cell according to the second embodiment.
  • an n-type single crystal silicon substrate 11 having a resistivity of 1 ⁇ cm and a principal plane orientation of (100) is prepared as a substrate, and wire saw damage during slicing is removed in an alkaline solution (step S110).
  • the n-type single crystal silicon substrate 11 is immersed in an alkaline solution to which isopropyl alcohol has been added to form a pyramidal texture 31 on the surface of the n-type single crystal silicon substrate 11 (step S120).
  • the n-type single crystal silicon substrate 11 finishes the texture formation in a slightly shorter time than the pyramidal texture 31 is formed without gaps on the entire surface, and a flat surface of 100 nm to 1 ⁇ m is formed between the pyramidal textures 31.
  • a shape having a (100) plane gap region is formed. If it is difficult to form a texture gap by controlling the texture formation time, once multiple ordinary pyramidal textures without flats are formed, and then isotropic with a mixture of hydrofluoric acid and nitric acid Etching is performed to form a rounded groove (groove having a vertical cross-sectional shape with a rounded inner wall) in the gap of the pyramidal texture, and then the rounded groove is rounded by etching with an alkaline solution. A flat part can also be formed in the gap. In this method, the width of the gap can be easily controlled by controlling the concentration and time of the mixed solution of hydrofluoric acid and nitric acid and the concentration and time of the alkaline solution.
  • etching is performed in a depth region of about 50 nm to 2 ⁇ m from the surface again in an alkaline solution, whereby a flat texture leaving the (100) plane is left.
  • the fine irregularities 11a having a height and width of about 3 nm to 5 nm are formed in the intermediate flat portion 32 (steps S130 and S140).
  • Isopropyl alcohol adhering to the surface of the n-type single crystal silicon substrate 11 by the immersion process in isopropyl alcohol partially acts as an etching mask during etching in an alkaline solution, and can form the fine irregularities 11a. .
  • isopropyl alcohol may be applied to the surface of the n-type single crystal silicon substrate 11 by a spray method, a spin coat method, or the like.
  • a silazane-based organic solvent, a surfactant, or the like may be used as a material used as an etching mask. In this case, the unevenness 11a similar to the above can be formed.
  • the reaction gas flow rate is 10 to 100 sccm for silane, 500 to 1000 sccm for hydrogen, and 5 carbon dioxide gas in an atmosphere with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., and a gas pressure of 400 to 600 Pa.
  • Film formation was performed at ⁇ 20 sccm, and an a-SiO (i) layer 12 was formed by RF plasma CVD.
  • an inverted triangular epitaxial growth layer 21 is formed in the thickness direction of the a-SiO (i) layer 12 inside the a-SiO (i) layer 12, starting from the fine irregularities 11 a on the surface of the inter-texture flat portion 32. It is formed.
  • This epitaxial growth layer on which a-SiO (i) is epitaxially grown is formed to be exposed from the surface of the a-SiO (i) layer 12.
  • a p-type amorphous silicon layer 13 having a thickness of about 20 nm is formed on the a-SiO (i) layer 12 in an RF plasma CVD chamber of 13.56-60 MHz (step S160).
  • the reaction gas flow rate is set to 5 to 50 sccm for silane, 500 to 2000 sccm for hydrogen, and 1% in an atmosphere with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., and a gas pressure of 400 to 600 Pa.
  • Film formation was performed with diborane diluted with hydrogen at 10 to 50 sccm, and a p-type amorphous silicon layer 13 was formed by RF plasma CVD.
  • an inverted triangular epitaxial growth layer is formed in the p-type amorphous silicon layer 13 from the surface of the epitaxial growth layer formed in the a-SiO (i) layer 12 inside the p-type amorphous silicon layer 13. It is formed in the film thickness direction.
  • the fine unevenness 11a on the surface of the texture-to-texture flat portion 32 reaches the light-receiving surface side transparent conductive layer 14 as a starting point, and the electrical resistance between the n-type single crystal silicon substrate 11 and the light-receiving surface side transparent conductive layer 14 is low.
  • an inverted triangular epitaxial growth layer 21 is formed which is connected by
  • a back side intrinsic amorphous silicon layer 16 having a film thickness of about 2 nm to 3 nm is formed on the back side of the n-type single crystal silicon substrate 11 in a 13.56 to 60 MHz RF plasma CVD chamber (step S170).
  • film formation is performed with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., a gas pressure of 400 to 600 Pa, a reactive gas flow rate of 10 to 100 sccm of silane, and 500 to 1000 sccm of hydrogen.
  • the back side intrinsic amorphous silicon layer 16 was formed by RF plasma CVD.
  • an n-type amorphous silicon layer 17 which is a back surface high-concentration impurity doped silicon layer having a film thickness of about 20 nm is formed on the back side intrinsic amorphous silicon layer 16 in a 13.56 to 60 MHz RF plasma CVD chamber.
  • a BSF structure is formed on the back side of the n-type single crystal silicon substrate 11 (step S180).
  • the reaction gas flow rate is set to 5 to 50 sccm for silane, 50 to 200 sccm for hydrogen, and 1% in an atmosphere with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., and a gas pressure of 400 to 600 Pa.
  • Film formation was performed with phosphine diluted with hydrogen at 10 to 50 sccm to form an n-type amorphous silicon layer 17.
  • annealing (forming gas annealing) is performed at 200 ° C. for 10 minutes in an inert gas atmosphere containing 5% hydrogen (step S190). Suppression of recombination due to hydrogen at the substrate interface of the n-type single crystal silicon substrate 11 by annealing at a temperature equal to or higher than the temperature at which the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13 are formed. The effect can be improved.
  • a light-receiving surface side transparent conductive layer 14 made of indium tin oxide (ITO) having a thickness of about 70 nm to 90 nm is formed on the entire surface of the p-type amorphous silicon layer 13 by sputtering.
  • a back side transparent conductive layer 18 made of indium tin oxide (ITO) having a film thickness of about 70 nm to 90 nm is formed on the entire surface of the n-type amorphous silicon layer 17 by sputtering (step S200).
  • a silver (Ag) electrode is formed on the light receiving surface side transparent conductive layer 14 by screen printing and heated to form the light receiving surface side collector electrode 15. Further, silver (Ag) having a film thickness of about 100 nm is formed on the entire surface of the back-side transparent conductive layer 18 by a sputtering method to form the back-side electrode 19 (step S210).
  • the heterojunction solar cell according to the second embodiment is manufactured.
  • Example 2 a heterojunction solar cell was manufactured by the above process.
  • a conventional heterojunction solar cell was fabricated by the same process as above except that immersion in isopropyl alcohol and formation of fine irregularities by etching in alkali were not performed after the pyramidal texture formation step.
  • the current-voltage characteristics of the sample of Example 2 and the sample of Comparative Example 2 were evaluated by irradiation with light of 100 mW / cm 2 in the AM1.5 spectrum.
  • the open circuit voltage was 713 mV and the fill factor was 0.76.
  • the open circuit voltage is 713 mV
  • the fill factor is 0.78
  • the fine irregularities 11 a are formed in the gap region of the random pyramid texture 31 on the surface of the n-type single crystal silicon substrate 11.
  • the value of the open circuit voltage was the same, but the fill factor was 0.02 higher.
  • the fine unevenness 11a is formed in the gap region between the pyramidal textures 31 formed on the surface of the n-type single crystal silicon substrate 11, thereby receiving light from the fine unevenness on the surface of the n-type single crystal silicon substrate 11. It can be said that the inverted triangular epitaxial growth layer 21 reaching the surface-side transparent conductive layer 14 is formed, and the series resistance from the n-type single crystal silicon substrate 11 to the light-receiving surface-side transparent conductive layer 14 is reduced.
  • a heterojunction solar cell excellent in photoelectric conversion efficiency can be realized as in the first embodiment.
  • FIG. 7 is a cross-sectional view schematically illustrating the configuration of the substrate surface on the light-receiving surface side of the solar battery cell that is the photovoltaic device according to the third embodiment.
  • the solar cell according to the third embodiment has the reverse pyramid texture on the surface of the n-type single crystal silicon substrate 11 and has the epitaxial growth layer 21 on the terrace portion of the reverse pyramid texture.
  • 1 has the same configuration as the solar battery cell 10 according to FIG. Therefore, below, it demonstrates paying attention to the characteristic part of the photovoltaic cell concerning Embodiment 3.
  • an inverted pyramid texture 41 is formed on the surface of an n-type single crystal silicon substrate 11 as shown in FIG. And it has the epitaxial growth layer 21 as described in Embodiment 1 on the flat terrace part 42 which is the space
  • minute irregularities 11 a are formed (not shown) as in the first embodiment, and the epitaxial growth layer 21 is formed by epitaxial growth starting from the minute irregularities on the surface of the terrace portion 42.
  • the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13 are provided with the epitaxially grown layers 21 formed starting from the minute irregularities 11 a on the surface of the terrace portion 42.
  • the light receiving surface side from the n-type single crystal silicon substrate 11 provided with the epitaxial growth layer 21 similarly to the solar cell 10 according to the first embodiment, the light receiving surface side from the n-type single crystal silicon substrate 11 provided with the epitaxial growth layer 21.
  • the effect of reducing the series resistance up to the transparent conductive layer 14 and the effect of suppressing the reduction of the fill factor are obtained.
  • the fine irregularities 11a on the (111) surface of the terrace portion 42 having the inverted pyramid structure, the anti-reflection effect, the short-circuit current, and the open-circuit with respect to the n-type single crystal silicon substrate 11 on which the inverted pyramid texture 41 is formed.
  • the effect of improving voltage and fill factor can be achieved.
  • FIG. 8 is a flowchart showing a method for manufacturing a solar battery cell according to the third embodiment.
  • an n-type single crystal silicon substrate 11 having a resistivity of 1 ⁇ cm and a principal plane orientation of (100) is prepared as a substrate, and wire saw damage during slicing is removed in an alkaline solution (step S310).
  • a silicon nitride film for example, is formed on the surface of the n-type single crystal silicon substrate 11 as an etching resistant film for forming the inverted pyramid texture 41 (step S320).
  • a plurality of openings serving as etching holes arranged vertically and horizontally in a matrix form at a pitch of 5 ⁇ m to 20 ⁇ m are formed in the etching resistant film by laser processing to form an etching mask for forming an inverted pyramid texture ( Step S330).
  • the laser intensity at this time is such a laser intensity that the silicon nitride film in the laser irradiation part is completely lost and damage to the n-type single crystal silicon substrate 11 is minimized.
  • the n-type single crystal silicon substrate 11 is immersed in hydrofluoric acid, and isotropic etching is performed on the lower region of the opening and the n-type single crystal silicon substrate 11 in the vicinity thereof starting from the opening. In the isotropic etching, the etching is terminated so that the portions etched in a substantially hemispherical shape from adjacent openings do not overlap.
  • the n-type single crystal silicon substrate 11 is immersed in an alkaline solution to which isopropyl alcohol is added, and anisotropic etching is performed to form an inverted pyramidal texture 41 on the surface of the n-type single crystal silicon substrate 11 (step S340).
  • the substantially hemispherical side surface formed by isotropic etching has an inverted pyramid shape that leaves an (111) plane by anisotropic etching.
  • the anisotropic etching is terminated slightly before the flat (100) plane gap region (terrace portion 42) between the inverted pyramid textures 41 completely disappears, and between the inverted pyramid textures 41,
  • the shape is such that it has a flat (100) terrace portion 42 of 100 nm to 1 ⁇ m.
  • the silicon nitride film used as the etching mask is removed with hydrofluoric acid.
  • etching is performed in a depth region of about 50 nm to 2 ⁇ m from the surface again in an alkaline solution, whereby a flat terrace leaving the (100) plane is left.
  • the fine irregularities 11a having a height and width of about 3 nm to 5 nm are formed on the portion 42 (steps S350 and S360).
  • Isopropyl alcohol adhering to the surface of the n-type single crystal silicon substrate 11 by the immersion process in isopropyl alcohol partially acts as an etching mask during etching in an alkaline solution, and can form the fine irregularities 11a. .
  • isopropyl alcohol may be applied to the surface of the n-type single crystal silicon substrate 11 by a spray method, a spin coat method, or the like.
  • a silazane-based organic solvent, a surfactant, or the like may be used as a material used as an etching mask. In this case, the fine unevenness 11a similar to the above can be formed.
  • the reaction gas flow rate is 10 to 100 sccm for silane, 500 to 1000 sccm for hydrogen, and 5 carbon dioxide gas in an atmosphere with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., and a gas pressure of 400 to 600 Pa.
  • Film formation was performed at ⁇ 20 sccm, and an a-SiO (i) layer 12 was formed by RF plasma CVD.
  • an inverted triangular epitaxial growth layer 21 is formed in the film thickness direction of the a-SiO (i) layer 12 inside the a-SiO (i) layer 12, starting from the fine irregularities 11 a on the surface of the terrace portion 42.
  • the This epitaxial growth layer on which a-SiO (i) is epitaxially grown is formed to be exposed from the surface of the a-SiO (i) layer 12.
  • a p-type amorphous silicon layer 13 having a thickness of about 20 nm is formed on the a-SiO (i) layer 12 in an RF plasma CVD chamber of 13.56-60 MHz (step S160).
  • the reaction gas flow rate is set to 5 to 50 sccm for silane, 500 to 2000 sccm for hydrogen, and 1% in an atmosphere with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., and a gas pressure of 400 to 600 Pa.
  • Film formation was performed with diborane diluted with hydrogen at 10 to 50 sccm, and a p-type amorphous silicon layer 13 was formed by RF plasma CVD.
  • an inverted triangular epitaxial growth layer is formed in the p-type amorphous silicon layer 13 from the surface of the epitaxial growth layer formed in the a-SiO (i) layer 12 inside the p-type amorphous silicon layer 13. It is formed in the film thickness direction.
  • the light receiving surface side transparent conductive layer 14 is reached starting from the fine irregularities 11a on the surface of the terrace portion 42, and the n type single crystal silicon substrate 11 and the light receiving surface side transparent conductive layer 14 are electrically connected with low resistance.
  • An inverted triangular epitaxial growth layer 21 is formed.
  • a back side intrinsic amorphous silicon layer 16 having a film thickness of about 2 nm to 3 nm is formed on the back side of the n-type single crystal silicon substrate 11 in a 13.56 to 60 MHz RF plasma CVD chamber (step S170).
  • film formation is performed with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., a gas pressure of 400 to 600 Pa, a reactive gas flow rate of 10 to 100 sccm of silane, and 500 to 1000 sccm of hydrogen.
  • the back side intrinsic amorphous silicon layer 16 was formed by RF plasma CVD.
  • an n-type amorphous silicon layer 17 which is a back surface high-concentration impurity doped silicon layer having a film thickness of about 20 nm is formed on the back side intrinsic amorphous silicon layer 16 in a 13.56 to 60 MHz RF plasma CVD chamber.
  • a BSF structure is formed on the back side of the n-type single crystal silicon substrate 11 (step S180).
  • the reaction gas flow rate is set to 5 to 50 sccm for silane, 50 to 200 sccm for hydrogen, and 1% in an atmosphere with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., and a gas pressure of 400 to 600 Pa.
  • Film formation was performed with phosphine diluted with hydrogen at 10 to 50 sccm to form an n-type amorphous silicon layer 17.
  • annealing (forming gas annealing) is performed at 200 ° C. for 10 minutes in an inert gas atmosphere containing 5% hydrogen (step S410). Suppression of recombination due to hydrogen at the substrate interface of the n-type single crystal silicon substrate 11 by annealing at a temperature equal to or higher than the temperature at which the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13 are formed. The effect can be improved.
  • a light-receiving surface side transparent conductive layer 14 made of indium tin oxide (ITO) having a thickness of about 70 nm to 90 nm is formed on the p-type amorphous silicon layer 13 by sputtering.
  • the back side transparent conductive layer 18 made of indium tin oxide (ITO) having a film thickness of about 70 nm to 90 nm is formed on the n-type amorphous silicon layer 17 by sputtering (step S420).
  • a silver (Ag) electrode is formed on the light receiving surface side transparent conductive layer 14 by screen printing and heated to form the light receiving surface side collector electrode 15. Further, silver (Ag) having a film thickness of about 100 nm is formed on the entire surface of the back surface side transparent conductive layer 18 by a sputtering method to form the back surface electrode 19 (step S430).
  • the heterojunction solar cell according to the third embodiment is manufactured.
  • Example 3 a heterojunction solar cell was produced by the above process.
  • a conventional heterojunction solar cell was fabricated by the same process as described above except that immersion in isopropyl alcohol and formation of fine irregularities by etching in alkali were not performed after the reverse pyramid texture formation process, and a comparative example Three samples were used.
  • the current-voltage characteristics of the sample of Example 3 and the sample of Comparative Example 3 were evaluated by irradiation with light of 100 mW / cm 2 in the AM1.5 spectrum.
  • the open circuit voltage was 715 mV and the fill factor was 0.76.
  • the open circuit voltage is 715 mV
  • the fill factor is 0.78
  • the fine unevenness 11 a is formed on the terrace portion 42 of the inverted pyramid texture 41 on the surface of the n-type single crystal silicon substrate 11.
  • fine irregularities on the surface of the n-type single crystal silicon substrate 11 are formed by forming fine irregularities 11a on the terrace portion 42 between the inverted pyramidal textures 41 formed on the surface of the n-type single crystal silicon substrate 11. This is because an inverted triangular epitaxial growth layer 21 reaching the light receiving surface side transparent conductive layer 14 is formed, and the series resistance from the n-type single crystal silicon substrate 11 to the light receiving surface side transparent conductive layer 14 is reduced. .
  • a heterojunction solar cell excellent in photoelectric conversion efficiency can be realized as in the first embodiment.
  • one light receiving surface side collecting electrode 15 and the other back surface electrode 19 of adjacent heterojunction solar cells may be electrically connected.
  • the photovoltaic device according to the present invention is useful for realizing a photoelectric conversion device having a heterojunction and having excellent photoelectric conversion efficiency.
  • Heterojunction solar cells (solar cells) 11 n-type single crystal silicon substrate 11a fine irregularities 12 light-receiving surface side intrinsic amorphous oxygen-containing silicon layer (a-SiO (i) layer) 13 p-type amorphous silicon layer 14 light-receiving surface-side transparent conductive layer 15 light-receiving surface-side collector electrode 16 back-side intrinsic amorphous silicon layer 17 n-type amorphous silicon layer 18 back-side transparent conductive layer 19 back-side electrode 21 epitaxial growth layer 31 Pyramid texture 32 Flat part between textures 41 Reverse pyramid texture 42 Terrace part

