WO2013108756A1 - 排ガス浄化用卑金属触媒の製造方法 - Google Patents

排ガス浄化用卑金属触媒の製造方法 Download PDF

Info

Publication number
WO2013108756A1
WO2013108756A1 PCT/JP2013/050582 JP2013050582W WO2013108756A1 WO 2013108756 A1 WO2013108756 A1 WO 2013108756A1 JP 2013050582 W JP2013050582 W JP 2013050582W WO 2013108756 A1 WO2013108756 A1 WO 2013108756A1
Authority
WO
WIPO (PCT)
Prior art keywords
base metal
catalyst
exhaust gas
slurry
production method
Prior art date
Application number
PCT/JP2013/050582
Other languages
English (en)
French (fr)
Inventor
真由子 大崎
倫生 三浦
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP13738019.2A priority Critical patent/EP2805767B1/en
Priority to US14/370,522 priority patent/US9050584B2/en
Priority to CN201380004124.0A priority patent/CN103958060B/zh
Publication of WO2013108756A1 publication Critical patent/WO2013108756A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/65Catalysts not containing noble metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs

Definitions

  • the present invention relates to a method of manufacturing a base metal for an exhaust gas purifying catalyst, and more particularly to method of manufacturing the exhaust gas purifying base metal catalyst which may indicate NO X purification performance activity by coating the base metal-supported catalyst on the honeycomb substrate.
  • an exhaust gas purifying catalyst is used in an internal combustion engine.
  • the CO and NO X in order to remove HC in the exhaust gas, the CO and NO X efficiently, Pt, Au, noble metals Rh or the like is used as a catalyst component.
  • Pt, Au, noble metals Rh or the like is used as a catalyst component.
  • all of these precious metals are limited to specific countries and have a problem of resource depletion.
  • Japanese Patent Application Laid-Open No. 2007-275709 contains carrier particles having a volume average particle diameter of 20 to 100 ⁇ m, a viscosity adjusting agent such as an acid or sol inorganic particle dispersant such as acetic acid, and a solvent at 25 ° C.
  • a method for producing an exhaust gas-purifying catalyst comprising a step of introducing a washcoat slurry having a viscosity of 5 to 10 mPas into a honeycomb substrate.
  • a slurry prepared by mixing a noble metal-supported catalyst in which Pt and Rh are supported on a ⁇ -Al 2 O 3 powder carrier, water, and alumina sol (acetic acid-based) is introduced from the end face of the monolith substrate and dried.
  • a noble metal-supported catalyst in which Pt and Rh are supported on a ⁇ -Al 2 O 3 powder carrier, water, and alumina sol acetic acid-based
  • the slurry is considered to be acetic acid acid.
  • a PM partate substance
  • a filter base having a wall flow structure having porous cell partition walls and a base metal selected from alkali metals or lanthanoid elements formed on the cell partition walls.
  • Exhaust gas purifying apparatus having a base metal supporting part supporting a PM oxidation catalyst capable of oxidizing) is described, and a specific example thereof is a porous oxide powder such as ⁇ -Al 2 O 3 powder or CeO 2 powder and a binder such as alumina sol.
  • Slurry with ingredients and water adhere to the cell partition, and then baked to form a coat layer.
  • the coat layer absorbs a base metal acetate aqueous solution and decomposes the acetate to carry a base metal such as potassium or cesium.
  • a method for forming a base metal carrying portion is shown.
  • an object of the present invention is to provide a method for producing an exhaust gas-purifying base metal catalyst that can uniformly support a base metal-supported catalyst on a honeycomb substrate and exhibit an exhaust gas-purifying catalytic activity.
  • the present inventors have obtained a base metal catalyst for exhaust gas purification that can provide catalytic activity for exhaust gas purification by using a metal containing a base metal having exhaust gas purification ability on a carrier. It is necessary to uniformly introduce the supported base metal supported catalyst onto the partition wall surface of the honeycomb base material, but when using conventional slurry, the base metal supported catalyst is uniformly introduced to the partition surface of the honeycomb base material. As a result of further finding out that it is difficult to carry it, the present invention was completed.
  • the present invention is a method for producing an exhaust gas purification catalyst, Preparing a honeycomb substrate having a large number of cells; A step of preparing a base metal-supported catalyst in which a metal containing a base metal base having an exhaust gas purifying ability is supported on a carrier; The present invention relates to the above production method, comprising the steps of: preparing a slurry having a pH of 7 or more by dispersing the base metal-supported catalyst in an aqueous solution; and introducing the slurry to the partition wall surface of a honeycomb substrate.
  • a base metal catalyst for exhaust gas purification having catalytic activity can be easily obtained by uniformly supporting a base metal supported catalyst on a honeycomb substrate.
  • FIG. 1 is a graph showing the relationship between the dissolution rate of base metals used in the embodiment of the present invention into water and pH.
  • FIG. 2 is a graph showing a comparison of NO50% purification temperatures of catalysts recovered from a slurry containing a Ni-supported catalyst and various binders in Examples.
  • FIG. 3 is a graph showing a comparison of NO50% purification temperatures of catalysts recovered from slurries containing Cu-supported catalysts and various binders in the examples.
  • FIG. 4 is a graph showing the binder addition rate and the coat peeling rate of the slurry for preparing a base metal catalyst for exhaust gas purification in Examples.
  • FIG. 1 is a graph showing the relationship between the dissolution rate of base metals used in the embodiment of the present invention into water and pH.
  • FIG. 2 is a graph showing a comparison of NO50% purification temperatures of catalysts recovered from a slurry containing a Ni-supported catalyst and various binders in Examples.
  • FIG. 3 is a
  • FIG. 5 is a graph showing a comparison of the relationship between the base metal, the type of the carrier, and the metal state for studying the principle of catalytic activity of the base metal catalyst for exhaust gas purification of the present invention.
  • FIG. 6 is a graph showing the change of the Ce valence state in the CeO 2 —ZrO 2 carrier with temperature.
  • FIG. 7 is a graph showing a comparison of NO reduction activity of mixed powders of Ni-supported catalyst and oxides of various carriers.
  • FIG. 8 is a schematic view of an apparatus used for measuring the activity of the catalyst.
  • a slurry having a pH of 7 or more in which a base metal-supported catalyst in which a metal containing a base metal having exhaust gas purifying ability is supported on a carrier is dispersed in an aqueous solution is introduced to the partition wall surface of a honeycomb substrate having a large number of cells. It is necessary to include the step of carrying out the above, and by introducing the base metal-supported catalyst onto the surface of the partition walls of the honeycomb base material, it becomes possible to obtain a base metal catalyst for exhaust gas purification having catalytic activity by being uniformly supported.
  • the following embodiments can be mentioned. 1) The said manufacturing method in which the inorganic binder is further contained in the said slurry. 2) The production method, wherein the inorganic binder is an aluminum salt, a silicon salt, a cerium salt, or a zirconium salt alone or a mixture of at least two of them. 3) The production method, wherein the inorganic binder is contained at a ratio of the binder to the base metal supported catalyst (binder / base metal supported catalyst) of 10 to 30% by mass.
  • the metal containing a base metal having an exhaust gas purifying ability is iron, cobalt, nickel, molybdenum, tungsten, zinc, magnesium, manganese, vanadium or copper alone or an alloy of these base metal and noble metal, for example, AnNi alloy Production method.
  • the carrier is one, comprising a mixture or two or more of two or more is a composite oxide wherein the manufacturing method selected from Al 2 O 3, SiO 2, MgO, CeO 2, ZrO 2, TiO 2 .
