WO2013111007A1 - Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine - Google Patents

Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine Download PDF

Info

Publication number
WO2013111007A1
WO2013111007A1 PCT/IB2013/000208 IB2013000208W WO2013111007A1 WO 2013111007 A1 WO2013111007 A1 WO 2013111007A1 IB 2013000208 W IB2013000208 W IB 2013000208W WO 2013111007 A1 WO2013111007 A1 WO 2013111007A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
section
bore
throttle
nozzle
Prior art date
Application number
PCT/IB2013/000208
Other languages
English (en)
French (fr)
Inventor
Johannes Schnedt
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP13710897.3A priority Critical patent/EP2807367B1/de
Publication of WO2013111007A1 publication Critical patent/WO2013111007A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/008Arrangement of fuel passages inside of injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/40Fuel-injection apparatus with fuel accumulators, e.g. a fuel injector having an integrated fuel accumulator

Definitions

  • the invention relates to a device for injecting fuel into the combustion chamber of an internal combustion engine having at least one injector, which includes a high-pressure accumulator integrated in the injector body, an injection nozzle which comprises an axially displaceable nozzle needle, which is surrounded by a nozzle chamber, a high-pressure accumulator with the injection nozzle connecting high-pressure bore and a parallel to the high-pressure bore resonator bore encompassed, which is in communication with the injection nozzle and opens via a resonator in the high-pressure accumulator.
  • injectors of this type are used in modular common rail systems, which are characterized in that a part of the existing storage volume in the system is present in the injector itself.
  • Modular common-rail systems are used in particularly large engines, in which the individual injectors may be mounted at a considerable distance from each other.
  • the sole use of a common rail for all injectors is not useful in such engines, as it would come because of the long lines during the injection to a massive drop in injection pressure, so that the injection rate would break noticeably with longer injection duration.
  • it is therefore intended to arrange a high-pressure accumulator inside each injector.
  • Such a design is referred to as a modular design, since each individual injector has its own high-pressure accumulator and can thus be used as an independent module.
  • a high-pressure accumulator is hereby not to be understood as an ordinary line, but rather to an nem high-pressure accumulator to a pressure-resistant vessel with an inlet and outlet, whose diameter is significantly increased compared to the high pressure lines, so that from the high-pressure accumulator a certain amount of injection can be delivered without causing an immediate pressure drop.
  • a possibility of reducing pressure pulsations can be taken from WO 2007/143768 A1, wherein a resonator line which is connected in parallel to the high-pressure line between injection nozzle and high-pressure accumulator is provided which has a resonator throttle on the high-pressure accumulator side.
  • the resonator throttle is preferably arranged at the inlet of the resonator line into the high-pressure accumulator.
  • the known from WO 2007/143768 AI training thus provides that the high pressure line is divided into two independent areas, one of which with. is equipped with a throttle, so that the pressure vibrations, which arise at the nozzle seat, are reflected differently in both areas and almost cancel the reflected vibrations due to their phase offset.
  • said resonator system is able to accelerate the decay of the pressure oscillations, the first pressure peak which occurs immediately upon closing of the injection nozzle can not be lowered thereby.
  • the invention therefore aims to lower as effectively as possible the first pressure peak occurring directly upon closing of the injection nozzle.
  • the invention essentially provides, proceeding from a device of the type initially mentioned, that the high-pressure bore comprises a first section adjoining the high-pressure accumulator and a second section opening into the injector, wherein the first section has a larger flow cross-section than the second section.
  • first and second portions directly adjoin one another.
  • the transition from the larger flow cross section of the first section to the smaller flow cross section of the second section can take place here continuously or stepwise.
  • the edge formed at the transition is preferably rounded off.
  • both the first and the second section has a circular flow cross-section.
  • the first section of the high-pressure bore formed with a larger flow cross-section is formed as long as possible and thus brought as close as possible to the injection nozzle.
  • a preferred development in this context provides that the length of the first section corresponds to at least twice, preferably at least three times, the length of the second section.
  • An optimization of the effect achieved by the construction according to the invention can also be achieved by selecting the flow cross section of the first section as large as possible in relation to the flow cross section of the second section.
  • a preferred embodiment provides that the flow cross section of the first section corresponds to at least 1.5 times, preferably at least twice, preferably at least three times, more preferably at least four times, the flow cross section of the second section.