Abstract

A photovoltaic device is formed by stacking an intrinsic oxygen-containing amorphous silicon layer, an impurity-doped conductive amorphous silicon layer, and a transparent conductive layer in this order directly on a single-crystal silicon substrate of one conductivity type. Crystal particles, the area of which in the surface direction of the single-crystal silicon substrate increases beginning at the surface of the single-crystal silicon substrate and reaching the transparent conductive layer, are scattered inside the intrinsic oxygen-containing amorphous silicon layer and the conductive amorphous silicon layer. This can obtain a photovoltaic device excellent in a photoelectric conversion efficiency.

Description

光起電力装置およびその製造方法、光起電力モジュールPhotovoltaic device, manufacturing method thereof, and photovoltaic module
 本発明は、太陽電池などの光起電力装置およびその製造方法、光起電力モジュールに関し、特に、ヘテロ接合を有する光起電力装置およびその製造方法、光起電力モジュールに関する。 The present invention relates to a photovoltaic device such as a solar cell, a manufacturing method thereof, and a photovoltaic module, and more particularly to a photovoltaic device having a heterojunction, a manufacturing method thereof, and a photovoltaic module.
 現在の一般的な結晶シリコン太陽電池の形成においては、例えば厚さが200μm程度のp型結晶シリコン基板を用いて、光吸収率を高める表面テクスチャ、n型不純物拡散層、反射防止膜および表面電極(例えば、櫛型銀(Ag)電極)が該p型結晶シリコン基板の受光面側に順次形成される。また、裏面電極(例えば、アルミニウム(Al)電極)がスクリーン印刷によって該p型結晶シリコン基板の非受光面側(裏面側)に形成される。そして、これらの電極を焼成することによって結晶シリコン太陽電池が製造されている。 In the formation of a current general crystalline silicon solar cell, for example, a p-type crystalline silicon substrate having a thickness of about 200 μm is used to increase the surface texture, n-type impurity diffusion layer, antireflection film, and surface electrode. (For example, comb-shaped silver (Ag) electrodes) are sequentially formed on the light-receiving surface side of the p-type crystalline silicon substrate. Further, a back electrode (for example, an aluminum (Al) electrode) is formed on the non-light-receiving surface side (back surface side) of the p-type crystalline silicon substrate by screen printing. And the crystalline silicon solar cell is manufactured by baking these electrodes.
 この焼成では、表面電極および裏面電極の溶媒分が揮発するとともに、該p型結晶シリコン基板の受光面側において櫛型Ag電極が反射防止膜を突き破ってn型不純物拡散層に接続する。また、この焼成において、該p型結晶シリコン基板の非受光面側においてAl電極の一部のAlが該p型結晶シリコン基板に拡散して裏面電界層(BSF:Back Surface Field)が形成される。 In this firing, the solvent components of the front electrode and the back electrode are volatilized, and the comb Ag electrode penetrates the antireflection film and is connected to the n-type impurity diffusion layer on the light receiving surface side of the p-type crystal silicon substrate. Further, in this firing, a part of the Al electrode diffuses into the p-type crystalline silicon substrate on the non-light-receiving surface side of the p-type crystalline silicon substrate to form a back surface field layer (BSF: Back Surface Field). .
 このBSF層は、p型結晶シリコン基板との接合面で内部電界を形成して、該BSF層近傍で発生した少数キャリアをp型結晶シリコン基板内部へ押し戻し、Al電極近傍でのキャリア再結合を抑制する効果を有する。しかし、この拡散により形成されるBSF層の膜厚は、適度なドーパント濃度を持つ熱プロセスを用いて形成すると数百nm~数μmの厚い膜厚となり、BSF層内での再結合による開放電圧低下や光吸収よる短絡電流の低下を生じる。 This BSF layer forms an internal electric field at the junction surface with the p-type crystalline silicon substrate, pushes minority carriers generated near the BSF layer back into the p-type crystalline silicon substrate, and recombines carriers near the Al electrode. It has a suppressing effect. However, the BSF layer formed by this diffusion has a thickness of several hundred nm to several μm when it is formed using a thermal process having an appropriate dopant concentration, and the open circuit voltage due to recombination within the BSF layer. This causes a decrease in short circuit current due to a decrease or light absorption.
 例えば特許文献1~特許文献3には、結晶シリコン基板に薄い真性半導体薄膜(i層)を介して薄膜の不純物ドープシリコン層からなる接合或いはBSF層を形成するヘテロ接合太陽電池が記載されている。不純物ドープシリコン層を薄膜で形成することにより、不純物ドープシリコン層の不純物濃度分布を自由に設定でき、また、不純物ドープシリコン層が薄いため膜中でのキャリアの再結合や光吸収を抑制することができ、大きい短絡電流が得られる。また、結晶シリコン基板と不純物ドープシリコン層との間に挿入した真性半導体層はヘテロ接合間の不純物拡散を抑制し、急峻な不純物プロファイルをもつ接合を形成することができるため、良好な接合界面形成により高い開放電圧を得ることができる。 For example, Patent Documents 1 to 3 describe heterojunction solar cells in which a junction made of a thin impurity-doped silicon layer or a BSF layer is formed on a crystalline silicon substrate via a thin intrinsic semiconductor thin film (i layer). . By forming the impurity-doped silicon layer as a thin film, the impurity concentration distribution of the impurity-doped silicon layer can be freely set, and the recombination of carriers and light absorption in the film can be suppressed because the impurity-doped silicon layer is thin. And a large short-circuit current can be obtained. In addition, the intrinsic semiconductor layer inserted between the crystalline silicon substrate and the impurity-doped silicon layer suppresses impurity diffusion between heterojunctions and can form a junction with a steep impurity profile, thus forming a good junction interface. A higher open circuit voltage can be obtained.
 さらに真性半導体薄膜および不純物ドープシリコン層は200℃程度の低温で形成できるため、結晶シリコン基板の厚みが薄い場合においても、熱により結晶シリコン基板に生じるストレスや、結晶シリコン基板の反りを低減することができる。また、熱により劣化しやすい結晶シリコン基板に対しても基板品質の低下を抑制できることが期待できる。 Furthermore, since the intrinsic semiconductor thin film and the impurity-doped silicon layer can be formed at a low temperature of about 200 ° C., even when the thickness of the crystalline silicon substrate is thin, stress generated in the crystalline silicon substrate due to heat and warpage of the crystalline silicon substrate can be reduced. Can do. In addition, it can be expected that a decrease in substrate quality can be suppressed even for a crystalline silicon substrate that is easily deteriorated by heat.
 上記のヘテロ接合太陽電池において、真性半導体層には通常アモルファスシリコン(a-Si)が用いられるが、成膜条件に依存してシリコン基板にエピタキシャル成長を生じることがある。a-Si層が基板にエピタキシャル成長した場合は、欠陥や歪を生じやすいために基板とa-Siのパッシベーション効果が低下し、界面特性の低下、および開放電圧の低下を招く。 In the above heterojunction solar cell, amorphous silicon (a-Si) is usually used for the intrinsic semiconductor layer, but epitaxial growth may occur on the silicon substrate depending on the film formation conditions. When the a-Si layer is epitaxially grown on the substrate, defects and strains are likely to occur, so that the passivation effect between the substrate and the a-Si is reduced, resulting in a reduction in interface characteristics and a reduction in open circuit voltage.
 これらのエピタキシャル成長層形成による界面特性低下を防ぐため、a-Si層形成時の基板温度を100℃~150℃程度の低温とする方法や、例えば特許文献4に示されるようにa-Si膜とシリコン基板との界面に酸素を介在させて酸素含有非晶質シリコン(a-SiO)とすることにより格子不整合を生じさせ、エピタキシャル成長を抑制するとともに界面特性を向上させる方法が検討されている。 In order to prevent the deterioration of the interface characteristics due to the formation of these epitaxial growth layers, a method of setting the substrate temperature at the time of forming the a-Si layer to a low temperature of about 100 ° C. to 150 ° C., for example, as shown in Patent Document 4, A method has been studied in which oxygen is interposed at the interface with the silicon substrate to form oxygen-containing amorphous silicon (a-SiO), thereby causing lattice mismatch, suppressing epitaxial growth and improving interface characteristics.
特許第2132527号明細書Japanese Patent No. 2132527 特許第2614561号公報Japanese Patent No. 2614561 特許第3469729号公報Japanese Patent No. 3469729 特許第4070483号公報Japanese Patent No. 4070483
 しかしながら、真性酸素含有非晶質シリコンは通常の真性非晶質シリコンよりもワイドギャップである。このため、真性半導体層或いはシリコン基板と真性半導体層との間に酸素を介在させて、シリコン基板と不純物ドープ層との間に真性酸素含有非晶質シリコン(a-SiO(i))層を挿入すると、真性酸素含有非晶質シリコン層のポテンシャル障壁によりキャリアが膜を通り抜ける際に抵抗を生じるため、直列抵抗の増加およびフィルファクターの低下につながり、光電変換効率が低下する、という問題があった。 However, intrinsic oxygen-containing amorphous silicon has a wider gap than ordinary intrinsic amorphous silicon. Therefore, an intrinsic oxygen-containing amorphous silicon (a-SiO (i)) layer is interposed between the silicon substrate and the impurity doped layer by interposing oxygen between the intrinsic semiconductor layer or the silicon substrate and the intrinsic semiconductor layer. If inserted, resistance is generated when carriers pass through the film due to the potential barrier of the intrinsic oxygen-containing amorphous silicon layer, leading to an increase in series resistance and a decrease in fill factor, resulting in a decrease in photoelectric conversion efficiency. It was.
 本発明は、上記に鑑みてなされたものであって、光電変換効率に優れた光起電力装置およびその製造方法、光起電力モジュールを得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain a photovoltaic device excellent in photoelectric conversion efficiency, a manufacturing method thereof, and a photovoltaic module.
 上述した課題を解決し、目的を達成するために、本発明にかかる光起電力装置は、一導電型の単結晶シリコン基板の直上に、真性酸素含有非晶質シリコン層と、不純物がドープされた導電性非晶質シリコン層と、透明導電層とがこの順で積層された光起電力装置であって、前記真性酸素含有非晶質シリコン層と前記導電性非晶質シリコン層との内部に、前記単結晶シリコン基板の表面を起点として前記透明導電層に達するまで前記単結晶シリコン基板の面方向における面積が大きくなる結晶粒子が点在していること、を特徴とする。 In order to solve the above-described problems and achieve the object, a photovoltaic device according to the present invention is obtained by doping an intrinsic oxygen-containing amorphous silicon layer and an impurity directly on a single crystal silicon substrate of one conductivity type. A photovoltaic device in which a conductive amorphous silicon layer and a transparent conductive layer are laminated in this order, and the inside of the intrinsic oxygen-containing amorphous silicon layer and the conductive amorphous silicon layer In addition, crystal grains whose area in the plane direction of the single crystal silicon substrate increases from the surface of the single crystal silicon substrate to the transparent conductive layer as a starting point are scattered.
 本発明によれば、光電変換効率に優れた光起電力装置が得られる、という効果を奏する。 According to the present invention, there is an effect that a photovoltaic device excellent in photoelectric conversion efficiency can be obtained.
図1は、本発明の実施の形態1にかかるヘテロ接合太陽電池セルの構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing the configuration of the heterojunction solar cell according to the first embodiment of the present invention. 図2は、本発明の実施の形態1にかかる太陽電池セルの構成を示す要部断面図である。FIG. 2 is a cross-sectional view of the main part showing the configuration of the solar battery cell according to the first embodiment of the present invention. 図3は、本発明の実施の形態1にかかる太陽電池セルの製造方法を示すフローチャートである。FIG. 3 is a flowchart showing the method for manufacturing the solar battery cell according to the first embodiment of the present invention. 図4は、実施例のサンプル太陽電池セルの縦断面TEM画像である。FIG. 4 is a vertical cross-sectional TEM image of the sample solar battery cell of the example. 図5は、本発明の実施の形態2にかかる太陽電池セルの受光面側の基板表面の構成を模式的に示す断面図である。FIG. 5: is sectional drawing which shows typically the structure of the board | substrate surface by the side of the light-receiving surface of the photovoltaic cell concerning Embodiment 2 of this invention. 図6は、本発明の実施の形態2にかかる太陽電池セルの製造方法を示すフローチャートである。FIG. 6 is a flowchart showing a method for manufacturing a solar battery cell according to the second embodiment of the present invention. 図7は、本発明の実施の形態3にかかる太陽電池セルの受光面側の基板表面の構成を模式的に示す断面図である。FIG. 7: is sectional drawing which shows typically the structure of the board | substrate surface at the side of the light-receiving surface of the photovoltaic cell concerning Embodiment 3 of this invention. 図8は、本発明の実施の形態3にかかる太陽電池セルの製造方法を示すフローチャートである。FIG. 8 is a flowchart showing a method for manufacturing a solar battery cell according to the third embodiment of the present invention.
 以下に、本発明にかかる光起電力装置およびその製造方法、光起電力モジュールの実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。 Hereinafter, embodiments of a photovoltaic device, a manufacturing method thereof, and a photovoltaic module according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following description, In the range which does not deviate from the summary of this invention, it can change suitably. In the drawings shown below, the scale of each member may be different from the actual scale for easy understanding. The same applies between the drawings.
実施の形態1.
 図1は、実施の形態1にかかる光起電力装置であるヘテロ接合太陽電池セル(以下、太陽電池セルと呼ぶ場合がある)の構成を模式的に示す断面図である。この太陽電池セル10は、n型単結晶シリコン基板11と、このn型単結晶シリコン基板11の受光面側の直上に順次積層された受光面側真性非晶質酸素含有シリコン層12(以下、a-SiO(i)層12と呼ぶ)、導電性非晶質シリコン層として不純物がドープされたp型非晶質シリコン層13、受光面側透明導電層14および受光面側集電極15を備える。また、太陽電池セル10は、n型単結晶シリコン基板11の受光面側とは反対側(裏面)の表面に順次積層された裏面側真性非晶質シリコン層16、導電性非晶質シリコン層として不純物が高濃度にドープされたn型非晶質シリコン層17、裏面側透明導電層18および裏面電極19を備える。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view schematically showing a configuration of a heterojunction solar battery cell (hereinafter sometimes referred to as a solar battery cell) that is the photovoltaic device according to the first embodiment. The solar battery cell 10 includes an n-type single crystal silicon substrate 11 and a light-receiving surface side intrinsic amorphous oxygen-containing silicon layer 12 (hereinafter referred to as “light-receiving surface side”) that is sequentially stacked immediately above the light-receiving surface side of the n-type single crystal silicon substrate 11. a-SiO (i) layer 12), a p-type amorphous silicon layer 13 doped with impurities as a conductive amorphous silicon layer, a light-receiving surface-side transparent conductive layer 14, and a light-receiving-surface-side collector electrode 15. . Further, the solar battery cell 10 includes a back-side intrinsic amorphous silicon layer 16 and a conductive amorphous silicon layer that are sequentially stacked on the surface opposite to the light-receiving surface side (back surface) of the n-type single crystal silicon substrate 11. As an n-type amorphous silicon layer 17 doped with a high concentration of impurities, a back-side transparent conductive layer 18 and a back-side electrode 19.
 図2は、太陽電池セル10の構成を示す要部断面図である。太陽電池セル10では、n型単結晶シリコン基板11上に、薄膜のa-SiO(i)層12と薄膜のp型非晶質シリコン層13と薄膜の受光面側透明導電層14とがこの順で積層形成されている。これにより、薄いa-SiO(i)層12を介してn型単結晶シリコン基板11と薄膜のp型非晶質シリコン層13とのヘテロ接合が形成されている。p型非晶質シリコン層13を薄膜で形成することにより、p型非晶質シリコン層13の不純物濃度分布を自由に設定でき、また、p型非晶質シリコン層13が薄いため膜中でのキャリアの再結合や光吸収を抑制することができ、大きい短絡電流が得られる。また、n型単結晶シリコン基板11とp型非晶質シリコン層13との間に挿入したa-SiO(i)層12はヘテロ接合間の不純物拡散を抑制し、急峻な不純物プロファイルをもつ接合を形成することができるため、良好な接合界面形成により高い開放電圧を得ることができる。 FIG. 2 is a cross-sectional view showing the main part of the configuration of the solar battery cell 10. In the solar cell 10, a thin a-SiO (i) layer 12, a thin p-type amorphous silicon layer 13, and a thin light-receiving surface side transparent conductive layer 14 are formed on an n-type single crystal silicon substrate 11. They are stacked in order. Thus, a heterojunction is formed between the n-type single crystal silicon substrate 11 and the thin p-type amorphous silicon layer 13 via the thin a-SiO (i) layer 12. By forming the p-type amorphous silicon layer 13 as a thin film, the impurity concentration distribution of the p-type amorphous silicon layer 13 can be freely set, and since the p-type amorphous silicon layer 13 is thin, Carrier recombination and light absorption can be suppressed, and a large short-circuit current can be obtained. The a-SiO (i) layer 12 inserted between the n-type single crystal silicon substrate 11 and the p-type amorphous silicon layer 13 suppresses impurity diffusion between heterojunctions, and has a steep impurity profile. Therefore, a high open circuit voltage can be obtained by forming a good bonding interface.
 また、薄膜のa-SiO(i)層12および薄膜のp型非晶質シリコン層13は200℃程度の低温で形成できるため、n型単結晶シリコン基板11の厚みが薄い場合においても、熱によりn型単結晶シリコン基板11に生じるストレスや、n型単結晶シリコン基板11の反りを低減することができる。また、熱により劣化しやすいn型単結晶シリコン基板11に対しても基板品質の低下を抑制できる。 Further, since the thin a-SiO (i) layer 12 and the thin p-type amorphous silicon layer 13 can be formed at a low temperature of about 200 ° C., even when the n-type single crystal silicon substrate 11 is thin, As a result, stress generated in the n-type single crystal silicon substrate 11 and warpage of the n-type single crystal silicon substrate 11 can be reduced. In addition, it is possible to suppress a decrease in substrate quality even for the n-type single crystal silicon substrate 11 that is easily deteriorated by heat.
 また、太陽電池セル10では、n型単結晶シリコン基板11の受光面側の表面に微細凹凸11aが形成されている。そして、n型単結晶シリコン基板11の面内方向に垂直な縦断面において微細凹凸11aを起点として膜厚方向に受光面側透明導電層14まで達して、n型単結晶シリコン基板11から受光面側透明導電層14までを電気的に低抵抗で接続する逆三角形状のエピタキシャル成長層21が、n型単結晶シリコン基板11の面内方向において点在して形成されている。 Further, in the solar battery cell 10, fine irregularities 11a are formed on the surface of the n-type single crystal silicon substrate 11 on the light receiving surface side. Then, in the vertical cross section perpendicular to the in-plane direction of the n-type single crystal silicon substrate 11, the fine unevenness 11 a starts as a starting point and reaches the light-receiving surface-side transparent conductive layer 14 in the film thickness direction, from the n-type single crystal silicon substrate 11 to the light-receiving surface. Inverted triangular epitaxial growth layers 21 that electrically connect up to the side transparent conductive layer 14 with low resistance are formed scattered in the in-plane direction of the n-type single crystal silicon substrate 11.
 a-SiO(i)層12は、通常のp型非晶質シリコン層13よりもワイドギャップであるため、n型単結晶シリコン基板11とp型非晶質シリコン層13との間にa-SiO(i)層12を挿入すると、a-SiO(i)層12のポテンシャル障壁によりキャリアが膜を通り抜ける際に抵抗を生じ、直列抵抗の増加およびフィルファクターの低下につながり、光電変換効率が低下する。 Since the a-SiO (i) layer 12 has a wider gap than the normal p-type amorphous silicon layer 13, the a-SiO (i) layer 12 has an a− between the n-type single crystal silicon substrate 11 and the p-type amorphous silicon layer 13. Inserting the SiO (i) layer 12 causes resistance when carriers pass through the film due to the potential barrier of the a-SiO (i) layer 12, leading to an increase in series resistance and a decrease in fill factor, resulting in a decrease in photoelectric conversion efficiency. To do.
 しかしながら、本実施の形態にかかる太陽電池10では、微細凹凸11aを起点として膜厚方向に受光面側透明導電層14まで達して、n型単結晶シリコン基板11から受光面側透明導電層14までを電気的に接続するエピタキシャル成長層21が、n型単結晶シリコン基板11の面内方向において点在して形成されている。また、n型単結晶シリコン基板11の面内方向におけるエピタキシャル成長層21の面積はn型単結晶シリコン基板11側から受光面側透明導電層14側に向かって大きくなる形状とされている。 However, in solar cell 10 according to the present embodiment, light receiving surface side transparent conductive layer 14 is reached in the film thickness direction starting from fine irregularities 11a, and from n-type single crystal silicon substrate 11 to light receiving surface side transparent conductive layer 14. Epitaxially grown layers 21 that are electrically connected to each other are formed scattered in the in-plane direction of the n-type single crystal silicon substrate 11. Further, the area of the epitaxial growth layer 21 in the in-plane direction of the n-type single crystal silicon substrate 11 has a shape that increases from the n-type single crystal silicon substrate 11 side toward the light-receiving surface side transparent conductive layer 14 side.
 a-SiO(i)層12中およびp型非晶質シリコン層13中の一部がエピタキシャル成長して結晶化(結晶粒子)したエピタキシャル成長層21は、シリコン層が非晶質の場合よりも低抵抗となる。そして、この結晶粒子は受光面側透明導電層14に広い面積で接触するので、p型非晶質シリコン層13と受光面側透明導電層14との電気的な接続が良好になる。a-SiO(i)層12およびp型非晶質シリコン層13が結晶化したエピタキシャル成長層21は、電気電導度の増加およびポテンシャル障壁の低減効果が得られるため、n型単結晶シリコン基板11から受光面側透明導電層14までの直列抵抗の増加の抑制およびフィルファクターの低下を抑制することができる。 The epitaxial growth layer 21 in which a part of the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13 is epitaxially grown and crystallized (crystal grains) has a lower resistance than the case where the silicon layer is amorphous. It becomes. And since this crystal particle contacts the light-receiving surface side transparent conductive layer 14 in a wide area, the electrical connection of the p-type amorphous silicon layer 13 and the light-receiving surface side transparent conductive layer 14 becomes favorable. The epitaxial growth layer 21 obtained by crystallizing the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13 can increase the electric conductivity and reduce the potential barrier. It is possible to suppress an increase in series resistance up to the light receiving surface side transparent conductive layer 14 and a decrease in fill factor.
 また、エピタキシャル成長により結晶化したシリコン膜はn型単結晶シリコン基板11に対するパッシベーション効果を低下させる。しかし、太陽電池セル10では、n型単結晶シリコン基板11上のa-SiO(i)層12においてエピタキシャル成長したエピタキシャル成長層21は、n型単結晶シリコン基板11の面内方向において点在して配置されてn型単結晶シリコン基板11に狭い領域で接続する。このため、n型単結晶シリコン基板11に対するパッシベーション効果を低下させることなくp型非晶質シリコン層13と受光面側透明導電層14との電気的な接続およびフィルファクターを改善できる。 Also, the silicon film crystallized by epitaxial growth reduces the passivation effect on the n-type single crystal silicon substrate 11. However, in the solar cell 10, the epitaxial growth layers 21 epitaxially grown on the a-SiO (i) layer 12 on the n-type single crystal silicon substrate 11 are scattered and arranged in the in-plane direction of the n-type single crystal silicon substrate 11. Then, it is connected to the n-type single crystal silicon substrate 11 in a narrow region. Therefore, the electrical connection and fill factor between the p-type amorphous silicon layer 13 and the light-receiving surface side transparent conductive layer 14 can be improved without reducing the passivation effect on the n-type single crystal silicon substrate 11.
 また、エピタキシャル成長層21のうちa-SiO(i)層12がエピタキシャル成長した部分がn型単結晶シリコン基板11に接触する面積に対して、エピタキシャル成長層21のうちp型非晶質シリコン層13がエピタキシャル成長した部分が受光面側透明導電層14に接触する面積が10倍以上大きいことにより、n型単結晶シリコン基板11に対するパッシベーション効果を低下させることなくフィルファクターを確実に改善できる。 Further, the p-type amorphous silicon layer 13 of the epitaxial growth layer 21 is epitaxially grown with respect to the area where the portion of the epitaxial growth layer 21 where the a-SiO (i) layer 12 is epitaxially grown contacts the n-type single crystal silicon substrate 11. Since the area where the portion thus made contacts the light-receiving surface side transparent conductive layer 14 is 10 times or more larger, the fill factor can be reliably improved without deteriorating the passivation effect on the n-type single crystal silicon substrate 11.
 つぎに、このような太陽電池セル10の製造方法について図3を参照して説明する。図3は、実施の形態1にかかる太陽電池セル10の製造方法を示すフローチャートである。 Next, a method for manufacturing such a solar battery cell 10 will be described with reference to FIG. FIG. 3 is a flowchart illustrating a method for manufacturing the solar battery cell 10 according to the first embodiment.
 まず、基板として抵抗率が1Ωcmであり主面の面方位が(100)であるn型単結晶シリコン基板11を用意し、アルカリ溶液中でスライス時のワイヤーソーダメージを除去する(ステップS10)。つぎに、n型単結晶シリコン基板11をイソプロピルアルコールに浸漬した後、再度アルカリ溶液中で表面から50nm~2μm程度の深さ領域のエッチングを行うことにより、高さおよび幅が3nm~5nm程度の微細凹凸11aを形成する(ステップS20、ステップS30)。イソプロピルアルコールへの浸漬工程によりn型単結晶シリコン基板11の表面に付着したイソプロピルアルコールは、アルカリ溶液中でのエッチング時に部分的にエッチングマスクとして作用し、上記の微細凹凸11aを形成することができる。すなわち、n型単結晶シリコン基板11表面に有機溶媒を塗布し、その後アルカリ溶液によりn型単結晶シリコン基板11をエッチングすることにより、n型単結晶シリコン基板11の異方性を利用してn型単結晶シリコン基板11表面に微細凹凸11aを形成することができる。  First, an n-type single crystal silicon substrate 11 having a resistivity of 1 Ωcm and a plane orientation of (100) as a substrate is prepared, and wire saw damage during slicing is removed in an alkaline solution (step S10). Next, after immersing the n-type single crystal silicon substrate 11 in isopropyl alcohol, etching is performed in a depth region of about 50 nm to 2 μm from the surface again in an alkaline solution, so that the height and width are about 3 nm to 5 nm. Fine irregularities 11a are formed (step S20, step S30). Isopropyl alcohol adhering to the surface of the n-type single crystal silicon substrate 11 by the immersion process in isopropyl alcohol partially acts as an etching mask during etching in an alkaline solution, and can form the fine irregularities 11a. . That is, an organic solvent is applied to the surface of the n-type single crystal silicon substrate 11, and then the n-type single crystal silicon substrate 11 is etched with an alkaline solution. Fine irregularities 11 a can be formed on the surface of the type single crystal silicon substrate 11. *
 ここではn型単結晶シリコン基板11をイソプロピルアルコールに浸漬する方法を示したが、スプレー法やスピンコート法などによってイソプロピルアルコールをn型単結晶シリコン基板11の表面に塗布してもよい。また、エッチングマスクとして用いる材料は、イソプロピルアルコール以外にもシラザン系の有機溶媒や、界面活性剤などを用いてもよく、この場合も上記と同様の凹凸を形成することができる。 Here, a method of immersing the n-type single crystal silicon substrate 11 in isopropyl alcohol is shown, but isopropyl alcohol may be applied to the surface of the n-type single crystal silicon substrate 11 by a spray method, a spin coat method, or the like. In addition to isopropyl alcohol, a silazane-based organic solvent, a surfactant, or the like may be used as a material used as an etching mask. In this case, the same unevenness as described above can be formed.
 また、ここではワイヤーソーダメージにおける金属汚染の影響を減らすためにワイヤーソーダメージ除去工程後に微細凹凸11aを形成したが、ワイヤーソーにおける金属汚染の影響が少ない場合にはワイヤーソーダメージ除去を行わずにn型単結晶シリコン基板11をイソプロピルアルコールに浸漬し、その後アルカリ溶液でエッチングを行うことによりワイヤーソーダメージの除去と微細凹凸11aの形成とを兼ねてもよい。 Further, here, the fine irregularities 11a are formed after the wire saw damage removing process in order to reduce the influence of the metal contamination in the wire saw damage. However, when the influence of the metal contamination in the wire saw is small, the wire saw damage is not removed. The n-type single crystal silicon substrate 11 may be immersed in isopropyl alcohol and then etched with an alkaline solution to serve as both removal of wire saw damage and formation of fine irregularities 11a.
 つぎに、n型単結晶シリコン基板11に対してRCA洗浄、希フッ酸での酸化膜除去を施した後、13.56~60MHzのRFプラズマCVDチャンバで、膜厚約2nm~3nmのa-SiO(i)層12をn型単結晶シリコン基板11の受光面側に形成する(ステップS40)。実施の形態1では、RF出力20~100mW/cm、基板温度100~200℃、ガス圧400~600Paの雰囲気下で、反応ガスの流量をシラン10~100sccm、水素500~1000sccm、炭酸ガス5~20sccmとして成膜を行なってRFプラズマCVDによりa-SiO(i)層12を形成した。 Next, after RCA cleaning and removal of the oxide film with dilute hydrofluoric acid are performed on the n-type single crystal silicon substrate 11, an a- film having a film thickness of about 2 nm to 3 nm is formed in an RF plasma CVD chamber of 13.56 to 60 MHz. The SiO (i) layer 12 is formed on the light receiving surface side of the n-type single crystal silicon substrate 11 (step S40). In the first embodiment, in an atmosphere of RF output 20 to 100 mW / cm 2 , substrate temperature 100 to 200 ° C., gas pressure 400 to 600 Pa, the reaction gas flow rate is silane 10 to 100 sccm, hydrogen 500 to 1000 sccm, carbon dioxide gas 5 Film formation was performed at ˜20 sccm, and an a-SiO (i) layer 12 was formed by RF plasma CVD.
 このとき、a-SiO(i)層12の内部に、n型単結晶シリコン基板11の表面の微細凹凸11aを起点として逆三角形状のエピタキシャル成長層が、a-SiO(i)層12の膜厚方向に形成される。a-SiO(i)がエピタキシャル成長したこのエピタキシャル成長層は、a-SiO(i)層12の表面から露出して形成される。 At this time, an inverted triangular epitaxial growth layer starting from the fine irregularities 11 a on the surface of the n-type single crystal silicon substrate 11 is formed in the a-SiO (i) layer 12. Formed in the direction. This epitaxial growth layer on which a-SiO (i) is epitaxially grown is formed to be exposed from the surface of the a-SiO (i) layer 12.
 つぎに、13.56~60MHzのRFプラズマCVDチャンバで、膜厚約20nmのp型非晶質シリコン層13をa-SiO(i)層12上に形成する(ステップS50)。実施の形態1では、RF出力20~100mW/cm、基板温度100~200℃、ガス圧400~600Paの雰囲気下で、反応ガスの流量をシラン5~50sccm、水素500~2000sccm、1%に水素希釈したジボラン10~50sccmとして成膜を行なってRFプラズマCVDによりp型非晶質シリコン層13を形成した。 Next, a p-type amorphous silicon layer 13 having a thickness of about 20 nm is formed on the a-SiO (i) layer 12 in an RF plasma CVD chamber of 13.56-60 MHz (step S50). In the first embodiment, the reaction gas flow rate is 5 to 50 sccm for silane, 500 to 2000 sccm for hydrogen, and 1% in an atmosphere with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., and a gas pressure of 400 to 600 Pa. Film formation was performed with diborane diluted with hydrogen at 10 to 50 sccm, and a p-type amorphous silicon layer 13 was formed by RF plasma CVD.
 このとき、p型非晶質シリコン層13の内部に、a-SiO(i)層12に形成されたエピタキシャル成長層の表面を起点として逆三角形状のエピタキシャル成長層がp型非晶質シリコン層13の膜厚方向に形成される。これにより、n型単結晶シリコン基板11の表面の微細凹凸11aを起点として受光面側透明導電層14まで達して、n型単結晶シリコン基板11から受光面側透明導電層14までを電気的に低抵抗で接続する逆三角形状のエピタキシャル成長層21が形成される。 At this time, an inverted triangular epitaxial growth layer is formed in the p-type amorphous silicon layer 13 from the surface of the epitaxial growth layer formed in the a-SiO (i) layer 12 inside the p-type amorphous silicon layer 13. It is formed in the film thickness direction. Thus, the fine unevenness 11a on the surface of the n-type single crystal silicon substrate 11 reaches the light-receiving surface side transparent conductive layer 14 as a starting point, and the n-type single crystal silicon substrate 11 to the light-receiving surface side transparent conductive layer 14 are electrically connected. An inverted triangular epitaxial growth layer 21 connected with a low resistance is formed.
 つぎに、13.56~60MHzのRFプラズマCVDチャンバで、膜厚約2nm~3nmの裏面側真性非晶質シリコン層16をn型単結晶シリコン基板11の裏面に形成する(ステップS60)。実施の形態1では、RF出力20~100mW/cm、基板温度100~200℃、ガス圧400~600Paの雰囲気下で、反応ガスの流量を10~100sccm、水素500~1000sccm、として成膜を行なってRFプラズマCVDにより裏面側真性非晶質シリコン層16を形成した。 Next, a back side intrinsic amorphous silicon layer 16 having a film thickness of about 2 nm to 3 nm is formed on the back side of the n-type single crystal silicon substrate 11 in an RF plasma CVD chamber of 13.56 to 60 MHz (step S60). In the first embodiment, film formation is performed with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., a gas pressure of 400 to 600 Pa, a reactive gas flow rate of 10 to 100 sccm, and hydrogen of 500 to 1000 sccm. Then, the back side intrinsic amorphous silicon layer 16 was formed by RF plasma CVD.
 つぎに、13.56~60MHzのRFプラズマCVDチャンバで、膜厚約20nmの裏面高濃度不純物ドープシリコン層であるn型非晶質シリコン層17を裏面側真性非晶質シリコン層16上に形成してn型単結晶シリコン基板11の裏面側にBSF構造を形成する(ステップS70)。実施の形態1では、RF出力20~100mW/cm、基板温度100~200℃、ガス圧400~600Paの雰囲気下で、反応ガスの流量をシラン5~50sccm、水素50~200sccm、1%に水素希釈したホスフィン10~50sccmとして成膜を行なって、n型非晶質シリコン層17を形成した。 Next, an n-type amorphous silicon layer 17 which is a back surface high-concentration impurity doped silicon layer having a film thickness of about 20 nm is formed on the back side intrinsic amorphous silicon layer 16 in a 13.56 to 60 MHz RF plasma CVD chamber. Then, a BSF structure is formed on the back side of the n-type single crystal silicon substrate 11 (step S70). In the first embodiment, the reaction gas flow rate is 5 to 50 sccm for silane, 50 to 200 sccm for hydrogen, and 1% in an atmosphere with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., and a gas pressure of 400 to 600 Pa. Film formation was performed with phosphine diluted with hydrogen at 10 to 50 sccm to form an n-type amorphous silicon layer 17.
 つぎに、水素を5%含む不活性ガス雰囲気下で、200℃で10分間、アニール(フォーミングガスアニール)を行なう(ステップS80)。a-SiO(i)層12およびp型非晶質シリコン層13を形成した温度と同温またはより高い温度でアニールすることにより、n型単結晶シリコン基板11の基板界面における水素による再結合抑制効果を向上させることができる。 Next, annealing (forming gas annealing) is performed at 200 ° C. for 10 minutes in an inert gas atmosphere containing 5% hydrogen (step S80). Suppression of recombination due to hydrogen at the substrate interface of the n-type single crystal silicon substrate 11 by annealing at a temperature equal to or higher than the temperature at which the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13 are formed. The effect can be improved.
 つぎに、膜厚約70nm~90nmの酸化インジウム錫(ITO:Indium Tin Oxide)からなる受光面側透明導電層14をスパッタリング法によりp型非晶質シリコン層13上に形成する。また、スパッタリング法により膜厚約70nm~90nmの酸化インジウム錫(ITO)からなる裏面側透明導電層18をスパッタリング法によりn型非晶質シリコン層17上に形成する(ステップS90)。 Next, a light-receiving surface side transparent conductive layer 14 made of indium tin oxide (ITO) having a thickness of about 70 nm to 90 nm is formed on the p-type amorphous silicon layer 13 by sputtering. Further, the back side transparent conductive layer 18 made of indium tin oxide (ITO) with a film thickness of about 70 nm to 90 nm is formed on the n-type amorphous silicon layer 17 by sputtering (step S90).
 ついで、受光面側透明導電層14上に銀(Ag)電極をスクリーン印刷により形成し、加熱して受光面側集電極15を形成する。また、裏面側透明導電層18上の全面に膜厚約100nmの銀(Ag)をスパッタリング法により形成して裏面電極19を形成する(ステップS100)。 Next, a silver (Ag) electrode is formed on the light receiving surface side transparent conductive layer 14 by screen printing and heated to form the light receiving surface side collector electrode 15. Further, silver (Ag) with a film thickness of about 100 nm is formed on the entire surface of the back surface side transparent conductive layer 18 by a sputtering method to form the back surface electrode 19 (step S100).
 以上の工程を実施することにより、実施の形態1にかかるヘテロ接合太陽電池セル10が作製される。 By performing the above steps, the heterojunction solar cell 10 according to the first embodiment is manufactured.
 つぎに、具体的な実施例に基づいて本発明を説明する。実施例1のサンプルとして、上記プロセスによりヘテロ接合太陽電池セルを作製した。比較のため、ワイヤーソーダメージ除去工程後にイソプロピルアルコールへの浸漬とアルカリ中でのエッチングによる微細凹凸形成を行わない以外は上記と同じプロセスで従来型のヘテロ接合太陽電池セルを作製し、比較例1のサンプルとした。 Next, the present invention will be described based on specific examples. As a sample of Example 1, a heterojunction solar cell was produced by the above process. For comparison, a conventional heterojunction solar cell was fabricated by the same process as above except that immersion in isopropyl alcohol and formation of fine irregularities by etching in alkali were not performed after the wire saw damage removing step. Samples of
 n型単結晶シリコン基板11の表面に微細凹凸11aを形成した実施例1のサンプルと、比較例1のサンプルとの各々についてn型単結晶シリコン基板11表面付近の透過型電子顕微鏡(TEM:Transmission Electron Microscope)による観察を行った。その結果、n型単結晶シリコン基板11の表面に微細凹凸を形成していない比較例1のサンプルでは、a-SiO(i)層12およびp型非晶質シリコン層13のいずれにおいてもエピタキシャル成長層が見られなかった。 A transmission electron microscope (TEM) in the vicinity of the surface of the n-type single crystal silicon substrate 11 for each of the sample of Example 1 in which fine irregularities 11a are formed on the surface of the n-type single crystal silicon substrate 11 and the sample of Comparative Example 1. Observation was performed with an Electron Microscope. As a result, in the sample of Comparative Example 1 in which the fine irregularities are not formed on the surface of the n-type single crystal silicon substrate 11, the epitaxial growth layer is formed in both the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13. Was not seen.
 これに対して、n型単結晶シリコン基板11の表面に微細凹凸11aを形成した実施例1のサンプルでは、n型単結晶シリコン基板11の面内方向に垂直な縦断面においてn型単結晶シリコン基板11の表面の微細凹凸11aを起点として受光面側透明導電層14まで達して、n型単結晶シリコン基板11から受光面側透明導電層14までを電気的に低抵抗に接続する逆三角形状のエピタキシャル成長層21が確認された。 On the other hand, in the sample of Example 1 in which the fine irregularities 11a are formed on the surface of the n-type single crystal silicon substrate 11, the n-type single crystal silicon in the vertical section perpendicular to the in-plane direction of the n-type single crystal silicon substrate 11 is obtained. An inverted triangle shape that reaches the light-receiving surface side transparent conductive layer 14 starting from the fine irregularities 11a on the surface of the substrate 11 and electrically connects the n-type single crystal silicon substrate 11 to the light-receiving surface side transparent conductive layer 14 with low resistance. The epitaxial growth layer 21 was confirmed.
 図4は、実施例1のサンプルの縦断面TEM画像である。n型単結晶シリコン基板11の表面には高低差3nm~5nm程度の微細凹凸が形成されており、高低差の比較的大きい領域上にa-SiO(i)層12からp型非晶質シリコン層13にわたって逆三角形状のエピタキシャル成長層21が形成されている。このような形状は、n型単結晶シリコン基板11の微細凹凸11aの形成過程におけるアルカリエッチング条件、a-SiO(i)層12およびp型非晶質シリコン層13の形成条件を選ぶことにより達成されている。 FIG. 4 is a vertical cross-sectional TEM image of the sample of Example 1. Fine irregularities having a height difference of about 3 nm to 5 nm are formed on the surface of the n-type single crystal silicon substrate 11, and the p-type amorphous silicon is formed from the a-SiO (i) layer 12 on a relatively large region of the height difference. An inverted triangular epitaxial growth layer 21 is formed over the layer 13. Such a shape is achieved by selecting the alkali etching conditions in the formation process of the fine irregularities 11a of the n-type single crystal silicon substrate 11 and the formation conditions of the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13. Has been.
 この逆三角形状のエピタキシャル成長層21は、主面の面方位が(100)であるn型単結晶シリコン基板11において(111)方向への成長速度が速くなるようなp型非晶質シリコン層13の成膜条件を用いることにより形成することができ、これにより、エピタキシャル成長層21はn型単結晶シリコン基板11の表面の起点(微細凹凸11a)に接触する面積よりも10倍以上広い面積で受光面側透明導電層14に接触する形状となっている。すなわち、n型単結晶シリコン基板11の主面の面方位が(100)面であることにより、その異方性を利用してn型単結晶シリコン基板11表面に微細な凹凸11aを形成することが容易となる。また、a-SiO(i)層12の結晶粒子もn型単結晶シリコン基板11主面にエピタキシャル成長することにより、(111)面の成長速度が速い膜形成条件を利用してn型単結晶シリコン基板11表面からa-SiO(i)層12、p型非晶質シリコン層13を介して受光面側透明導電層14まで膜厚方向に面積が拡大するような結晶粒子を形成することができる。 The inverted triangular epitaxial growth layer 21 has a p-type amorphous silicon layer 13 whose growth rate in the (111) direction is high in the n-type single crystal silicon substrate 11 whose principal surface has a (100) plane orientation. Thus, the epitaxial growth layer 21 can receive light in an area 10 times or more larger than the area in contact with the starting point (the fine irregularities 11a) of the surface of the n-type single crystal silicon substrate 11. The shape is in contact with the surface-side transparent conductive layer 14. That is, when the surface orientation of the main surface of the n-type single crystal silicon substrate 11 is the (100) plane, the fine irregularities 11a are formed on the surface of the n-type single crystal silicon substrate 11 using the anisotropy. Becomes easy. Further, the crystal grains of the a-SiO (i) layer 12 are also epitaxially grown on the main surface of the n-type single crystal silicon substrate 11, so that the n-type single crystal silicon is utilized by utilizing the film formation conditions with a high (111) plane growth rate. Crystal grains whose area increases in the film thickness direction from the surface of the substrate 11 through the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13 to the light-receiving surface side transparent conductive layer 14 can be formed. .
 この形状における利点は、a-SiO(i)層12自体のポテンシャル障壁を低減することである。またこれ以外の利点として、p型非晶質シリコン層13の一部もエピタキシャル成長させることにより、導電率をさらに改善することができる。n型単結晶シリコン基板11の面内方向におけるエピタキシャル成長層21の面積がn型単結晶シリコン基板11側から受光面側透明導電層14側に膜厚方向において広がった形状で該エピタキシャル成長層21が受光面側透明導電層14に接続することにより、その接触抵抗の改善にも寄与している。 An advantage of this shape is that the potential barrier of the a-SiO (i) layer 12 itself is reduced. As another advantage, the conductivity can be further improved by epitaxially growing a part of the p-type amorphous silicon layer 13. The epitaxial growth layer 21 receives light in such a shape that the area of the epitaxial growth layer 21 in the in-plane direction of the n-type single crystal silicon substrate 11 is widened in the film thickness direction from the n-type single crystal silicon substrate 11 side to the light-receiving surface side transparent conductive layer 14 side. By connecting to the surface side transparent conductive layer 14, it contributes also to the improvement of the contact resistance.
 非晶質の真性酸素含有シリコン膜は基板表面の再結合を抑制する効果があるが、エピタキシャル成長層は表面再結合を引き起こしやすいため、n型単結晶シリコン基板11界面ではエピタキシャル成長層21の領域が小さいことが好ましい。また、このp型非晶質シリコン層13の逆三角形状のエピタキシャル成長層21は、その周辺の非晶質領域にエピタキシャル成長層21の領域が広がると、異なる成長領域から成長した結晶同士が重なることにより欠陥が生じやすくなる。エピタキシャル成長層に欠陥が生じた場合には、開放電圧の低下を招く。このため、n型単結晶シリコン基板11の面内において異なる成長領域から成長した結晶の各々が接触しない距離を保ちながら一定間隔をおいて逆三角形状のエピタキシャル成長層21の領域がn型単結晶シリコン基板11の面内に広がるように配置されることが好ましい。具体的にはこの逆三角形状の基板側頂点同士の間隔がp型非晶質シリコン層の膜厚の1.5倍より大きく、500nmより小さいことが好ましい。エピタキシャル成長層の間隔を変化させて太陽電池を形成した結果から、p型非晶質シリコン層の膜厚の1.5倍より小さいと隣のエピタキシャル結晶層と重なりが生じて欠陥が形成されやすく、500nmより大きいと直列抵抗の低減が不十分となる。 An amorphous intrinsic oxygen-containing silicon film has an effect of suppressing recombination on the substrate surface. However, since the epitaxial growth layer easily causes surface recombination, the region of the epitaxial growth layer 21 is small at the interface of the n-type single crystal silicon substrate 11. It is preferable. Further, the inverted triangular epitaxial growth layer 21 of the p-type amorphous silicon layer 13 is formed by overlapping crystals grown from different growth regions when the region of the epitaxial growth layer 21 spreads in the surrounding amorphous region. Defects are likely to occur. When a defect occurs in the epitaxial growth layer, the open circuit voltage is lowered. Therefore, the regions of the inverted triangular epitaxial growth layer 21 are separated from each other by n-type single crystal silicon while maintaining a distance at which the crystals grown from different growth regions do not contact each other in the plane of the n-type single crystal silicon substrate 11. It is preferable that they are arranged so as to spread in the plane of the substrate 11. Specifically, the distance between the inverted triangular substrate-side vertices is preferably larger than 1.5 times the thickness of the p-type amorphous silicon layer and smaller than 500 nm. As a result of forming the solar cell by changing the distance between the epitaxial growth layers, if it is smaller than 1.5 times the thickness of the p-type amorphous silicon layer, an overlap with the adjacent epitaxial crystal layer occurs and defects are easily formed. When it is larger than 500 nm, the series resistance is not sufficiently reduced.
 本実施の形態におけるa-SiO(i)層12の膜厚は2~3nm、微細凹凸11aの高低差は3nm~5nmであるが、微細凹凸の高低差寸法はa-SiO(i)層12の膜厚より大きく、a-SiO(i)層12の膜厚の2倍より小さいことが必要となる。n型単結晶シリコン基板11の面内におけるa-SiO(i)層12の成長の均一性が微細凹凸11aにより乱されることが、エピタキシャル成長層21の形成に寄与している。このため、微細凹凸11aの高低差がa-SiO(i)層12の膜厚より小さいと、該a-SiO(i)層12の乱れが小さく、微細凹凸11aを起点としてエピタキシャル成長層21が形成されなくなる。また、微細凹凸11aの高低差がa-SiO(i)層12の膜厚の2倍より大きいと、該微細凹凸11aをa-SiO(i)層12が均一にカバーしてしまうためエピタキシャル成長層21が形成されなくなる。 In the present embodiment, the thickness of the a-SiO (i) layer 12 is 2 to 3 nm, and the height difference of the fine unevenness 11a is 3 nm to 5 nm, but the height difference of the fine unevenness is the a-SiO (i) layer 12. Is required to be smaller than twice the film thickness of the a-SiO (i) layer 12. The uniformity of the growth of the a-SiO (i) layer 12 in the plane of the n-type single crystal silicon substrate 11 is disturbed by the fine irregularities 11a, which contributes to the formation of the epitaxial growth layer 21. Therefore, if the height difference of the fine irregularities 11a is smaller than the film thickness of the a-SiO (i) layer 12, the a-SiO (i) layer 12 is less disturbed, and the epitaxial growth layer 21 is formed starting from the fine irregularities 11a. It will not be done. If the height difference of the fine irregularities 11a is larger than twice the film thickness of the a-SiO (i) layer 12, the a-SiO (i) layer 12 uniformly covers the fine irregularities 11a, so that the epitaxial growth layer 21 is not formed.
 つぎに、実施例1のサンプルと比較例1のサンプルに対して各々AM1.5のスペクトルで100mW/cmの光照射によって電流-電圧特性を評価した。その結果、比較例1のサンプルでは、開放電圧が715mV、フィルファクターが0.75であった。これに対して、実施例1のサンプルでは、開放電圧が715mV、フィルファクターが0.79であり、n型単結晶シリコン基板11の表面に微細凹凸11aを形成することにより開放電圧の値は同じ値でありながらフィルファクターは0.04高い値を得ることができた。 Next, the current-voltage characteristics of the sample of Example 1 and the sample of Comparative Example 1 were evaluated by irradiation with light of 100 mW / cm 2 in the AM1.5 spectrum. As a result, in the sample of Comparative Example 1, the open circuit voltage was 715 mV and the fill factor was 0.75. On the other hand, in the sample of Example 1, the open circuit voltage is 715 mV, the fill factor is 0.79, and the value of the open circuit voltage is the same by forming the fine irregularities 11 a on the surface of the n-type single crystal silicon substrate 11. Although it was a value, the fill factor was 0.04 high.
 この結果は、n型単結晶シリコン基板11の表面に微細凹凸11aを形成することにより、n型単結晶シリコン基板11の表面の微細凹凸11aを起点として受光面側透明導電層14まで達する逆三角形状のエピタキシャル成長層21が形成され、n型単結晶シリコン基板11から受光面側透明導電層14までの直列抵抗が低減されたことに因ると言える。 As a result, by forming fine irregularities 11 a on the surface of the n-type single crystal silicon substrate 11, an inverted triangle reaching the light-receiving surface side transparent conductive layer 14 starting from the fine irregularities 11 a on the surface of the n-type single crystal silicon substrate 11. It can be said that the epitaxial growth layer 21 having the shape is formed, and the series resistance from the n-type single crystal silicon substrate 11 to the light receiving surface side transparent conductive layer 14 is reduced.
 上述したように、実施の形態1の太陽電池セル10においては、n型単結晶シリコン基板11の面内方向に垂直な縦断面においてn型単結晶シリコン基板11の表面の微細凹凸11aを起点として受光面側透明導電層14まで達してn型単結晶シリコン基板11から受光面側透明導電層14までを電気的に低抵抗で接続する逆三角形状のエピタキシャル成長層21をn型単結晶シリコン基板11の面内方向において点在して備えることにより、n型単結晶シリコン基板11から受光面側透明導電層14までの直列抵抗が低減され、フィルファクターの低減が抑制される。 As described above, in solar cell 10 of the first embodiment, starting from fine irregularities 11a on the surface of n-type single crystal silicon substrate 11 in a vertical section perpendicular to the in-plane direction of n-type single crystal silicon substrate 11. An inverted triangular epitaxial growth layer 21 that reaches the light-receiving surface-side transparent conductive layer 14 and electrically connects the n-type single-crystal silicon substrate 11 to the light-receiving surface-side transparent conductive layer 14 with low resistance is formed on the n-type single crystal silicon substrate 11. In the in-plane direction, the series resistance from the n-type single crystal silicon substrate 11 to the light-receiving surface side transparent conductive layer 14 is reduced, and the reduction of the fill factor is suppressed.
 したがって、実施の形態1によれば、光電変換効率に優れたヘテロ接合型の太陽電池セルを実現することができる。 Therefore, according to Embodiment 1, a heterojunction solar cell excellent in photoelectric conversion efficiency can be realized.
 なお、本実施の形態では、基板の導電型をn型としているが、p型としてもよい。 In this embodiment, the conductivity type of the substrate is n-type, but it may be p-type.
実施の形態2.
 図5は、実施の形態2にかかる光起電力装置である太陽電池セルの受光面側の基板表面の構成を模式的に示す断面図である。実施の形態2にかかる太陽電池セルは、n型単結晶シリコン基板11の表面にピラミッド状テクスチャーを有し、該ピラミッド状テクスチャーの間隙にエピタキシャル成長層21を有すること以外は、実施の形態1にかかる太陽電池セル10と同じ構成を有する。したがって、以下では、実施の形態2にかかる太陽電池セルの特徴部分に注目して説明する。
Embodiment 2. FIG.
FIG. 5 is a cross-sectional view schematically illustrating the configuration of the substrate surface on the light-receiving surface side of the solar battery cell that is the photovoltaic device according to the second embodiment. The solar cell according to the second embodiment is in accordance with the first embodiment, except that the surface of the n-type single crystal silicon substrate 11 has a pyramid texture, and an epitaxial growth layer 21 is provided in the gap of the pyramid texture. It has the same configuration as the solar battery cell 10. Therefore, below, it demonstrates paying attention to the characteristic part of the photovoltaic cell concerning Embodiment 2. FIG.
 実施の形態2にかかる太陽電池セルは、図5に示すようにn型単結晶シリコン基板11の表面にランダムピラミッド状テクスチャー31が形成されている。そして、各々のピラミッド状テクスチャー31の間隙である平坦なテクスチャー間平坦部32上に、実施の形態1に記載のエピタキシャル成長層21を有する(図示せず)。テクスチャー間平坦部32の表面には、実施の形態1の場合と同様に微小凹凸11a(図示せず)が形成されており、エピタキシャル成長層21はテクスチャー間平坦部32の表面の微小凹凸11aを起点としてエピタキシャル成長して形成されている。すなわち、a-SiO(i)層12およびp型非晶質シリコン層13には、テクスチャー間平坦部32の表面の微小凹凸を起点として形成されたエピタキシャル成長層21が点在して設けられている。 In the solar cell according to the second embodiment, a random pyramid texture 31 is formed on the surface of an n-type single crystal silicon substrate 11 as shown in FIG. Then, the epitaxial growth layer 21 described in the first embodiment is provided on the flat inter-texture flat portion 32 which is a gap between the respective pyramidal textures 31 (not shown). Similar to the first embodiment, fine irregularities 11a (not shown) are formed on the surface of the inter-texture flat portion 32, and the epitaxial growth layer 21 starts from the fine irregularities 11a on the surface of the inter-texture flat portion 32. It is formed by epitaxial growth. That is, the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13 are provided with the epitaxial growth layers 21 that are formed starting from minute irregularities on the surface of the inter-texture flat portion 32. .
 このように構成された実施の形態2にかかる太陽電池セルにおいても、実施の形態1にかかる太陽電池10と同様に、エピタキシャル成長層21を備えたことによるn型単結晶シリコン基板11から受光面側透明導電層14までの直列抵抗の低減効果およびフィルファクターの低減の抑制効果が得られる。 Also in the solar battery cell according to the second embodiment configured as described above, similarly to the solar battery 10 according to the first embodiment, the light receiving surface side from the n-type single crystal silicon substrate 11 provided with the epitaxial growth layer 21. The effect of reducing the series resistance up to the transparent conductive layer 14 and the effect of suppressing the reduction of the fill factor are obtained.
 また、ピラミッド構造の谷間にあるテクスチャー間平坦部32の(111)面に微細凹凸11aを形成することにより、ピラミッド状テクスチャー31を形成したn型単結晶シリコン基板11に対して反射防止効果、短絡電流、開放電圧およびフィルファクターの向上効果を両立できる。 Further, by forming fine irregularities 11a on the (111) plane of the inter-texture flat portion 32 in the valleys of the pyramid structure, an antireflection effect and a short circuit with respect to the n-type single crystal silicon substrate 11 on which the pyramidal texture 31 is formed. The effect of improving current, open circuit voltage and fill factor can be achieved.
 つぎに、実施の形態2にかかる太陽電池セルの製造方法について図6を参照して説明する。図6は、実施の形態2にかかる太陽電池セルの製造方法を示すフローチャートである。 Next, a method for manufacturing a solar battery cell according to the second embodiment will be described with reference to FIG. FIG. 6 is a flowchart showing a method for manufacturing a solar battery cell according to the second embodiment.
 まず、基板として抵抗率が1Ωcmであり主面の面方位が(100)であるn型単結晶シリコン基板11を用意し、アルカリ溶液中でスライス時のワイヤーソーダメージを除去する(ステップS110)。つぎに、n型単結晶シリコン基板11をイソプロピルアルコールを添加したアルカリ溶液中に浸漬し、n型単結晶シリコン基板11の表面にピラミッド状テクスチャー31を形成する(ステップS120)。この際、n型単結晶シリコン基板11は全ての表面にピラミッド状テクスチャー31が隙間なく形成されるより若干短い時間でテクスチャー形成を終了させ、各々のピラミッド状テクスチャー31間に100nm~1μmの平坦な(100)面の間隙領域(テクスチャー間平坦部32)を有するような形状とする。テクスチャー形成時間を制御することによりテクスチャーの間隙を形成することが困難な場合は、一度平坦部のない通常の複数のピラミッド状テクスチャーを形成し、その後フッ酸と硝酸との混合液による等方性エッチングを行い、ピラミッド状テクスチャーの間隙に丸まった溝(内壁が丸まった縦断面形状を有する溝)を形成し、その後アルカリ溶液によるエッチングによりこの丸まった溝を角ばらせることにより、ピラミッド状テクスチャーの間隙に平坦部を形成することもできる。この方法ではフッ酸と硝酸との混合液の濃度及び時間、及びアルカリ溶液の濃度及び時間を制御することにより間隙の幅を容易に制御することが可能となる。 First, an n-type single crystal silicon substrate 11 having a resistivity of 1 Ωcm and a principal plane orientation of (100) is prepared as a substrate, and wire saw damage during slicing is removed in an alkaline solution (step S110). Next, the n-type single crystal silicon substrate 11 is immersed in an alkaline solution to which isopropyl alcohol has been added to form a pyramidal texture 31 on the surface of the n-type single crystal silicon substrate 11 (step S120). At this time, the n-type single crystal silicon substrate 11 finishes the texture formation in a slightly shorter time than the pyramidal texture 31 is formed without gaps on the entire surface, and a flat surface of 100 nm to 1 μm is formed between the pyramidal textures 31. A shape having a (100) plane gap region (inter-texture flat portion 32) is formed. If it is difficult to form a texture gap by controlling the texture formation time, once multiple ordinary pyramidal textures without flats are formed, and then isotropic with a mixture of hydrofluoric acid and nitric acid Etching is performed to form a rounded groove (groove having a vertical cross-sectional shape with a rounded inner wall) in the gap of the pyramidal texture, and then the rounded groove is rounded by etching with an alkaline solution. A flat part can also be formed in the gap. In this method, the width of the gap can be easily controlled by controlling the concentration and time of the mixed solution of hydrofluoric acid and nitric acid and the concentration and time of the alkaline solution.
 つぎに、n型単結晶シリコン基板11をイソプロピルアルコールに浸漬した後、再度アルカリ溶液中で表面から50nm~2μm程度の深さ領域のエッチングを行うことにより、(100)面を残した平坦なテクスチャー間平坦部32に高さおよび幅が3nm~5nm程度の微細凹凸11aを形成する(ステップS130、ステップS140)。イソプロピルアルコールへの浸漬工程によりn型単結晶シリコン基板11の表面に付着したイソプロピルアルコールは、アルカリ溶液中でのエッチング時に部分的にエッチングマスクとして作用し、上記の微細凹凸11aを形成することができる。 Next, after immersing the n-type single crystal silicon substrate 11 in isopropyl alcohol, etching is performed in a depth region of about 50 nm to 2 μm from the surface again in an alkaline solution, whereby a flat texture leaving the (100) plane is left. The fine irregularities 11a having a height and width of about 3 nm to 5 nm are formed in the intermediate flat portion 32 (steps S130 and S140). Isopropyl alcohol adhering to the surface of the n-type single crystal silicon substrate 11 by the immersion process in isopropyl alcohol partially acts as an etching mask during etching in an alkaline solution, and can form the fine irregularities 11a. .
 ここではn型単結晶シリコン基板11をイソプロピルアルコールに浸漬する方法を示したが、スプレー法やスピンコート法などによってイソプロピルアルコールをn型単結晶シリコン基板11の表面に塗布してもよい。また、エッチングマスクとして用いる材料は、イソプロピルアルコール以外にもシラザン系の有機溶媒や、界面活性剤などを用いてもよく、この場合も上記と同様の凹凸11aを形成することができる。 Here, a method of immersing the n-type single crystal silicon substrate 11 in isopropyl alcohol is shown, but isopropyl alcohol may be applied to the surface of the n-type single crystal silicon substrate 11 by a spray method, a spin coat method, or the like. In addition to isopropyl alcohol, a silazane-based organic solvent, a surfactant, or the like may be used as a material used as an etching mask. In this case, the unevenness 11a similar to the above can be formed.
 つぎに、n型単結晶シリコン基板11に対してRCA洗浄、希フッ酸での酸化膜除去を施した後、13.56~60MHzのRFプラズマCVDチャンバで、膜厚約2nm~3nmのa-SiO(i)層12をn型単結晶シリコン基板11の受光面側に形成する(ステップS150)。実施の形態2では、RF出力20~100mW/cm、基板温度100~200℃、ガス圧400~600Paの雰囲気下で、反応ガスの流量をシラン10~100sccm、水素500~1000sccm、炭酸ガス5~20sccmとして成膜を行なってRFプラズマCVDによりa-SiO(i)層12を形成した。 Next, after RCA cleaning and removal of the oxide film with dilute hydrofluoric acid are performed on the n-type single crystal silicon substrate 11, an a- film having a film thickness of about 2 nm to 3 nm is formed in a 13.56 to 60 MHz RF plasma CVD chamber. The SiO (i) layer 12 is formed on the light receiving surface side of the n-type single crystal silicon substrate 11 (step S150). In the second embodiment, the reaction gas flow rate is 10 to 100 sccm for silane, 500 to 1000 sccm for hydrogen, and 5 carbon dioxide gas in an atmosphere with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., and a gas pressure of 400 to 600 Pa. Film formation was performed at ˜20 sccm, and an a-SiO (i) layer 12 was formed by RF plasma CVD.
 このとき、a-SiO(i)層12の内部に、テクスチャー間平坦部32の表面の微細凹凸11aを起点として逆三角形状のエピタキシャル成長層21がa-SiO(i)層12の膜厚方向に形成される。a-SiO(i)がエピタキシャル成長したこのエピタキシャル成長層は、a-SiO(i)層12の表面から露出して形成される。 At this time, an inverted triangular epitaxial growth layer 21 is formed in the thickness direction of the a-SiO (i) layer 12 inside the a-SiO (i) layer 12, starting from the fine irregularities 11 a on the surface of the inter-texture flat portion 32. It is formed. This epitaxial growth layer on which a-SiO (i) is epitaxially grown is formed to be exposed from the surface of the a-SiO (i) layer 12.
 つぎに、13.56~60MHzのRFプラズマCVDチャンバで、膜厚約20nmのp型非晶質シリコン層13をa-SiO(i)層12上に形成する(ステップS160)。実施の形態2では、RF出力20~100mW/cm、基板温度100~200℃、ガス圧400~600Paの雰囲気下で、反応ガスの流量をシラン5~50sccm、水素500~2000sccm、1%に水素希釈したジボラン10~50sccmとして成膜を行なってRFプラズマCVDによりp型非晶質シリコン層13を形成した。 Next, a p-type amorphous silicon layer 13 having a thickness of about 20 nm is formed on the a-SiO (i) layer 12 in an RF plasma CVD chamber of 13.56-60 MHz (step S160). In the second embodiment, the reaction gas flow rate is set to 5 to 50 sccm for silane, 500 to 2000 sccm for hydrogen, and 1% in an atmosphere with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., and a gas pressure of 400 to 600 Pa. Film formation was performed with diborane diluted with hydrogen at 10 to 50 sccm, and a p-type amorphous silicon layer 13 was formed by RF plasma CVD.
 このとき、p型非晶質シリコン層13の内部に、a-SiO(i)層12に形成されたエピタキシャル成長層の表面を起点として逆三角形状のエピタキシャル成長層がp型非晶質シリコン層13の膜厚方向に形成される。これにより、テクスチャー間平坦部32の表面の微細凹凸11aを起点として受光面側透明導電層14まで達して、n型単結晶シリコン基板11から受光面側透明導電層14までを電気的に低抵抗で接続する逆三角形状のエピタキシャル成長層21が形成される。 At this time, an inverted triangular epitaxial growth layer is formed in the p-type amorphous silicon layer 13 from the surface of the epitaxial growth layer formed in the a-SiO (i) layer 12 inside the p-type amorphous silicon layer 13. It is formed in the film thickness direction. As a result, the fine unevenness 11a on the surface of the texture-to-texture flat portion 32 reaches the light-receiving surface side transparent conductive layer 14 as a starting point, and the electrical resistance between the n-type single crystal silicon substrate 11 and the light-receiving surface side transparent conductive layer 14 is low. Thus, an inverted triangular epitaxial growth layer 21 is formed which is connected by
 つぎに、13.56~60MHzのRFプラズマCVDチャンバで、膜厚約2nm~3nmの裏面側真性非晶質シリコン層16をn型単結晶シリコン基板11の裏面に形成する(ステップS170)。実施の形態2では、RF出力20~100mW/cm、基板温度100~200℃、ガス圧400~600Paの雰囲気下で、反応ガスの流量をシラン10~100sccm、水素500~1000sccm、として成膜を行なってRFプラズマCVDにより裏面側真性非晶質シリコン層16を形成した。 Next, a back side intrinsic amorphous silicon layer 16 having a film thickness of about 2 nm to 3 nm is formed on the back side of the n-type single crystal silicon substrate 11 in a 13.56 to 60 MHz RF plasma CVD chamber (step S170). In the second embodiment, film formation is performed with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., a gas pressure of 400 to 600 Pa, a reactive gas flow rate of 10 to 100 sccm of silane, and 500 to 1000 sccm of hydrogen. Then, the back side intrinsic amorphous silicon layer 16 was formed by RF plasma CVD.
 つぎに、13.56~60MHzのRFプラズマCVDチャンバで、膜厚約20nmの裏面高濃度不純物ドープシリコン層であるn型非晶質シリコン層17を裏面側真性非晶質シリコン層16上に形成してn型単結晶シリコン基板11の裏面側にBSF構造を形成する(ステップS180)。実施の形態2では、RF出力20~100mW/cm、基板温度100~200℃、ガス圧400~600Paの雰囲気下で、反応ガスの流量をシラン5~50sccm、水素50~200sccm、1%に水素希釈したホスフィン10~50sccmとして成膜を行なって、n型非晶質シリコン層17を形成した。 Next, an n-type amorphous silicon layer 17 which is a back surface high-concentration impurity doped silicon layer having a film thickness of about 20 nm is formed on the back side intrinsic amorphous silicon layer 16 in a 13.56 to 60 MHz RF plasma CVD chamber. Then, a BSF structure is formed on the back side of the n-type single crystal silicon substrate 11 (step S180). In the second embodiment, the reaction gas flow rate is set to 5 to 50 sccm for silane, 50 to 200 sccm for hydrogen, and 1% in an atmosphere with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., and a gas pressure of 400 to 600 Pa. Film formation was performed with phosphine diluted with hydrogen at 10 to 50 sccm to form an n-type amorphous silicon layer 17.
 つぎに、水素を5%含む不活性ガス雰囲気下で、200℃で10分間、アニール(フォーミングガスアニール)を行なう(ステップS190)。a-SiO(i)層12およびp型非晶質シリコン層13を形成した温度と同温またはより高い温度でアニールすることにより、n型単結晶シリコン基板11の基板界面における水素による再結合抑制効果を向上させることができる。 Next, annealing (forming gas annealing) is performed at 200 ° C. for 10 minutes in an inert gas atmosphere containing 5% hydrogen (step S190). Suppression of recombination due to hydrogen at the substrate interface of the n-type single crystal silicon substrate 11 by annealing at a temperature equal to or higher than the temperature at which the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13 are formed. The effect can be improved.
 つぎに、膜厚約70nm~90nmの酸化インジウム錫(ITO)からなる受光面側透明導電層14をスパッタリング法によりp型非晶質シリコン層13上の全面に形成する。また、スパッタリング法により膜厚約70nm~90nmの酸化インジウム錫(ITO)からなる裏面側透明導電層18をスパッタリング法によりn型非晶質シリコン層17上の全面に形成する(ステップS200)。 Next, a light-receiving surface side transparent conductive layer 14 made of indium tin oxide (ITO) having a thickness of about 70 nm to 90 nm is formed on the entire surface of the p-type amorphous silicon layer 13 by sputtering. Further, a back side transparent conductive layer 18 made of indium tin oxide (ITO) having a film thickness of about 70 nm to 90 nm is formed on the entire surface of the n-type amorphous silicon layer 17 by sputtering (step S200).
 ついで、受光面側透明導電層14上に銀(Ag)電極をスクリーン印刷により形成し、加熱して受光面側集電極15を形成する。また、裏面側透明導電層18上の全面に膜厚約100nmの銀(Ag)をスパッタリング法により形成して裏面電極19を形成する(ステップS210)。 Next, a silver (Ag) electrode is formed on the light receiving surface side transparent conductive layer 14 by screen printing and heated to form the light receiving surface side collector electrode 15. Further, silver (Ag) having a film thickness of about 100 nm is formed on the entire surface of the back-side transparent conductive layer 18 by a sputtering method to form the back-side electrode 19 (step S210).
 以上の工程を実施することにより、実施の形態2にかかるヘテロ接合太陽電池セルが作製される。 By performing the above steps, the heterojunction solar cell according to the second embodiment is manufactured.
 つぎに、具体的な実施例に基づいて本発明を説明する。実施例2のサンプルとして、上記プロセスによりヘテロ接合太陽電池セルを作製した。比較のため、ピラミッド状テクスチャー形成工程後にイソプロピルアルコールへの浸漬とアルカリ中でのエッチングによる微細凹凸形成を行わない以外は上記と同じプロセスで従来型のヘテロ接合太陽電池セルを作製し、比較例2のサンプルとした。 Next, the present invention will be described based on specific examples. As a sample of Example 2, a heterojunction solar cell was manufactured by the above process. For comparison, a conventional heterojunction solar cell was fabricated by the same process as above except that immersion in isopropyl alcohol and formation of fine irregularities by etching in alkali were not performed after the pyramidal texture formation step. Samples of
 つぎに、実施例2のサンプルと比較例2のサンプルに対して各々AM1.5のスペクトルで100mW/cmの光照射によって電流-電圧特性を評価した。その結果、比較例2のサンプルでは、開放電圧が713mV、フィルファクターが0.76であった。これに対して、実施例2のサンプルでは、開放電圧が713mV、フィルファクターが0.78であり、n型単結晶シリコン基板11の表面におけるランダムピラミッド状テクスチャー31の間隙領域に微細凹凸11aを形成することにより開放電圧の値は同じ値でありながらフィルファクターは0.02高い値を得ることができた。 Next, the current-voltage characteristics of the sample of Example 2 and the sample of Comparative Example 2 were evaluated by irradiation with light of 100 mW / cm 2 in the AM1.5 spectrum. As a result, in the sample of Comparative Example 2, the open circuit voltage was 713 mV and the fill factor was 0.76. On the other hand, in the sample of Example 2, the open circuit voltage is 713 mV, the fill factor is 0.78, and the fine irregularities 11 a are formed in the gap region of the random pyramid texture 31 on the surface of the n-type single crystal silicon substrate 11. As a result, the value of the open circuit voltage was the same, but the fill factor was 0.02 higher.
 この結果は、n型単結晶シリコン基板11の表面に形成したピラミッド状テクスチャー31間の間隙領域に微細凹凸11aを形成することにより、n型単結晶シリコン基板11の表面の微細凹凸を起点として受光面側透明導電層14まで達する逆三角形状のエピタキシャル成長層21が形成され、n型単結晶シリコン基板11から受光面側透明導電層14までの直列抵抗が低減されたことに因ると言える。 As a result, the fine unevenness 11a is formed in the gap region between the pyramidal textures 31 formed on the surface of the n-type single crystal silicon substrate 11, thereby receiving light from the fine unevenness on the surface of the n-type single crystal silicon substrate 11. It can be said that the inverted triangular epitaxial growth layer 21 reaching the surface-side transparent conductive layer 14 is formed, and the series resistance from the n-type single crystal silicon substrate 11 to the light-receiving surface-side transparent conductive layer 14 is reduced.
 上述したように、実施の形態2によれば、実施の形態1の場合と同様に光電変換効率に優れたヘテロ接合型の太陽電池セルを実現することができる。 As described above, according to the second embodiment, a heterojunction solar cell excellent in photoelectric conversion efficiency can be realized as in the first embodiment.
実施の形態3.
 図7は、実施の形態3にかかる光起電力装置である太陽電池セルの受光面側の基板表面の構成を模式的に示す断面図である。実施の形態3にかかる太陽電池セルは、n型単結晶シリコン基板11の表面に逆ピラミッド状テクスチャーを有し、該逆ピラミッド状テクスチャーのテラス部にエピタキシャル成長層21を有すること以外は、実施の形態1にかかる太陽電池セル10と同じ構成を有する。したがって、以下では、実施の形態3にかかる太陽電池セルの特徴部分に注目して説明する。
Embodiment 3 FIG.
FIG. 7 is a cross-sectional view schematically illustrating the configuration of the substrate surface on the light-receiving surface side of the solar battery cell that is the photovoltaic device according to the third embodiment. The solar cell according to the third embodiment has the reverse pyramid texture on the surface of the n-type single crystal silicon substrate 11 and has the epitaxial growth layer 21 on the terrace portion of the reverse pyramid texture. 1 has the same configuration as the solar battery cell 10 according to FIG. Therefore, below, it demonstrates paying attention to the characteristic part of the photovoltaic cell concerning Embodiment 3. FIG.
 実施の形態3にかかる太陽電池セルは、図7に示すようにn型単結晶シリコン基板11の表面に逆ピラミッド状テクスチャー41が形成されている。そして、各々の逆ピラミッド状テクスチャー41の間隙である平坦なテラス部42上に、実施の形態1に記載のエピタキシャル成長層21を有する(図示せず)。テラス部42の表面には、実施の形態1の場合と同様に微小凹凸11aが形成されており(図示せず)、エピタキシャル成長層21はテラス部42の表面の微小凹凸を起点としてエピタキシャル成長して形成されている。すなわち、a-SiO(i)層12およびp型非晶質シリコン層13には、テラス部42の表面の微小凹凸11aを起点として形成されたエピタキシャル成長層21が点在して設けられている。 In the solar cell according to the third embodiment, an inverted pyramid texture 41 is formed on the surface of an n-type single crystal silicon substrate 11 as shown in FIG. And it has the epitaxial growth layer 21 as described in Embodiment 1 on the flat terrace part 42 which is the space | interval of each inverted pyramid-like texture 41 (not shown). On the surface of the terrace portion 42, minute irregularities 11 a are formed (not shown) as in the first embodiment, and the epitaxial growth layer 21 is formed by epitaxial growth starting from the minute irregularities on the surface of the terrace portion 42. Has been. That is, the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13 are provided with the epitaxially grown layers 21 formed starting from the minute irregularities 11 a on the surface of the terrace portion 42.
 このように構成された実施の形態3にかかる太陽電池セルにおいても、実施の形態1にかかる太陽電池10と同様に、エピタキシャル成長層21を備えたことによるn型単結晶シリコン基板11から受光面側透明導電層14までの直列抵抗の低減効果およびフィルファクターの低減の抑制効果が得られる。 Also in the solar cell according to the third embodiment configured as described above, similarly to the solar cell 10 according to the first embodiment, the light receiving surface side from the n-type single crystal silicon substrate 11 provided with the epitaxial growth layer 21. The effect of reducing the series resistance up to the transparent conductive layer 14 and the effect of suppressing the reduction of the fill factor are obtained.
 また、逆ピラミッド構造のテラス部42の(111)面に微細凹凸11aを形成することにより、逆ピラミッド状テクスチャー41を形成したn型単結晶シリコン基板11に対して反射防止効果、短絡電流、開放電圧およびフィルファクターの向上効果を両立できる。 Further, by forming the fine irregularities 11a on the (111) surface of the terrace portion 42 having the inverted pyramid structure, the anti-reflection effect, the short-circuit current, and the open-circuit with respect to the n-type single crystal silicon substrate 11 on which the inverted pyramid texture 41 is formed. The effect of improving voltage and fill factor can be achieved.
 つぎに、実施の形態3にかかる太陽電池セルの製造方法について図8を参照して説明する。図8は、実施の形態3にかかる太陽電池セルの製造方法を示すフローチャートである。 Next, a method for manufacturing a solar battery cell according to the third embodiment will be described with reference to FIG. FIG. 8 is a flowchart showing a method for manufacturing a solar battery cell according to the third embodiment.
 まず、基板として抵抗率が1Ωcmであり主面の面方位が(100)であるn型単結晶シリコン基板11を用意し、アルカリ溶液中でスライス時のワイヤーソーダメージを除去する(ステップS310)。つぎに、n型単結晶シリコン基板11の表面に逆ピラミッド状テクスチャー41形成のための耐エッチング膜として例えば窒化シリコン膜を形成する(ステップS320)。 First, an n-type single crystal silicon substrate 11 having a resistivity of 1 Ωcm and a principal plane orientation of (100) is prepared as a substrate, and wire saw damage during slicing is removed in an alkaline solution (step S310). Next, a silicon nitride film, for example, is formed on the surface of the n-type single crystal silicon substrate 11 as an etching resistant film for forming the inverted pyramid texture 41 (step S320).
 つぎに、5μm~20μmのピッチで縦横にマトリックス状に配置されたエッチング穴となる複数の開口部をレーザー加工により耐エッチング膜に形成して、逆ピラミッド状テクスチャー形成用のエッチングマスクを形成する(ステップS330)。この際のレーザー強度は、レーザー照射部の窒化シリコン膜が完全に消失し、且つn型単結晶シリコン基板11へのダメージを最小にするようなレーザー強度で行う。 Next, a plurality of openings serving as etching holes arranged vertically and horizontally in a matrix form at a pitch of 5 μm to 20 μm are formed in the etching resistant film by laser processing to form an etching mask for forming an inverted pyramid texture ( Step S330). The laser intensity at this time is such a laser intensity that the silicon nitride film in the laser irradiation part is completely lost and damage to the n-type single crystal silicon substrate 11 is minimized.
 つぎに、n型単結晶シリコン基板11をフッ硝酸に浸漬し、開口部を起点に該開口部の下部領域およびその近傍のn型単結晶シリコン基板11に対して等方性エッチングを行う。等方性エッチングは、隣り合う開口部から略半球状にエッチングされた部分が重ならないようにエッチングを終了させる。 Next, the n-type single crystal silicon substrate 11 is immersed in hydrofluoric acid, and isotropic etching is performed on the lower region of the opening and the n-type single crystal silicon substrate 11 in the vicinity thereof starting from the opening. In the isotropic etching, the etching is terminated so that the portions etched in a substantially hemispherical shape from adjacent openings do not overlap.
 つぎに、n型単結晶シリコン基板11をイソプロピルアルコールを添加したアルカリ溶液中に浸漬し、異方性エッチングを行ってn型単結晶シリコン基板11の表面に逆ピラミッド状テクスチャー41を形成する(ステップS340)。等方性エッチングで形成された略半球状の側面は、異方性エッチングされることにより(111)面を残すような逆ピラミッド形状となる。また、異方性エッチングは、逆ピラミッド状テクスチャー41間の平坦な(100)面の間隙領域(テラス部42)が完全に消失するより少し前に終了させ、各々の逆ピラミッド状テクスチャー41間に100nm~1μmの平坦な(100)面のテラス部42を有するような形状とする。その後、エッチングマスクとして用いた窒化シリコン膜をフッ酸により除去する。 Next, the n-type single crystal silicon substrate 11 is immersed in an alkaline solution to which isopropyl alcohol is added, and anisotropic etching is performed to form an inverted pyramidal texture 41 on the surface of the n-type single crystal silicon substrate 11 (step S340). The substantially hemispherical side surface formed by isotropic etching has an inverted pyramid shape that leaves an (111) plane by anisotropic etching. Also, the anisotropic etching is terminated slightly before the flat (100) plane gap region (terrace portion 42) between the inverted pyramid textures 41 completely disappears, and between the inverted pyramid textures 41, The shape is such that it has a flat (100) terrace portion 42 of 100 nm to 1 μm. Thereafter, the silicon nitride film used as the etching mask is removed with hydrofluoric acid.
 つぎに、n型単結晶シリコン基板11をイソプロピルアルコールに浸漬した後、再度アルカリ溶液中で表面から50nm~2μm程度の深さ領域のエッチングを行うことにより、(100)面を残した平坦なテラス部42に高さおよび幅が3nm~5nm程度の微細凹凸11aを形成する(ステップS350、ステップS360)。イソプロピルアルコールへの浸漬工程によりn型単結晶シリコン基板11の表面に付着したイソプロピルアルコールは、アルカリ溶液中でのエッチング時に部分的にエッチングマスクとして作用し、上記の微細凹凸11aを形成することができる。 Next, after immersing the n-type single crystal silicon substrate 11 in isopropyl alcohol, etching is performed in a depth region of about 50 nm to 2 μm from the surface again in an alkaline solution, whereby a flat terrace leaving the (100) plane is left. The fine irregularities 11a having a height and width of about 3 nm to 5 nm are formed on the portion 42 (steps S350 and S360). Isopropyl alcohol adhering to the surface of the n-type single crystal silicon substrate 11 by the immersion process in isopropyl alcohol partially acts as an etching mask during etching in an alkaline solution, and can form the fine irregularities 11a. .
 ここではn型単結晶シリコン基板11をイソプロピルアルコールに浸漬する方法を示したが、スプレー法やスピンコート法などによってイソプロピルアルコールをn型単結晶シリコン基板11の表面に塗布してもよい。また、エッチングマスクとして用いる材料は、イソプロピルアルコール以外にもシラザン系の有機溶媒や、界面活性剤などを用いてもよく、この場合も上記と同様の微細凹凸11aを形成することができる。 Here, a method of immersing the n-type single crystal silicon substrate 11 in isopropyl alcohol is shown, but isopropyl alcohol may be applied to the surface of the n-type single crystal silicon substrate 11 by a spray method, a spin coat method, or the like. In addition to isopropyl alcohol, a silazane-based organic solvent, a surfactant, or the like may be used as a material used as an etching mask. In this case, the fine unevenness 11a similar to the above can be formed.
 つぎに、n型単結晶シリコン基板11に対してRCA洗浄、希フッ酸での酸化膜除去を施した後、13.56~60MHzのRFプラズマCVDチャンバで、膜厚約2nm~3nmのa-SiO(i)層12をn型単結晶シリコン基板11の受光面側に形成する(ステップS150)。実施の形態2では、RF出力20~100mW/cm、基板温度100~200℃、ガス圧400~600Paの雰囲気下で、反応ガスの流量をシラン10~100sccm、水素500~1000sccm、炭酸ガス5~20sccmとして成膜を行なってRFプラズマCVDによりa-SiO(i)層12を形成した。 Next, after RCA cleaning and removal of the oxide film with dilute hydrofluoric acid are performed on the n-type single crystal silicon substrate 11, an a- film having a film thickness of about 2 nm to 3 nm is formed in an RF plasma CVD chamber of 13.56 to 60 MHz. The SiO (i) layer 12 is formed on the light receiving surface side of the n-type single crystal silicon substrate 11 (step S150). In the second embodiment, the reaction gas flow rate is 10 to 100 sccm for silane, 500 to 1000 sccm for hydrogen, and 5 carbon dioxide gas in an atmosphere with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., and a gas pressure of 400 to 600 Pa. Film formation was performed at ˜20 sccm, and an a-SiO (i) layer 12 was formed by RF plasma CVD.
 このとき、a-SiO(i)層12の内部に、テラス部42の表面の微細凹凸11aを起点として逆三角形状のエピタキシャル成長層21がa-SiO(i)層12の膜厚方向に形成される。a-SiO(i)がエピタキシャル成長したこのエピタキシャル成長層は、a-SiO(i)層12の表面から露出して形成される。 At this time, an inverted triangular epitaxial growth layer 21 is formed in the film thickness direction of the a-SiO (i) layer 12 inside the a-SiO (i) layer 12, starting from the fine irregularities 11 a on the surface of the terrace portion 42. The This epitaxial growth layer on which a-SiO (i) is epitaxially grown is formed to be exposed from the surface of the a-SiO (i) layer 12.
 つぎに、13.56~60MHzのRFプラズマCVDチャンバで、膜厚約20nmのp型非晶質シリコン層13をa-SiO(i)層12上に形成する(ステップS160)。実施の形態2では、RF出力20~100mW/cm、基板温度100~200℃、ガス圧400~600Paの雰囲気下で、反応ガスの流量をシラン5~50sccm、水素500~2000sccm、1%に水素希釈したジボラン10~50sccmとして成膜を行なってRFプラズマCVDによりp型非晶質シリコン層13を形成した。 Next, a p-type amorphous silicon layer 13 having a thickness of about 20 nm is formed on the a-SiO (i) layer 12 in an RF plasma CVD chamber of 13.56-60 MHz (step S160). In the second embodiment, the reaction gas flow rate is set to 5 to 50 sccm for silane, 500 to 2000 sccm for hydrogen, and 1% in an atmosphere with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., and a gas pressure of 400 to 600 Pa. Film formation was performed with diborane diluted with hydrogen at 10 to 50 sccm, and a p-type amorphous silicon layer 13 was formed by RF plasma CVD.
 このとき、p型非晶質シリコン層13の内部に、a-SiO(i)層12に形成されたエピタキシャル成長層の表面を起点として逆三角形状のエピタキシャル成長層がp型非晶質シリコン層13の膜厚方向に形成される。これにより、テラス部42の表面の微細凹凸11aを起点として受光面側透明導電層14まで達して、n型単結晶シリコン基板11から受光面側透明導電層14までを電気的に低抵抗で接続する逆三角形状のエピタキシャル成長層21が形成される。 At this time, an inverted triangular epitaxial growth layer is formed in the p-type amorphous silicon layer 13 from the surface of the epitaxial growth layer formed in the a-SiO (i) layer 12 inside the p-type amorphous silicon layer 13. It is formed in the film thickness direction. As a result, the light receiving surface side transparent conductive layer 14 is reached starting from the fine irregularities 11a on the surface of the terrace portion 42, and the n type single crystal silicon substrate 11 and the light receiving surface side transparent conductive layer 14 are electrically connected with low resistance. An inverted triangular epitaxial growth layer 21 is formed.
 つぎに、13.56~60MHzのRFプラズマCVDチャンバで、膜厚約2nm~3nmの裏面側真性非晶質シリコン層16をn型単結晶シリコン基板11の裏面に形成する(ステップS170)。実施の形態2では、RF出力20~100mW/cm、基板温度100~200℃、ガス圧400~600Paの雰囲気下で、反応ガスの流量をシラン10~100sccm、水素500~1000sccm、として成膜を行なってRFプラズマCVDにより裏面側真性非晶質シリコン層16を形成した。 Next, a back side intrinsic amorphous silicon layer 16 having a film thickness of about 2 nm to 3 nm is formed on the back side of the n-type single crystal silicon substrate 11 in a 13.56 to 60 MHz RF plasma CVD chamber (step S170). In the second embodiment, film formation is performed with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., a gas pressure of 400 to 600 Pa, a reactive gas flow rate of 10 to 100 sccm of silane, and 500 to 1000 sccm of hydrogen. Then, the back side intrinsic amorphous silicon layer 16 was formed by RF plasma CVD.
 つぎに、13.56~60MHzのRFプラズマCVDチャンバで、膜厚約20nmの裏面高濃度不純物ドープシリコン層であるn型非晶質シリコン層17を裏面側真性非晶質シリコン層16上に形成してn型単結晶シリコン基板11の裏面側にBSF構造を形成する(ステップS180)。実施の形態2では、RF出力20~100mW/cm、基板温度100~200℃、ガス圧400~600Paの雰囲気下で、反応ガスの流量をシラン5~50sccm、水素50~200sccm、1%に水素希釈したホスフィン10~50sccmとして成膜を行なって、n型非晶質シリコン層17を形成した。 Next, an n-type amorphous silicon layer 17 which is a back surface high-concentration impurity doped silicon layer having a film thickness of about 20 nm is formed on the back side intrinsic amorphous silicon layer 16 in a 13.56 to 60 MHz RF plasma CVD chamber. Then, a BSF structure is formed on the back side of the n-type single crystal silicon substrate 11 (step S180). In the second embodiment, the reaction gas flow rate is set to 5 to 50 sccm for silane, 50 to 200 sccm for hydrogen, and 1% in an atmosphere with an RF output of 20 to 100 mW / cm 2 , a substrate temperature of 100 to 200 ° C., and a gas pressure of 400 to 600 Pa. Film formation was performed with phosphine diluted with hydrogen at 10 to 50 sccm to form an n-type amorphous silicon layer 17.
 つぎに、水素を5%含む不活性ガス雰囲気下で、200℃で10分間、アニール(フォーミングガスアニール)を行なう(ステップS410)。a-SiO(i)層12およびp型非晶質シリコン層13を形成した温度と同温またはより高い温度でアニールすることにより、n型単結晶シリコン基板11の基板界面における水素による再結合抑制効果を向上させることができる。 Next, annealing (forming gas annealing) is performed at 200 ° C. for 10 minutes in an inert gas atmosphere containing 5% hydrogen (step S410). Suppression of recombination due to hydrogen at the substrate interface of the n-type single crystal silicon substrate 11 by annealing at a temperature equal to or higher than the temperature at which the a-SiO (i) layer 12 and the p-type amorphous silicon layer 13 are formed. The effect can be improved.
 つぎに、膜厚約70nm~90nmの酸化インジウム錫(ITO)からなる受光面側透明導電層14をスパッタリング法によりp型非晶質シリコン層13上に形成する。また、スパッタリング法により膜厚約70nm~90nmの酸化インジウム錫(ITO)からなる裏面側透明導電層18をスパッタリング法によりn型非晶質シリコン層17上に形成する(ステップS420)。 Next, a light-receiving surface side transparent conductive layer 14 made of indium tin oxide (ITO) having a thickness of about 70 nm to 90 nm is formed on the p-type amorphous silicon layer 13 by sputtering. Further, the back side transparent conductive layer 18 made of indium tin oxide (ITO) having a film thickness of about 70 nm to 90 nm is formed on the n-type amorphous silicon layer 17 by sputtering (step S420).
 ついで、受光面側透明導電層14上に銀(Ag)電極をスクリーン印刷により形成し、加熱して受光面側集電極15を形成する。また、裏面側透明導電層18上の全面に膜厚約100nmの銀(Ag)をスパッタリング法により形成して裏面電極19を形成する(ステップS430)。 Next, a silver (Ag) electrode is formed on the light receiving surface side transparent conductive layer 14 by screen printing and heated to form the light receiving surface side collector electrode 15. Further, silver (Ag) having a film thickness of about 100 nm is formed on the entire surface of the back surface side transparent conductive layer 18 by a sputtering method to form the back surface electrode 19 (step S430).
 以上の工程を実施することにより、実施の形態3にかかるヘテロ接合太陽電池セルが作製される。 By performing the above steps, the heterojunction solar cell according to the third embodiment is manufactured.
 つぎに、具体的な実施例に基づいて本発明を説明する。実施例3のサンプルとして、上記プロセスによりヘテロ接合太陽電池セルを作製した。比較のため、逆ピラミッド状テクスチャー形成工程後にイソプロピルアルコールへの浸漬とアルカリ中でのエッチングによる微細凹凸形成を行わない以外は上記と同じプロセスで従来型のヘテロ接合太陽電池セルを作製し、比較例3のサンプルとした。 Next, the present invention will be described based on specific examples. As a sample of Example 3, a heterojunction solar cell was produced by the above process. For comparison, a conventional heterojunction solar cell was fabricated by the same process as described above except that immersion in isopropyl alcohol and formation of fine irregularities by etching in alkali were not performed after the reverse pyramid texture formation process, and a comparative example Three samples were used.
 つぎに、実施例3のサンプルと比較例3のサンプルに対して各々AM1.5のスペクトルで100mW/cmの光照射によって電流-電圧特性を評価した。その結果、比較例3のサンプルでは、開放電圧が715mV、フィルファクターが0.76であった。これに対して、実施例3のサンプルでは、開放電圧が715mV、フィルファクターが0.78であり、n型単結晶シリコン基板11の表面における逆ピラミッド状テクスチャー41のテラス部42に微細凹凸11aを形成することにより開放電圧の値は同じ値でありながらフィルファクターは0.02高い値を得ることができた。 Next, the current-voltage characteristics of the sample of Example 3 and the sample of Comparative Example 3 were evaluated by irradiation with light of 100 mW / cm 2 in the AM1.5 spectrum. As a result, in the sample of Comparative Example 3, the open circuit voltage was 715 mV and the fill factor was 0.76. On the other hand, in the sample of Example 3, the open circuit voltage is 715 mV, the fill factor is 0.78, and the fine unevenness 11 a is formed on the terrace portion 42 of the inverted pyramid texture 41 on the surface of the n-type single crystal silicon substrate 11. By forming, the value of the open circuit voltage was the same value, but the fill factor was 0.02 higher.
 この結果は、n型単結晶シリコン基板11の表面に形成した逆ピラミッド状テクスチャー41間のテラス部42に微細凹凸11aを形成することにより、n型単結晶シリコン基板11の表面の微細凹凸を起点として受光面側透明導電層14まで達する逆三角形状のエピタキシャル成長層21が形成され、n型単結晶シリコン基板11から受光面側透明導電層14までの直列抵抗が低減されたことに因ると言える。 As a result, fine irregularities on the surface of the n-type single crystal silicon substrate 11 are formed by forming fine irregularities 11a on the terrace portion 42 between the inverted pyramidal textures 41 formed on the surface of the n-type single crystal silicon substrate 11. This is because an inverted triangular epitaxial growth layer 21 reaching the light receiving surface side transparent conductive layer 14 is formed, and the series resistance from the n-type single crystal silicon substrate 11 to the light receiving surface side transparent conductive layer 14 is reduced. .
 上述したように、実施の形態3によれば、実施の形態1の場合と同様に光電変換効率に優れたヘテロ接合型の太陽電池セルを実現することができる。 As described above, according to the third embodiment, a heterojunction solar cell excellent in photoelectric conversion efficiency can be realized as in the first embodiment.
 また、上記の実施の形態で説明した構成を有するヘテロ接合太陽電池セルを複数形成し、隣接するヘテロ接合太陽電池セル同士を電気的に直列または並列に接続することにより、良好な光閉じ込め効果を有し、フィルファクターおよび光電変換効率に優れた太陽電池モジュールが実現できる。この場合は、例えば隣接するヘテロ接合太陽電池セルの一方の受光面側集電極15と他方の裏面電極19とを電気的に接続すればよい。 In addition, by forming a plurality of heterojunction solar cells having the configuration described in the above embodiment, and connecting adjacent heterojunction solar cells electrically in series or in parallel, a good light confinement effect can be obtained. And a solar cell module with excellent fill factor and photoelectric conversion efficiency can be realized. In this case, for example, one light receiving surface side collecting electrode 15 and the other back surface electrode 19 of adjacent heterojunction solar cells may be electrically connected.
 以上のように、本発明にかかる光起電力装置は、ヘテロ接合を有して光電変換効率に優れた光電変換装置の実現に有用である。 As described above, the photovoltaic device according to the present invention is useful for realizing a photoelectric conversion device having a heterojunction and having excellent photoelectric conversion efficiency.
 10 ヘテロ接合太陽電池セル(太陽電池セル)
 11 n型単結晶シリコン基板
 11a 微細凹凸
 12 受光面側真性非晶質酸素含有シリコン層(a-SiO(i)層)
 13 p型非晶質シリコン層
 14 受光面側透明導電層
 15 受光面側集電極
 16 裏面側真性非晶質シリコン層
 17 n型非晶質シリコン層
 18 裏面側透明導電層
 19 裏面電極
 21 エピタキシャル成長層
 31 ピラミッド状テクスチャー
 32 テクスチャー間平坦部
 41 逆ピラミッド状テクスチャー
 42 テラス部
10 Heterojunction solar cells (solar cells)
11 n-type single crystal silicon substrate 11a fine irregularities 12 light-receiving surface side intrinsic amorphous oxygen-containing silicon layer (a-SiO (i) layer)
13 p-type amorphous silicon layer 14 light-receiving surface-side transparent conductive layer 15 light-receiving surface-side collector electrode 16 back-side intrinsic amorphous silicon layer 17 n-type amorphous silicon layer 18 back-side transparent conductive layer 19 back-side electrode 21 epitaxial growth layer 31 Pyramid texture 32 Flat part between textures 41 Reverse pyramid texture 42 Terrace part

Claims (11)

  1.  一導電型の単結晶シリコン基板の直上に、真性酸素含有非晶質シリコン層と、不純物がドープされた導電性非晶質シリコン層と、透明導電層とがこの順で積層された光起電力装置であって、
     前記真性酸素含有非晶質シリコン層と前記導電性非晶質シリコン層との内部に、前記単結晶シリコン基板の表面を起点として前記透明導電層に達するまで前記単結晶シリコン基板の面方向における面積が大きくなる結晶粒子が点在していること、
     を特徴とする光起電力装置。
    A photovoltaic device in which an intrinsic oxygen-containing amorphous silicon layer, an impurity-doped conductive amorphous silicon layer, and a transparent conductive layer are laminated in this order directly on a single-conductivity type single crystal silicon substrate A device,
    The area in the plane direction of the single crystal silicon substrate inside the intrinsic oxygen-containing amorphous silicon layer and the conductive amorphous silicon layer until the transparent conductive layer is reached starting from the surface of the single crystal silicon substrate Are interspersed with crystal grains that become larger,
    A photovoltaic device characterized by the above.
  2.  前記結晶粒子は、前記真性酸素含有非晶質シリコン層の内部において前記単結晶シリコン基板の表面を起点として真性酸素含有シリコンがエピタキシャル成長した第1エピタキシャル成長層と、前記導電性非晶質シリコン層の内部において前記第1エピタキシャル成長層の表面を基点として導電性非晶質シリコンがエピタキシャル成長した第2エピタキシャル成長層とからなり、
     前記第2エピタキシャル成長層が前記透明導電層に接触する面積は、前記第1エピタキシャル成長層が前記単結晶シリコン基板の表面に接触する面積に対して10倍以上大きいこと、
     を特徴とする請求項1に記載の光起電力装置。
    The crystal grains include a first epitaxial growth layer in which intrinsic oxygen-containing silicon is epitaxially grown from the surface of the single crystal silicon substrate inside the intrinsic oxygen-containing amorphous silicon layer, and an inside of the conductive amorphous silicon layer. And a second epitaxial growth layer in which conductive amorphous silicon is epitaxially grown from the surface of the first epitaxial growth layer as a base point.
    The area where the second epitaxial growth layer is in contact with the transparent conductive layer is 10 times or more larger than the area where the first epitaxial growth layer is in contact with the surface of the single crystal silicon substrate;
    The photovoltaic device according to claim 1.
  3.  前記単結晶シリコン基板は、主面の面方位が(100)であり、
     前記結晶粒子は、表面の面方位が(100)とされてエピタキシャル成長した粒子であること、
     を特徴とする請求項1または2に記載の光起電力装置。
    The single crystal silicon substrate has a main surface with a plane orientation of (100),
    The crystal grains are grains that are epitaxially grown with a surface orientation of (100).
    The photovoltaic device according to claim 1, wherein:
  4.  前記単結晶シリコン基板は、前記真性酸素含有非晶質シリコン層の厚みより大きく、前記真性酸素含有非晶質シリコン層の厚みの2倍より小さい高低差を有する凹凸が前記真性酸素含有非晶質シリコン層側の表面に形成され、
     前記結晶粒子は、前記凹凸を基点として形成されていること、
     を特徴とする請求項1~3のいずれか1つに記載の光起電力装置。
    The single crystal silicon substrate has irregularities having a height difference larger than the thickness of the intrinsic oxygen-containing amorphous silicon layer and smaller than twice the thickness of the intrinsic oxygen-containing amorphous silicon layer. Formed on the silicon layer side surface,
    The crystal particles are formed based on the irregularities;
    The photovoltaic device according to any one of claims 1 to 3, wherein:
  5.  前記単結晶シリコン基板は、前記真性酸素含有非晶質シリコン層側の表面にピラミッド状テクスチャーが複数形成されるとともに隣接する前記ピラミッド状テクスチャー間に平坦な第1平坦部が形成され、前記第1平坦部に前記凹凸が形成されていること、
     を特徴とする請求項4に記載の光起電力装置。
    In the single crystal silicon substrate, a plurality of pyramidal textures are formed on the surface of the intrinsic oxygen-containing amorphous silicon layer, and a flat first flat portion is formed between the adjacent pyramidal textures. The irregularities are formed on the flat part,
    The photovoltaic device according to claim 4.
  6.  前記単結晶シリコン基板は、前記真性酸素含有非晶質シリコン層側の表面に逆ピラミッド状テクスチャーが複数形成されるとともに隣接する前記逆ピラミッド状テクスチャー間に平坦な第2平坦部が形成され、前記第2平坦部に前記凹凸が形成されていること、
     を特徴とする請求項4に記載の光起電力装置。
    The single crystal silicon substrate has a plurality of inverted pyramid textures formed on the surface on the intrinsic oxygen-containing amorphous silicon layer side and a flat second flat portion between the adjacent inverted pyramid textures, The irregularities are formed on the second flat part,
    The photovoltaic device according to claim 4.
  7.  単結晶シリコン基板の表面に有機溶媒を塗布した後に前記単結晶シリコン基板の表面をアルカリ溶液によりエッチングすることにより前記単結晶シリコン基板の表面に凹凸を形成する第1工程と、
     前記凹凸が形成された単結晶シリコン基板の表面に非晶質シリコン層を形成すると同時に、前記非晶質シリコン層の一部に前記凹凸を基点として前記非晶質シリコン層の表面から露出するとともに前記単結晶シリコン基板側から表面に向かって前記単結晶シリコン基板の面方向における面積が大きくなるシリコン結晶粒子を形成する第2工程と、
     前記非晶質シリコン層上および前記結晶層上に透明導電膜を形成する第3工程と、
     を含むことを特徴とする光起電力装置の製造方法。
    A first step of forming irregularities on the surface of the single crystal silicon substrate by applying an organic solvent to the surface of the single crystal silicon substrate and then etching the surface of the single crystal silicon substrate with an alkaline solution;
    An amorphous silicon layer is formed on the surface of the single crystal silicon substrate on which the unevenness is formed, and at the same time, a portion of the amorphous silicon layer is exposed from the surface of the amorphous silicon layer with the unevenness as a starting point. A second step of forming silicon crystal particles in which the area in the plane direction of the single crystal silicon substrate increases from the single crystal silicon substrate side toward the surface;
    A third step of forming a transparent conductive film on the amorphous silicon layer and the crystal layer;
    A method for manufacturing a photovoltaic device, comprising:
  8.  前記凹凸を基点としてシリコンをエピタキシャル成長させることにより、前記シリコン結晶粒子からなるエピタキシャル成長層を形成すること、
     を特徴とする請求項7に記載の光起電力装置の製造方法。
    Forming an epitaxial growth layer composed of the silicon crystal particles by epitaxially growing silicon on the basis of the irregularities;
    A method for manufacturing a photovoltaic device according to claim 7.
  9.  前記第2工程は、
     前記単結晶シリコン基板の表面に真性非晶質酸素含有シリコン層を形成すると同時に、前記凹凸を基点として前記真性非晶質酸素含有シリコン層の表面から露出する真性酸素含有シリコンの結晶粒子からなる第1エピタキシャル成長層を前記エピタキシャル成長層として前記真性非晶質酸素含有シリコン層の一部に形成する工程と、
     不純物がドープされた導電性非晶質シリコン層を前記真性非晶質酸素含有シリコン層上に形成すると同時に、前記第1のエピタキシャル成長層の表面を基点として前記導電性非晶質シリコン層の表面から露出する導電性非晶質シリコンの結晶粒子からなる第2エピタキシャル成長層を前記導電性非晶質シリコン層の一部に前記エピタキシャル成長層として形成する工程と、
     を含むことを特徴とする請求項8に記載の光起電力装置の製造方法。
    The second step includes
    An intrinsic amorphous oxygen-containing silicon layer is formed on the surface of the single crystal silicon substrate, and at the same time, a first oxygen-containing silicon crystal particle exposed from the surface of the intrinsic amorphous oxygen-containing silicon layer with the unevenness as a starting point. Forming one epitaxial growth layer as part of the intrinsic amorphous oxygen-containing silicon layer as the epitaxial growth layer;
    A conductive amorphous silicon layer doped with impurities is formed on the intrinsic amorphous oxygen-containing silicon layer, and at the same time, from the surface of the conductive amorphous silicon layer with the surface of the first epitaxial growth layer as a starting point. Forming a second epitaxial growth layer made of exposed conductive amorphous silicon crystal grains as a part of the conductive amorphous silicon layer as the epitaxial growth layer;
    The manufacturing method of the photovoltaic apparatus of Claim 8 characterized by the above-mentioned.
  10.  前記第1工程の前に、
     前記単結晶シリコン基板の表面に複数のピラミッド状テクスチャーを形成後、フッ酸と硝酸との混合液によるエッチング処理により隣接する前記ビラミッド状テクスチャーの間隙に内壁が丸まった縦断面形状を有する溝を形成し、その後アルカリ溶液によるエッチング処理によって前記溝の丸まった内壁を角ばらせることにより前記ビラミッド状テクスチャーの間隙に平坦部を形成する工程を有し、
     前記第1工程では、前記平坦部の表面に前記凹凸を形成すること、
     を特徴とする請求項7~9のいずれか1つに記載の光起電力装置の製造方法。
    Before the first step,
    After forming a plurality of pyramidal textures on the surface of the single crystal silicon substrate, a groove having a vertical cross-sectional shape with inner walls rounded in the gaps between the adjacent pyramidal textures by etching with a mixed solution of hydrofluoric acid and nitric acid And then forming a flat portion in the gap of the pyramidal texture by rounding the inner wall of the groove by etching with an alkaline solution,
    In the first step, forming the irregularities on the surface of the flat portion,
    The method for manufacturing a photovoltaic device according to any one of claims 7 to 9, wherein:
  11.  請求項1~6のいずれか1つに記載の光起電力装置の少なくとも2つ以上が電気的に直列または並列に接続されてなること、
     を特徴とする光起電力モジュール。
    At least two or more of the photovoltaic devices according to any one of claims 1 to 6 are electrically connected in series or in parallel;
    A photovoltaic module characterized by.
PCT/JP2012/051726 2012-01-26 2012-01-26 Photovoltaic device, method for manufacturing same, and photovoltaic module WO2013111312A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/051726 WO2013111312A1 (en) 2012-01-26 2012-01-26 Photovoltaic device, method for manufacturing same, and photovoltaic module
JP2013555071A JP5745653B2 (en) 2012-01-26 2012-01-26 Photovoltaic device, manufacturing method thereof, and photovoltaic module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/051726 WO2013111312A1 (en) 2012-01-26 2012-01-26 Photovoltaic device, method for manufacturing same, and photovoltaic module

Publications (1)

Publication Number Publication Date
WO2013111312A1 true WO2013111312A1 (en) 2013-08-01

Family

ID=48873079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051726 WO2013111312A1 (en) 2012-01-26 2012-01-26 Photovoltaic device, method for manufacturing same, and photovoltaic module

Country Status (2)

Country Link
JP (1) JP5745653B2 (en)
WO (1) WO2013111312A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010029A1 (en) * 2015-07-13 2017-01-19 パナソニックIpマネジメント株式会社 Photoelectric conversion device
WO2018180486A1 (en) * 2017-03-29 2018-10-04 パナソニック株式会社 Solar cell and method for producing solar cell
JP2019057619A (en) * 2017-09-21 2019-04-11 株式会社カネカ Back contact solar cell
US11515443B2 (en) * 2018-03-19 2022-11-29 Shangrao Jinko Solar Technology Development Co., Ltd Tandem solar cell manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112011A (en) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd Manufacture of photovolatic element
JP2002009312A (en) * 2000-06-16 2002-01-11 Fuji Electric Corp Res & Dev Ltd Method for manufacturing non-single crystal thin-film solar battery
JP2011023526A (en) * 2009-07-15 2011-02-03 Mitsubishi Electric Corp Method of manufacturing photovoltaic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112011A (en) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd Manufacture of photovolatic element
JP2002009312A (en) * 2000-06-16 2002-01-11 Fuji Electric Corp Res & Dev Ltd Method for manufacturing non-single crystal thin-film solar battery
JP2011023526A (en) * 2009-07-15 2011-02-03 Mitsubishi Electric Corp Method of manufacturing photovoltaic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010029A1 (en) * 2015-07-13 2017-01-19 パナソニックIpマネジメント株式会社 Photoelectric conversion device
WO2018180486A1 (en) * 2017-03-29 2018-10-04 パナソニック株式会社 Solar cell and method for producing solar cell
JPWO2018180486A1 (en) * 2017-03-29 2019-11-07 パナソニック株式会社 Solar cell and method for manufacturing solar cell
US11430904B2 (en) 2017-03-29 2022-08-30 Panasonic Holdings Corporation Solar cell and method of manufacturing solar cell
JP2019057619A (en) * 2017-09-21 2019-04-11 株式会社カネカ Back contact solar cell
US11515443B2 (en) * 2018-03-19 2022-11-29 Shangrao Jinko Solar Technology Development Co., Ltd Tandem solar cell manufacturing method

Also Published As

Publication number Publication date
JP5745653B2 (en) 2015-07-08
JPWO2013111312A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5570654B2 (en) Solar cell element and solar cell module
JP5421701B2 (en) Crystalline silicon solar cell and manufacturing method thereof
JP2013239476A (en) Photovoltaic device and method of manufacturing the same, and photovoltaic module
WO2012020682A1 (en) Crystalline silicon solar cell
JP2009164544A (en) Passivation layer structure of solar cell, and fabricating method thereof
JP5058184B2 (en) Method for manufacturing photovoltaic device
US20120273036A1 (en) Photoelectric conversion device and manufacturing method thereof
US9761749B2 (en) Photoelectric conversion device
WO2018025643A1 (en) Solar cell and method for producing solar cell
JP5183588B2 (en) Method for manufacturing photovoltaic device
JP5745653B2 (en) Photovoltaic device, manufacturing method thereof, and photovoltaic module
JP6207414B2 (en) Photovoltaic element and manufacturing method thereof
JP2009140941A (en) Photovoltaic device and its manufacturing method
US9437768B2 (en) Photoelectric conversion device
JP2017005270A (en) Method of manufacturing photoelectric conversion device
JP2014072416A (en) Solar cell and manufacturing method therefor, solar cell module
JP5748907B2 (en) Photovoltaic device and manufacturing method thereof
JP5268976B2 (en) Method for manufacturing photovoltaic device
JP2012253091A (en) Photovoltaic device and method for manufacturing the same
JP5975841B2 (en) Manufacturing method of photovoltaic device and photovoltaic device
JP5927028B2 (en) Photoelectric conversion device
JP5917129B2 (en) Electrode manufacturing method and photoelectric conversion device manufacturing method
JP2014011198A (en) Photovoltaic device and method for manufacturing the same
JP5398772B2 (en) Photovoltaic device, manufacturing method thereof, and photovoltaic module
JP2014143272A (en) Method for roughening substrate surface and method for manufacturing photovoltaic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555071

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12866593

Country of ref document: EP

Kind code of ref document: A1