  • the production method further comprising a step of removing water and drying, and a step of firing the base metal supported catalyst.
  • the exhaust gas purifying base metal catalyst, the production method is for NO X purification of exhaust gases.
  • a honeycomb substrate having a large number of cells is prepared.
  • the honeycomb is a base material usually used for an exhaust gas purification catalyst, and has a partition wall surface in a large number of cells, and can be formed of a ceramic material such as cordierite, stainless steel, or the like.
  • a base metal supported catalyst is prepared in which a base metal having an exhaust gas purifying ability is supported on a carrier.
  • Examples of the metal containing a base metal having an exhaust gas purification ability include base metals such as iron, cobalt, nickel, molybdenum, tungsten, zinc, magnesium, manganese, vanadium, and copper, preferably nickel, copper alone, or these base metals and noble metals. Alloys, such as noble metals containing 50% by mass of the base metal, such as gold, platinum, silver, and preferably gold.
  • the carrier is not particularly limited, but for example, one or more selected from Al 2 O 3 , SiO 2 , MgO, CeO 2 , ZrO 2 , and TiO 2 used as a carrier for a noble metal catalyst.
  • the amount of the metal containing the base metal supported on the carrier varies depending on the type of the base metal and the carrier, but is usually in the range of 0.1 to 30% by mass, for example, 0.3 to 10 It can be in the range of wt%, in particular in the range of 3-10 wt%.
  • a slurry having a pH of 7 or more is prepared by dispersing the base metal supported catalyst in an aqueous solution.
  • the pH of the slurry is less than 7, the tendency of the base metal to elute from the base metal-supported catalyst in the slurry is increased as shown in FIG. 1, and the base metal in the base metal-supported catalyst coated on the partition wall surface of the honeycomb substrate is increased. This is not desirable because the amount is reduced or the base metal is supported non-uniformly and the catalytic activity is lowered.
  • the pH of the slurry is preferably 7-9.
  • the amount of the base metal-supported catalyst to be dispersed in the aqueous solution may be such that the base metal-supported catalyst has a concentration of 30 to 70% by mass, particularly 40 to 50% by mass in the slurry.
  • the slurry contains a base metal supported catalyst and water as essential components, but may further contain other components if necessary.
  • the other components include a dispersant for maintaining the pH of the slurry at 7 or more, preferably 7 to 9, and / or adhesion between the partition walls of the honeycomb substrate and the base metal-supported catalyst, particularly under exhaust gas conditions.
  • Inorganic binders for improving the adhesion of the resin.
  • dispersant examples include weak acids such as succinic acid, tartaric acid, succinic acid, terephthalic acid, benzoic acid, phthalic acid, citric acid, lactic acid, and acetic acid, and basic compounds such as ammonia (NH 4 OH), NaPO 3 , and NaOH. , KOH, Ca (OH) 2 , Na 2 CO 3 and the like, preferably a weakly basic compound, especially ammonia, which can be used alone or in combination with a weak acid and a base, preferably a weak base.
  • the weak acid and the weak base are used in combination include lactic acid and ammonia, a combination of citric acid and ammonia, and the like.
  • the inorganic binder is preferably a metal element that can give an oxide by firing, or an oxide, hydroxide, ammonium salt, inorganic salt, or the like that is stable in a slurry having a pH of 7 or higher.
  • an alkaline binder such as an aluminum salt, a silicon salt, a cerium salt or a zirconium salt, or a mixture of at least two of these, for example, a cerium salt and a zirconium salt.
  • the salt examples include hydroxide, oxide, nitrate, sulfate, ammonium salt, carbonate and the like. These alkaline binders may be necessary because the base metal elutes into the aqueous solution when the pH of the slurry is 7 or more.
  • the sol of aluminum, silicon, cerium or zirconium, especially cerium, in particular may be prepared in advance and added to the aqueous solution as a sol, or an aluminum salt, silicon salt, cerium may be added.
  • a salt or a zirconium salt, particularly a cerium salt and a base metal-supported catalyst may be mixed and then mixed with water and a dispersant. The former is preferred.
  • the amount of the inorganic binder is preferably such that the ratio of the inorganic binder to the base metal supported catalyst (binder / base metal supported catalyst) is 10 to 30% by mass.
  • the amount of the inorganic binder is within the above range, as shown in FIG. 4, the coat peeling rate required by the measurement method described in detail in the column of Examples described later is low, that is, the honeycomb substrate under exhaust gas conditions. This is suitable because the adhesion between the partition wall surface of the material and the base metal-supported catalyst is high.
  • the amount of the inorganic binder is more than 30% by mass, it is not preferable because coating becomes difficult.
  • the slurry is introduced into the partition wall surface of the honeycomb substrate.
  • the average particle size of the base metal-supported catalyst powder in the slurry is 10 ⁇ m or less by milling the slurry containing each of the components described above into a polishing machine containing balls.
  • 0.1 to 10 ⁇ m, of which about 1 to 10 ⁇ m, is introduced into the surface of the partition walls of the honeycomb substrate having a large number of cells.
  • any method for introducing the slurry into the partition wall surface of the honeycomb substrate having a large number of cells any method can be employed.
  • a method in which a honeycomb base material is immersed in the slurry and the slurry is impregnated into the honeycomb base material a method in which the honeycomb base material is immersed in the slurry and the slurry is decompressed, or a mechanical material such as ultrasonic waves is applied to the honeycomb base material.
  • a method of forcibly impregnating the honeycomb substrate with the slurry by applying vibration or a method of wash-coating the slurry onto the honeycomb substrate.
  • the honeycomb base material After introducing the slurry to the partition wall surface of the honeycomb base material in this way, the honeycomb base material is usually dried and fired, and the base metal supported catalyst is coated on the surface of the cell partition wall of the honeycomb base material for exhaust gas purification. Can be obtained.
  • the drying and firing conditions are not particularly limited. For example, drying is performed at 50 to 120 ° C. for about 10 to 60 hours in a ventilated air atmosphere, and firing is performed at 300 to 700 ° C. for about 1 to 5 hours in an air atmosphere. And, depending on the material, may be carried out by heating at 300-700 ° C. for 1-5 hours in a reducing (eg using H 2 ) atmosphere.
  • the base metal component in the catalyst calcined as described above is a base metal by circulating hydrogen, CO, C 3 H 6 or other reducing gas, preferably hydrogen. Active species.
  • the base metal catalyst for exhaust gas purification obtained by the present invention can be suitably used as an internal combustion engine, for example, a purification catalyst for automobiles.
  • the average particle size of the base metal supported catalyst powder in the slurry was measured using dynamic light scattering (DLS).
  • the viscosity of the slurry was measured at 25 ° C. using a viscometer.
  • the activity evaluation which is one of the evaluation items of a catalyst was performed using the apparatus shown in FIG.
  • the following measuring methods are illustrations, Comprising: It can measure using the measuring method considered equivalent for those skilled in the art.
  • the following base metal supported catalysts were used.
  • honeycomb substrate a honeycomb substrate made of partition wall shape: square and made of cordierite was used.
  • a coating device having a function of suction-coating by reducing the slurry pressure was used as a device for coating the honeycomb substrate.
  • Example 1 Preparation of Ce salt sol A cerium oxide gel was prepared by adding hydrogen peroxide and ammonia to cerium carbonate or ammonium cerium nitrate and reacting them. Water and ammonia were added to the cerium oxide gel, and peptization treatment was performed by heating at 100 ° C. or lower to obtain a cerium oxide sol. The obtained sol was ultrafiltered to remove the acid, and then water, citric acid and ammonia were added and dispersed to obtain a 10 mass% Ce salt sol.
  • the particle size distribution was measured, and milling was performed until the average particle size became about 5 to 6 ⁇ m. After milling, the slurry was collected.
  • the total amount of this slurry (3691 g) contains 1520 g of Ni / CeO 2 —ZrO 2 catalyst powder and 2171.4 g of 10% strength inorganic binder sol, and the ratio of the inorganic binder to the supported catalyst powder is 15% by mass. there were.
  • Preparation of catalyst in which base metal-supported catalyst powder is coated on honeycomb substrate Measure solid content and viscosity of the slurry, calculate target adhesion amount (150 g / L), measure honeycomb substrate mass before coating, and coat Decide on the side. While filtering the slurry through a sieve, an amount of about 3 to 5 times the target adhesion amount was weighed. The honeycomb substrate was dipped in pure water, moved up and down in water, shaken off, and then pulled at 60 Hz for 15 seconds with a coating apparatus. The mass of the honeycomb substrate pretreated with water is measured to make the mass zero. While stirring the slurry by hand, it was pulled at 50 Hz for about 5 seconds, and the opposite side was also drawn for 0.6 seconds.
  • the slurry adhering around the honeycomb substrate was wiped off, and the adhesion amount was weighed.
  • air drying was performed while gently blowing air.
  • pre-baking at 250 ° C. for 1 hour, confirming the difference from the target adhesion amount, if the target adhesion amount is not enough, coat again from the opposite side from the first time, Finally, it was calcined in air at 300 ° C. for 5 hours to obtain a catalyst coated with a base metal-supported catalyst powder.
  • Example 2 The pH of the slurry was 8.0 in the same manner as in Example 1 except that Al salt (salt: hydroxide, ie boehmite) was used as the binder instead of cerium salt sol, and lactic acid and ammonia were used as the dispersant.
  • Slurry and catalyst pellets [catalyst name: Al salt] were prepared. Using this catalyst pellet, the temperature for purifying NO by 50% was measured. The obtained activity evaluation results are shown together with other results in FIG.
  • a catalyst coated with Ni-supported catalyst powder was obtained in the same manner as in Example 1 except that this slurry was used. The coat peeling rate was determined using the honeycomb substrate of the catalyst coated with this Ni-supported catalyst powder. The obtained results are shown together with other results in FIG.
  • Example 3 In the same manner as in Example 1 except that Si salt (salt: hydroxide) was used as the binder instead of cerium salt sol and ammonia was used as the dispersant, the slurry was adjusted to pH 9.0 and the slurry and catalyst pellets [ Catalyst name: Si salt] was prepared. Using this catalyst pellet, the temperature for purifying NO by 50% was measured. The obtained activity evaluation results are shown together with other results in FIG. A catalyst coated with Ni-supported catalyst powder was obtained in the same manner as in Example 1 except that this slurry was used. The coat peeling rate was determined using the honeycomb substrate of the catalyst coated with this Ni-supported catalyst powder. The obtained results are shown together with other results in FIG.
  • Si salt salt: hydroxide
  • Example 4 The slurry and catalyst pellets [catalyst were prepared in the same manner as in Example 1 except that Ce salt (salt: hydroxide) was used instead of the cerium salt sol as the binder and NaPO 3 was used as the dispersant. Name: Ce salt (2)]. Using this catalyst pellet, the temperature for purifying NO by 50% was measured. The obtained activity evaluation results are shown together with other results in FIG. A catalyst coated with Ni-supported catalyst powder was obtained in the same manner as in Example 1 except that this slurry was used. The coat peeling rate was determined using the honeycomb substrate of the catalyst coated with this Ni-supported catalyst powder. The obtained results are shown together with other results in FIG.
  • Example 5 The slurry and catalyst were prepared in the same manner as in Example 1 except that a Zr salt ( salt : ammonium) was used instead of the cerium salt sol as the binder and citric acid and ammonia were used as the dispersant, and the pH of the slurry was 7.0.
  • a pellet [catalyst name: Zr salt] was prepared. Using this catalyst pellet, the temperature for purifying NO by 50% was measured. The obtained activity evaluation results are shown together with other results in FIG.
  • a catalyst coated with Ni-supported catalyst powder was obtained in the same manner as in Example 1 except that this slurry was used. The coat peeling rate was determined using the honeycomb substrate of the catalyst coated with this Ni-supported catalyst powder. The obtained results are shown together with other results in FIG.
  • Example 6 A slurry and catalyst pellets [catalyst name: none] were prepared in the same manner as in Example 1 except that citric acid and ammonia were used as a dispersant without using a binder, and the pH of the slurry was 7.0. Using this catalyst pellet, the temperature for purifying NO by 50% was measured. The obtained activity evaluation results are shown together with other results in FIG. A catalyst coated with Ni-supported catalyst powder was obtained in the same manner as in Example 1 except that this slurry was used. The coat peeling rate was determined using the honeycomb substrate of the catalyst coated with this Ni-supported catalyst powder. The obtained results are shown together with other results in FIG.
  • Example 7 to 10 The same procedure as in Example 1, Example 2, Example 5, or Example 6 was conducted except that Cu / CeO 2 —ZrO 2 catalyst powder was used instead of the Ni / CeO 2 —ZrO 2 catalyst powder as the base metal supported catalyst. , Slurry and catalyst pellets [catalyst name: Ce salt (1), Example 7], [catalyst name: Al salt, Example 8], [catalyst name: Zr salt, Example 9] [catalyst name: none, implementation Example 10] was prepared. Using this catalyst pellet, the temperature for purifying NO by 50% was measured. The obtained activity evaluation results are shown together with other results in FIG.
  • FIG. 6 shows a graph in which the vertical axis represents CeK absorption edge energy and the horizontal axis represents measured temperature. From FIG. 6, it is understood that Ce is changed from tetravalent to trivalent when CeO 2 —ZrO 2 is present.
  • Reference example 4 The NO purification rate of the catalyst obtained in Reference Example 1 was measured. The results are shown in FIG. From FIG. 5 to FIG. 7, if a powder containing cerium oxide and a base metal such as iron, cobalt, nickel, molybdenum, tungsten, zinc, magnesium, manganese, vanadium, or copper are present, the valence of cerium oxide changes, and the base metal It is understood that it exhibits a particularly high purification activity because it changes to a metal state. In addition, since Ni and aluminum oxide easily form Ni aluminate, it is understood that it is important to select a binder and a carrier on which the base metal does not form a compound on the honeycomb substrate.
  • a base metal such as iron, cobalt, nickel, molybdenum, tungsten, zinc, magnesium, manganese, vanadium, or copper
  • a base metal-supported catalyst can be easily supported on a honeycomb substrate to easily obtain a base metal catalyst for exhaust gas purification having catalytic activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 卑金属担持触媒をハニカム基材に均一に担持させて触媒活性を有する排ガス浄化用卑金属触媒の製造方法を提供する。 排ガス浄化用触媒の製造方法であって、 多数のセルを有するハニカム基材を用意する工程、担体に排ガス浄化能を有する卑金属を含む金属が担持された卑金属担持触媒を用意する工程、前記卑金属担持触媒を水溶液に分散させてpHが7以上のスラリーを用意する工程、および前記スラリーをハニカム基材の隔壁表面に導入する工程を含む、前記製造方法。