  • the embodiment according to the invention is particularly advantageous for injectors, in which the nozzle needle can be acted upon in the axial direction by the pressure prevailing in a control chamber which can be supplied with fuel under pressure, the control chamber being provided with an inlet throttle Supply channel and an outlet throttle having flow channel is in communication and at least one inlet or outlet channel opening or closing control valve is provided, with which the pressure in the control chamber is controlled, that the inlet throttle and the outlet throttle are formed in a throttle plate, that Control valve is formed in a valve plate and that the high pressure bore and the resonator bore pass through the valve plate and the throttle plate.
  • the injector is usually designed such that an injector and / or holding body accommodating the high-pressure accumulator, the valve plate, the throttle plate and the injection nozzle are held together by a nozzle retaining nut.
  • the high-pressure bore and the resonator bore extend through the holding body, the valve plate and the throttle plate and thereby connect the high-pressure accumulator with the injection nozzle.
  • the section of the high-pressure bore passing through the throttle plate and the valve plate it is particularly advantageous in the context of the invention for the section of the high-pressure bore passing through the throttle plate and the valve plate to form the second section thereof or a part of the second section.
  • the flow cross-section is limited by design, since the resonator bore and the high-pressure bore on the valve assembly and the drain and possibly inlet throttle must be passed.
  • the first section of the high-pressure bore is preferably formed in a holding body. det, which is arranged between the high-pressure accumulator and the valve plate.
  • the transition from the first section into the second section of the high-pressure bore can be arranged, for example, at the transition of the holding body to the valve plate.
  • a preferred development provides that the transition from the first section to the second section of the high-pressure bore is arranged in the holding body. At the transition from the holding body in the valve plate in this case, only the smaller cross section of the second section is sealed.
  • the resonator throttle is arranged at the inlet of the resonator bore into the high-pressure accumulator.
  • the length of the resonator bore is preferably matched to the length of the high-pressure bore so that the pressure oscillations induced by the injector are mutually weakened or extinguished.
  • the length of the resonator bore between the injection nozzle and the resonator throttle and the length of the high-pressure line between the injection nozzle and the inlet of the high-pressure bore into the pressure accumulator are each preferably an integer multiple of the wavelength of the pressure oscillation induced by the injection nozzle.
  • the length of the resonator bore between the nozzle front chamber and the resonator throttle preferably corresponds substantially to the length of the high-pressure line between the nozzle front chamber and the inlet of the high-pressure bore into the pressure accumulator.
  • FIG. 1 schematically shows a cross section of an injector equipped with a high-pressure accumulator according to the prior art
  • FIG. 2 shows a schematic representation of the profile of the flow cross-section of the high-pressure line between high-pressure accumulator and injection nozzle.
  • an injector 1 which has an injection nozzle 2, a throttle plate 3, a valve plate 4, a holding body 5 and a high-pressure accumulator 6, wherein a screwed to the holding body 5 Torsenspannmut- ter 7 the injection nozzle 2, the Throttle plate 3 and the valve plate 4 holds together.
  • the solenoid valve 13 is closed so that high-pressure fuel from the high-pressure accumulator 6 via the high-pressure line 8, the cross-connection 9 and the inlet throttle 10 flows into the control chamber 11 of the injection nozzle 2, the outflow from the control chamber 11 via the outlet throttle 12 but at the valve seat of the solenoid valve 13 is blocked.
  • the voltage applied in the control chamber 11 system pressure presses together with the force of the nozzle spring 14, the nozzle needle 15 in the nozzle needle seat 16, so that the injection holes 17 are closed. If the solenoid valve 13 is actuated, it releases the flow through the solenoid valve seat, and fuel flows from the control chamber 11 through the outlet throttle 12, the solenoid valve armature chamber and the low-pressure bore 18 back into the fuel tank, not shown.
  • a resonator is used. This consists of a resonator 20, which has the same length and the same diameter as the high-pressure line 8, and a resonator 21, which is attached to the memory-side end of the resonator 20 and connects them to the memory 6.
  • the solenoid valve 13 When closing the solenoid valve 13, the pressure pulse generated at the nozzle seat 16 is propagated via the nozzle chamber 19 into the high-pressure line 8 and the resonator line 20.
  • FIG. 2 shows a highly schematic representation of the injector 1, wherein the functional components described in more detail in Fig. 1, namely the memory 6, the holding body 5, the valve plate 4, the throttle plate 3 and the injection nozzle 2 are only outlined without their individual Components, as described with reference to FIG. 1, individually represent.
  • the high-pressure bore 8 which connects the high-pressure accumulator 6 to the injection nozzle 2 has in a first section 8 'an enlarged diameter compared with the prior art, namely a significantly larger diameter than in a second section 8''.
  • the first section 8 ' is pulled relatively far forward to the injection nozzle.
  • the transition between the first section 8 'and the second section 8'' is designated 22 and is arranged in the holding body 5.
  • the high-pressure bore has a relation to the prior art unaltered cross-section, and in particular the same diameter as the resonator 20th

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Bei einer Vorrichtung zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine ist wenigstens ein Injektor (1) vorgesehen, der einen im Injektorkörper integrierten Hochdruckspeicher (6), eine Einspritzdüse (2), die eine axial verschieblich geführte Düsennadel (15) umfasst, die von einem Düsenraum (19) umgeben ist, eine den Hochdruckspeicher (6) mit der Einspritzdüse (2) verbindende Hochdruckbohrung (8) und eine parallel zur Hochdruckbohrung (8) geschaltene Resonatorbohrung (20) umfasst, die mit der Einspritzdüse (2) in Verbindung steht und über eine Resonatordrossel (21) in den Hochdruckspeicher (6) mündet. Die Hochdruckbohrung (8) umfasst einen ersten (8'), an den Hochdruckspeicher (6) anschließenden Abschnitt und einen zweiten (8''), in die Einspritzdüse (2) mündenden Abschnitt, wobei der erste Abschnitt (8') einen größeren Durchflussquerschnitt aufweist als der zweite Abschnitt (8'')·

Description

Vorrichtung zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine
Die Erfindung betrifft eine Vorrichtung zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine mit wenigstens einem Injektor, der einen im Injektorkörper integrierten Hochdruckspeicher, eine Einspritzdüse, die eine axial verschieblich geführte Düsennadel umfasst, die von einem Düsenraum umgeben ist, eine den Hochdruckspeicher mit der Einspritzdüse verbindende Hochdruckbohrung und eine parallel zur Hochdruckbohrung geschaltene Resonatorbohrung um- fasst, die mit der Einspritzdüse in Verbindung steht und über eine Resonatordrossel in den Hochdruckspeicher mündet. Einspritzinjektoren dieser Art werden in modularen Common- Rail-Systemen verwendet, die dadurch gekennzeichnet sind, dass ein Teil des im System vorhandenen Speichervolumens im Injektor selbst vorhanden ist. Modulare Common-Rail-Systeme kommen bei besonders großen Motoren zum Einsatz, bei welchen die einzelnen Injektoren unter Umständen in erheblichem Abstand voneinander angebracht sind. Die alleinige Verwendung eines gemeinsamen Rails für alle Injektoren ist bei solchen Motoren nicht sinnvoll, da es aufgrund der langen Leitungen während der Einspritzung zu einem massiven Einbruch im Ein- spritzdruck kommen würde, sodass bei längerer Spritzdauer die Einspritzrate merklich einbrechen würde. Bei solchen Motoren ist es daher vorgesehen, einen Hochdruckspeicher im Inneren eines jeden Injektors anzuordnen. Eine solche Bauweise wird als modularer Aufbau bezeichnet, da jeder einzel- ne Injektor über seinen eigenen Hochdruckspeicher verfügt und somit als eigenständiges Modul eingesetzt werden kann. Unter einem Hochdruckspeicher ist hierbei nicht eine gewöhnliche Leitung zu verstehen, sondern es handelt sich bei ei- nem Hochdruckspeicher um ein druckfestes Gefäß mit einer Zu- bzw. Ableitung, dessen Durchmesser im Vergleich zu den Hochdruckleitungen deutlich vergrößert ist, damit aus dem Hochdruckspeicher eine gewisse Einspritzmenge abgegeben werden kann, ohne dass es zu einem sofortigen Druckabfall kommt.
In einem Common-Rail-System werden elektronisch gesteuerte Einspritzinjektoren zum Einspritzen des Kraftstoffs in den Motorbrennraum verwendet. Die in diesen Injektoren verwende- ten Servoventile bewirken ein sehr schnelles Schließen der Einspritzdüse. Beim Schließen der Einspritzdüse läuft der Kraftstoff gegen ein geschlossenes Leitungsende, wobei auf Grund der Trägheit des Kraftstoffes der Druck vor der Einspritzdüse deutlich ansteigt. Diese Druckspitze läuft in der Folge in der Hochdruckbohrung zwischen Einspritzdüse und dem Hochdruckspeicher hin und her, wobei am Düsensitz starke Druckpulsationen entstehen, die hier zu starkem Verschleiß führen. Die dabei auftretenden Druckspitzen liegen in ungünstigen Fällen um bis zu 500 bar über dem Raildruck.
Diese Druckschwingungen führen bei schnell aufeinander folgenden Einspritzvorgängen überdies zu starken Schwankungen der Einspritzrate. Wird zum Beispiel durch eine Voreinspritzung eine Druckschwingung am Düsensitz induziert, so ist bei konstanter Öffnungszeit der Düsennadel für die zweite, nachfolgende Einspritzung die eingespritzte Menge davon abhängig, ob die zweite Einspritzung eher in einem Maximum oder in einem Minimum der Druckschwingung erfolgt ist. Eine möglichst geringe Druckschwingung an der Einspritzdüse in allen Be- triebszuständen des hydraulischen Systems ist daher erstrebenswert . Eine Möglichkeit der Reduktion von Druckpulsationen ist der WO 2007/143768 AI zu entnehmen, wobei eine parallel zur Hochdruckleitung zwischen Einspritzdüse und Hochdruckspeicher ge- schaltene Resonatorleitung vorgesehen ist, die hochdruckspei- cherseitig eine Resonatordrossel aufweist. Bevorzugt ist die Resonatordrossel am Eintritt der Resonatorleitung in den Hochdruckspeicher angeordnet.
Die aus der WO 2007/143768 AI bekannte Ausbildung sieht somit vor, dass die Hochdruckleitung in zwei voneinander unabhängige Bereiche geteilt wird, von denen einer mit. einer Drossel ausgestattet ist, sodass die Druckschwingungen, die am Düsensitz entstehen, in beiden Bereichen unterschiedlich reflektiert werden und sich die reflektierten Schwingungen aufgrund ihres Phasenversatzes nahezu auslöschen.
Das genannte Resonatorsystem ist zwar in der Lage, das Abklingen der Druckschwingungen zu beschleunigen, die erste, unmittelbar beim Schließen der Einspritzdüse auftretende Druckspitze kann dadurch aber nicht abgesenkt werden.
Die Erfindung zielt daher darauf ab, auch die erste, unmittelbar beim Schließen der Einspritzdüse auftretende Druckspitze möglichst wirksam abzusenken.
Zur Lösung dieser Aufgabe sieht die Erfindung ausgehend von einer Vorrichtung der eingangs genannten Art im Wesentlichen vor, dass die Hochdruckbohrung einen ersten, an den Hochdruckspeicher anschließenden Abschnitt und einen zweiten, in die Einspritzdüse mündenden Abschnitt umfasst, wobei der erste Abschnitt einen größeren Durchflussquerschnitt aufweist als der zweite Abschnitt. Durch diese einfache Maßnahme wird erreicht, dass die gegen die geschlossene Einspritz- düse auflaufende Flüssigkeitssäule reduziert und damit die entsprechende Druckspitze abgesenkt wird.
Bevorzugt schließen der erste und der zweite Abschnitt un- mittelbar aneinander an. Der Übergang vom größeren Durchflussquerschnitt des ersten Abschnitts auf den kleineren Durchflussquerschnitt des zweiten Abschnitts kann hierbei kontinuierlich oder stufenartig erfolgen. Bei einem stufenartigen Übergang ist die am Übergang ausgebildete Kante be- vorzugt abgerundet. Bevorzugt weist sowohl der erste als auch der zweite Abschnitt einen kreisrunden Durchflussquerschnitt auf.
Zur Maximierung des durch die erfindungsgemäße Ausbildung erreichten Effekts wird der erste, mit größerem Durchflussquerschnitt ausgebildete Abschnitt der Hochdruckbohrung möglichst lange ausgebildet und damit möglichst nahe an die Einspritzdüse herangeführt. Eine bevorzugte Weiterbildung sieht in diesem Zusammenhang vor, dass die Länge des ersten Abschnitts wenigstens dem Doppelten, bevorzugt wenigstens dem Dreifachen der Länge des zweiten Abschnitts entspricht.
Eine Optimierung des durch die erfindungsgemäße Ausbildung erreichten Effekts kann auch dadurch erreicht werden, dass der Durchflussquerschnitt des ersten Abschnitts im Verhältnis zum Durchflussquerschnitt des zweiten Abschnitts möglichst groß gewählt wird. Eine bevorzugte Ausbildung sieht hierbei vor, dass der Durchflussquerschnitt des ersten Abschnitts mindestens dem 1,5-fachen, bevorzugt mindestens dem 2-fachen, bevorzugt mindestens dem 3-fachen, besonders bevorzugt mindestens dem 4-fachen des Durchflussquerschnitts des zweiten Abschnitts entspricht. Die erfindungsgemäße Ausbildung kommt besonders vorteilhaft bei Injektoren zum Tragen, bei denen die Düsennadel zur Steuerung ihrer Öffnungs- und Schließbewegung von dem in einem mit Kraftstoff unter Druck speisbaren Steuerraum herr- sehenden Druck in axialer Richtung beaufschlagbar ist, wobei der Steuerraum mit einem eine Zulaufdrossel aufweisenden Zulaufkanal und einem eine Ablaufdrossel aufweisenden Ablaufkanal in Verbindung steht und wenigstens ein den Zu- oder Ablaufkanal öffnendes oder schließendes Steuerventil vorge- sehen ist, mit dem der Druck im Steuerraum gesteuert wird, dass die Zulaufdrossel und die Ablaufdrossel in einer Drosselplatte ausgebildet sind, dass das Steuerventil in einer Ventilplatte ausgebildet ist und dass die Hochdruckbohrung und die Resonatorbohrung die Ventilplatte und die Drossel- platte durchsetzen. Der Injektor ist hierbei meist so ausgebildet, dass ein den Hochdruckspeicher beherbergender Injektor- und/oder Haltekörper, die Ventilplatte, die Drosselplatte und die Einspritzdüse von einer Düsenspannmutter zusammengehalten werden. Die Hochdruckbohrung und die Resona- torbohrung erstrecken sich dabei durch den Haltekörper, die Ventilplatte und die Drosselplatte und verbinden dadurch den Hochdruckspeicher mit der Einspritzdüse.
Bei einem Injektor der oben genannten Art ist es im Rahmen der Erfindung besonders vorteilhaft, wenn der die Drosselplatte und die Ventilplatte durchsetzende Abschnitt der Hochdruckbohrung den zweiten Abschnitt derselben oder einen Teil des zweiten Abschnitts ausbildet. In diesem Abschnitt ist der Durchflussquerschnitt konstruktionsbedingt begrenzt, da die Resonatorbohrung und die Hochdruckbohrung an der Ventilanordnung bzw. der Ablauf- und ggf. Zulaufdrossel vorbeigeführt werden müssen. Der erste Abschnitt der Hochdruckbohrung hingegen ist bevorzugt in einem Haltekörper ausgebil- det, der zwischen dem Hochdruckspeicher und der Ventilplatte angeordnet ist.
Der Übergang vom ersten Abschnitt in den zweiten Abschnitt der Hochdruckbohrung kann beispielsweise am Übergang des Haltekörpers zur Ventilplatte angeordnet sein. Dies würde allerdings dazu führen, dass an dieser Stelle, an der die Ventilplatte und der Haltekörper dichtend aneinander ge- presst sind, ein größerer Querschnitt der Hochdruckbohrung, nämlich der Querschnitt des ersten Abschnitts, abgedichtet werden muss. Um dies zu vermeiden, sieht eine bevorzugte Weiterbildung vor, dass der Übergang vom ersten Abschnitt in den zweiten Abschnitt der Hochdruckbohrung im Haltekörper angeordnet ist. Am Übergang vom Haltekörper in die Ventilplatte ist in diesem Fall nur mehr der kleinere Querschnitt des zweiten Abschnitts abzudichten.
Bevorzugt ist vorgesehen, dass die Resonatordrossel am Eintritt der Resonatorbohrung in den Hochdruckspeicher angeord- net ist.
Bevorzugt ist die Länge der Resonatorbohrung auf die Länge der Hochdruckbohrung abgestimmt, sodass sich die vom Injektor induzierten Druckschwingungen gegenseitig abschwächen oder auslöschen.
Bevorzugt ist die Länge der Resonatorbohrung zwischen der Einspritzdüse und der Resonatordrossel sowie die Länge der Hochdruckleitung zwischen der Einspritzdüse und dem Eintritt der Hochdruckbohrung in den Druckspeicher jeweils ein ganzzahliges Vielfaches der Wellenlänge der von der Einspritzdüse induzierten Druckschwingung. Bevorzugt entspricht die Länge der Resonatorbohrung zwischen dem Düsenvorraum und der Resonatordrossel im Wesentlichen der Länge der Hochdruckleitung zwischen dem Düsenvorraum und dem Eintritt der Hochdruckbohrung in den Druckspeicher.
Die Erfindung wird nachfolgend anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert. In dieser zeigen Fig.l schematisch einen Querschnitt eines mit einem Hochdruckspeicher ausgestatteten Injektors gemäß Stand der Technik und Fig.2 eine schematische Darstellung des Verlaufs des Durchflussquerschnitts der Hochdruckleitung zwischen Hochdruckspeicher und Einspritzdüse.
In Fig. 1 ist ein Injektor 1 dargestellt, der eine Ein- spritzdüse 2, eine Drosselplatte 3, eine Ventilplatte 4, einen Haltekörper 5 und einen Hochdruckspeicher 6 aufweist, wobei eine mit dem Haltekörper 5 verschraubte Düsenspannmut- ter 7 die Einspritzdüse 2, die Drosselplatte 3 und die Ventilplatte 4 zusammenhält. Im Ruhezustand ist das Magnetven- til 13 geschlossen, sodass Hochdruckkraftstoff aus dem Hochdruckspeicher 6 über die Hochdruckleitung 8, die Querverbindung 9 und die Zulaufdrossel 10 in den Steuerraum 11 der Einspritzdüse 2 strömt, der Abfluss aus dem Steuerraum 11 über die Ablaufdrossel 12 aber am Ventilsitz des Magnetven- tils 13 blockiert ist. Der im Steuerraum 11 anliegende Systemdruck drückt gemeinsam mit der Kraft der Düsenfeder 14 die Düsennadel 15 in den Düsennadelsitz 16, sodass die Spritzlöcher 17 verschlossen sind. Wird das Magnetventil 13 betätigt, gibt es den Durchfluss über den Magnetventilsitz frei, und Kraftstoff strömt aus dem Steuerraum 11 durch die Ablaufdrossel 12, den Magnetventilankerraum und die Niederdruckbohrung 18 zurück in den nicht dargestellten Kraftstofftank. Es stellt sich ein durch die Strömungsquerschnit- te von Zulaufdrossel 10 und Ablaufdrossel 12 definierter Gleichgewichtsdruck im Steuerraum 11 ein, der so gering ist, dass der im Düsenraum 19 anliegende Systemdruck die im Dü¬ senkörper längs verschieblich geführte Düsennadel 15 zu öff- nen vermag, sodass die Spritzlöcher 17 freigegeben werden und eine Einspritzung erfolgt.
Aufgrund der Massenträgheit des Kraftstoffs in Speicher 6, Hochdruckleitung 8 und Düsenraum 19 kommt es direkt nach dem Schließen der Düsennadel 15 zu starken Druckschwingungen am Düsensitz 16, da der fließende Kraftstoff in sehr kurzer Zeit abgebremst werden muss. Zur Reduktion der Druckschwingungen kommt ein Resonator zum Einsatz. Dieser besteht aus einer Resonatorleitung 20, welche die gleiche Länge und den gleichen Durchmesser wie die Hochdruckleitung 8 aufweist, sowie einer Resonatordrossel 21, die am speicherseitigen Ende der Resonatorleitung 20 angebracht ist und diese mit dem Speicher 6 verbindet. Beim Schließen des Magnetventils 13 pflanzt sich der am Düsensitz 16 entstehende Druckpuls über den Düsenraum 19 in die Hochdruckleitung 8 und die Resonatorleitung 20 fort. Am Ende der Hochdruckleitung 8 erfolgt eine Reflexion des Druckpulses am offenen Ende am Übergang in den Speicher 6. Gleichzeitig wird der in der Resonatorleitung 20 laufende Druckpuls am geschlossenen Ende an der Resonatordrossel 21 reflektiert. Die beiden reflektierten Druckpulse sind aufgrund der unterschiedlichen Reflexionsart (offenes bzw. geschlossenes Ende) um 180° phasenverschoben, sodass sie sich beim Aufeinandertreffen im Düsenraum 19 auslöschen. Dadurch kommt es zu keinen weiteren Druckpulsen am Düsensitz 16, sodass hier deutlich weniger Verschleiß auftritt. Allerdings ist die beschriebene Anordnung nicht in der Lage, auch die erste, unmittelbar beim Schließen der Einspritzdüse 2 auftretende Druckspitze abzusenken. In der Detaildarstellung gemäß Fig. 2 ist die erfindungsgemäße Ausbildung der Hochdruckbohrung dargestellt, mit der auch die genannte erste Druckspitze abgesenkt werden kann. Die Fig. 2 zeigt eine stark schematisierte Darstellung des Injektors 1, wobei die in Fig. 1 näher beschriebenen Funktionskomponenten, nämlich der Speicher 6, der Haltekörper 5, die Ventilplatte 4, die Drosselplatte 3 und die Einspritzdüse 2 nur umrissen sind, ohne deren einzelne Bauteile, wie sie anhand der Fig. 1 beschrieben wurden, einzeln darzustellen. Fig. 2 zeigt, dass die Hochdruckbohrung 8, welche den Hochdruckspeicher 6 mit der Einspritzdüse 2 verbindet, in einem ersten Abschnitt 8' einen gegenüber dem Stand der Technik vergrößerten Durchmesser aufweist, und zwar einen deutlich größeren Durchmesser als in einem zweiten Abschnitt 8''. Der erste Abschnitt 8' ist dabei relativ weit nach vorne zur Einspritzdüse gezogen. Der Übergang zwischen dem ersten Abschnitt 8' und dem zwei- ten Abschnitt 8'' ist mit 22 bezeichnet und ist im Haltekörper 5 angeordnet. Im an den Übergang 22 anschließenden Abschnitt des Haltekörpers 5 sowie in dem die Ventilplatte 4 und die Drosselplatte 3 durchsetzenden Abschnitt 8'' weist die Hochdruckbohrung einen gegenüber dem Stand der Technik unveränderten Querschnitt auf, und insbesondere denselben Durchmesser wie die Resonatorbohrung 20.

Claims

Patentansprüche :
1. Vorrichtung zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine mit wenigstens einem Injektor, der einen im Injektorkörper integrierten Hochdruckspeicher, eine Einspritzdüse, die eine axial verschieblich geführte Düsennadel umfasst, die von einem Düsenraum umgeben ist, eine den Hochdruckspeicher mit der Einspritzdüse verbindende Hochdruckbohrung und eine parallel zur Hochdruckbohrung ge- schaltene Resonatorbohrung umfasst, die mit der Einspritzdüse in Verbindung steht und über eine Resonatordrossel in den Hochdruckspeicher mündet, dadurch gekennzeichnet, dass die Hochdruckbohrung (8) einen ersten (8')/ an den Hochdruckspeicher (6) anschließenden Abschnitt und einen zweiten (8''), in die Einspritzdüse (2) mündenden Abschnitt umfasst, wobei der erste Abschnitt (8') einen größeren Durchflussquerschnitt aufweist als der zweite Abschnitt (8'')·
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der erste (8') und der zweite Abschnitt (8'') unmittelbar aneinander anschließen.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Länge des ersten Abschnitts (8' ) wenigstens dem Doppelten, bevorzugt wenigstens dem Dreifachen der Länge des zweiten Abschnitts (8'') entspricht.
4. Vorrichtung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass der Durchflussquerschnitt des ersten Ab- Schnitts (8') mindestens dem 1,5-fachen, bevorzugt mindestens dem 2-fachen, bevorzugt mindestens dem 3-fachen, besonders bevorzugt mindestens dem 4-fachen des Durchflussquerschnitts des zweiten Abschnitts (8'') entspricht.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Düsennadel (15) zur Steuerung ihrer Öffnungs- und Schließbewegung von dem in einem mit Kraft- stoff unter Druck speisbaren Steuerraum (11) herrschenden Druck in axialer Richtung beaufschlagbar ist, wobei der Steuerraum (11) mit einem eine Zulaufdrossel (10) aufweisenden Zulaufkanal (9) und einem eine Ablaufdrossel (12) aufweisenden Ablaufkanal in Verbindung steht und wenigstens ein den Zu- oder Ablaufkanal öffnendes oder schließendes Steuerventil (13) vorgesehen ist, mit dem der Druck im Steuerraum (11) gesteuert wird, dass die Zulaufdrossel (10) und die Ablaufdrossel (12) in einer Drosselplatte (3) ausgebildet sind, dass das Steuerventil (13) in einer Ventilplatte (4) ausgebildet ist und dass die Hochdruckbohrung (8) und die Resonatorbohrung (20) die Ventilplatte (4) und die Drosselplatte (3) durchsetzen.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass der die Drosselplatte (3) und die Ventilplatte (4) durchsetzende Abschnitt der Hochdruckbohrung (8) den zweiten Abschnitt (8'') derselben oder einen Teil des zweiten Abschnitts (8'') ausbildet.
7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der erste Abschnitt (8') der Hochdruckbohrung in einem Haltekörper (5) ausgebildet ist, der zwischen dem Hochdruckspeicher (6) und der Ventilplatte (4) angeordnet ist .
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Übergang (22) vom ersten Abschnitt (8') in den zweiten Abschnitt (8'') der Hochdruckbohrung im Haltekörper (5) angeordnet ist.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die am Übergang (22) ausgebildete Kante abgerundet ist.
PCT/IB2013/000208 2012-01-26 2013-01-17 Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine WO2013111007A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13710897.3A EP2807367B1 (de) 2012-01-26 2013-01-17 Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA104/2012 2012-01-26
AT1042012A AT512439B1 (de) 2012-01-26 2012-01-26 Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine

Publications (1)

Publication Number Publication Date
WO2013111007A1 true WO2013111007A1 (de) 2013-08-01

Family

ID=47902315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/000208 WO2013111007A1 (de) 2012-01-26 2013-01-17 Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine

Country Status (3)

Country Link
EP (1) EP2807367B1 (de)
AT (1) AT512439B1 (de)
WO (1) WO2013111007A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2835527A1 (de) * 2013-08-08 2015-02-11 MAN Diesel & Turbo SE Injektor für eine Kraftstoffversorgungsanlage einer Brennkraftmaschine sowie Kraftstoffversorgungsanlage
WO2015116777A1 (en) * 2014-01-31 2015-08-06 Cummins Inc. Fuel injection pressure pulsation dampening system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012092A1 (de) * 2005-07-28 2007-02-01 Avl List Gmbh Hydraulische vorrichtung mit zumindest einem druckspeicher
WO2007143768A1 (de) 2006-06-13 2007-12-21 Robert Bosch Gmbh Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
AT509877A4 (de) * 2010-11-02 2011-12-15 Bosch Gmbh Robert Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1518050B1 (de) * 2002-07-02 2011-10-05 Continental Automotive GmbH Injektor für ein einspritzsystem

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012092A1 (de) * 2005-07-28 2007-02-01 Avl List Gmbh Hydraulische vorrichtung mit zumindest einem druckspeicher
WO2007143768A1 (de) 2006-06-13 2007-12-21 Robert Bosch Gmbh Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
AT509877A4 (de) * 2010-11-02 2011-12-15 Bosch Gmbh Robert Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2835527A1 (de) * 2013-08-08 2015-02-11 MAN Diesel & Turbo SE Injektor für eine Kraftstoffversorgungsanlage einer Brennkraftmaschine sowie Kraftstoffversorgungsanlage
CN104343609A (zh) * 2013-08-08 2015-02-11 曼柴油机和涡轮机欧洲股份公司 用于内燃机的燃料供应系统的喷射器和燃料供应系统
WO2015116777A1 (en) * 2014-01-31 2015-08-06 Cummins Inc. Fuel injection pressure pulsation dampening system
US9644590B2 (en) 2014-01-31 2017-05-09 Cummins Inc. Fuel injection pressure pulsation dampening system

Also Published As

Publication number Publication date
AT512439B1 (de) 2013-12-15
AT512439A1 (de) 2013-08-15
EP2807367A1 (de) 2014-12-03
EP2807367B1 (de) 2015-10-14

Similar Documents

Publication Publication Date Title
AT509877B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP1485609B1 (de) Vorrichtung zum einspritzen von kraftstoff an stationären verbrennungskraftmaschinen
DE69619949T2 (de) Speicherkraftstoffeinspritzvorrichtung
EP1125046B1 (de) Kraftstoffeinspritzsystem für eine Brennkraftmaschine mit einer Druckübersetzungseinheit
DE4313852A1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
AT503660B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP2852754B1 (de) Injektor eines kraftstoffeinspritzsystems
DE19910589C2 (de) Einspritzventil für eine Brennkraftmaschine
DE3044254C2 (de)
EP2807367B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE3145877A1 (de) Kraftstoffeinspritzduese
EP2807366B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP1283954A1 (de) Kraftstoffeinspritzvorrichtung für eine brennkraftmaschine
WO2007014733A1 (de) Kraftstoff-einspritzsystem für eine brennkraftmaschine
WO2003074865A1 (de) Einrichtung zur druckmodulierten formung des einspritzverlaufes
WO2001071178A2 (de) Vorrichtung zur einspritzung von kraftstoff mit variablem einspritzdruckverlauf
DE10015740C2 (de) Einspritzventil für die Einspritzung von Kraftstoff in eine Verbrennungskraftmaschine
DE3024975A1 (de) Brennstoffeinspritzvorrichtung fuer brennkraftmaschinen
DE19942846C1 (de) Vorrichtung und Verfahren zur druckgesteuerten Einspritzung eines Fluids
WO2003054384A1 (de) Kraftstoff-einspritzvorrichtung, kraftstoffsystem sowie brennkraftmaschine
EP2737196A1 (de) Kavitationsoptimierte drosselbohrungen
WO2010121634A1 (de) Kraftstoffeinspritzvorrichtung für eine verbrennungskraftmaschine, verbrennungskraftmaschine und verfahren zur kraftstoffeinspritzung in eine verbrennungskraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13710897

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013710897

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE