WO2013108831A1 - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
WO2013108831A1
WO2013108831A1 PCT/JP2013/050783 JP2013050783W WO2013108831A1 WO 2013108831 A1 WO2013108831 A1 WO 2013108831A1 JP 2013050783 W JP2013050783 W JP 2013050783W WO 2013108831 A1 WO2013108831 A1 WO 2013108831A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse signal
gasoline
fuel injection
inj1
input
Prior art date
Application number
PCT/JP2013/050783
Other languages
French (fr)
Japanese (ja)
Inventor
隆幸 島津
渉 村野
陽平 栗谷川
加藤 雅樹
Original Assignee
株式会社ケーヒン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケーヒン filed Critical 株式会社ケーヒン
Priority to DE112013000630.8T priority Critical patent/DE112013000630B4/en
Publication of WO2013108831A1 publication Critical patent/WO2013108831A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a fuel injection control device.
  • This application claims priority based on Japanese Patent Application No. 2012-008945 filed on January 19, 2012, the contents of which are incorporated herein by reference.
  • bi-fuel system that selectively switches between liquid fuel such as gasoline and gaseous fuel such as compressed natural gas (CNG) and supplies it to a single engine.
  • liquid fuel such as gasoline
  • gaseous fuel such as compressed natural gas (CNG)
  • CNG compressed natural gas
  • Patent Document 1 a gasoline pulse output from an existing electronic control device that controls the gasoline injection amount (a pulse signal having a pulse width corresponding to the gasoline injection amount and used to drive a gasoline injector) Is input to a new electronic control device, and this new electronic control device converts a gasoline pulse into a gas pulse (pulse signal used to drive a gas injector) having a pulse width suitable for gas fuel.
  • a gasoline pulse output from an existing electronic control device that controls the gasoline injection amount a pulse signal having a pulse width corresponding to the gasoline injection amount and used to drive a gasoline injector
  • this new electronic control device converts a gasoline pulse into a gas pulse (pulse signal used to drive a gas injector) having a pulse width suitable for gas fuel.
  • a new electronic control device (hereinafter referred to as a gas ECU) is a gas injector that converts a gasoline pulse input from an existing electronic control device (hereinafter referred to as a gasoline ECU) into a gas pulse during gas operation.
  • a gasoline ECU an existing electronic control device
  • gasoline pulse input from the gasoline ECU is output to the gasoline injector without conversion.
  • An aspect of the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a fuel injection control device capable of avoiding stop of fuel supply to an engine.
  • a fuel injection control device is configured to input a first pulse signal for driving a liquid fuel injection valve and a second pulse signal for driving a gaseous fuel injection valve, which are input from the outside.
  • a normally on switch inserted on a wiring connecting the external input terminal and the external output terminal of the first pulse signal, and a front stage of the switch at the time of gaseous fuel injection
  • a signal processing unit that converts the first pulse signal that is branched and input to the second pulse signal and controls the switch to be turned off.
  • the signal processing unit is configured to input the first pulse signal branched from the preceding stage of the switch and the first pulse input branched from the subsequent stage of the switch.
  • An abnormality diagnosis of the transmission path of the first pulse signal in the own apparatus may be performed based on the signal.
  • the signal processing unit is branched from the preceding stage of the switch and is input with the logic level of the first pulse signal, and the branching is input from the subsequent stage of the switch.
  • An abnormality diagnosis of the transmission path of the first pulse signal may be performed by comparing the logic level of the first pulse signal.
  • the signal processing unit branches from the input order of the plurality of first pulse signals that are branched and input from the front stage of the plurality of switches, and from the subsequent stage of the plurality of switches.
  • the abnormality diagnosis of the transmission path of the first pulse signal may be performed by comparing the input order of the plurality of the first pulse signals input.
  • the first pulse signal is always output to the liquid fuel injection valve. Therefore, it is possible to avoid stopping the fuel supply to the engine.
  • FIG. 1 is a schematic configuration diagram of a fuel injection control device (gas ECU 1) according to the present embodiment.
  • the gas ECU 1 receives four gasoline pulse signals (first pulse signals) INJ1 to INJ4 for driving the liquid fuel injection valves for four cylinders inputted from the external gasoline ECU 2, and gas fuel injection for four cylinders.
  • This is an electronic control device that converts four gas pulse signals (second pulse signals) GINJ1 to GINJ4 for driving the valve.
  • the gasoline ECU 2 for example, has four gasoline pulse signals INJ1 to INJ4 for driving the liquid fuel injection valves for the four cylinders based on, for example, the gasoline injection amount and injection timing of each cylinder based on the operating state of the four cylinder engine.
  • the method for controlling the gasoline injection amount and the injection timing of each cylinder is the same as the conventional method, and the description thereof will be omitted.
  • the gas ECU 1 of the present embodiment receives external input terminals 11 to 14 for inputting four gasoline pulse signals INJ1 to INJ4 from the gasoline ECU 2, and these four gasoline pulse signals INJ1 to INJ4.
  • External output terminals 15 to 18 for outputting to four liquid fuel injection valves (not shown), four relay circuits (switches) 19 to 22 and a microcomputer (signal processing unit) 23 are provided.
  • the relay circuit 19 is a normally-on switch inserted on a wiring connecting the external input terminal 11 and the external output terminal 15 of the gasoline pulse signal INJ1 for driving the liquid fuel injection valve of the first cylinder.
  • the relay circuit 20 is a normally-on switch inserted on the wiring connecting the external input terminal 12 and the external output terminal 16 of the gasoline pulse signal INJ2 for driving the liquid fuel injection valve of the second cylinder. .
  • the relay circuit 21 is a normally-on switch inserted on a wiring connecting the external input terminal 13 and the external output terminal 17 of the gasoline pulse signal INJ3 for driving the liquid fuel injection valve of the third cylinder.
  • the relay circuit 22 is a normally-on switch inserted on a wiring connecting the external input terminal 14 and the external output terminal 18 of the gasoline pulse signal INJ4 for driving the liquid fuel injection valve of the fourth cylinder. .
  • the microcomputer 23 (signal processing unit) is a microcomputer in which a CPU (Central Processing Unit) core, a memory, an input / output interface, and the like are integrated, and branches off from the previous stage of each relay circuit 19 to 22 at the time of gas fuel injection.
  • the gasoline pulse signals INJ1 to INJ4 inputted in this way are converted into gas pulse signals GINJ1 to GINJ4 having a pulse width suitable for the gas fuel and output to four gaseous fuel injection valves (not shown), and each relay circuit 19 to 22 is turned off.
  • a known technique such as Patent Document 1 (Japanese Patent Publication No. 6-502472) can be used.
  • the microcomputer 23 is branched and inputted from gasoline pulse signals INJ1 to INJ4 inputted from the preceding stage of the relay circuits 19 to 22 and the latter stage of the relay circuits 19 to 22.
  • the gasoline pulse signals INJ1 to INJ4 On the basis of the gasoline pulse signals INJ1 to INJ4, the transmission path abnormality diagnosis of the gasoline pulse signals INJ1 to INJ4 in the own apparatus is performed.
  • the gasoline pulse signals INJ1 to INJ4 branched from the rear stage of the relay circuits 19 to 22 and input to the microcomputer 23 are referred to as gasoline pulse return signals INJ1_R to INJ4_R.
  • the relay circuits 19 to 22 are always turned on, and the gasoline pulse signals INJ1 to INJ4 input from the gasoline ECU 2 are directly output to the liquid fuel injection valves to return to the current engine operation state.
  • the required amount of gasoline is supplied to each cylinder.
  • the microcomputer 23 of the gas ECU 1 recognizes that the gas fuel is selected as the current fuel from the state of the fuel changeover switch (not shown), the gasoline pulse signals INJ1 to INJ4 input from the gasoline ECU 2 are used as the gas pulse signal.
  • the gas fuel injection mode is converted to GINJ1 to GINJ4 and output to each gas fuel injection valve. That is, the microcomputer 23 controls the relay circuits 19 to 22 to be turned off during the gas injection mode, and performs conversion processing to gas pulses.
  • the relay circuits 19 to 22 are always turned off, and gas pulse signals GINJ1 to GINJ4 having a pulse width suitable for the gas fuel are output from the gas ECU 1 to the gas fuel injection valves, and the current engine operation is performed.
  • the amount of gas fuel required for the state will be supplied to each cylinder.
  • the gasoline pulse signals INJ1 to INJ4 are always output from the gas ECU 1 to the liquid fuel injection valve. It is possible to avoid stopping the fuel supply to the engine.
  • the microcomputer 23 in the present embodiment performs an abnormality diagnosis on the transmission path of each of the gasoline pulse signals INJ1 to INJ4 by the processing described below.
  • ⁇ Gasoline pulse transmission path abnormality diagnosis operation> For example, when paying attention to the transmission path of the gasoline pulse signal INJ1, the microcomputer 23 branches from the preceding stage of the relay circuit 19 and is input from the logic level of the gasoline pulse signal INJ1 and is input from the subsequent stage of the relay circuit 19. An abnormality diagnosis of the transmission path of the gasoline pulse signal INJ1 is performed by comparing the logic level of the gasoline pulse return signal INJ1_R.
  • the microcomputer 23 compares the logic level of the gasoline pulse signal INJ1 with the logic level of the gasoline pulse return signal INJ1_R as an interrupt process when the gasoline pulse signal INJ1 changes in logic level.
  • the microcomputer 23 compares the logical level obtained when the logic level of the gasoline pulse signal INJ1 changes from OFF to ON and the logic level obtained when the logic level of the gasoline pulse signal INJ1 changes from ON to OFF. Based on the comparison result, it is determined whether or not an abnormality has occurred in the transmission path of the gasoline pulse signal INJ1.
  • FIG. 2 is a timing chart showing a temporal correspondence relationship between the gasoline pulse signal INJ1, the gasoline pulse return signal INJ1_R, and the gas pulse signal GINJ1 during gasoline operation.
  • FIG. 2A when the transmission path of the gasoline pulse signal INJ1 is normal, the gasoline pulse signal INJ1 and the gasoline pulse return signal INJ1_R have the same logic level at all times during gasoline operation.
  • the gas pulse signal GINJ1 becomes OFF logic at all times.
  • the microcomputer 23 indicates that the logical level comparison result obtained when the logical level of the gasoline pulse signal INJ1 changes from OFF to ON is “match”, and the logical level of the gasoline pulse signal INJ1 is changed from ON.
  • the logical level comparison result obtained when the signal is changed to OFF also matches, it is determined that the transmission path of the gasoline pulse signal INJ1 is normal.
  • FIG. 3 is a timing chart showing the temporal correspondence relationship between the gasoline pulse signal INJ1, the gasoline pulse return signal INJ1_R, and the gas pulse signal GINJ1 during gas operation.
  • the gasoline pulse return signal INJ1_R becomes OFF logic at all times during gas operation, and the pulse is delayed slightly from the gasoline pulse signal INJ1.
  • a gas pulse signal GINJ1 having a corrected width is generated.
  • the microcomputer 23 indicates that the logical level comparison result obtained when the logic level of the gasoline pulse signal INJ1 has changed from OFF to ON is “mismatch”, and the logic level of the gasoline pulse signal INJ1 has changed from ON.
  • the logical level comparison result obtained when the signal is changed to OFF is “match”, it is determined that the transmission path of the gasoline pulse signal INJ1 is normal.
  • stoppage of fuel supply to the engine can be avoided during gasoline operation and gas operation, and the gasoline pulse signals INJ1 to INJ4 including the relay circuits 19 to 22 can be avoided. It is also possible to diagnose abnormalities in the transmission path.
  • the microcomputer 23 branches from the logic level of the gasoline pulse signals INJ1 to INJ4 that are branched and input from the previous stage of the relay circuits 19 to 22 and from the subsequent stage of the relay circuits 19 to 22.
  • the microcomputer 23 branches and inputs the input order of the gasoline pulse signals INJ1 to INJ4 that are branched from the preceding stage of the relay circuits 19 to 22 and the subsequent stage of the relay circuits 19 to 22.
  • an abnormality diagnosis of the transmission path of each of the gasoline pulse signals INJ1 to INJ4 may be performed.
  • FIG. 4 shows the time between gasoline pulse signals INJ1 to INJ4 and gasoline pulse return signals INJ1_R to INJ4_R when it is assumed that gasoline injection is performed in the order of the first cylinder ⁇ the third cylinder ⁇ the fourth cylinder ⁇ the second cylinder. It is a timing chart which shows a typical correspondence. As shown in FIG. 4, when the transmission paths of the gasoline pulse signals INJ1 to INJ4 are normal, the input order of the gasoline pulse signals INJ1 to INJ4 matches the input order of the gasoline pulse return signals INJ1_R to INJ4_R.
  • the microcomputer 23 determines whether the transmission path of the gasoline pulse signals INJ1 to INJ4 is different when the input order of the gasoline pulse signals INJ1 to INJ4 matches the input order of the gasoline pulse return signals INJ1_R to INJ4_R. Judged as normal, and judged to be abnormal when they did not match. Note that even when the transmission path is normal during gas operation, the gasoline pulse return signals INJ1_R to INJ4_R are all OFF logic, so this abnormality diagnosis method cannot be used.
  • Gas ECU fuel injection control device
  • Gasoline ECU 11-14
  • External input terminal 15-18
  • External output terminal 19-22
  • Relay circuit switch
  • Microcomputer signal processing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Provided is a fuel injection control device in which a first pulse signal for driving a liquid fuel injection valve, said first pulse signal being input from the outside, is converted into a second pulse signal for driving a gaseous fuel injection valve. The fuel injection control device comprises: a normally-on switch that is interposed between wiring connecting the external input terminal and the external output terminal for the first pulse signal; and a signal processing unit that converts the first pulse signal that is inputted via the external input terminal during gaseous fuel injection into the second pulse signal, and controls so that the switch is turned off.

Description

燃料噴射制御装置Fuel injection control device
 本発明は、燃料噴射制御装置に関する。
 本願は、2012年1月19日に出願された日本国特許出願2012-008945号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a fuel injection control device.
This application claims priority based on Japanese Patent Application No. 2012-008945 filed on January 19, 2012, the contents of which are incorporated herein by reference.
 従来から、車両の燃費性能及び環境保護性能を向上させる技術として、ガソリン等の液体燃料と圧縮天然ガス(CNG)等の気体燃料とを選択的に切替えて単一エンジンに供給するバイフューエルシステムが知られている。このバイフューエルシステムは、開発コストを削減するために、既存のガソリン噴射システムに新規のガス噴射システムを増設する形で構築される場合が多い。 Conventionally, as a technology for improving the fuel efficiency and environmental protection performance of a vehicle, there is a bi-fuel system that selectively switches between liquid fuel such as gasoline and gaseous fuel such as compressed natural gas (CNG) and supplies it to a single engine. Are known. This bi-fuel system is often constructed by adding a new gas injection system to an existing gasoline injection system in order to reduce development costs.
 下記特許文献1には、ガソリン噴射量を制御する既存の電子制御装置から出力されるガソリンパルス(ガソリン噴射量に応じたパルス幅を有し、ガソリンインジェクタを駆動するために使用されるパルス信号)を新規の電子制御装置に入力し、この新規の電子制御装置によってガソリンパルスからガス燃料に適したパルス幅を有するガスパルス(ガスインジェクタを駆動するために使用されるパルス信号)に変換する技術が開示されている。 In the following Patent Document 1, a gasoline pulse output from an existing electronic control device that controls the gasoline injection amount (a pulse signal having a pulse width corresponding to the gasoline injection amount and used to drive a gasoline injector) Is input to a new electronic control device, and this new electronic control device converts a gasoline pulse into a gas pulse (pulse signal used to drive a gas injector) having a pulse width suitable for gas fuel. Has been.
日本国特表平6-502472号公報Japanese National Table No. 6-502472
 上記従来技術において、新規の電子制御装置(以下、ガスECUと称す)は、ガス運転時には既存の電子制御装置(以下、ガソリンECUと称す)から入力されるガソリンパルスをガスパルスに変換してガスインジェクタに出力する一方、ガソリン運転時にはガソリンECUから入力されるガソリンパルスを変換することなくガソリンインジェクタに出力する。 In the above prior art, a new electronic control device (hereinafter referred to as a gas ECU) is a gas injector that converts a gasoline pulse input from an existing electronic control device (hereinafter referred to as a gasoline ECU) into a gas pulse during gas operation. On the other hand, during gasoline operation, the gasoline pulse input from the gasoline ECU is output to the gasoline injector without conversion.
 従来では、ガソリンECUから出力されるガソリンパルスをガスECU内のマイコンに取り入れ、マイコンによる処理によってガソリンパルスの変換を行う。
 ところが、このマイコンからガソリンパルスとガスパルスのどちらもが出力されない場合、エンジンへの燃料供給が停止する可能性がある。
Conventionally, a gasoline pulse output from a gasoline ECU is taken into a microcomputer in the gas ECU, and the gasoline pulse is converted by processing by the microcomputer.
However, if neither a gasoline pulse nor a gas pulse is output from the microcomputer, there is a possibility that the fuel supply to the engine stops.
 本発明の態様は、上述した事情に鑑みてなされたものであり、エンジンへの燃料供給の停止を回避可能な燃料噴射制御装置を提供することを目的とする。 An aspect of the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a fuel injection control device capable of avoiding stop of fuel supply to an engine.
 上記目的を達成するために、本発明の態様に係る燃料噴射装置は、以下の構成を採用した。
(1)本発明の一態様に係る燃料噴射制御装置は、外部から入力される、液体燃料噴射弁を駆動するための第1パルス信号を、気体燃料噴射弁を駆動するための第2パルス信号に変換する燃料噴射制御装置であって、前記第1パルス信号の外部入力端子と外部出力端子とを接続する配線上に介挿されたノーマリーオンのスイッチと、気体燃料噴射時には前記スイッチの前段から分岐して入力される前記第1パルス信号を前記第2パルス信号に変換すると共に前記スイッチをオフに制御する信号処理部とを備える。
In order to achieve the above object, a fuel injection device according to an aspect of the present invention employs the following configuration.
(1) A fuel injection control device according to an aspect of the present invention is configured to input a first pulse signal for driving a liquid fuel injection valve and a second pulse signal for driving a gaseous fuel injection valve, which are input from the outside. A normally on switch inserted on a wiring connecting the external input terminal and the external output terminal of the first pulse signal, and a front stage of the switch at the time of gaseous fuel injection And a signal processing unit that converts the first pulse signal that is branched and input to the second pulse signal and controls the switch to be turned off.
(2)上記(1)の態様では、前記信号処理部は、前記スイッチの前段から分岐して入力される前記第1パルス信号と、前記スイッチの後段から分岐して入力される前記第1パルス信号とに基づいて、自装置内の前記第1パルス信号の伝送経路の異常診断を行ってもよい。 (2) In the aspect of (1), the signal processing unit is configured to input the first pulse signal branched from the preceding stage of the switch and the first pulse input branched from the subsequent stage of the switch. An abnormality diagnosis of the transmission path of the first pulse signal in the own apparatus may be performed based on the signal.
(3)上記(2)の態様では、前記信号処理部は、前記スイッチの前段から分岐して入力される前記第1パルス信号の論理レベルと、前記スイッチの後段から分岐して入力される前記第1パルス信号の論理レベルとを比較することにより、前記第1パルス信号の伝送経路の異常診断を行ってもよい。 (3) In the aspect of the above (2), the signal processing unit is branched from the preceding stage of the switch and is input with the logic level of the first pulse signal, and the branching is input from the subsequent stage of the switch. An abnormality diagnosis of the transmission path of the first pulse signal may be performed by comparing the logic level of the first pulse signal.
(4)上記(2)の態様では、前記信号処理部は、複数の前記スイッチの前段から分岐して入力される複数の前記第1パルス信号の入力順序と、複数の前記スイッチの後段から分岐して入力される複数の前記第1パルス信号の入力順序とを比較することにより、前記第1パルス信号の伝送経路の異常診断を行ってもよい。 (4) In the above aspect (2), the signal processing unit branches from the input order of the plurality of first pulse signals that are branched and input from the front stage of the plurality of switches, and from the subsequent stage of the plurality of switches. Thus, the abnormality diagnosis of the transmission path of the first pulse signal may be performed by comparing the input order of the plurality of the first pulse signals input.
 本発明の態様によれば、第1パルス信号の外部入力端子と外部出力端子とを接続する配線上にノーマリーオンのスイッチを設けることにより、必ず第1パルス信号が液体燃料噴射弁に出力されるので、エンジンへの燃料供給の停止を回避することができる。 According to the aspect of the present invention, by providing a normally-on switch on the wiring connecting the external input terminal and the external output terminal of the first pulse signal, the first pulse signal is always output to the liquid fuel injection valve. Therefore, it is possible to avoid stopping the fuel supply to the engine.
本実施形態に係る燃料噴射制御装置(ガスECU1)の概略構成図である。It is a schematic block diagram of the fuel-injection control apparatus (gas ECU1) which concerns on this embodiment. ガソリン運転時におけるガソリンパルス信号INJ1と、ガソリンパルスリターン信号INJ1_Rと、ガスパルス信号GINJ1との時間的な対応関係を示すタイミングチャートである。It is a timing chart which shows the time corresponding relation of gasoline pulse signal INJ1, gasoline pulse return signal INJ1_R, and gas pulse signal GINJ1 at the time of gasoline operation. ガス運転時におけるガソリンパルス信号INJ1と、ガソリンパルスリターン信号INJ1_Rと、ガスパルス信号GINJ1との時間的な対応関係を示すタイミングチャートである。It is a timing chart which shows the time corresponding relationship between the gasoline pulse signal INJ1, the gasoline pulse return signal INJ1_R, and the gas pulse signal GINJ1 during gas operation. 第1気筒→第3気筒→第4気筒→第2気筒の順でガソリン噴射することを想定した場合におけるガソリンパルス信号INJ1~INJ4と、ガソリンパルスリターン信号INJ1_R~INJ4_Rとの時間的な対応関係を示すタイミングチャートである。The temporal correspondence relationship between the gasoline pulse signals INJ1 to INJ4 and the gasoline pulse return signals INJ1_R to INJ4_R when it is assumed that gasoline injection is performed in the order of the first cylinder → the third cylinder → the fourth cylinder → the second cylinder. It is a timing chart which shows.
 以下、本発明の一実施形態について、図面を参照しながら説明する。
 図1は、本実施形態に係る燃料噴射制御装置(ガスECU1)の概略構成図である。このガスECU1は、外部のガソリンECU2から入力される、4気筒分の液体燃料噴射弁を駆動するための4つのガソリンパルス信号(第1パルス信号)INJ1~INJ4を、4気筒分の気体燃料噴射弁を駆動するための4つのガスパルス信号(第2パルス信号)GINJ1~GINJ4に変換する電子制御装置である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a fuel injection control device (gas ECU 1) according to the present embodiment. The gas ECU 1 receives four gasoline pulse signals (first pulse signals) INJ1 to INJ4 for driving the liquid fuel injection valves for four cylinders inputted from the external gasoline ECU 2, and gas fuel injection for four cylinders. This is an electronic control device that converts four gas pulse signals (second pulse signals) GINJ1 to GINJ4 for driving the valve.
 なお、ガソリンECU2は、例えば4気筒エンジンの運転状態に基づいて各気筒のガソリン噴射量及び噴射タイミング、つまり4気筒分の液体燃料噴射弁を駆動するための4つのガソリンパルス信号INJ1~INJ4のパルス幅及び出力タイミングを制御する既存の電子制御装置であるが、各気筒のガソリン噴射量及び噴射タイミングの制御方法については従来と同様であるため、本願明細書での説明は省略する。 The gasoline ECU 2, for example, has four gasoline pulse signals INJ1 to INJ4 for driving the liquid fuel injection valves for the four cylinders based on, for example, the gasoline injection amount and injection timing of each cylinder based on the operating state of the four cylinder engine. Although it is an existing electronic control device that controls the width and the output timing, the method for controlling the gasoline injection amount and the injection timing of each cylinder is the same as the conventional method, and the description thereof will be omitted.
 図1に示すように、本実施形態のガスECU1は、ガソリンECU2から4つのガソリンパルス信号INJ1~INJ4を入力するための外部入力端子11~14と、これらの4つのガソリンパルス信号INJ1~INJ4を4つの液体燃料噴射弁(図示省略)へ出力するための外部出力端子15~18と、4つのリレー回路(スイッチ)19~22と、マイコン(信号処理部)23とを備えている。 As shown in FIG. 1, the gas ECU 1 of the present embodiment receives external input terminals 11 to 14 for inputting four gasoline pulse signals INJ1 to INJ4 from the gasoline ECU 2, and these four gasoline pulse signals INJ1 to INJ4. External output terminals 15 to 18 for outputting to four liquid fuel injection valves (not shown), four relay circuits (switches) 19 to 22 and a microcomputer (signal processing unit) 23 are provided.
 リレー回路19は、第1気筒の液体燃料噴射弁を駆動するためのガソリンパルス信号INJ1の外部入力端子11と外部出力端子15とを接続する配線上に介挿されたノーマリーオンのスイッチである。リレー回路20は、第2気筒の液体燃料噴射弁を駆動するためのガソリンパルス信号INJ2の外部入力端子12と外部出力端子16とを接続する配線上に介挿されたノーマリーオンのスイッチである。 The relay circuit 19 is a normally-on switch inserted on a wiring connecting the external input terminal 11 and the external output terminal 15 of the gasoline pulse signal INJ1 for driving the liquid fuel injection valve of the first cylinder. . The relay circuit 20 is a normally-on switch inserted on the wiring connecting the external input terminal 12 and the external output terminal 16 of the gasoline pulse signal INJ2 for driving the liquid fuel injection valve of the second cylinder. .
 リレー回路21は、第3気筒の液体燃料噴射弁を駆動するためのガソリンパルス信号INJ3の外部入力端子13と外部出力端子17とを接続する配線上に介挿されたノーマリーオンのスイッチである。リレー回路22は、第4気筒の液体燃料噴射弁を駆動するためのガソリンパルス信号INJ4の外部入力端子14と外部出力端子18とを接続する配線上に介挿されたノーマリーオンのスイッチである。 The relay circuit 21 is a normally-on switch inserted on a wiring connecting the external input terminal 13 and the external output terminal 17 of the gasoline pulse signal INJ3 for driving the liquid fuel injection valve of the third cylinder. . The relay circuit 22 is a normally-on switch inserted on a wiring connecting the external input terminal 14 and the external output terminal 18 of the gasoline pulse signal INJ4 for driving the liquid fuel injection valve of the fourth cylinder. .
 マイコン23(信号処理部)は、CPU(Central Processing Unit)コアやメモリ、入出力インターフェイス等が一体的に組み込まれたマイクロコンピュータであり、ガス燃料噴射時には各リレー回路19~22の前段から分岐して入力されるガソリンパルス信号INJ1~INJ4を、ガス燃料に適したパルス幅を有するガスパルス信号GINJ1~GINJ4に変換して4つの気体燃料噴射弁(図示省略)へ出力すると共に、各リレー回路19~22をオフに制御する。
 なお、ガソリンパルスからガスパルスへの変換方法としては、特許文献1(日本国特表平6-502472号公報)などの公知技術を用いることができる。
The microcomputer 23 (signal processing unit) is a microcomputer in which a CPU (Central Processing Unit) core, a memory, an input / output interface, and the like are integrated, and branches off from the previous stage of each relay circuit 19 to 22 at the time of gas fuel injection. The gasoline pulse signals INJ1 to INJ4 inputted in this way are converted into gas pulse signals GINJ1 to GINJ4 having a pulse width suitable for the gas fuel and output to four gaseous fuel injection valves (not shown), and each relay circuit 19 to 22 is turned off.
As a method for converting a gasoline pulse to a gas pulse, a known technique such as Patent Document 1 (Japanese Patent Publication No. 6-502472) can be used.
 また、詳細は後述するが、このマイコン23は、各リレー回路19~22の前段から分岐して入力されるガソリンパルス信号INJ1~INJ4と、各リレー回路19~22の後段から分岐して入力されるガソリンパルス信号INJ1~INJ4とに基づいて、自装置内の各ガソリンパルス信号INJ1~INJ4の伝送経路の異常診断を行う機能を有している。
 なお、以下では、説明の便宜上、各リレー回路19~22の後段から分岐してマイコン23に入力されるガソリンパルス信号INJ1~INJ4を、ガソリンパルスリターン信号INJ1_R~INJ4_Rと呼ぶ。
Although details will be described later, the microcomputer 23 is branched and inputted from gasoline pulse signals INJ1 to INJ4 inputted from the preceding stage of the relay circuits 19 to 22 and the latter stage of the relay circuits 19 to 22. On the basis of the gasoline pulse signals INJ1 to INJ4, the transmission path abnormality diagnosis of the gasoline pulse signals INJ1 to INJ4 in the own apparatus is performed.
Hereinafter, for convenience of explanation, the gasoline pulse signals INJ1 to INJ4 branched from the rear stage of the relay circuits 19 to 22 and input to the microcomputer 23 are referred to as gasoline pulse return signals INJ1_R to INJ4_R.
 次に、上記のように構成されたガスECU1の動作について詳細に説明する。
<ガソリン運転時の動作>
 ガスECU1のマイコン23は、不図示の燃料切替スイッチの状態から現在の燃料としてガソリンが選択されていると認識した場合、ガソリンECU2から入力されるガソリンパルス信号INJ1~INJ4を、直接、各液体燃料噴射弁へ出力するガソリン噴射モードとする。つまり、マイコン23は、ガソリン噴射モード中に各リレー回路19~22の制御とガスパルスへの変換処理を実施しない。
Next, the operation of the gas ECU 1 configured as described above will be described in detail.
<Operation during gasoline operation>
When the microcomputer 23 of the gas ECU 1 recognizes that gasoline is selected as the current fuel from the state of a fuel changeover switch (not shown), the gasoline pulse signals INJ1 to INJ4 input from the gasoline ECU 2 are directly transmitted to each liquid fuel. The gasoline injection mode is output to the injection valve. That is, the microcomputer 23 does not control the relay circuits 19 to 22 and perform conversion processing to gas pulses during the gasoline injection mode.
 これにより、ガソリン運転時には、各リレー回路19~22は常にオン状態となり、ガソリンECU2から入力されるガソリンパルス信号INJ1~INJ4が、直接、各液体燃料噴射弁へ出力され、現在のエンジン運転状態に対して要求される量のガソリンが各気筒に供給されることになる。 As a result, during gasoline operation, the relay circuits 19 to 22 are always turned on, and the gasoline pulse signals INJ1 to INJ4 input from the gasoline ECU 2 are directly output to the liquid fuel injection valves to return to the current engine operation state. The required amount of gasoline is supplied to each cylinder.
<ガス運転時の動作>
 一方、ガスECU1のマイコン23は、不図示の燃料切替スイッチの状態から現在の燃料としてガス燃料が選択されていると認識した場合、ガソリンECU2から入力されるガソリンパルス信号INJ1~INJ4を、ガスパルス信号GINJ1~GINJ4に変換して各気体燃料噴射弁へ出力するガス燃料噴射モードとする。つまり、マイコン23は、ガス噴射モード中に各リレー回路19~22をオフに制御すると共に、ガスパルスへの変換処理を実施する。
<Operation during gas operation>
On the other hand, when the microcomputer 23 of the gas ECU 1 recognizes that the gas fuel is selected as the current fuel from the state of the fuel changeover switch (not shown), the gasoline pulse signals INJ1 to INJ4 input from the gasoline ECU 2 are used as the gas pulse signal. The gas fuel injection mode is converted to GINJ1 to GINJ4 and output to each gas fuel injection valve. That is, the microcomputer 23 controls the relay circuits 19 to 22 to be turned off during the gas injection mode, and performs conversion processing to gas pulses.
 これにより、ガス運転時には、各リレー回路19~22は常にオフ状態となり、ガスECU1からガス燃料に適したパルス幅を有するガスパルス信号GINJ1~GINJ4が各気体燃料噴射弁へ出力され、現在のエンジン運転状態に対して要求される量のガス燃料が各気筒に供給されることになる。 As a result, during gas operation, the relay circuits 19 to 22 are always turned off, and gas pulse signals GINJ1 to GINJ4 having a pulse width suitable for the gas fuel are output from the gas ECU 1 to the gas fuel injection valves, and the current engine operation is performed. The amount of gas fuel required for the state will be supplied to each cylinder.
 上記のようなガソリン運転時及びガス運転時において、各リレー回路19~22はノーマリーオンのスイッチであるため、必ずガソリンパルス信号INJ1~INJ4がガスECU1から液体燃料噴射弁に出力されるので、エンジンへの燃料供給の停止を回避することが可能となる。 Since the relay circuits 19 to 22 are normally on switches during the gasoline operation and the gas operation as described above, the gasoline pulse signals INJ1 to INJ4 are always output from the gas ECU 1 to the liquid fuel injection valve. It is possible to avoid stopping the fuel supply to the engine.
 しかしながら、ガスECU1内の各ガソリンパルス信号INJ1~INJ4の伝送経路に異常(配線の断線或いは短絡、リレー回路19~22の故障など)が生じた場合、ガスECU1からガソリンパルス信号INJ1~INJ4が正常に液体燃料噴射弁に出力されない可能性がある。
 そこで、本実施形態におけるマイコン23は、以下で述べるような処理によって各ガソリンパルス信号INJ1~INJ4の伝送経路の異常診断を行う。
However, if an abnormality occurs in the transmission path of the gasoline pulse signals INJ1 to INJ4 in the gas ECU 1 (wire breakage or short circuit, failure of the relay circuits 19 to 22), the gasoline pulse signals INJ1 to INJ4 from the gas ECU 1 are normal. May not be output to the liquid fuel injection valve.
Therefore, the microcomputer 23 in the present embodiment performs an abnormality diagnosis on the transmission path of each of the gasoline pulse signals INJ1 to INJ4 by the processing described below.
<ガソリンパルス伝送経路の異常診断動作>
 例えば、ガソリンパルス信号INJ1の伝送経路に着目すると、マイコン23は、リレー回路19の前段から分岐して入力されるガソリンパルス信号INJ1の論理レベルと、リレー回路19の後段から分岐して入力されるガソリンパルスリターン信号INJ1_Rの論理レベルとを比較することにより、ガソリンパルス信号INJ1の伝送経路の異常診断を行う。
<Gasoline pulse transmission path abnormality diagnosis operation>
For example, when paying attention to the transmission path of the gasoline pulse signal INJ1, the microcomputer 23 branches from the preceding stage of the relay circuit 19 and is input from the logic level of the gasoline pulse signal INJ1 and is input from the subsequent stage of the relay circuit 19. An abnormality diagnosis of the transmission path of the gasoline pulse signal INJ1 is performed by comparing the logic level of the gasoline pulse return signal INJ1_R.
 具体的には、マイコン23は、ガソリンパルス信号INJ1の論理レベルが変化した時の割込み処理として、ガソリンパルス信号INJ1の論理レベルとガソリンパルスリターン信号INJ1_Rの論理レベルとを比較する。
 そして、マイコン23は、ガソリンパルス信号INJ1の論理レベルがOFFからONへ変化した時に得られた論理レベル比較結果と、ガソリンパルス信号INJ1の論理レベルがONからOFFへ変化した時に得られた論理レベル比較結果とを基に、ガソリンパルス信号INJ1の伝送経路に異常が発生したか否かを判断する。
Specifically, the microcomputer 23 compares the logic level of the gasoline pulse signal INJ1 with the logic level of the gasoline pulse return signal INJ1_R as an interrupt process when the gasoline pulse signal INJ1 changes in logic level.
The microcomputer 23 compares the logical level obtained when the logic level of the gasoline pulse signal INJ1 changes from OFF to ON and the logic level obtained when the logic level of the gasoline pulse signal INJ1 changes from ON to OFF. Based on the comparison result, it is determined whether or not an abnormality has occurred in the transmission path of the gasoline pulse signal INJ1.
 図2は、ガソリン運転時におけるガソリンパルス信号INJ1と、ガソリンパルスリターン信号INJ1_Rと、ガスパルス信号GINJ1との時間的な対応関係を示すタイミングチャートである。
 図2(a)に示すように、ガソリンパルス信号INJ1の伝送経路が正常な場合、ガソリン運転時では、ガソリンパルス信号INJ1の論理レベルと、ガソリンパルスリターン信号INJ1_Rの論理レベルは全ての時間で一致し、ガスパルス信号GINJ1は全ての時間でOFF論理となる。
FIG. 2 is a timing chart showing a temporal correspondence relationship between the gasoline pulse signal INJ1, the gasoline pulse return signal INJ1_R, and the gas pulse signal GINJ1 during gasoline operation.
As shown in FIG. 2A, when the transmission path of the gasoline pulse signal INJ1 is normal, the gasoline pulse signal INJ1 and the gasoline pulse return signal INJ1_R have the same logic level at all times during gasoline operation. The gas pulse signal GINJ1 becomes OFF logic at all times.
 従って、ガソリン運転時において、マイコン23は、ガソリンパルス信号INJ1の論理レベルがOFFからONへ変化した時に得られた論理レベル比較結果が「一致」となり、且つガソリンパルス信号INJ1の論理レベルがONからOFFへ変化した時に得られた論理レベル比較結果も「一致」となった場合に、ガソリンパルス信号INJ1の伝送経路が正常と判断する。 Accordingly, during gasoline operation, the microcomputer 23 indicates that the logical level comparison result obtained when the logical level of the gasoline pulse signal INJ1 changes from OFF to ON is “match”, and the logical level of the gasoline pulse signal INJ1 is changed from ON. When the logical level comparison result obtained when the signal is changed to OFF also matches, it is determined that the transmission path of the gasoline pulse signal INJ1 is normal.
 一方、図2(b)に示すように、ガソリンパルス信号INJ1の伝送経路に異常が生じて、ガソリンパルスリターン信号INJ1_Rが全ての時間でOFF論理に固定された場合、ガソリンパルス信号INJ1の論理レベルがOFFからONへ変化した時の論理レベル比較結果が「不一致」となり、ガソリンパルス信号INJ1の論理レベルがONからOFFへ変化した時の論理レベル比較結果が「一致」となるので、マイコン23は、ガソリンパルス信号INJ1の伝送経路に異常が発生したと判断する。 On the other hand, as shown in FIG. 2B, when an abnormality occurs in the transmission path of the gasoline pulse signal INJ1, and the gasoline pulse return signal INJ1_R is fixed to OFF logic at all times, the logic level of the gasoline pulse signal INJ1 Since the logic level comparison result when the engine level changes from OFF to ON becomes “mismatch”, and the logic level comparison result when the gasoline pulse signal INJ1 changes from ON to OFF, the logic level comparison result becomes “match”. Then, it is determined that an abnormality has occurred in the transmission path of the gasoline pulse signal INJ1.
 また、図2(c)に示すように、ガソリンパルス信号INJ1の伝送経路に異常が生じて、ガソリンパルスリターン信号INJ1_Rが全ての時間でON論理に固定された場合、ガソリンパルス信号INJ1の論理レベルがOFFからONへ変化した時の論理レベル比較結果が「一致」となり、ガソリンパルス信号INJ1の論理レベルがONからOFFへ変化した時の論理レベル比較結果が「不一致」となるので、マイコン23は、ガソリンパルス信号INJ1の伝送経路に異常が発生したと判断する。 In addition, as shown in FIG. 2C, when an abnormality occurs in the transmission path of the gasoline pulse signal INJ1, and the gasoline pulse return signal INJ1_R is fixed to ON logic at all times, the logic level of the gasoline pulse signal INJ1 Since the logic level comparison result when the engine level changes from OFF to ON becomes “match”, and the logic level comparison result when the gasoline pulse signal INJ1 changes from ON to OFF, the logic level comparison result becomes “mismatch”. Then, it is determined that an abnormality has occurred in the transmission path of the gasoline pulse signal INJ1.
 図3は、ガス運転時におけるガソリンパルス信号INJ1と、ガソリンパルスリターン信号INJ1_Rと、ガスパルス信号GINJ1との時間的な対応関係を示すタイミングチャートである。図3(a)に示すように、ガソリンパルス信号INJ1の伝送経路が正常な場合、ガス運転時では、ガソリンパルスリターン信号INJ1_Rが全ての時間でOFF論理となり、ガソリンパルス信号INJ1から少し遅れてパルス幅が補正されたガスパルス信号GINJ1が発生する。 FIG. 3 is a timing chart showing the temporal correspondence relationship between the gasoline pulse signal INJ1, the gasoline pulse return signal INJ1_R, and the gas pulse signal GINJ1 during gas operation. As shown in FIG. 3A, when the transmission path of the gasoline pulse signal INJ1 is normal, the gasoline pulse return signal INJ1_R becomes OFF logic at all times during gas operation, and the pulse is delayed slightly from the gasoline pulse signal INJ1. A gas pulse signal GINJ1 having a corrected width is generated.
 従って、ガス運転時において、マイコン23は、ガソリンパルス信号INJ1の論理レベルがOFFからONへ変化した時に得られた論理レベル比較結果が「不一致」となり、且つガソリンパルス信号INJ1の論理レベルがONからOFFへ変化した時に得られた論理レベル比較結果が「一致」となった場合に、ガソリンパルス信号INJ1の伝送経路が正常と判断する。 Accordingly, during gas operation, the microcomputer 23 indicates that the logical level comparison result obtained when the logic level of the gasoline pulse signal INJ1 has changed from OFF to ON is “mismatch”, and the logic level of the gasoline pulse signal INJ1 has changed from ON. When the logical level comparison result obtained when the signal is changed to OFF is “match”, it is determined that the transmission path of the gasoline pulse signal INJ1 is normal.
 一方、図3(b)に示すように、ガソリンパルス信号INJ1の伝送経路に異常が生じて、ガソリンパルスリターン信号INJ1_Rの論理レベルがガソリンパルス信号INJ1と同一となった場合、ガソリンパルス信号INJ1の論理レベルがOFFからONへ変化した時の論理レベル比較結果が「一致」となり、ガソリンパルス信号INJ1の論理レベルがONからOFFへ変化した時の論理レベル比較結果も「一致」となるので、マイコン23は、ガソリンパルス信号INJ1の伝送経路に異常が発生したと判断する。
 なお、マイコン23は、上記のようなガソリン運転時及びガス運転時における異常診断処理を各ガソリンパルス信号INJ1~INJ4の伝送経路のそれぞれについて実施する。
On the other hand, as shown in FIG. 3B, when an abnormality occurs in the transmission path of the gasoline pulse signal INJ1, and the logic level of the gasoline pulse return signal INJ1_R becomes the same as that of the gasoline pulse signal INJ1, the gasoline pulse signal INJ1 The logical level comparison result when the logical level changes from OFF to ON is “match”, and the logical level comparison result when the gasoline pulse signal INJ1 changes from ON to OFF is also “match”. 23 determines that an abnormality has occurred in the transmission path of the gasoline pulse signal INJ1.
The microcomputer 23 performs the abnormality diagnosis process during gasoline operation and gas operation as described above for each of the transmission paths of the gasoline pulse signals INJ1 to INJ4.
 以上のように、本実施形態によれば、ガソリン運転時及びガス運転時において、エンジンへの燃料供給の停止を回避することができると共に、リレー回路19~22も含む各ガソリンパルス信号INJ1~INJ4の伝送経路の異常も診断することができる。 As described above, according to the present embodiment, stoppage of fuel supply to the engine can be avoided during gasoline operation and gas operation, and the gasoline pulse signals INJ1 to INJ4 including the relay circuits 19 to 22 can be avoided. It is also possible to diagnose abnormalities in the transmission path.
 なお、本発明は上記実施形態に限定されず、以下のような変形例も挙げられる。
(1)上記実施形態では、マイコン23が、各リレー回路19~22の前段から分岐して入力されるガソリンパルス信号INJ1~INJ4の論理レベルと、各リレー回路19~22の後段から分岐して入力されるガソリンパルスリターン信号INJ1_R~INJ4_Rの論理レベルとを比較することにより、各ガソリンパルス信号INJ1~INJ4の伝送経路の異常診断を行う場合を例示した。
In addition, this invention is not limited to the said embodiment, The following modifications are also mentioned.
(1) In the above embodiment, the microcomputer 23 branches from the logic level of the gasoline pulse signals INJ1 to INJ4 that are branched and input from the previous stage of the relay circuits 19 to 22 and from the subsequent stage of the relay circuits 19 to 22. An example in which an abnormality diagnosis of the transmission path of each gasoline pulse signal INJ1 to INJ4 is performed by comparing the logic levels of the input gasoline pulse return signals INJ1_R to INJ4_R.
 これに対して、マイコン23が、各リレー回路19~22の前段から分岐して入力されるガソリンパルス信号INJ1~INJ4の入力順序と、各リレー回路19~22の後段から分岐して入力されるガソリンパルス信号INJ1~INJ4の入力順序とを比較することにより、各ガソリンパルス信号INJ1~INJ4の伝送経路の異常診断を行うようにしても良い。 On the other hand, the microcomputer 23 branches and inputs the input order of the gasoline pulse signals INJ1 to INJ4 that are branched from the preceding stage of the relay circuits 19 to 22 and the subsequent stage of the relay circuits 19 to 22. By comparing the input order of the gasoline pulse signals INJ1 to INJ4, an abnormality diagnosis of the transmission path of each of the gasoline pulse signals INJ1 to INJ4 may be performed.
 図4は、第1気筒→第3気筒→第4気筒→第2気筒の順でガソリン噴射を行うことを想定した場合におけるガソリンパルス信号INJ1~INJ4と、ガソリンパルスリターン信号INJ1_R~INJ4_Rとの時間的な対応関係を示すタイミングチャートである。
 この図4に示すように、各ガソリンパルス信号INJ1~INJ4の伝送経路が正常の場合、ガソリンパルス信号INJ1~INJ4の入力順序と、ガソリンパルスリターン信号INJ1_R~INJ4_Rの入力順序とが一致する。
FIG. 4 shows the time between gasoline pulse signals INJ1 to INJ4 and gasoline pulse return signals INJ1_R to INJ4_R when it is assumed that gasoline injection is performed in the order of the first cylinder → the third cylinder → the fourth cylinder → the second cylinder. It is a timing chart which shows a typical correspondence.
As shown in FIG. 4, when the transmission paths of the gasoline pulse signals INJ1 to INJ4 are normal, the input order of the gasoline pulse signals INJ1 to INJ4 matches the input order of the gasoline pulse return signals INJ1_R to INJ4_R.
 従って、ガソリン運転時において、マイコン23は、ガソリンパルス信号INJ1~INJ4の入力順序と、ガソリンパルスリターン信号INJ1_R~INJ4_Rの入力順序とが一致した場合に、各ガソリンパルス信号INJ1~INJ4の伝送経路が正常と判断し、不一致の場合に異常と判断する。
 なお、ガス運転時では伝送経路が正常であっても、ガソリンパルスリターン信号INJ1_R~INJ4_Rが全てOFF論理となるので、この異常診断手法を用いることはできない。
Therefore, during gasoline operation, the microcomputer 23 determines whether the transmission path of the gasoline pulse signals INJ1 to INJ4 is different when the input order of the gasoline pulse signals INJ1 to INJ4 matches the input order of the gasoline pulse return signals INJ1_R to INJ4_R. Judged as normal, and judged to be abnormal when they did not match.
Note that even when the transmission path is normal during gas operation, the gasoline pulse return signals INJ1_R to INJ4_R are all OFF logic, so this abnormality diagnosis method cannot be used.
(2)上記実施形態では、ノーマリーオンのスイッチとして電磁的に開閉するリレー回路19~22を用いる場合を例示したが、本発明はこれに限定されず、ノーマリーオンのスイッチであれば、半導体スイッチなどの他のスイッチング素子を用いても良い。 (2) In the above-described embodiment, the case where the relay circuits 19 to 22 that electromagnetically open and close are used as the normally-on switch is exemplified. However, the present invention is not limited to this, and any switch that is normally-on can be used. Other switching elements such as a semiconductor switch may be used.
 1…ガスECU(燃料噴射制御装置)、2…ガソリンECU、11~14…外部入力端子、15~18…外部出力端子、19~22…リレー回路(スイッチ)、23…マイコン(信号処理部) 1 ... Gas ECU (fuel injection control device), 2 ... Gasoline ECU, 11-14 ... External input terminal, 15-18 ... External output terminal, 19-22 ... Relay circuit (switch), 23 ... Microcomputer (signal processing unit)

Claims (4)

  1.  外部から入力される、液体燃料噴射弁を駆動するための第1パルス信号を、気体燃料噴射弁を駆動するための第2パルス信号に変換する燃料噴射制御装置であって、
     前記第1パルス信号の外部入力端子と外部出力端子とを接続する配線上に介挿されたノーマリーオンのスイッチと、
     気体燃料噴射時には前記スイッチの前段から分岐して入力される前記第1パルス信号を前記第2パルス信号に変換すると共に前記スイッチをオフに制御する信号処理部と、
     を備えることを特徴とする燃料噴射制御装置。
    A fuel injection control device for converting a first pulse signal for driving a liquid fuel injection valve, which is input from the outside, into a second pulse signal for driving a gaseous fuel injection valve,
    A normally-on switch inserted on a wiring connecting the external input terminal and the external output terminal of the first pulse signal;
    A signal processing unit that converts the first pulse signal that is branched and input from the preceding stage of the switch to the second pulse signal and controls the switch to be off at the time of gaseous fuel injection;
    A fuel injection control device comprising:
  2.  前記信号処理部は、前記スイッチの前段から分岐して入力される前記第1パルス信号と、前記スイッチの後段から分岐して入力される前記第1パルス信号とに基づいて、自装置内の前記第1パルス信号の伝送経路の異常診断を行うことを特徴とする請求項1に記載の燃料噴射制御装置。 The signal processing unit, based on the first pulse signal that is branched and input from the previous stage of the switch and the first pulse signal that is branched and input from the subsequent stage of the switch, The fuel injection control device according to claim 1, wherein abnormality diagnosis of the transmission path of the first pulse signal is performed.
  3.  前記信号処理部は、前記スイッチの前段から分岐して入力される前記第1パルス信号の論理レベルと、前記スイッチの後段から分岐して入力される前記第1パルス信号の論理レベルとを比較することにより、前記第1パルス信号の伝送経路の異常診断を行うことを特徴とする請求項2に記載の燃料噴射制御装置。 The signal processing unit compares the logic level of the first pulse signal that is branched and input from the previous stage of the switch and the logic level of the first pulse signal that is branched and input from the subsequent stage of the switch. The fuel injection control device according to claim 2, wherein abnormality diagnosis of the transmission path of the first pulse signal is performed.
  4.  前記信号処理部は、複数の前記スイッチの前段から分岐して入力される複数の前記第1パルス信号の入力順序と、複数の前記スイッチの後段から分岐して入力される複数の前記第1パルス信号の入力順序とを比較することにより、前記第1パルス信号の伝送経路の異常診断を行うことを特徴とする請求項2に記載の燃料噴射制御装置。 The signal processing unit is configured to input a plurality of first pulse signals that are branched and input from a front stage of the plurality of switches, and a plurality of the first pulses that are branched and input from a rear stage of the plurality of switches. The fuel injection control device according to claim 2, wherein an abnormality diagnosis of a transmission path of the first pulse signal is performed by comparing the input order of signals.
PCT/JP2013/050783 2012-01-19 2013-01-17 Fuel injection control device WO2013108831A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112013000630.8T DE112013000630B4 (en) 2012-01-19 2013-01-17 Fuel injection control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012008945A JP2013148006A (en) 2012-01-19 2012-01-19 Fuel injection control device
JP2012-008945 2012-01-19

Publications (1)

Publication Number Publication Date
WO2013108831A1 true WO2013108831A1 (en) 2013-07-25

Family

ID=48799255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050783 WO2013108831A1 (en) 2012-01-19 2013-01-17 Fuel injection control device

Country Status (3)

Country Link
JP (1) JP2013148006A (en)
DE (1) DE112013000630B4 (en)
WO (1) WO2013108831A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6315321B2 (en) 2014-04-07 2018-04-25 株式会社ケーヒン Fuel injection control device
PL228199B1 (en) * 2014-11-12 2018-02-28 Elpigaz Społka Z Ograniczoną Odpowiedzialnością Gas installation electrical bundle and method for drawing electrical supply for the gas installation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097326A (en) * 2001-09-21 2003-04-03 Toyota Motor Corp Control device and method for fuel injection of engine
JP2004137938A (en) * 2002-10-16 2004-05-13 Fujitsu Ten Ltd Severance detection device and fuel injection control device for internal combustion engine
JP2006342689A (en) * 2005-06-07 2006-12-21 Toyota Motor Corp Control device of bi-fuel engine
JP2007205218A (en) * 2006-02-01 2007-08-16 Nikki Co Ltd Method for detecting disconnection of gasoline substitution lpg injection system and device for detecting disconnection thereof
JP2008121564A (en) * 2006-11-13 2008-05-29 Fujitsu Ten Ltd Control device
JP2009133207A (en) * 2007-11-28 2009-06-18 Fujitsu Ten Ltd Gas fuel injection control device
JP2011099412A (en) * 2009-11-09 2011-05-19 Fujitsu Ten Ltd Engine control system and electronic control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008888A1 (en) * 1990-11-20 1992-05-29 Biocom Pty. Ltd. A dual fuel injection system and a method of controlling such a system
US20120253641A1 (en) * 2009-03-13 2012-10-04 T Baden Hardstaff Ltd Method and a control device for controlling an engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097326A (en) * 2001-09-21 2003-04-03 Toyota Motor Corp Control device and method for fuel injection of engine
JP2004137938A (en) * 2002-10-16 2004-05-13 Fujitsu Ten Ltd Severance detection device and fuel injection control device for internal combustion engine
JP2006342689A (en) * 2005-06-07 2006-12-21 Toyota Motor Corp Control device of bi-fuel engine
JP2007205218A (en) * 2006-02-01 2007-08-16 Nikki Co Ltd Method for detecting disconnection of gasoline substitution lpg injection system and device for detecting disconnection thereof
JP2008121564A (en) * 2006-11-13 2008-05-29 Fujitsu Ten Ltd Control device
JP2009133207A (en) * 2007-11-28 2009-06-18 Fujitsu Ten Ltd Gas fuel injection control device
JP2011099412A (en) * 2009-11-09 2011-05-19 Fujitsu Ten Ltd Engine control system and electronic control device

Also Published As

Publication number Publication date
JP2013148006A (en) 2013-08-01
DE112013000630B4 (en) 2017-02-23
DE112013000630T5 (en) 2014-10-09

Similar Documents

Publication Publication Date Title
US9625894B2 (en) Multi-channel control switchover logic
US9068527B2 (en) Monitoring computer in a control device
WO2013108831A1 (en) Fuel injection control device
US10756566B2 (en) Method and apparatus for supplying electric power to a device
KR101755448B1 (en) Control method of converter for electric vehicle and control system thereof
US9903300B2 (en) Method for shutting down an electrically controlled component of a vehicle in a case of error of a processing unit controlling the component
JP2005201248A (en) Operation device for inductive electric actuator
KR20090107689A (en) Semiconductor device
US11054853B2 (en) Integrated circuit device
CN108104967B (en) Vehicle-mounted control device
US9790905B2 (en) Fuel injection control device
TWI558126B (en) United power module and system using the same
JPH07134601A (en) Double bus control method
JP6385649B2 (en) Fuel switching device for bi-fuel engine
KR20200069677A (en) Apparatus for driving warning light and method for driving the same
CN112965010B (en) Fault detection method and device of electronic actuator, electronic control equipment and medium
KR101837847B1 (en) Gas Supplying Apparatus for Starting Engine
EP4318858A1 (en) Power distribution system
KR20070111946A (en) Control apparatus for gasoline substitute fuel injection system
JP4074223B2 (en) Digital protective relay
US10762027B2 (en) Method and system for output latch based data bus failure mitigation
KR100647728B1 (en) Apparatus for preventing drive error of gas injection in lpg/cng interface box
CN113320390A (en) Power supply circuit
CN110492716A (en) Shielding system and substrate process equipment
JP2022172636A (en) Prime mover control system and multipurpose vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738670

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013000630

Country of ref document: DE

Ref document number: 1120130006308

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13738670

Country of ref document: EP

Kind code of ref document: A1