Description

排ガス浄化用卑金属触媒の製造方法
 本発明は、排ガス浄化用卑金属触媒の製造方法に関し、さらに詳しくは卑金属担持触媒をハニカム基材にコートすることによってNO浄化性能活性を示し得る排ガス浄化用卑金属触媒の製造方法に関する。
 近年、地球環境保護の観点から、排気ガス規制が世界的に年々強化されている。この対応策として、内燃機関においては排気ガス浄化用触媒が用いられている。この排気ガス浄化触媒において、排ガス中のHC、COおよびNOを効率的に除去するために、触媒成分としてPt、Au、Rh等の貴金属が用いられている。しかし、これらの貴金属はいずれも産出国が特定の国に限定されしかも資源枯渇の問題を抱えている。
 この排気ガス浄化用触媒の金属として貴金属以外の卑金属を用いる検討もなされているが、排ガス浄化用卑金属触媒は排ガス浄化性能活性、特にNO浄化性能活性が貴金属を用いた排ガス浄化用貴金属触媒に比べて低く、実用化に至っていない。
 一方、この排ガス浄化用卑金属触媒が自動車、例えばガソリン車あるいはディーゼル車に適用されていない理由として、担体に活性種を担持したNO浄化用卑金属担持触媒をハニカム基材にコートした触媒を作製する際に、NO浄化用卑金属担持触媒をハニカム基材に均一にコートすることが容易でないことも要因の1つに考えられる。
 一方、排ガス浄化用金属担持触媒をハニカム基材にコートする技術について様々な提案がなされている。
 例えば、特開2007-275709号公報には、体積平均粒子径が20~100μmの担体粒子と酢酸などの酸あるいはゾルのような無機粒子分散剤などの粘度調整剤と溶剤とを含有し25℃における粘度が5~10mPasであるウォッシュコート用スラリーをハニカム基材に導入する工程を含む排ガス浄化用触媒の製造方法が記載されている。そして、具体例としてPt及びRhをγ-Al粉末担体に担持させた貴金属担持触媒と水とアルミナゾル(酢酸系)を混合して調製したスラリーをモノリス基材の端面から導入し、乾燥、焼成して排ガス浄化用触媒を得た例が示されているが、前記スラリーは酢酸系の酸性であると考えられる。
 また、特開2008-229459号公報には、多孔質のセル隔壁を有するウォールフロー構造のフィルタ基材と該セル隔壁に形成されたアルカリ金属あるいはランタノイド元素から選ばれる卑金属よりなりPM(粒子状物質)を酸化可能なPM酸化触媒を担持した卑金属担持部を有する排ガス浄化装置が記載され、その具体例としてγ-Al粉末やCeO粉末などの多孔質酸化物粉末をアルミナゾルなどのバインダー成分および水とともにスラリーとし、セル隔壁に付着させた後に焼成してコート層を形成し、該コート層に卑金属の酢酸塩水溶液を吸水させ、酢酸塩を分解させて卑金属、例えばカリウムあるいはセシウムを担持して卑金属担持部を形成する方法が示されている。
特開2007-275709号公報 特開2008-229459号公報
 しかし、前記従来公知の技術を排ガス浄化用卑金属触媒の製造方法に適用しても排ガス浄化触媒活性を有する触媒を得ることは困難であり、また前記の従来公知の卑金属触媒は排ガス浄化触媒活性が無いか低いものである。
 従って、本発明の目的は、卑金属担持触媒をハニカム基材に均一に担持させて排ガス浄化用触媒活性を示し得る排ガス浄化用卑金属触媒の製造方法を提供することである。
 本発明者等は、前記目的を達成するために鋭意検討を行った結果、排ガス浄化用触媒活性を与え得る排ガス浄化用卑金属触媒を得るためには担体に排ガス浄化能を有する卑金属を含む金属が担持された卑金属担持触媒をハニカム基材の隔壁表面に均一に導入して担持させることが必要であるが、従来のスラリーを用いたのでは卑金属担持触媒をハニカム基材の隔壁表面に均一に導入して担持させることが困難であることを見出しさらに検討を行った結果、本発明を完成した。
 すなわち、本発明は、排ガス浄化用触媒の製造方法であって、
 多数のセルを有するハニカム基材を用意する工程、
 担体に排ガス浄化能を有する卑金属卑を含む金属が担持された卑金属担持触媒を用意する工程、
 前記卑金属担持触媒を水溶液に分散させてpHが7以上のスラリーを用意する工程、および
 前記スラリーをハニカム基材の隔壁表面に導入する工程
を含む、前記製造方法に関する。
 本発明によれば、卑金属担持触媒をハニカム基材に均一に担持させて触媒活性を有する排ガス浄化用卑金属触媒を容易に得ることができる。
図1は、本発明の実施態様に用いられる卑金属の水中への溶出率とpHとの関係を示すグラフである。 図2は、実施例におけるNi担持触媒と各種バインダーとを含むスラリーから回収された触媒のNO50%浄化温度を比較して示すグラフである。 図3は、実施例におけるCu担持触媒と各種バインダーとを含むスラリーから回収された触媒のNO50%浄化温度を比較して示すグラフである。 図4は、実施例における排ガス浄化用卑金属触媒調製用スラリーのバインダー添加率とコート剥離率と比較して示すグラフである。 図5は、本発明の排ガス浄化用卑金属触媒の触媒活性の原理を検討するための卑金属と担体の種類とメタル状態との関係を比較して示すグラフである。 図6は、CeO-ZrO担体中のCe価数状態の温度による変化を示すグラフである。 図7は、Ni担持触媒と各種担体の酸化物との混合粉末のNO還元活性を比較して示すグラフである。 図8は、触媒の活性を測定するために用いた装置の概略図である。
 本発明においては、担体に排ガス浄化能を有する卑金属を含む金属が担持された卑金属担持触媒を水溶液に分散させたpHが7以上のスラリーを、多数のセルを有するハニカム基材の隔壁表面に導入する工程を含むことが必要であり、これによって卑金属担持触媒をハニカム基材の隔壁表面に導入することによって均一に担持させて触媒活性を有する排ガス浄化用卑金属触媒を得ることが可能となる。
特に、本発明において、以下の実施態様を挙げることができる。
1)前記スラリーに、さらに無機バインダーが含まれている前記製造方法。
2)前記無機バインダーが、アルミニウム塩、ケイ素塩、セリウム塩又はジルコニウム塩の単独あるいはこれらの少なくとも2種以上の混合物である前記製造方法。
3)前記無機バインダーが、卑金属担持触媒に対するバインダーの量比(バインダー/卑金属担持触媒)が10~30質量%となる割合で含まれている前記製造方法。
4)前記排ガス浄化能を有する卑金属を含む金属が、鉄、コバルト、ニッケル、モリブデン、タングステン、亜鉛、マグネシウム、マンガン、バナジウムあるいは銅の単独又はこれら卑金属と貴金属との合金、例えばAnNi合金である前記製造方法。
5)前記スラリーのpHが7~9である前記製造方法。
6)前記担体が、Al、SiO、MgO、CeO、ZrO、TiOより選択される1種、2種以上の混合物又は2種以上よりなる複合酸化物である前記製造方法。
7)さらに、水を除去して乾燥する工程と、前記卑金属担持触媒を焼成する工程を含む前記製造方法。
8)前記排ガス浄化用卑金属触媒が、排ガスのNO浄化用である前記製造方法。
 以下、本発明について図面を参照しながら詳説する。
 本発明においては、先ず多数のセルを有するハニカム基材を用意する。
 前記のハニカムは、排ガス浄化触媒に通常用いられる基材であって、多数のセルに隔壁表面を有しコージェライトなどのセラミックス材料やステンレス鋼などにより形成され得る。
 また、本発明においては、担体に排ガス浄化能を有する卑金属が担持された卑金属担持触媒を用意する。
 前記の排ガス浄化能を有する卑金属を含む金属としては、例えば鉄、コバルト、ニッケル、モリブデン、タングステン、亜鉛、マグネシウム、マンガン、バナジウムあるいは銅などの卑金属、好適にはニッケルあるいは銅単独あるいはこれら卑金属と貴金属との合金、例えば前記卑金属を50質量%含む貴金属、例えば金、白金、銀、好適には金との合金が挙げられる。
 また、前記の担体として、特に制限はないが、例えば貴金属触媒の担体として用いられるAl、SiO、MgO、CeO、ZrO、TiOより選択される1種あるいは2種以上の混合物又は2種以上よりなる複合酸化物や、価数変化をし易い元素を含むCeO系などの酸化物、例えばCo酸化物、Ag酸化物、Mn酸化物、Fe酸化物や酸素イオン伝導性の高い酸化物であるZr酸化物系、La酸化物系、Ga酸化物系などが好適に挙げられる。
 前記の卑金属を含む金属の担体への担持量(卑金属を含む金属/担持触媒全量)は、卑金属および担体の種類により異なるが、通常0.1~30質量%の範囲、例えば0.3~10質量%の範囲、特に3~10質量%の範囲であり得る。
 本発明においては、前記卑金属担持触媒を水溶液に分散させてpHが7以上のスラリーを用意する。
 前記のスラリーのpHが7未満であると、図1に示すようにスラリー中に卑金属担持触媒から卑金属が溶出する傾向が高まり、ハニカム基材の隔壁表面にコートされた卑金属担持触媒中の卑金属の量が少なくなる又は不均一に卑金属が担持されて触媒活性が低下するので望ましくない。前記のスラリーのpHは、好適には7~9である。
 前記の水溶液に分散させる卑金属担持触媒の量は、スラリー中に卑金属担持触媒が30~70質量%、特に40~50質量%の濃度となる量であり得る。
 前記のスラリーは、卑金属担持触媒と水とを必須成分とするものであるが必要であればさらに他の成分とを含有し得る。
 前記の他の成分としては、スラリーのpHを7以上、好適には7~9に保つための分散剤および/又はハニカム基材の隔壁表面と卑金属担持触媒との付着性、特に排ガス条件下での付着性を高めるための無機バインダーが挙げられる。
 前記分散剤としては、例えば、弱酸、例えば蓚酸、酒石酸、コハク酸、テレフタル酸、安息香酸、フタル酸、クエン酸、乳酸、酢酸など、塩基化合物、例えばアンモニア(NHOH)、NaPO、NaOH、KOH、Ca(OH)、NaCOなど、好適には弱塩基性化合物、特にアンモニアが挙げられ、これらは単独であるいは弱酸と塩基、好適には弱塩基と組み合わせて用いられ得る。
 前記の弱酸と弱塩基とを組み合わせて用いる好適な例として、乳酸とアンモニア、クエン酸とアンモニアとの組合せ等が挙げられる。
 前記の無機バインダーとしては、焼成により酸化物を与え得る金属元素あるいはケイ素の酸化物、水酸化物、アンモニウム塩、無機塩等であってpH7以上のスラリー中で安定なものが好適である。
 このような無機バインダーとして、図2、図3に示すように、アルカリ性バインダー、例えばアルミニウム塩、ケイ素塩、セリウム塩又はジルコニウム塩の単独あるいはこれらの少なくとも2種以上の混合物、例えばセリウム塩とジルコニウム塩との混合物、好適にはセリウム塩が主成分である混合物、特にセリウム塩あるいはジルコニウム塩、その中でもセリウム塩が好適に挙げられる。前記の塩としては、水酸化物、酸化物、硝酸塩、硫酸塩、アンモニウム塩、炭酸塩などが挙げられる。これらのアルカリ性バインダーは、スラリーのpHが7以上であると卑金属が水溶液に溶出するため、必要となり得る。
 前記無機バインダーを水溶液と混合する方法としては、予め前記のアルミニウム、ケイ素、セリウムあるいはジルコニウム、特にセリウムのゾルを調製しておき、ゾルとして水溶液に加えてもよく、あるいはアルミニウム塩、ケイ素塩、セリウム塩あるいはジルコニウム塩、特にセリウム塩と卑金属担持触媒とを混合した後に水と分散剤とを加えて混合する方法のいずれでもよいが、好適には前者が挙げられる。
 前記無機バインダーの量としては、卑金属担持触媒に対する無機バインダーの量比(バインダー/卑金属担持触媒)が10~30質量%となる割合が好適である。前記無機バインダーの量が前記の範囲内であると、図4に示すように、後述の実施例の欄に詳述する測定法により求められるコート剥離率が低い、すなわち排ガス条件下でのハニカム基材の隔壁表面と卑金属担持触媒との付着性が高いので好適である。しかし、無機バインダーの量が30質量%より多くなると、コートが困難となるので好ましくない。
 本発明においては、前記スラリーをハニカム基材の隔壁表面に導入する。
 本発明の実施態様において、好適には、前記の各成分を含有するスラリーをボールを入れた磨粉機に入れてミリングするなどして、スラリー中の卑金属担持触媒粉末の平均粒径が10μm以下、例えば0.1~10μm、その中でも1~10μm程度にミリングしたものを多数のセルを有するハニカム基材の隔壁表面に導入する。
 前記のスラリーを多数のセルを有するハニカム基材の隔壁表面に導入する方法としては、任意の方法を採用することができる。
 例えば、前記スラリーにハニカム基材を浸漬してスラリーをハニカム基材に含浸させる方法、あるいは前記スラリーにハニカム基材を浸漬してスラリーを減圧する方法、又はハニカム基材に超音波等の機械的振動を与えることによりスラリーをハニカム基材に強制的に含浸させる方法、若しくはスラリーをハニカム基材にウォッシュコートする方法が挙げられる。
 このようにしてスラリーをハニカム基材の隔壁表面に導入した後、通常はハニカム基材を乾燥、焼成して、卑金属担持触媒がハニカム基材のセル隔壁の表面にコートされた排ガス浄化用卑金属触媒を得ることができる。
 前記の乾燥、焼成の条件としては、特に制限はなく、例えば通風空気の雰囲気下、50~120℃で10~60時間程度乾燥し、空気雰囲気下、300~700℃で1~5時間程度焼成することによって、また材料によっては更に還元(例えば、Hを用いて)雰囲気下、300~700℃で1~5時間加熱することによって実施され得る。
 本発明によって得られる排ガス浄化用卑金属触媒において、前記のようにして焼成した触媒中の卑金属成分は、水素、CO、Cなどの還元性ガス、好適には水素を流通させることによって卑金属の活性種であり得る。
 また、本発明によって得られる排ガス浄化用卑金属触媒は、内燃機関、例えば自動車用浄化触媒として好適に用いられ得る。
 以下、本発明の実施例を示す。
 以下の各例において、スラリー中の卑金属担持触媒粉末の平均粒子径の測定は動的光散乱(DLS)を用いて行った。
 また、スラリーの粘度測定は粘度計を用いて25℃で行った。
 また、触媒の評価項目の1つである活性評価を図7に示す装置を用いて行った。なお、以下の測定法は例示であって、当業者にとって同等と考えられる測定法を用いて測定し得る。
 また、以下の各例においては、下記の卑金属担持触媒を用いた。
 Ni/CeO-ZrO触媒粉末:平均粒径:10μm、Ni担持量:4質量%)
 Cu/CeO-ZrO触媒粉末:平均粒径:20μm、Cu担持量:5質量%)
 また、ハニカム基材として、隔壁形状:四角、コージェライト製のハニカム基材を用いた。
 また、ハニカム基材にコートする装置として、スラリーを減圧して吸引コートする機能を備えたコート装置を用いた。
参考例1および比較参考例1
 純水21gにNi/CeO-ZrO触媒粉末9gを入れ、室温で攪拌した。pH電極を入れ、酢酸もしくは、硝酸あるいはアンモニア水を1滴ずつ加えて図1に示すpHに調整し、1時間放置した。容器ごとの質量差から溶液量を計算する。
 ろ過し、ろ液を分取した後、ICP分析で溶液中のNi濃度を測定し、下記の式からNi溶出率を求めた。
 Ni溶出率=溶液中のNi濃度×溶液量
 得られた結果をまとめて図1に示す。
 図1から、水溶液のpHが7未満ではNi溶出率が高いことが示された。
 Cu/CeO-ZrO触媒粉末についても同様の結果が得られた。
実施例1
1.Ce塩ゾルの調製
 炭酸第一セリウム又は硝酸アンモニウムセリウムに過酸化水素水とアンモニアとを添加し、反応させて酸化第二セリウムゲルを調製した。この酸化第二セリウムゲルに、水とアンモニアとを添加し、100℃以下の加熱で解膠処理を行って、酸化第二セリウムゾルを得た。得られたゾルを限外ろ過し、酸を除いた後、水とクエン酸およびアンモニアを加え、分散させて、10質量%濃度のCe塩ゾルを得た。
 2.スラリーの調製
 容器に上記のアンモニウムCeゾル(分散剤:クエン酸)を所定量秤量し、攪拌した。一方、Ni/CeO-ZrO触媒粉末を189g/Lの仕様量となるように秤量し、Ce塩バインダーを攪拌しているところに投入した。粘度を測定しながら、バインダーあるいはNi/CeO-ZrO触媒粉末の量を微調整した。pHを測定し、pH8.0になるように、アンモニア水で調整した。攪拌後、磨砕機にボールを通常量入れ、ミリングした。粒度分布を測定し、平均粒径が5~6μm程度になるまでミリングを行った。ミリング終了後、スラリーを回収した。このスラリー全量(3691g)中にはNi/CeO-ZrO触媒粉末が1520g、10%濃度の無機バインダーゾルが2171.4g含まれ、無機バインダーの担持触媒粉末に対しする割合は15質量%であった。
 3.触媒の作製、活性評価
 上記で調製したスラリーを120℃で乾燥後、粉砕し、空気中、300℃で5時間焼成した。得られた粉末に圧力を加えて、1mm程度の触媒ペレット[触媒名:Ce塩(1)]を作製した。
 反応管に触媒ペレットを詰め、下記の評価条件でモデルガスを流通させ、通過したガス組成をFT-IRで分析した。この結果から、NOを50%浄化する温度を求めた。
 評価条件
 触媒量:0.6g、ガス流量:1Lmin-1、SV:100000h-1、温度範囲:50~500℃、昇温速度:20℃min-1
 ガス組成:NO3000ppm、CO3000ppm、Nバランス
 得られた活性評価結果を他の結果とまとめて図2に示す。
4.ハニカム基材に卑金属担持触媒粉末をコートした触媒の調製
 前記のスラリーの固形分、粘度を測定し、目標付着量(150g/L)を計算し、コート前のハニカム基材質量を測り、コートする側を決めておく。スラリーをふるいで濾過しながら目標付着量の3~5倍程度量をはかり取った。ハニカム基材を純水に浸して水中で上下し、振り払った後、コート装置で60Hzで15秒引いた。
 この水で前処理したハニカム基材の質量を測り、質量0にする。スラリーを手で攪拌しながら、50Hzで5秒程度引き、反対側も0.6秒引いた。ハニカム基材の周りに付着したスラリーを拭き取り付着量を秤量した。詰まりがある場合は軽く空気を吹きながら、通風乾燥した。通風乾燥を30分間以上行った後、250℃で1時間仮焼成し、目標付着量との差を確認し、目標付着量に足りなければ1回目と反対側から再度同様にしてコートを行い、最後に空気中、300℃で5時間焼成して、卑金属担持触媒粉末をコートした触媒を得た。
5.ハニカム基材にNi担持触媒粉末をコートした触媒の剥離試験
 Ni担持触媒粉末をコートした触媒のハニカム基材から18mm角を切り出し、切り出したサンプルの側面を研磨紙とワイヤブラシで凹凸を削った。純水を入れたビーカーにサンプルを入れ、10回上下させて削り粉を落した。180℃の乾燥機で1時間乾燥し、サンプルの質量を測った(W1)。ルツボに入れ、900℃で5時間焼成し、サンプルを固定治具にセットしイオン交換水に入れ、10分間超音波処理を行った。サンプルを180℃で1時間乾燥して、サンプルの質量を測った(W2)。下記の式よりコート剥離率を求めた。
 コート剥離率(%)=[(W1-W2)/W1]x100
 得られた結果を他の結果とまとめて図4に示す。
 実施例2
 バインダーとしてセリウム塩ゾルに代えてAl塩(塩:水酸化物、つまりベーマイト)を用い、分散剤として乳酸とアンモニアとを用いた他は実施例1と同様にして、スラリーのpHを8.0としてスラリーおよび触媒ペレット[触媒名:Al塩]を作製した。この触媒ペレットを用いてNOを50%浄化する温度を測定した。得られた活性評価結果を他の結果とまとめて図2に示す。
 また、このスラリーを用いた他は実施例1と同様にして、Ni担持触媒粉末をコートした触媒を得た。このNi担持触媒粉末をコートした触媒のハニカム基材を用いてコート剥離率を求めた。
 得られた結果を他の結果とまとめて図4に示す。
 実施例3
 バインダーとしてセリウム塩ゾルに代えてSi塩(塩:水酸化物)を用い、分散剤としてアンモニアを用いた他は実施例1と同様にして、スラリーのpHを9.0としてスラリーおよび触媒ペレット[触媒名:Si塩]を作製した。この触媒ペレットを用いてNOを50%浄化する温度を測定した。
 得られた活性評価結果を他の結果とまとめて図2に示す。
 また、このスラリーを用いた他は実施例1と同様にして、Ni担持触媒粉末をコートした触媒を得た。このNi担持触媒粉末をコートした触媒のハニカム基材を用いてコート剥離率を求めた。得られた結果を他の結果とまとめて図4に示す。
 実施例4
 バインダーとしてセリウム塩ゾルに代えてCe塩(塩:水酸化物)を用い、分散剤としてNaPOを用いた他は実施例1と同様にして、スラリーのpH7.0としてスラリーおよび触媒ペレット[触媒名:Ce塩(2)]を作製した。この触媒ペレットを用いてNOを50%浄化する温度を測定した。
 得られた活性評価結果を他の結果とまとめて図2に示す。
 また、このスラリーを用いた他は実施例1と同様にして、Ni担持触媒粉末をコートした触媒を得た。このNi担持触媒粉末をコートした触媒のハニカム基材を用いてコート剥離率を求めた。得られた結果を他の結果とまとめて図4に示す。
 実施例5
 バインダーとしてセリウム塩ゾルに代えてZr塩(:アンモニウム)を用い、分散剤としてクエン酸とアンモニアとを用いた他は実施例1と同様にして、スラリーのpHを7.0としてスラリーおよび触媒ペレット[触媒名:Zr塩]を作製した。この触媒ペレットを用いてNOを50%浄化する温度を測定した。
 得られた活性評価結果を他の結果とまとめて図2に示す。
 また、このスラリーを用いた他は実施例1と同様にして、Ni担持触媒粉末をコートした触媒を得た。このNi担持触媒粉末をコートした触媒のハニカム基材を用いてコート剥離率を求めた。得られた結果を他の結果とまとめて図4に示す。
 実施例6
 バインダーを用いないで分散剤としてクエン酸とアンモニアとを用いた他は実施例1と同様にして、スラリーのpHを7.0としてスラリーおよび触媒ペレット[触媒名:なし]を作製した。この触媒ペレットを用いてNOを50%浄化する温度を測定した。
 得られた活性評価結果を他の結果とまとめて図2に示す。
 また、このスラリーを用いた他は実施例1と同様にして、Ni担持触媒粉末をコートした触媒を得た。このNi担持触媒粉末をコートした触媒のハニカム基材を用いてコート剥離率を求めた。得られた結果を他の結果とまとめて図4に示す。
 実施例7~10
 卑金属担持触媒としてNi/CeO-ZrO触媒粉末に代えてCu/CeO-ZrO触媒粉末を用いた他は実施例1、実施例2、実施例5、あるいは実施例6と同様にして、スラリーおよび触媒ペレット[触媒名:Ce塩(1)、実施例7]、[触媒名:Al塩、実施例8]、[触媒名:Zr塩、実施例9][触媒名:なし、実施例10]を作製した。この触媒ペレットを用いてNOを50%浄化する温度を測定した。得られた活性評価結果を他の結果とまとめて図3に示す。
参考例2
 本発明の排ガス浄化用卑金属触媒が排ガス浄化活性を有する原理を検討するために、両成分を溶液中で蒸発乾燥によりNi系触媒:酸化物の質量比=1:20で担持して得られたNi系触媒(酸化ニッケル)+CeO-ZrO、前記Ni系触媒+SiOあるいは前記Ni系触媒+Alの触媒について、EXAFS(広範囲X線吸収微細構造)測定して、Niメタル状態を観察した。結果をまとめて図5に示す。
 図5から、CeO-ZrOが存在する触媒はNiのみでもNiメタル状態へ変化することが理解される。
 この結果は、Cuについても同様の傾向であった。
参考例3
 CeO-ZrO中のCe価数状態を実際のガス雰囲気中のXAFS分析により測定した。縦軸をCeK吸収端エネルギーとし、横軸を測定温度としてグラフにした結果を図6に示す。
 図6から、CeO-ZrOが存在すると、Ceは4価から3価に変化していることが理解される。
参考例4
 参考例1で得られた触媒についてNO浄化率を測定した。結果を図7に示す。
 図5~7から、酸化セリウムを含む粉末と卑金属、例えば鉄、コバルト、ニッケル、モリブデン、タングステン、亜鉛、マグネシウム、マンガン、バナジウムあるいは銅が存在すれば、酸化セリウムの価数が変化し、卑金属がメタル状態に変化するため、特に高い浄化活性を示すことが理解される。
 また、Niと酸化アルミニウムとはNiアルミネートを形成しやすいことから、ハニカム基材上で卑金属が化合物を形成させないバインダー、担体を選択することも重要であることが理解される。
 本発明の製造方法によって、卑金属担持触媒をハニカム基材に均一に担持させて触媒活性を有する排ガス浄化用卑金属触媒を容易に得ることができる。

Claims (9)

  1.  排ガス浄化用触媒の製造方法であって、
    多数のセルを有するハニカム基材を用意する工程、
    担体に排ガス浄化能を有する卑金属を含む金属が担持された卑金属担持触媒を用意する工程、
    前記卑金属担持触媒を水溶液に分散させてpHが7以上のスラリーを用意する工程、および
    前記スラリーをハニカム基材の隔壁表面に導入する工程
    を含む、前記製造方法。
  2.  前記スラリーに、さらに無機バインダーが含まれている請求項1に記載の製造方法。
  3.  前記無機バインダーが、アルミニウム塩、ケイ素塩、セリウム塩又はジルコニウム塩の単独あるいはこれらの少なくとも2種以上の混合物である請求項2に記載の製造方法。
  4.  前記無機バインダーが、卑金属担持触媒に対するバインダーの量比(バインダー/卑金属担持触媒)が10~30質量%となる割合で含まれている請求項2又は3に記載の製造方法。
  5.  前記排ガス浄化能を有する卑金属が、鉄、コバルト、ニッケル、モリブデン、タングステン、亜鉛、マグネシウム、マンガン、バナジウムあるいは銅である請求項1~4のいずれか1項に記載の製造方法。
  6.  前記スラリーのpHが7~9である請求項1~5のいずれか1項に記載の製造方法。
  7.  前記担体が、Al、SiO、MgO、CeO、ZrO、TiOより選択される1種、2種以上の混合物又は2種以上よりなる複合酸化物である請求項1~6のいずれか1項に記載の製造方法。
  8.  さらに、水を除去して乾燥する工程と、前記卑金属担持触媒を焼成する工程を含む請求項1~7のいずれか1項に記載の製造方法。
  9.  前記排ガス浄化用卑金属触媒が、排ガスのNO浄化用である請求項1~8のいずれか1項に記載の製造方法。
PCT/JP2013/050582 2012-01-20 2013-01-15 排ガス浄化用卑金属触媒の製造方法 WO2013108756A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13738019.2A EP2805767B1 (en) 2012-01-20 2013-01-15 Production method for base metal catalyst for exhaust gas purification
US14/370,522 US9050584B2 (en) 2012-01-20 2013-01-15 Production method of base metal catalyst for exhaust gas purification
CN201380004124.0A CN103958060B (zh) 2012-01-20 2013-01-15 废气净化用贱金属催化剂的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-010213 2012-01-20
JP2012010213A JP5310885B2 (ja) 2012-01-20 2012-01-20 排ガス浄化用卑金属触媒の製造方法

Publications (1)

Publication Number Publication Date
WO2013108756A1 true WO2013108756A1 (ja) 2013-07-25

Family

ID=48799181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050582 WO2013108756A1 (ja) 2012-01-20 2013-01-15 排ガス浄化用卑金属触媒の製造方法

Country Status (5)

Country Link
US (1) US9050584B2 (ja)
EP (1) EP2805767B1 (ja)
JP (1) JP5310885B2 (ja)
CN (1) CN103958060B (ja)
WO (1) WO2013108756A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741114B (zh) * 2015-04-09 2017-11-14 北京华电光大环境股份有限公司 一种平板式高温scr脱硝催化剂及其制备方法
DE112018003257T5 (de) 2017-06-27 2020-03-05 Genesis Research Institute, Inc. Cluster-tragender, poröser Träger und Verfahren zur Herstellung desselben
CN113731432A (zh) * 2021-09-22 2021-12-03 苏州松之源环保科技有限公司 基于二氧化硅的非贵金属催化剂的浆料分散和涂敷方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185232A (ja) * 1998-12-22 2000-07-04 Cataler Corp 排ガス浄化用触媒
JP2002204958A (ja) * 2001-01-10 2002-07-23 Nissan Motor Co Ltd 排気ガス浄化触媒及びその製造方法
JP2002273239A (ja) * 2001-03-14 2002-09-24 Toyota Motor Corp 合金触媒と排気ガス浄化用触媒の製造方法
JP2007275709A (ja) 2006-04-03 2007-10-25 Toyota Motor Corp ウォッシュコート用スラリー及びそれを用いた排ガス浄化用触媒の製造方法
JP2008229459A (ja) 2007-03-19 2008-10-02 Toyota Motor Corp 排ガス浄化装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE216280T1 (de) * 1995-01-20 2002-05-15 Engelhard Corp Vorrichtung zur schadstoffentfernung aus umgebungsluft in der motorhaube eines fahrzeuges
US6548032B1 (en) * 1995-09-20 2003-04-15 Rhodia Chimie Process for the treatment of gases with high oxygen content, with a view to controlling nitrogen oxide emissions, using a catalytic composition comprising cerium oxide and/or zirconium oxide
US8119075B2 (en) * 2005-11-10 2012-02-21 Basf Corporation Diesel particulate filters having ultra-thin catalyzed oxidation coatings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185232A (ja) * 1998-12-22 2000-07-04 Cataler Corp 排ガス浄化用触媒
JP2002204958A (ja) * 2001-01-10 2002-07-23 Nissan Motor Co Ltd 排気ガス浄化触媒及びその製造方法
JP2002273239A (ja) * 2001-03-14 2002-09-24 Toyota Motor Corp 合金触媒と排気ガス浄化用触媒の製造方法
JP2007275709A (ja) 2006-04-03 2007-10-25 Toyota Motor Corp ウォッシュコート用スラリー及びそれを用いた排ガス浄化用触媒の製造方法
JP2008229459A (ja) 2007-03-19 2008-10-02 Toyota Motor Corp 排ガス浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2805767A4

Also Published As

Publication number Publication date
EP2805767A4 (en) 2015-11-11
EP2805767B1 (en) 2020-04-29
JP5310885B2 (ja) 2013-10-09
EP2805767A1 (en) 2014-11-26
CN103958060A (zh) 2014-07-30
US9050584B2 (en) 2015-06-09
JP2013146697A (ja) 2013-08-01
US20140342902A1 (en) 2014-11-20
CN103958060B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
RU2730496C2 (ru) Содержащие родий катализаторы для обработки автомобильных выхлопов
JP3912377B2 (ja) 排ガス浄化用触媒粉末の製造方法
JP4547935B2 (ja) 排ガス浄化用触媒、排ガス浄化触媒、及び触媒の製造方法
US11951465B2 (en) Solution-based approach to make porous coatings for sinter-resistant catalysts
CN104971729A (zh) 一种丙烷催化燃烧整体式催化剂及其制备方法
US12011706B2 (en) Ammonia oxidation catalyst for diesel applications
EP2939741A1 (en) Catalyst composition for exhaust gas purification and catalyst for exhaust gas purification
JP5987855B2 (ja) 排ガス浄化用触媒
CN105658328A (zh) 尾气净化用催化剂及其制备方法
EP3132849A1 (en) Catalyst composition for purifying exhaust gas and exhaust gas purifying catalyst
JP5310885B2 (ja) 排ガス浄化用卑金属触媒の製造方法
CN105792929A (zh) 废气净化催化剂及其制造方法
EP3581268A1 (en) Exhaust gas purifying catalyst composition, method for producing same and exhaust gas purifying catalyst for automobiles
CN110139710A (zh) 废气净化催化剂
CN110167670A (zh) 废气净化催化剂用铜铁矿型氧化物和使用该铜铁矿型氧化物的废气净化催化剂
JP4700648B2 (ja) 有機酸含有排ガス処理用触媒および該排ガス処理方法
JP7211709B2 (ja) 排ガス浄化用三元触媒及びその製造方法、並びに一体構造型排ガス浄化用触媒
JP6050703B2 (ja) 排ガス浄化用触媒
JP7329060B2 (ja) 排気ガス浄化用触媒、排気ガスの浄化方法、及び排気ガス浄化用触媒の製造方法
JP4775953B2 (ja) 排ガス浄化用触媒及びその再生方法
JP6010325B2 (ja) 排ガス浄化用触媒および触媒担持構造体ならびにこれらの製造方法
JP4697796B2 (ja) 排ガス浄化用触媒及びその再生方法
JP2009078202A (ja) 触媒金属担持酸素吸蔵材、同材の製造方法、及び同材を用いた触媒
EP3153225A1 (en) Exhaust gas-purifying catalyst
JP5761797B2 (ja) 混合触媒、それを表面に備える触媒担持構造体およびそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738019

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013738019

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14370522

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE