WO2013108392A1 - 伝送クロック信号異常検出方式、およびその方式に使用する子局ターミナル - Google Patents

伝送クロック信号異常検出方式、およびその方式に使用する子局ターミナル Download PDF

Info

Publication number
WO2013108392A1
WO2013108392A1 PCT/JP2012/051155 JP2012051155W WO2013108392A1 WO 2013108392 A1 WO2013108392 A1 WO 2013108392A1 JP 2012051155 W JP2012051155 W JP 2012051155W WO 2013108392 A1 WO2013108392 A1 WO 2013108392A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
clock signal
signal
transmission clock
abnormality
Prior art date
Application number
PCT/JP2012/051155
Other languages
English (en)
French (fr)
Inventor
錦戸憲治
一夫 井谷
省太郎 楠元
Original Assignee
株式会社エニイワイヤ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エニイワイヤ filed Critical 株式会社エニイワイヤ
Priority to PCT/JP2012/051155 priority Critical patent/WO2013108392A1/ja
Priority to JP2012531153A priority patent/JP5120994B1/ja
Publication of WO2013108392A1 publication Critical patent/WO2013108392A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0079Receiver details
    • H04L7/0083Receiver details taking measures against momentary loss of synchronisation, e.g. inhibiting the synchronisation, using idle words or using redundant clocks

Definitions

  • the present invention reduces the number of signal lines between a master station connected to a control unit and a plurality of output units and input units, or a plurality of slave stations corresponding to a plurality of controlled devices, and connects them with a common data signal line.
  • a control / monitor signal transmission system that transmits data using a transmission synchronization method such as synchronizing with a transmission clock
  • the transmission clock signal abnormality detection method for detecting an abnormality in the transmission clock signal received by the slave station and its method are used. This is related to the slave station terminal.
  • the output unit operates in accordance with an instruction from the control unit, and an actuator, a (stepping) motor, a solenoid, a solenoid valve, a relay, a thyristor, and the like correspond to this.
  • the input unit transmits information related to the output unit to the control unit, and a reed switch, a micro switch, a push button switch, a photoelectric switch, various sensors, and the like correspond to this.
  • the controlled device is a device composed of an output unit and an input unit.
  • a control system including a control unit, a plurality of output units and input units, or a plurality of controlled devices
  • so-called wiring saving which reduces the number of wirings
  • a general technique for reducing the wiring instead of a parallel connection that directly connects each of the signal lines extending from a plurality of controlled devices to the control unit, a parent device having a conversion function of a parallel signal and a serial signal is provided.
  • a method is widely adopted in which a station and a plurality of slave stations are connected to a control unit and a controlled device, respectively, and data is transferred between the master station and the plurality of slave stations via a common data signal line using a serial signal. Yes.
  • the transmission clock signal transmitted from the master station to the transmission line is correctly transmitted due to the power supply voltage drop and the attenuation of the transmission signal on the slave station side when many slave stations are connected. Not received.
  • the control unit cannot identify that there is an abnormality in the transmission clock signal, it is necessary to check the state of the transmission clock signal at each slave station far from the control unit. A lot of man-hours will be required.
  • the present applicant is considering applying the remote wiring check system disclosed in Japanese Patent Application Laid-Open No. 2011-114449 as a system for specifying an abnormality in the transmission clock signal on the control unit side. .
  • this remote wiring check system in a control / monitor signal transmission system having a single control unit and a plurality of controlled devices, between a master station and a slave station connected by a reduced data signal line.
  • a management data area including connection data indicating a wiring state is provided, which is different from a control / monitor data area composed of control data (output data) and monitoring data (input data) transmitted in both directions simultaneously.
  • connection data short-circuit information, disconnection information, and normal information are identified. Therefore, it is possible to easily check the wiring connection state of the slave station without reducing the input data (monitoring data) capacity of the signal.
  • Japanese Patent Laid-Open No. 2006-344235 discloses that at least one slave (slave station) among a plurality of slaves (slave stations) is operated by a network power source supplied via a network.
  • the voltage monitoring means for measuring the supply voltage of the network power supply, the measured value measured by the voltage monitoring means, and a criterion for determining whether or not the slave (slave station) itself operates but is likely to become inoperable.
  • a judgment means for comparing the reference value and outputting an alarm status when the measured value falls below the reference value, an alarm status storage means for storing the alarm status output by the judgment means, and an alarm status stored in the alarm status storage means
  • Communication control means that outputs to the network configurator via the network and the maximum measured value measured by the voltage monitoring means.
  • a slave having a storage means for storing at least one of the minimum value and the current value, and having a function of outputting the measurement value information and the reference value stored in the storage means to the network configurator via the network It is disclosed that the network configurator displays the alarm status, measurement value information, and reference value acquired from the slave. According to the present invention, it is possible to monitor the power supply of the slave (slave station) and display the result.
  • the present invention provides a control / monitoring signal transmission system in which a master station and a plurality of slave stations are connected by a common data signal line and data is transmitted by a transmission cycle method.
  • An object of the present invention is to provide a transmission clock signal abnormality detection method capable of detecting an abnormality of a clock signal and a slave station terminal used for the method.
  • the common data signal transmitted on the line is provided with a management data area that is different from the control / monitor data area composed of control data signal data and monitoring signal data, and the slave station detects an abnormality in the transmission clock signal. Then, a signal constituting data indicating abnormality of the transmission clock signal is superimposed on the management data area.
  • the slave station is configured such that the signal level in the low level period of one cycle of the transmission clock signal is smaller than the first threshold value, or the signal level in the high level period of one cycle of the transmission clock signal is smaller than the second threshold value.
  • the signal level of the transmission clock signal is determined to be abnormal.
  • the slave station determines that the period of the transmission clock signal is abnormal when one period of the transmission clock signal is smaller than the third threshold value or when one period of the transmission clock signal is larger than the fourth threshold value.
  • the management data area includes data indicating a normal state or an abnormality type determined as an abnormality in the signal level of the transmission clock signal, and a transmission clock.
  • the transmission clock signal on which a signal composed of data corresponding to a signal level corresponding to a low level period of one cycle of the signal or a high level period of one cycle of the transmission clock signal is superimposed is transmitted to the master station.
  • the management data area includes data indicating a normal state or an abnormality type determined as an abnormality in the period of the transmission clock signal, and the transmission clock signal.
  • the transmission clock signal on which a signal composed of data corresponding to one period is superimposed is transmitted to the master station.
  • the management data area includes a management control data area in which data from the master station is superimposed and a management monitoring data area in which data from the slave station is superimposed, and the management monitoring data area from the slave station When the data extracted from the management monitoring data area in the master station is “0”, it is determined that the common data signal line is disconnected.
  • the slave terminal is connected to the common data signal line to which the master station is connected, and the transmission clock signal transmitted through the common data signal line includes the control signal data and the monitoring signal data.
  • Management control data extracting means for extracting management control data superimposed on the master station in a management data area different from the control / monitoring data area configured, and a management monitoring signal as information from the own station in the management data area
  • Management monitoring data transmitting means for superimposing, and transmission clock signal abnormality detecting means for delivering data indicating abnormality of the transmission clock signal to the management monitoring data transmitting means when an abnormality of the transmission clock signal is detected.
  • the slave station terminal may not have an input part and an output part but may have a transmission impedance matching function.
  • the transmission clock signal abnormality detection means includes an output signal switching means, and the output signal switching means sends the management monitoring data transmission means a low level period of one cycle of the transmission clock signal or one cycle of the transmission clock signal.
  • the signal level in the high level period and the data indicating the abnormality of the transmission clock signal may be switched and output.
  • the output signal switching means may further switch and output data indicating abnormality of the transmission clock signal and data corresponding to one cycle of the transmission clock signal.
  • the slave station detects an abnormality of the transmission clock signal and superimposes a signal constituting data indicating the abnormality of the transmission clock signal in the management data area.
  • an abnormality of a transmission clock signal in a slave station can be detected on the master station side.
  • the signal level in the low level period of one cycle of the transmission clock signal is smaller than the first threshold or the signal level in the high level period of one cycle of the transmission clock signal is smaller than the second threshold, Since it is determined that the signal level of the transmission clock signal is abnormal, it is possible to accurately detect the signal level abnormality of the transmission clock when the transmission clock signal rises and falls.
  • the slave station determines that the cycle of the transmission clock signal is abnormal when one cycle of the transmission clock signal is smaller than the third threshold or when one cycle of the transmission clock signal is larger than the fourth threshold. It is possible to accurately detect an abnormal period.
  • the slave station When the slave station detects an abnormality in the signal level of the transmission clock signal, the slave station stores, in the management data area, data indicating the normal state or the abnormality type determined as an abnormality in the signal level of the transmission clock signal, and one of the transmission clock signals.
  • a transmission clock signal on which a signal composed of data corresponding to a signal level corresponding to a low level period of the cycle or a high level period of one cycle of the transmission clock signal is superimposed is transmitted to the master station.
  • the slave station when the slave station detects an abnormal period of the transmission clock signal, the slave station stores, in the management data area, data indicating a normal state or an abnormality type determined as an abnormal period of the transmission clock signal, and one of the transmission clock signals.
  • a transmission clock signal on which a signal composed of data corresponding to the period is superimposed is transmitted to the master station.
  • the master station can grasp the state of the transmission clock signal at the time of abnormality as well as the abnormality of the transmission clock signal in the slave station.
  • the slave station terminal is connected to the common data signal line to which the master station is connected, and the control clock signal data and the monitor signal data are transmitted to the transmission clock signal transmitted through the common data signal line.
  • Management control data extracting means for extracting management control data superimposed on the master station in a management data area different from the control / monitoring data area composed of the management monitoring signal as information from the own station in the management data area Since the present invention includes superimposing management monitoring data transmitting means and transmission clock signal abnormality detecting means for transferring data indicating abnormality of the transmission clock signal to the management monitoring data transmitting means when an abnormality of the transmission clock signal is detected. This is suitable for the transmission clock signal abnormality detection method.
  • the transmission clock signal abnormality detection means includes an output signal switching means, and the output signal switching means sends a low level period of one cycle of the transmission clock signal or a high level of one cycle of the transmission clock signal to the management monitoring data transmission means. Since the signal level of the period and the data indicating the abnormality of the transmission clock signal are switched and output, the signal of the low level period of one cycle of the transmission clock signal or the high level period of one period of the transmission clock signal is normally output It is possible to monitor the level and output data indicating an abnormality in the transmission clock signal only when there is an abnormality.
  • the output signal switching means further switches and outputs data indicating abnormality of the transmission clock signal and data corresponding to one period of the transmission clock signal, so that data monitoring corresponding to one period of the transmission clock signal is performed normally. However, it is possible to output data indicating an abnormality in the transmission clock signal only when an abnormality occurs.
  • DP-DN common data signal line
  • the control / monitor signal transmission system includes a single master station 2 connected to the control unit 1 and the common data signal lines DP and DN (hereinafter also referred to as transmission lines), A plurality of input / output slave stations 4, output slave stations 6, input slave stations 7, and terminators 10 connected to the common data signal lines DP and DN.
  • each slave station is shown one by one, but there is no limitation on the type and number of slave stations connected to the common data signal lines DP and DN.
  • the input / output slave station 4, the output slave station 6, and the input slave station 7 include an input unit 9 that takes in signal output processing for the output unit 8 that operates in accordance with an output instruction from the control unit 1 and input information to the control unit 1. One or both of the input signal processing from are performed.
  • the output unit 8 is, for example, an actuator, a (stepping) motor, a solenoid, a solenoid valve, a relay, a thyristor, or a lamp.
  • the input unit 9 is, for example, a reed switch, a micro switch, a push button switch, or a photoelectric switch. And various sensors.
  • the input / output slave station 4 is connected to a controlled device 5 including an output unit 8 and an input unit 9, the output slave station 6 is connected only to the output unit 8, and the input slave station 7 is connected only to the input unit 9.
  • the output slave station 6 may include an output unit 8 (output unit integrated slave station 80), and the input slave station 7 includes an input unit 9 (input unit integrated slave station). 90).
  • the terminator slave station 10 is a matching resistance circuit attached to the terminal end and the start end of the transmission clock signal line in order to stably transmit the transmission clock signal, and does not have an input part and an output part, and has a transmission impedance. This is a slave station with a matching function.
  • the control unit 1 is a programmable controller, a computer, or the like, for example, and is extracted from the output unit 11 that sends out the control data parallel 13 and the management control parallel data 14, and the monitoring signals from the input / output slave station 4 and the input slave station 7. And an input unit 12 for receiving the first management monitoring parallel data 16 and the second management monitoring parallel data 17 obtained based on the management monitoring data extracted from the monitoring monitoring data 15 and the management monitoring data extracted from the management monitoring signal. . These output unit 11 and input unit 12 are connected to the master station 2. In addition, management judging means 18 for calculating data transmitted from the output unit 11 based on data received from the input unit 12 is provided.
  • the master station 2 includes an output data unit 21, a management data unit 22, a timing generation unit 23, a master station output unit 24, a master station input unit 25, and an input data unit 26.
  • a control signal (hereinafter referred to as a transmission clock signal) that is connected to the common data signal lines DP and DN and is a series of pulse signals corresponding to the transmission signal of the present invention is connected to the common data signal lines DP and DN.
  • a transmission clock signal that is connected to the common data signal lines DP and DN and is a series of pulse signals corresponding to the transmission signal of the present invention is connected to the common data signal lines DP and DN.
  • the monitoring monitoring data, the monitoring parallel data 15 extracted from the management monitoring signal, the first management monitoring parallel data 16 and the second management monitoring parallel data 17 are sent to the input unit 12 of the control unit 1.
  • the output data unit 21 delivers the control parallel data 13 from the output unit 11 of the control unit 1 to the master station output unit 24 as serial data.
  • the management data unit 22 includes storage means 29 for storing an IDX address table in which information on each of the slave stations 4, 6, 7, and 10 is aggregated.
  • the IDX address table refers to at least the input / output slave station 4, the output slave station 6, the input slave station 7, or the terminator slave station 10 corresponding to the output unit 8 or the input unit 9 that is an object of the transmission clock signal abnormality detection.
  • the head addresses of the slave stations 4, 6, 7, and 10 are used, although data for specifying any one of them is included.
  • FIG. 10 shows an example of an IDX address table using the head address.
  • the station to which the address of # ad0 is assigned has a 1-bit monitoring signal data value, and the data in the IDX address table is a continuous value of # ad0 and # ad1.
  • the data value of the monitoring signal is 2 bits for the station to which the address of # ad1 is assigned, the pulse of # ad2 is also assigned to the same station as # ad1. Therefore, in the data of the IDX address table, # ad3 is stored as the next value of # ad1. In this embodiment, even if the data value of the monitoring signal is 1 bit, that is, # ad0 is also set as the head address similarly to # ad1.
  • the timing generation unit 23 includes an oscillation circuit (OSC) 31 and timing generation unit 32. Based on the OSC 31, the timing generation unit 32 generates a timing clock of this system and delivers it to the master station output unit 24.
  • OSC oscillation circuit
  • the master station output unit 24 includes control data generation means 33 and a line driver 34. Based on the data received from the output data unit 21 and the management data unit 22 and the timing clock received from the timing generation unit 23, the control data generation unit 33 applies a series of data to the common data signal lines DP and DN via the line driver 34. A transmission clock signal is transmitted as a pulse signal.
  • the transmission clock signal has a control / monitoring data area following the start signal ST and a management data area following this.
  • the control / monitoring data area includes control signal data OUTn (n is an integer) sent from the master station 2 and monitoring signal data INn (n is an integer) sent from the input / output slave station 4 or the input slave station 7.
  • the pulse of the transmission clock signal has a high potential level (+ 24V in this embodiment) in the second half of one cycle and a low potential level (+ 12V in this embodiment) in the first half.
  • the pulse width interval of the first half of the pulse that becomes the level becomes the output data period, and the first half of the pulse that becomes the low potential level also becomes the input data period.
  • the pulse width interval of the low potential level represents the control signal data OUTn, and the presence or absence of the current superimposed on the low potential level represents the monitoring signal data INn.
  • the pulse width interval of the low potential level is extended from (1/4) t0 to (3/4) t0.
  • the width is not limited and may be determined appropriately.
  • the input data period and the output data period can be appropriately determined. For example, the input data period is set to the first half of the pulse (low potential level) as in this embodiment, and the pulse width interval of the second half of the pulse (high potential level) is set.
  • the output data period may be the first half of the pulse (low potential level) and the second half of the pulse (high potential level) may be the input data period as in this embodiment. Further, the latter half of the pulse (high potential level) may serve as both the output data period and the input data period. The same applies to the case where the second half of one cycle of the transmission clock signal is at a low potential level.
  • the upper row shows the output data period
  • the lower row shows the input data period.
  • the management control data area of the transmission clock signal In the management data area of the transmission clock signal, the management control data area in which the management control signal transmitted from the master station 2 is superimposed and the management control signal transmitted from the slave stations 4, 6, 7, and 10 are superimposed. Consists of monitoring data area.
  • the management control data transmitted by the management control signal is composed of the first management control data ISTo and the second management control data IDXo, and is expressed as a pulse width interval of a low potential level, like the control signal data OUTn.
  • the management monitoring data transmitted by the management monitoring signal is composed of the first management monitoring data STi and the second management monitoring data IDXi. Like the monitoring signal data INn, the presence / absence of the current superimposed on the low potential level is determined. expressed.
  • the first management control data ISTo and the second management control data IDXo are instruction data for specifying the type of data requested to the slave stations 4, 6, 7, 10 or the slave stations 4, 6 , 7 and 10 are used as address data for specifying one of them. Furthermore, the first management monitoring data STi and the second management monitoring data IDXi are data indicating that the transmission clock signal is normal or abnormal, and are always “0” as the management monitoring data. It is assumed that other data is transmitted, details will be described later.
  • the start signal ST is a signal having the same potential level as the high potential level of the transmission clock signal and longer than one cycle of the transmission clock signal.
  • the master station input unit 25 includes monitoring signal detection means 35 and monitoring data extraction means 36.
  • the monitoring signal detection means 35 detects the monitoring signal and the management monitoring signal transmitted from the slave stations 4, 6, 7, and 10 via the common data signal lines DP and DN. As described above, the data values of the monitoring signal and the management monitoring signal are represented by the presence / absence of a current superimposed on the low potential level.
  • the input / output slave station 4 or the input A monitoring signal is sequentially received from each of the slave stations 7, and subsequently, a management monitoring signal is received from any one of the slave stations 4, 6, 7, and 10.
  • Data of the monitoring signal and the management monitoring signal is extracted by the monitoring data extracting unit 36 in synchronization with the signal of the timing generating unit 32.
  • the monitoring signal data is sent to the input data unit 26 as serial input data 37. Management monitoring data 39 extracted from the management monitoring signal is also sent to the input data unit 26.
  • the input data unit 26 converts the serial input data 37 received from the master station input unit 25 into parallel data, and sends the parallel data to the input unit 12 of the control unit 1 as monitoring parallel data 15. Further, the management monitoring data 39 received from the master station input unit 25 is separated into the first management monitoring parallel data 16 and the second management monitoring parallel data 17 and sent to the input unit 12.
  • the input slave station 7 includes a transmission receiving means 41, management control data extracting means 42, address extracting means 43, address setting means 44, management monitoring data transmitting means 46, monitoring data transmitting means 47, input means. 49 and a slave station input unit 70 having a transmission clock signal abnormality detecting means 50, and an A / D converter 61.
  • the input slave station 7 of this embodiment includes an MCU that is a microcomputer control unit as an internal circuit, and this MCU functions as the slave station input unit 70. Calculations and storages required for the processing are executed using the CPU, RAM, and ROM provided in this MCU (hereinafter referred to as MCU 70), and each processing of each of the above-mentioned means constituting the slave station input unit 70 is performed.
  • MCU 70 microcomputer control unit
  • the transmission reception means 41 receives the transmission clock signal transmitted to the common data signal lines DP and DN, and delivers it to the management control data extraction means 42, the address extraction means 43, and the management monitoring data transmission means 46.
  • the management control data extracting unit 42 extracts management control signal data from the management data area of the transmission clock signal, and delivers these to the transmission clock signal abnormality detection unit 50.
  • the transmission clock signal abnormality detecting means 50 includes transmission clock data (CK) obtained from the transmission clock signal on the common data signal lines DP and DN, and analog of the transmission clock signal converted by the A / D converter 61. Data (ADAT) is delivered.
  • the address extraction means 43 counts pulses starting from the start signal ST indicating the start of the transmission clock signal, and at the timing when the count value coincides with the own station address data set by the address setting means 44. A control signal is delivered to the transmission means 47.
  • the monitoring data transmission unit 47 sets the base current of the transistor TR to “on” or “off” based on the serial data delivered from the input unit 49 at the timing when the control signal is delivered from the address extraction unit 43.
  • the base current is “on”
  • the transistor TR is turned “on”, and a current signal as a monitoring signal is output to the common data signal lines DP and DN.
  • a current for example, 30 mA
  • the data delivered from the input unit 49 to the monitoring data transmission unit 47 is based on the input from the input unit 9. For example, when an on / off switch is connected as the input unit 9, the switch “on” is used. Alternatively, it is based on a current signal or a voltage signal indicating “off”.
  • the management monitoring data transmission means 46 counts pulses starting from the start signal ST of the transmission clock signal, and obtains the timing of the management data area. Then, based on the data delivered from the transmission clock signal abnormality detecting means 50, the base current of the transistor TR is output, and the current signal which is the management monitoring signal is output to the common data signal lines DP and DN.
  • the transmission clock signal abnormality detection means 50 includes an ISTo extraction means 51, an IDXo extraction means 52, a slave station address designation detection means 54, a comparison means 55, a first threshold storage means 551, and a second threshold storage means. 552, a cycle timer 56, a third threshold storage unit 561, a fourth threshold storage unit 562, a CK change detection unit 57, an encoding unit 58, a first gate unit 62, and a second gate unit 63.
  • the ISTo extraction means 51 extracts the first management control data ISTo from the management control signal data delivered from the management control data extraction means 42 and delivers it to the slave station address designation detection means 54. Further, the IDXo extracting unit 52 extracts the second management control data IDXo from the management control signal data delivered from the management control data extracting unit 42 and delivers it to the slave station address designation detecting unit 54. Further, the local station address data is delivered from the address setting means 44 to the slave station address designation detection means 54.
  • the slave station address designation detecting means 54 when the first management control data ISTo is data instructing the detection of the abnormality of the transmission clock signal and the second management control data IDXo matches the data value of the own station address, Read designation data is delivered to the encoding means 58. Further, the slave station address designation detecting means 54 is an input monitor when the first management control data ISTo is data indicating an input monitor command for instructing monitoring of an input signal or data indicating a disconnection detection command for a transmission line. The command data is delivered to the first gate means 62. When the first management control data ISTo is data indicating a cycle monitor command for instructing monitoring of the cycle T of the transmission clock signal, the cycle monitor command data is delivered to the second gate means 63.
  • the slave station address designation detection means 54 corresponds to the output signal switching means of the present invention.
  • the CK change detecting means 57 monitors the change of the transmission clock data (CK) obtained from the transmission clock signal (DP-DN) on the common data signal lines DP and DN, and as shown in FIG. The rising edge 11a and the falling edge 11b are detected.
  • the data cu indicating the rising edge of the transmission clock data and the data cd indicating the falling edge detected by the CK change detecting means 57 are delivered to the comparing means 55 and the period timer 56.
  • the first threshold value SC ⁇ b> 1 is a threshold value recorded in the first threshold value storage unit 551
  • the second threshold value SC ⁇ b> 2 is a threshold value recorded in the second threshold value storage unit 552.
  • the comparing means 55 receives the ADAT (hereinafter referred to as “ADAT at the rising edge”) from the A / D converter 61 at that time.
  • a lower limit value of ADAT at the time of rising that can determine that the transmission clock signal is normal is set.
  • the comparison unit 55 determines that the ADAT data level corresponding to the signal level of the low level period of one cycle of the transmission clock signal is the first when the ADAT data level at the time of rising is smaller than the first threshold value SC1. If it is smaller than the threshold value SC1, it is determined that the transmission clock signal is abnormal, and data indicating a low level error (L level error) is delivered to the encoding means 58. On the other hand, if the ADAT data corresponding to the ADAT signal level at the time of rising is equal to or higher than the first threshold value SC1, it is determined that the transmission clock signal is normal, and data indicating normality is delivered to the encoding means 58.
  • L level error low level error
  • the comparing means 55 receives the ADAT (hereinafter referred to as "falling time") from the A / D converter 61 at that time.
  • a lower limit value of ADAT at the time of falling that can determine that the transmission clock signal is normal is set.
  • the comparison unit 55 determines that the ADAT data level corresponding to the signal level of the high level period of one cycle of the transmission clock signal is the first when the ADAT data level at the time of falling is smaller than the second threshold value SC2. If it is smaller than the two threshold value SC2, it is determined that the transmission clock signal is abnormal, and data indicating a high level error (H level error) is delivered to the encoding means 58. On the other hand, if the ADAT data corresponding to the ADAT signal level at the time of falling is greater than or equal to the second threshold value SC2, it is determined that the transmission clock signal is normal, and the data indicating normality is delivered to the encoding means 58. .
  • the period timer 56 receives the transmission clock data obtained from the transmission clock signal from the CK change detection means 57 from the timing when the data cd indicating the falling edge of the transmission clock data obtained from the transmission clock signal is delivered from the CK change detection means 57.
  • the period T until the timing when the data cd indicating the fall of the data is delivered is measured.
  • the period measured here corresponds to one period of the transmission clock signal. In this example, the period from the falling edge of the transmission clock signal to the next falling edge is measured as one period of the transmission clock signal. However, the period from the rising edge of the transmission clock signal to the next rising edge is measured as the transmission clock signal. You may make it measure as one period of a signal.
  • the period timer 56 delivers data indicating the measured period T to the second gate means 63.
  • the cycle timer 56 includes a measured cycle T, a third threshold value Kwd that is set in advance and recorded in the third threshold value storage unit 561, and a fourth threshold value Kwu that is recorded in the fourth threshold value storage unit 562.
  • a third threshold value Kwd a lower limit value of the period T that can determine that the transmission clock signal is normal is set.
  • the fourth threshold value Kwu an upper limit value of the period T that can determine that the transmission clock signal is normal is set. If the period T is shorter than the third threshold value Kwd as a result of this comparison, the period timer 56 determines that the transmission clock signal is abnormal and passes data indicating a short pulse error to the encoding unit 58.
  • the period T is longer than the fourth threshold value Kwu, it is determined that the transmission clock signal is abnormal, and data indicating a long pulse error is delivered to the encoding unit 58.
  • the period T is not less than the third threshold value Kwd and not more than the fourth threshold value Kwu, it is determined that the transmission clock signal is normal, and data indicating normality is delivered to the encoding unit 58.
  • the encoding means 58 converts the data delivered from the comparison means 55 or the data delivered from the period timer 56 into predetermined code data when the read designation data is delivered from the slave station address designation detection means 54. And handed over to the management monitoring data transmission means 46. On the other hand, the encoding unit 58 receives the data indicating the low level error or the high level error from the comparison unit 55, or the data indicating the short pulse error or the long pulse error from the period timer 56. Passes the encoded data indicating abnormality to the management monitoring data transmission means 46.
  • the first gate means 62 delivers the data indicating ADAT from the A / D converter 61 to the management monitoring data transmitting means 46 when the input monitor command data is delivered from the slave station address designation detecting means 54.
  • the second gate means 63 delivers the data indicating the period T input from the period timer 56 to the management monitoring data transmission means 46 when the period monitor command data is delivered from the slave station address designation detection means 54.
  • the output slave station 6 includes a transmission receiving means 41, a management control data extracting means 42, an address extracting means 43, an address setting means 44, a control data extracting means 45, a management monitoring data transmitting means 46, and an output means. 48 and a slave station output unit 60 having a transmission clock signal abnormality detecting means 50, and an A / D converter 61.
  • the output slave station 6 of this embodiment also includes an MCU that is a microcomputer control unit as an internal circuit, as in the case of the input slave station 7, and this MCU functions as the slave station output unit 60. It has become.
  • MCU 60 Similar to the MCU 70, calculations and storages necessary for the processing of the output slave station 6 are executed using the CPU, RAM and ROM provided in this MCU (hereinafter referred to as MCU 60).
  • MCU 60 The relationship between the CPU, the RAM, and the ROM in each process of the above-described units constituting the unit 60 is not shown for convenience of explanation. Also, the same reference numerals are given to substantially the same parts as those of the input slave station 7, and the description thereof is omitted or simplified.
  • the address extracting means 43 of the output slave station 6 counts pulses starting from the start signal ST indicating the start of the transmission clock signal, and the count value coincides with the own address data set by the address setting means 44.
  • a control signal is delivered to the control data extraction means 45.
  • the control data extraction means 45 extracts a data value from the control signal delivered from the address extraction means 43 and delivers it to the output means 48 as serial data.
  • the output unit 48 converts the serial data delivered from the control data extraction unit 45 into parallel data, outputs the parallel data to the output unit 8, and causes the output unit 8 to perform a predetermined operation.
  • the input / output slave station 4 includes a transmission receiving means 41, management control data extracting means 42, address extracting means 43, address setting means 44, control data extracting means 45, management monitoring data transmitting means 46, monitoring A slave station input / output unit 40 having a data transmission unit 47, an output unit 48, an input unit 49, and a transmission clock signal abnormality detection unit 50, and an A / D converter 61 are provided.
  • the input / output slave station 4 of this embodiment is also provided with an MCU which is a microcomputer control unit as an internal circuit, similar to the output slave station 6 and the input slave station 7. It functions as the unit 40.
  • MCU 40 Similar to the MCU 60 and MCU 70, calculations and storages necessary for the processing of the input / output slave station 4 are executed using the CPU, RAM and ROM included in this MCU (hereinafter referred to as MCU 40).
  • MCU 40 The relationship between the CPU, the RAM, and the ROM in each process of each of the above units constituting the slave station input / output unit 40 is not shown for convenience of explanation.
  • the input / output slave station 4 is connected to both the output unit 8 and the input unit 9 that are in a corresponding relationship.
  • the control data extraction process of the output unit 8 and the monitoring signal transmission process based on the input information of the input unit 9 are both performed based on the data value of the local station address. Since the other constituent means are substantially the same as the constituent means of the output slave station 6 or the input slave station 7, the same reference numerals are given and the description thereof is omitted.
  • the terminator slave station 10 includes a transmission receiving unit 41, a management control data extracting unit 42, an address setting unit 44, a management monitoring data transmitting unit 46, and a transmission clock signal abnormality detecting unit 50. , An A / D converter 61, and a terminator means 64.
  • the terminator slave station 10 of this embodiment also includes an MCU, which is a microcomputer control unit, as an internal circuit, similar to the output slave station 6, the input slave station 7, and the input / output slave station 4. Functions as the terminator slave station 10.
  • MCU 100 Similar to the MCU 60, MCU 70, and MCU 40, calculations and storages necessary for the processing of the terminator slave station 10 are executed using the CPU, RAM, and ROM included in this MCU (hereinafter referred to as MCU 100).
  • MCU 100 The relationship between the CPU, the RAM, and the ROM in the processing of each of the means constituting the terminator 100 is not shown for convenience of explanation.
  • the terminator means 64 of the terminator slave station 10 receives the transmission clock signal transmitted to the common data signal lines DP and DN, and matches the transmission impedance of the transmission clock signal. Since the other constituent means are substantially the same as the constituent means of the output slave station 6, the input slave station 7, or the input / output slave station 4, the same reference numerals are given and description thereof is omitted.
  • the control unit 1 outputs management control parallel data 14 for instructing transmission line disconnection detection or transmission clock signal abnormality detection to the master station 2 at an appropriately set timing or by an arbitrary input instruction by the user. To do. Receiving this, the master station 2 designates the first management control data ISTo requesting the detection of the disconnection of the transmission line or the detection of the abnormality of the transmission clock signal and one of the data groups stored in the IDX address table. Two management control data IDXo is output.
  • the designation of data in the IDX address table by the second management control data IDXo is in accordance with the table number. That is, first, the index address data (# ad0) of the table number 1 is selected and output as the second management control data IDXo. Then, each transmission cycle is sequentially changed to head address data corresponding to each table number.
  • the order in which the data of the IDX address table is designated by the second management control data IDXo is not limited, and may be in accordance with the priority order by function, for example.
  • the data indicating ADAT at the time of rising described above is data corresponding to the signal level of the low level period of one cycle of the transmission clock signal, and when the abnormality of the transmission clock signal is an H level error Corresponding to the signal level of the high level period of one cycle of the transmission clock signal for the data indicating ADAT at the time of falling described above And that data, the data as the second management monitoring data IDXI, administrative monitoring signal, superimposed on the management monitoring data area.
  • the transmission clock signal abnormality type is data indicating a short pulse error or long pulse error indicating that the transmission clock signal is abnormal or normal.
  • the data indicating the period T of the transmission clock signal is the data corresponding to one period of the transmission clock signal, and the data is the second management monitoring data IDXi.
  • the signal is superimposed on the management monitoring data area.
  • the master station 2 extracts the first management monitoring parallel data 16 and the second management monitoring parallel data 17 from the management monitoring signal and delivers them to the control unit 1.
  • predetermined processing is executed according to the contents of the first management monitoring parallel data 16 and the second management monitoring parallel data 17.
  • the first management monitoring parallel data 16 is data indicating a signal level abnormality of the transmission clock signal, that is, data indicating an L level error or an H level error
  • the first management monitoring parallel data 16 is also transmitted to the transmission clock.
  • the control unit 1 displays an abnormality. If the first management monitoring parallel data 16 is information indicating normality, the control unit 1 does not display an abnormality.
  • control unit 1 extracts the second management monitoring parallel data 17 indicating the ADAT at the time of rising, the data indicating the ADAT at the falling time, or the data indicating the cycle T of the transmission clock signal, Perform monitor display. If the management monitoring data is “0”, it is determined that the common data signal line is disconnected, and a message to that effect is displayed.
  • control unit 1 can grasp the abnormality of the transmission clock signal for each of the slave stations 4, 6, 7, and 10.
  • the first threshold value SC1, the second threshold value SC2, the third threshold value Kwd, and the fourth threshold value Kwu can be appropriately changed from the control unit side.
  • data indicating that the first threshold value SC1, the second threshold value SC2, the third threshold value Kwd, and the fourth threshold value Kwu are changed, the first threshold value SC1, the second threshold value SC2, the third threshold value Kwd, and The data of the fourth threshold value Kwu may be superimposed on the management control data area, and these may be extracted on the slave stations 4, 6, 7, 10 side.

Abstract

 【課題】単一の制御部に接続された親局と、複数の被制御装置に対応する複数の子局を、伝送クロックで同期させ共通データ信号線を介しデータの伝送を行う伝送同期方式を採用した制御・監視信号伝送システムにおいて、伝送される伝送クロック信号の異常を検出することができる伝送クロック信号異常検出方式とその方式に使用する子局ターミナルを提供する。 【解決手段】親局から共通データ信号線に伝送される伝送クロック信号に、制御信号のデータと監視信号のデータとで構成される制御・監視データ領域と異なる管理データ領域を設ける。そして、伝送クロック信号の異常を検出し、管理データ領域に伝送クロック信号の異常を示すデータを構成する信号を重畳する。

Description

伝送クロック信号異常検出方式、およびその方式に使用する子局ターミナル
 本発明は、制御部に接続された親局と複数の出力部および入力部、或いは複数の被制御装置に対応する複数の子局との間の信号線を省配線化し共通データ信号線で接続し、伝送クロックで同期させるなどの伝送同期方式によりデータの伝送を行う制御・監視信号伝送システムにおいて、子局が受信する伝送クロック信号の異常を検出する伝送クロック信号異常検出方式およびその方式に使用する子局ターミナルに関するものである。なお、出力部とは制御部の指示に応じて動作するものであり、アクチュエータ、(ステッピング)モータ、ソレノイド、電磁弁、リレー、サイリスタ等がこれに相当する。一方、入力部とは出力部に関する情報を制御部に送信するものであり、リードスイッチ、マイクロスイッチ、押釦スイッチ、光電スイッチ、各種センサ等がこれに相当する。また、被制御装置とは出力部と入力部とで構成されるものをいう。
 制御部と、複数の出力部と入力部、或いは複数の被制御装置を備える制御システムにおいて、配線の数を減らす、所謂省配線化が広く実施されている。そして、その省配線化の一般的な手法として、複数の被制御装置から延出される信号線の各々を制御部に直接繋ぐパラレル接続に代えて、パラレル信号とシリアル信号の変換機能を備えた親局と複数の子局を、制御部と被制御装置にそれぞれ接続し、親局と複数の子局との間で共通データ信号線を介してシリアル信号によりデータ授受を行う方式が広く採用されている。
 省配線化が実現された場合、多数の子局が接続されている状態において、親局から伝送線に送信される伝送クロック信号が、子局側において電源電圧低下、伝送信号の減衰により、正常に受信されない。この現象は伝送線の長さが大きくなったり、伝送線の線径が細くなったり、子局の台数が多くなると、伝送クロック信号波形に異常が発生して、正確な伝送が行えなくなる。伝送クロック信号に異常があることを制御部側で特定することができない場合、制御部から遠く離れている子局において伝送クロック信号の状態を各々チェックする必要があり、伝送クロック信号の異常検出に多くの工数を要することになる。
 そこで、本出願人は、伝送クロック信号の異常を、制御部側で特定するためのシステムとして、特開2011-114449号公報に開示されているリモート配線チェックシステムを応用することを検討している。このリモート配線チェックシステムでは、単一の制御部と複数の被制御装置を備えた制御・監視信号伝送システムにおいて、省配線化されたデータ信号線で接続されている親局と子局との間で双方向同時に伝送される制御データ(出力データ)と監視データ(入力データ)とで構成される制御・監視データ領域と異なる、配線状態を示す接続データを含む管理データ領域を設けている。そして、接続データにおいて、短絡情報、断線情報および正常情報が識別されるものとなっている。そのため、信号の入力データ(監視データ)容量を減らすことなく、子局の配線接続状態を容易に確認することができる。
 また、特開2006-344235号公報には、複数のスレーブ(子局)のうちの少なくともひとつのスレーブ(子局)が、ネットワークを介して供給されるネットワーク電源により動作するものであって、そのネットワーク電源の供給電圧を計測する電圧監視手段と、その電圧監視手段で計測した計測値と、スレーブ(子局)自身の動作はするが動作不能になりそうであるか否かの判断基準となる基準値とを比較し、計測値が基準値を下回ると警報ステータスを出力する判断手段と、判断手段が出力する警報ステータスを記憶する警報ステータス記憶手段と、警報ステータス記憶手段に記憶された警報ステータスを、ネットワークを介してネットワークコンフィグレータへ出力する通信制御手段と、電圧監視手段で計測した計測値の最大値・最小値・現在値の少なくとも一つを記憶する記憶手段とを備え、記憶手段に記憶された計測値の情報と基準値とを、ネットワークを介してネットワークコンフィグレータへ出力する機能を有するスレーブ(子局)であり、ネットワークコンフィグレータは、そのスレーブから取得した警報ステータス、計測値の情報、基準値を表示することが開示されている。この発明によれば、スレーブ(子局)の電源監視を行ってその結果を表示することができる。
特開2011-114449号公報 特開2006-344235号公報
 上記のように、省配線化されたシステムにおいて、子局の配線接続状態を確認するための理論上の方式は提案されているが、この方式を用いて子局が受信する伝送クロック信号の異常を検出するためには、子局において、伝送クロック信号の異常をどのような方式で検出するかが大きな問題となる。ところが、省配線化されたシステムの子局に搭載できる機能は、大きさやコストの関係で制限があり、子局側での伝送クロック信号の異常検出方式は未だ具現化されていないのが実情である。また、子局の電源監視は行うことができるが、伝送データに重要な伝送クロック信号の異常を検出することはできない。
 そこで本発明は、親局と複数の子局が共通データ信号線で接続され、伝送周期方式によりデータの伝送が行われる制御・監視信号伝送システムにおいて、極めて簡易な構成で子局が受信する伝送クロック信号の異常を検出することを可能とする伝送クロック信号異常検出方式とその方式に使用する子局ターミナルを提供することを目的とする。
 本発明に係る伝送クロック信号異常検出方式では、親局と複数の子局が共通データ信号線で接続され、伝送周期方式によりデータの伝送が行われる制御・監視信号伝送システムにおいて、前記共通データ信号線に伝送される伝送クロック信号に、制御データ信号のデータと監視信号のデータとで構成される制御・監視データ領域と異なる管理データ領域を設け、前記子局は、伝送クロック信号の異常を検出し、前記管理データ領域に前記伝送クロック信号の異常を示すデータを構成する信号を重畳する。
 前記子局は、伝送クロック信号の一周期のローレベル期間の信号レベルが第一閾値よりも小さく、または、伝送クロック信号の一周期のハイレベル期間の信号レベルが第二閾値よりも小さいときに、前記伝送クロック信号の信号レベル異常と判断する。
 前記子局は、伝送クロック信号の一周期が第三閾値よりも小さく、または、伝送クロック信号の一周期が第四閾値よりも大きいときに、前記伝送クロック信号の周期異常と判断する。
 前記子局は、前記伝送クロック信号の信号レベル異常を検出した場合には、前記管理データ領域に、正常状態または伝送クロック信号の信号レベル異常と判定された異常の種別を示すデータと、伝送クロック信号の一周期のローレベル期間または伝送クロック信号の一周期のハイレベル期間の信号レベルに対応するデータで構成する信号を重畳した前記伝送クロック信号を前記親局へ送信する。
 前記子局は、前記伝送クロック信号の周期異常を検出した場合には、前記管理データ領域に、正常状態または伝送クロック信号の周期異常と判定された異常の種別を示すデータと、伝送クロック信号の一周期に対応するデータで構成する信号を重畳した前記伝送クロック信号を前記親局へ送信する。
 前記管理データ領域は、前記親局からのデータが重畳される管理制御データ領域と、前記子局からのデータが重畳される管理監視データ領域とで構成され、前記子局から前記管理監視データ領域に重畳されるデータを“0”以外のデータとし、前記親局において前記管理監視データ領域から抽出されたデータが“0”のとき、前記共通データ信号線の断線と判断する。
 本発明に係る子局ターミナルは、親局が接続された共通データ信号線に接続され、前記共通データ信号線を介して伝送される伝送クロック信号に、制御信号のデータと監視信号のデータとで構成される制御・監視データ領域と異なる管理データ領域に、前記親局で重畳された管理制御データを抽出する管理制御データ抽出手段と、前記管理データ領域に自局からの情報として管理監視信号を重畳する管理監視データ送信手段と、伝送クロック信号の異常を検出したときに、前記伝送クロック信号の異常を示すデータを前記管理監視データ送信手段に引き渡す伝送クロック信号異常検出手段とを備える。
 前記子局ターミナルは、入力部と出力部を持たず、伝送インピーダンスの整合機能を備えるようにしてもよい。
 前記伝送クロック信号異常検出手段は、出力信号切り替え手段を備え、前記出力信号切り替え手段は、前記管理監視データ送信手段へ、前記伝送クロック信号の一周期のローレベル期間または伝送クロック信号の一周期のハイレベル期間の信号レベルと、前記伝送クロック信号の異常を示すデータとを切り替えて出力してもよい。
 前記出力信号切り替え手段は、更に、前記伝送クロック信号の異常を示すデータと伝送クロック信号の一周期に対応するデータを切り替えて出力してもよい。
 本発明に係る伝送クロック信号異常検出方式では、子局は、伝送クロック信号の異常を検出し、管理データ領域に伝送クロック信号の異常を示すデータを構成する信号を重畳させるため、伝送同期方式によりデータの伝送が行なわれる制御・監視信号伝送システムにおいて、親局側で子局における伝送クロック信号の異常を検出することができる。
 子局は、伝送クロック信号の一周期のローレベル期間の信号レベルが第一閾値よりも小さく、または、伝送クロック信号の一周期のハイレベル期間の信号レベルが第二閾値よりも小さいときに、前記伝送クロック信号の信号レベル異常と判断するため、伝送クロック信号の立ち上がり時および立ち下がり時における伝送クロックの信号レベル異常を正確に検出することができる。
 子局は、伝送クロック信号の一周期が第三閾値よりも小さく、または、伝送クロック信号の一周期が第四閾値よりも大きいときに、伝送クロック信号の周期異常と判断するため、伝送クロック信号の周期異常を正確に検出することができる。
 子局は、伝送クロック信号の信号レベル異常を検出した場合には、管理データ領域に、正常状態または伝送クロック信号の信号レベル異常と判定された異常の種別を示すデータと、伝送クロック信号の一周期のローレベル期間または伝送クロック信号の一周期のハイレベル期間の信号レベルに対応するデータで構成する信号を重畳した伝送クロック信号を親局へ送信するようにした。また、子局は、伝送クロック信号の周期異常を検出した場合には、管理データ領域に、正常状態または伝送クロック信号の周期異常と判定された異常の種別を示すデータと、伝送クロック信号の一周期に対応するデータで構成する信号を重畳した伝送クロック信号を前記親局へ送信するようにした。これにより、親局側で子局における伝送クロック信号の異常とともに、異常時の伝送クロック信号の状態も把握することができる。
 また、伝送クロック信号の管理監視データ領域に子局から重畳されるデータを“0”以外のデータとすれば、親局において管理監視データ領域から抽出されたデータが“0”のときは子局から出力された情報が共通データ信号線を介して親局へ伝送されない状態であるといえる。従って、そのときは、共通データ信号線の断線と判断することができ、子局における伝送クロック信号の異常と併せて共通データ信号線の断線も検出することが可能となる。
 また、本発明に係る子局ターミナルは、親局が接続された共通データ信号線に接続され、共通データ信号線を介して伝送される伝送クロック信号に、制御データ信号のデータと監視信号のデータとで構成される制御・監視データ領域と異なる管理データ領域に、親局で重畳された管理制御データを抽出する管理制御データ抽出手段と、管理データ領域に自局からの情報として管理監視信号を重畳する管理監視データ送信手段と、伝送クロック信号の異常を検出したときに、伝送クロック信号の異常を示すデータを管理監視データ送信手段に引き渡す伝送クロック信号異常検出手段とを備えるため、本発明に係る伝送クロック信号異常検出方式に好適である。
 さらに、伝送クロック信号異常検出手段は、出力信号切り替え手段を備え、出力信号切り替え手段は、管理監視データ送信手段へ、伝送クロック信号の一周期のローレベル期間または伝送クロック信号の一周期のハイレベル期間の信号レベルと、伝送クロック信号の異常を示すデータとを切り替えて出力するようにしたので、正常時には伝送クロック信号の一周期のローレベル期間または伝送クロック信号の一周期のハイレベル期間の信号レベルをモニタリングし、異常時のみ、伝送クロック信号の異常を示すデータを出力することが可能となる。
 出力信号切り替え手段は、更に、伝送クロック信号の異常を示すデータと伝送クロック信号の一周期に対応するデータを切り替えて出力するようにしたので、正常時には伝送クロック信号の一周期に対応するデータモニタリングし、異常時のみ、伝送クロック信号の異常を示すデータを出力することが可能となる。
本発明に係る入力信号異常検出方式を採用した制御・監視信号伝送システムの実施例における、親局と子局の間の伝送方式の模式図である。 同制御・監視信号伝送システムの概略構成を示すシステム構成図である。 親局のシステム構成図である。 入力子局のシステム構成図である。 伝送クロック信号異常検出手段のシステム構成図である。 出力子局のシステム構成図である。 入出力子局のシステム構成図である。 ターミネータのシステム構成図である。 伝送クロック信号のタイムチャート図である。 親局に記憶されるIDXアドレスデータテーブルの模式図である。 共通データ信号線(DP-DN)の線間電圧のタイムチャート図である。
 図1~11を参照しながら、本発明に係る入力信号異常検出方式を採用した制御・監視信号伝送システムの実施例を説明する。図2に示すように、この制御・監視信号伝送システムは、制御部1および共通データ信号線DP、DN(以下、伝送ラインということがある)に接続された単一の親局2と、前記共通データ信号線DP、DNに接続された入出力子局4、出力子局6、入力子局7、およびターミネータ10の複数で構成される。なお、図2においては、図示の便宜上、各々の子局が一つずつ示されているが、共通データ信号線DP、DNに接続される子局の種類や数に制限は無い。
 入出力子局4、出力子局6、および入力子局7は、制御部1の出力指示に応じて動作する出力部8に対する信号出力処理と、制御部1への入力情報を取り入れる入力部9からの入力信号処理のいずれかまたは双方を行うものである。なお、出力部8とは、例えば、アクチュエータ、(ステッピング)モータ、ソレノイド、電磁弁、リレー、サイリスタ、ランプ等であり、入力部9とは、例えば、リードスイッチ、マイクロスイッチ、押釦スイッチ、光電スイッチ、各種センサ等である。入出力子局4は、出力部8と入力部9で構成される被制御装置5に接続され、出力子局6は出力部8のみに接続され、入力子局7は入力部9にのみ接続されている。なお、出力子局6は出力部8を内包するもの(出力部一体型子局80)であってもよく、また、入力子局7は入力部9を内包するもの(入力部一体型子局90)であってもよい。また、ターミネータ子局10は、伝送クロック信号を安定的に伝送するために、伝送クロック信号線の終端、始端などに取り付けられる整合抵抗回路であって、入力部と出力部を持たず、伝送インピーダンスの整合機能を備えた子局である。
 制御部1は、例えばプログラマブルコントローラ、コンピュータ等であり、制御データ並列13、および管理制御並列データ14を送出する出力ユニット11と、入出力子局4および入力子局7からの監視信号から抽出される監視データに基づき得られた監視並列データ15および管理監視信号から抽出される管理監視データに基づき得られた第一管理監視並列データ16と第二管理監視並列データ17を受け取る入力ユニット12を有する。そして、これら出力ユニット11と入力ユニット12が親局2に接続されている。また、入力ユニット12から受け取ったデータに基づいて、出力ユニット11から送出されるデータを算出する管理判断手段18を備えている。
 親局2は、図3に示すように、出力データ部21、管理データ部22、タイミング発生部23、親局出力部24、親局入力部25、および入力データ部26を備える。そして、共通データ信号線DP、DNに接続され、本発明の伝送信号に相当する一連のパルス状信号である制御信号(以下、伝送クロック信号というものとする)を共通データ信号線DP、DNに送出するとともに、入出力子局4、出力子局6、入力子局7、またはターミネータ子局10(以下、これら全てを指す場合は「子局4、6、7、10」という)から送出された監視信号、管理監視信号から抽出された監視並列データ15、第一管理監視並列データ16および第二管理監視並列データ17を制御部1の入力ユニット12へ送出する。
 出力データ部21は、制御部1の出力ユニット11から制御並列データ13をシリアルデータとして親局出力部24へ引き渡す。
 管理データ部22は、子局4、6、7、10の各々に関する情報を集約したIDXアドレステーブルを記憶する記憶手段29を備えている。IDXアドレステーブルとは、少なくとも、伝送クロック信号の異常検出の対象となる出力部8または入力部9に対応する入出力子局4、出力子局6、入力子局7、またはターミネータ子局10のいずれか一つを特定するためのデータを含むものであるが、この実施例では、子局4、6、7、10の先頭アドレスが用いられている。図10に、先頭アドレスを用いたIDXアドレステーブルの一例を示す。
 図10に示すように、#ad0のアドレスが付与された局は、監視信号のデータ値が1ビットであり、IDXアドレステーブルのデータは#ad0と#ad1が連続した値となる。一方、#ad1のアドレスが付与された局は、監視信号のデータ値が2ビットであるため、#ad2のパルスも#ad1と同じ局に割り当てられることになる。そのため、IDXアドレステーブルのデータは、#ad1の次の値として#ad3が記憶されることになる。なお、この実施例では、監視信号のデータ値が1ビットである場合であっても、すなわち#ad0も、#ad1と同様、先頭アドレスとされる。
 タイミング発生部23は、発振回路(OSC)31とタイミング発生手段32からなり、OSC31を基にタイミング発生手段32が、このシステムのタイミングクロックを生成し親局出力部24に引き渡す。
 親局出力部24は、制御データ発生手段33とラインドライバ34からなる。制御データ発生手段33が、出力データ部21及び管理データ部22から受けたデータと、タイミング発生部23から受けたタイミングクロックに基づき、ラインドライバ34を介して共通データ信号線DP、DNに一連のパルス状信号として伝送クロック信号を送出する。
 伝送クロック信号は、図1に示すように、スタート信号STに続く制御・監視データ領域と、更にこれに続く管理データ領域を有するものとなっている。制御・監視データ領域は、親局2から送出される制御信号のデータOUTn(nは整数)と入出力子局4または入力子局7から送出される監視信号のデータINn(nは整数)とで構成される。そして、伝送クロック信号のパルスは、図9に示すように、1周期の後半が高電位レベル(この実施例では+24V)と、前半が低電位レベル(この実施例では+12V)とされ、低電位レベルとなるパルス前半のパルス幅間隔が出力データ期間となり、同じく低電位レベルとなるパルス前半が入力データ期間ともなる。そして、低電位レベルのパルス幅間隔が制御信号のデータOUTnを、低電位レベルに重畳される電流の有無が監視信号のデータINnを表すものとなっている。この実施例では、伝送クロック信号の1周期をt0とした時、低電位レベルのパルス幅間隔は(1/4)t0から(3/4)t0まで拡張されるが、制御部1から入力される制御並列データ13の各データの値に応じたものであれば、その幅に制限はなく適宜に決めればよい。また、入力データ期間と出力データ期間も適宜に決めることができ、例えば、入力データ期間はこの実施例と同様にパルス前半(低電位レベル)とし、パルス後半(高電位レベル)のパルス幅間隔を出力データ期間としてもよく、逆に、出力データ期間をこの実施例と同様にパルス前半(低電位レベル)とし、パルス後半(高電位レベル)を入力データ期間としてもよい。更に、パルス後半(高電位レベル)を出力データ期間と入力データ期間を兼ねるものとしてもよい。伝送クロック信号の1周期の後半が低電位レベルとなる場合も同様である。なお、図1において、上段は出力データ期間を、下段は入力データ期間を示すものとなっている。
 伝送クロック信号の管理データ領域は、親局2から送出される管理制御信号が重畳される管理制御データ領域と、子局4、6、7、10から送出される管理制御信号が重畳される管理監視データ領域で構成される。管理制御信号で伝送される管理制御データは第一管理制御データISToと第二管理制御データIDXoで構成され、制御信号のデータOUTnと同様に、低電位レベルのパルス幅間隔として表される。また、管理監視信号で伝送される管理監視データは第一管理監視データSTiと第二管理監視データIDXiで構成され、監視信号のデータINnと同様に、低電位レベルに重畳される電流の有無として表される。なお、この実施例では、第一管理制御データISToおよび第二管理制御データIDXoは、子局4、6、7、10に対し要求するデータの種類を特定する指示データ、或いは子局4、6、7、10のいずれか一つを特定するためのアドレスデータとされる。更に、第一管理監視データSTiおよび第二管理監視データIDXiは、伝送クロック信号が正常であることを示すデータ、または異常であることを示すデータとされ、更に、管理監視データとして常に“0”以外のデータが送信されるものとされているが、詳細は後述する。
 スタート信号STは、伝送クロック信号の高電位レベルと同じ電位レベルであって、伝送クロック信号の1周期より長い信号となっている。
 親局入力部25は監視信号検出手段35と監視データ抽出手段36で構成される。監視信号検出手段35は、共通データ信号線DP、DNを経由して子局4、6、7、10から送出された監視信号と管理監視信号を検出する。監視信号および管理監視信号のデータ値は、既述のように低電位レベルに重畳される電流の有無で表されており、スタート信号STが送信された後、まず、入出力子局4または入力子局7の各々から順次監視信号を受け取り、続いて子局4、6、7、10の何れか一局からの管理監視信号を受け取るものとなっている。監視信号および管理監視信号のデータは、タイミング発生手段32の信号に同期して監視データ抽出手段36で抽出される。そして、監視信号のデータが直列の入力データ37として入力データ部26に送出される。管理監視信号から抽出された管理監視データ39もまた入力データ部26に送出される。
 入力データ部26は、親局入力部25から受け取った直列の入力データ37を並列(パラレル)データに変換し、監視並列データ15として制御部1の入力ユニット12へ送出する。また、親局入力部25から受け取った管理監視データ39を第一管理監視並列データ16と第二管理監視並列データ17に分離して入力ユニット12へ送出する。
 入力子局7は、図4に示すように、伝送受信手段41、管理制御データ抽出手段42、アドレス抽出手段43、アドレス設定手段44、管理監視データ送信手段46、監視データ送信手段47、入力手段49、および伝送クロック信号異常検出手段50を有する子局入力部70と、A/D変換器61とを備える。なお、この実施例の入力子局7は、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが子局入力部70として機能するものとなっている。処理において必要となる演算や記憶は、このMCU(以下、MCU70とする)の備えるCPU、RAMおよびROMを使用して実行されるが、子局入力部70を構成する上記各手段のそれぞれの処理におけるCPU、RAMおよびROMとの関係は、説明の便宜上、図示を省略するものとする。
 伝送受信手段41は、共通データ信号線DP、DNに伝送される伝送クロック信号を受けて、これを管理制御データ抽出手段42、アドレス抽出手段43、および管理監視データ送信手段46に引き渡す。管理制御データ抽出手段42は、伝送クロック信号の管理データ領域から、管理制御信号のデータを抽出し、これらを伝送クロック信号異常検出手段50に引き渡す。また、伝送クロック信号異常検出手段50には、共通データ信号線DP、DN上の伝送クロック信号から得られる伝送クロックデータ(CK)、およびA/D変換器61で変換された伝送クロック信号のアナログデータ(ADAT)が引き渡される。一方、アドレス抽出手段43は、伝送クロック信号の始まりを示すスタート信号STを起点としてパルスをカウントし、そのカウント値がアドレス設定手段44で設定された自局アドレスデータと一致するタイミングで、監視データ送信手段47に制御信号を引き渡す。
 監視データ送信手段47は、アドレス抽出手段43から制御信号が引き渡されたタイミングで、入力手段49から引き渡されるシリアルデータに基づいて、トランジスタTRのベース電流を“on”または“off”とする。ベース電流が“on”の場合、トランジスタTRは”on”となり、共通データ信号線DP、DNに監視信号である電流信号が出力される。この実施例では、図9に示すように、監視信号のデータ値が“1”の場合には所定値Ith以上の電流(例えば、30mA)を流すことで表現されている。従って、例えば、図9に示す信号のアドレス0番地(#ad0)、1番地(#ad1)、2番地(#ad2)及び3番地(#ad3)のそれぞれにおける監視信号のデータはそれぞれ“0”、“0”、“1”、“0”を表すことになる。なお、入力手段49から監視データ送信手段47に引き渡されるデータは、入力部9からの入力に基づくものであり、例えば、入力部9としてオンオフスイッチが接続されている場合は、スイッチの“on”または“off”を示す電流信号や電圧信号に基づくものとなる。
 管理監視データ送信手段46は、伝送クロック信号のスタート信号STを起点としてパルスをカウントし、管理データ領域のタイミングを得る。そして、伝送クロック信号異常検出手段50から引き渡されるデータに基づき、前記トランジスタTRのベース電流を出力し、共通データ信号線DP、DNに管理監視信号である電流信号を出力する。
 伝送クロック信号異常検出手段50は、図5に示すように、ISTo抽出手段51、IDXo抽出手段52、子局アドレス指定検出手段54、比較手段55、第一閾値記憶手段551、第二閾値記憶手段552、周期タイマ56、第三閾値記憶手段561、第四閾値記憶手段562、CK変化検出手段57、符号化手段58、第一ゲート手段62、および第二ゲート手段63で構成されている。
 ISTo抽出手段51は、管理制御データ抽出手段42から引き渡された管理制御信号のデータから第一管理制御データISToを抽出し、これを子局アドレス指定検出手段54に引き渡す。また、IDXo抽出手段52は、管理制御データ抽出手段42から引き渡された管理制御信号のデータから第二管理制御データIDXoを抽出し、これを子局アドレス指定検出手段54に引き渡す。更に、子局アドレス指定検出手段54には、アドレス設定手段44から自局アドレスデータが引き渡されている。
 子局アドレス指定検出手段54は、第一管理制御データISToが、伝送クロック信号の異常検出を指示するデータであり、第二管理制御データIDXoが自局アドレスのデータ値と一致する場合には、読み出し指定データを符号化手段58に引き渡す。また、子局アドレス指定検出手段54は、第一管理制御データISToが入力信号のモニタを指示する入力モニタ指令を示すデータ、または伝送ラインの断線検出指令を示すデータである場合には、入力モニタ指令データを第一ゲート手段62に引き渡す。また、第一管理制御データISToが伝送クロック信号の周期Tのモニタを指示する周期モニタ指令を示すデータである場合には、周期モニタ指令データを第二ゲート手段63に引き渡す。なお、子局アドレス指定検出手段54は、本発明の出力信号切り替え手段に相当する。
 CK変化検出手段57は、共通データ信号線DP、DN上の伝送クロック信号(DP-DN)から得られる伝送クロックデータ(CK)の変化を監視し、図11に示すように、伝送クロック信号の立ち上がり11aと立ち下がり11bとを検出する。CK変化検出手段57で検出された伝送クロックデータの立ち上がりを示すデータcuと立ち下がりを示すデータcdは、比較手段55および周期タイマ56へ引き渡される。なお、図11において、第一閾値SC1は、第一閾値記憶手段551に記録されている閾値であり、第二閾値SC2は、第二閾値記憶手段552に記録されている閾値である。
 比較手段55は、CK変化検出手段57から伝送クロックデータの立ち上がりを示すデータcuが引き渡されたときに、その時点でのA/D変換器61からのADAT(以下、「立ち上がり時のADAT」と呼ぶ)のデータレベルと、あらかじめ設定されて第一閾値記憶手段551に記録されている第一閾値SC1のデータとを比較する。第一閾値SC1としては、伝送クロック信号を正常と判断できる立ち上がり時のADATの下限値が設定されている。比較手段55は、この比較の結果、立ち上がり時のADATのデータレベルが第一閾値SC1よりも小さい場合、すなわち伝送クロック信号の一周期のローレベル期間の信号レベルに対応するADATのデータが第一閾値SC1よりも小さい場合には、伝送クロック信号は異常であると判定し、ローレベルエラー(Lレベルエラー)を示すデータを符号化手段58へ引き渡す。一方、立ち上がり時のADATの信号レベルに対応するADATのデータが第一閾値SC1以上である場合には、伝送クロック信号は正常であると判定し、正常を示すデータを符号化手段58へ引き渡す。
 また、比較手段55は、CK変化検出手段57から伝送クロックデータの立ち下がりを示すデータcdが引き渡されたときに、その時点でのA/D変換器61からのADAT(以下、「立ち下がり時のADAT」と呼ぶ)のデータレベルと、あらかじめ設定されて第二閾値記憶手段552に記録されている第二閾値SC2のデータとを比較する。第二閾値SC2としては、伝送クロック信号を正常と判断できる立ち下がり時のADATの下限値が設定されている。比較手段55は、この比較の結果、立ち下がり時のADATのデータレベルが第二閾値SC2よりも小さい場合、すなわち伝送クロック信号の一周期のハイレベル期間の信号レベルに対応するADATのデータが第二閾値SC2よりも小さい場合には、伝送クロック信号は異常であると判定し、ハイレベルエラー(Hレベルエラー)を示すデータを符号化手段58へ引き渡す。一方、立ち下がり時のADATの信号レベルに対応するADATのデータが第二閾値SC2以上である場合には、伝送クロック信号は正常であると判定し、正常を示すデータを符号化手段58へ引き渡す。
 周期タイマ56は、CK変化検出手段57から伝送クロック信号から得られる伝送クロックデータの立ち下がりを示すデータcdが引き渡されたタイミングから、次にCK変化検出手段57から伝送クロック信号から得られる伝送クロックデータの立ち下がりを示すデータcdが引き渡されるタイミングまでの周期Tを計測する。ここで計測される周期が伝送クロック信号の一周期に相当する。なお、ここでは、伝送クロック信号の立ち下がりから次の立ち下りまでの周期を伝送クロック信号の一周期として計測する例について説明するが、伝送クロック信号の立ち上がりから次の立ち上がりまでの周期を伝送クロック信号の一周期として計測するようにしてもよい。周期タイマ56は、計測した周期Tを示すデータを第二ゲート手段63へ引き渡す。
 また、周期タイマ56は、計測した周期Tと、あらかじめ設定されて第三閾値記憶手段561に記録されている第三閾値Kwd、および第四閾値記憶手段562に記録されている第四閾値Kwuとを比較する。第三閾値Kwdとしては、伝送クロック信号を正常と判断できる周期Tの下限値が設定されている。また、第四閾値Kwuとしては、伝送クロック信号を正常と判断できる周期Tの上限値が設定されている。周期タイマ56は、この比較の結果、周期Tが第三閾値Kwdよりも短い場合は、伝送クロック信号は異常であると判定し、短パルスエラーを示すデータを符号化手段58へ引き渡す。また、周期Tが第四閾値Kwuよりも長い場合は、伝送クロック信号は異常であると判定し、長パルスエラーを示すデータを符号化手段58へ引き渡す。一方、周期Tが第三閾値Kwd以上かつ第四閾値Kwu以下である場合には、伝送クロック信号は正常であると判定し、正常を示すデータを符号化手段58へ引き渡す。
 符号化手段58は、子局アドレス指定検出手段54から読み出し指定データが引き渡された場合には、比較手段55から引き渡されたデータ、または周期タイマ56から引き渡されたデータを所定の符号データに変換し、管理監視データ送信手段46に引き渡す。一方で、符号化手段58は、比較手段55からローレベルエラーまたはハイレベルエラーを示すデータが引き渡された場合、あるいは周期タイマ56から短パルスエラーまたは長パルスエラーを示すデータが引き渡された場合には、異常を示す符号化データを管理監視データ送信手段46に引き渡す。
 第一ゲート手段62は、子局アドレス指定検出手段54から入力モニタ指令データが引き渡された場合には、A/D変換器61からのADATを示すデータを管理監視データ送信手段46に引き渡す。
 第二ゲート手段63は、子局アドレス指定検出手段54から周期モニタ指令データが引き渡された場合には、周期タイマ56から入力される周期Tを示すデータを管理監視データ送信手段46に引き渡す。
 出力子局6は、図6に示すように、伝送受信手段41、管理制御データ抽出手段42、アドレス抽出手段43、アドレス設定手段44、制御データ抽出手段45、管理監視データ送信手段46、出力手段48、および伝送クロック信号異常検出手段50を有する子局出力部60と、A/D変換器61とを備える。なお、この実施例の出力子局6も、前記入力子局7と同様、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが子局出力部60として機能するものとなっている。そして、MCU70と同様に、出力子局6の処理において必要となる演算や記憶は、このMCU(以下、MCU60とする)の備えるCPU、RAMおよびROMを使用して実行されるが、子局出力部60を構成する上記各手段のそれぞれの処理におけるCPU、RAMおよびROMとの関係は、説明の便宜上、図示を省略するものとする。また、入力子局7と実質的に同じ部分には同符号を付し、その説明を省略、または簡略化するものとする。
 出力子局6のアドレス抽出手段43は、伝送クロック信号の始まりを示すスタート信号STを起点としてパルスをカウントし、そのカウント値がアドレス設定手段44で設定された自局アドレスデータと一致するタイミングで制御データ抽出手段45に、制御信号を引き渡す。
 制御データ抽出手段45は、アドレス抽出手段43から引き渡された制御信号からデータ値を抽出し、これをシリアルデータとして出力手段48に引き渡す。出力手段48は、制御データ抽出手段45から引き渡されたシリアルデータをパラレルデータに変換し、出力部8に出力し、出力部8に所定の動作をさせる。
 入出力子局4は、図7に示すように、伝送受信手段41、管理制御データ抽出手段42、アドレス抽出手段43、アドレス設定手段44、制御データ抽出手段45、管理監視データ送信手段46、監視データ送信手段47、出力手段48、入力手段49、および伝送クロック信号異常検出手段50を有する子局入出力部40と、A/D変換器61とを備える。なお、この実施例の入出力子局4も、前記出力子局6および入力子局7と同様、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUが子局入出力部40として機能するものとなっている。そして、MCU60およびMCU70と同様に、入出力子局4の処理において必要となる演算や記憶は、このMCU(以下、MCU40とする)の備えるCPU、RAMおよびROMを使用して実行されるが、子局入出力部40を構成する上記各手段のそれぞれの処理におけるCPU、RAMおよびROMとの関係は、説明の便宜上、図示を省略するものとする。
 この入出力子局4には、対応関係にある出力部8と入力部9の双方が接続されている。そして、出力部8の制御データの抽出処理と、入力部9の入力情報に基づいた監視信号の送出処理は、共に自局アドレスのデータ値に基づいて行われるものとなっている。その他の構成手段は出力子局6または入力子局7の構成手段と実質的に同じものであるため、同符号を付し、その説明を省略するものとする。
 ターミネータ子局10は、図8に示すように、伝送受信手段41、管理制御データ抽出手段42、アドレス設定手段44、管理監視データ送信手段46、および伝送クロック信号異常検出手段50を有するターミネータ100と、A/D変換器61、およびターミネータ手段64とを備える。なお、この実施例のターミネータ子局10も、出力子局6、入力子局7、および入出力子局4と同様、内部回路としてマイクロコンピュータ・コントロール・ユニットであるMCUを備えており、このMCUがターミネータ子局10として機能するものとなっている。そして、MCU60、MCU70、MCU40と同様に、ターミネータ子局10の処理において必要となる演算や記憶は、このMCU(以下、MCU100とする)の備えるCPU、RAMおよびROMを使用して実行されるが、ターミネータ100を構成する上記各手段のそれぞれの処理におけるCPU、RAMおよびROMとの関係は、説明の便宜上、図示を省略するものとする。
 ターミネータ子局10のターミネータ手段64は、共通データ信号線DP、DNに伝送される伝送クロック信号を受けて、伝送クロック信号の伝送インピーダンスの整合をとる。その他の構成手段は出力子局6、入力子局7、または入出力子局4の構成手段と実質的に同じものであるため、同符号を付し、その説明を省略するものとする。
 次に、上記構成の制御・監視信号伝送システムにおける伝送クロック信号異常検出方式の手順について説明する。管理データ部22には、すでに図10のIDXアドレスデータテーブルが作成されているものとする。スタート信号STとこれに続く制御・監視データ領域と管理データ領域で構成される伝送サイクル毎に、第二管理制御データIDXoによって、順次子局4、6、7、10の全てに対し割り付けられた先頭アドレスを指定していく。
 制御部1は、適宜設定されたタイミングで、或いは利用者による任意の入力指示により、伝送ラインの断線検出または伝送クロック信号の異常検出を指示するための管理制御並列データ14を親局2に出力する。これを受けた親局2は伝送ラインの断線検出または伝送クロック信号の異常検出を要求する第一管理制御データISToと、IDXアドレステーブルに記憶されているデータ群の中の一つを指定する第二管理制御データIDXoを出力する。
 第二管理制御データIDXoによるIDXアドレステーブルのデータの指定は、テーブル番号に従ったものとなっている。すなわち、まず、テーブル番号1のインデックスアドレスデータ(#ad0)が選択され第二管理制御データIDXoとして出力される。そして、伝送サイクル毎に、各テーブル番号に対応する先頭アドレスデータに順次変更される。ただし、第二管理制御データIDXoでIDXアドレステーブルのデータを指定する順番に制限は無く、例えば、機能による優先順位に従うものとしてもよい。
 子局4、6、7、10の各々は、第二管理制御データIDXoが自局アドレスと一致するとき、比較手段55において、伝送クロック信号の異常または正常が検出された場合には、その伝送クロック信号の異常種別が信号レベル異常であることを示すLレベルエラー、Hレベルエラーを示すデータまたは正常であることを示すデータを第一管理監視データSTiとして、また伝送クロック信号の異常がLレベルエラーである場合には、上述した立ち上がり時のADATを示すデータを伝送クロック信号の一周期のローレベル期間の信号レベルに対応するデータとし、伝送クロック信号の異常がHレベルエラーである場合には、上述した立ち下がり時のADATを示すデータを伝送クロック信号の一周期のハイレベル期間の信号レベルに対応するデータとし、該データを第二管理監視データIDXiとして、管理監視信号を、管理監視データ領域に重畳する。また、周期タイマ56において、伝送クロック信号の異常または正常が検出されたときには、その伝送クロック信号の異常種別が周期異常であることを示す短パルスエラー、長パルスエラーを示すデータまたは正常であることを示すデータを第一管理監視データSTiとし、また上述した伝送クロック信号の周期Tを示すデータを伝送クロック信号の一周期に対応するデータとし、該データを第二管理監視データIDXiとして、管理監視信号を、管理監視データ領域に重畳する。これを受けて、親局2では、管理監視信号から第一管理監視並列データ16と第二管理監視並列データ17を抽出し制御部1に引き渡す。
 制御部1では、第一管理監視並列データ16および第二管理監視並列データ17の内容によって、所定の処理が実行される。具体的には、第一管理監視並列データ16が伝送クロック信号の信号レベル異常を示すデータ、すなわちLレベルエラーやHレベルエラーを示すデータであるとき、また第一管理監視並列データ16が伝送クロック信号の周期異常であることを示すデータ、すなわち短パルスエラーや長パルスエラーを示すデータであるときには、制御部1は異常表示を行う。また第一管理監視並列データ16が正常を示す情報であれば、制御部1は異常表示を行わない。さらに制御部1は、第二管理監視並列データ17である立ち上がり時のADATを示すデータ、立ち下がり時のADATを示すデータ、または伝送クロック信号の周期Tを示すデータを抽出して、異常内容のモニタ表示を行う。また、管理監視データが“0”である場合は、共通データ信号線の断線と判断し、その旨の表示を行う。
 以上の手順を経て制御部1では、子局4、6、7、10の各々についての伝送クロック信号の異常を把握することができる。
 なお、第一閾値SC1、第二閾値SC2、第三閾値Kwd、および第四閾値Kwuは、制御部側から適宜変更することが可能となっている。その場合、第一閾値SC1、第二閾値SC2、第三閾値Kwd、および第四閾値Kwuを変更することを示すデータと、変更する第一閾値SC1、第二閾値SC2、第三閾値Kwd、および第四閾値Kwuのデータを、管理制御データ領域に重畳し、子局4、6、7、10側で、これらを抽出させればよい。
1  制御部
2  親局
4  入出力子局
5  被制御装置
6  出力子局
7  入力子局
8  出力部
9  入力部
10 ターミネータ子局
11 出力ユニット
12 入力ユニット
13 制御並列データ
14 管理制御並列データ
15 監視並列データ
16 第一管理監視並列データ
17 第二管理監視並列データ
18 管理判断手段
21 出力データ部
22 管理データ部
23 タイミング発生部
24 親局出力部
25 親局入力部
26 入力データ部
29 記憶手段
31 OSC(発振回路)
32 タイミング発生手段
33 制御データ発生手段
34 ラインドライバ
35 監視信号検出手段
36 監視データ抽出手段
37 入力データ
39 管理監視データ
40 子局入出力部
41 伝送受信手段
42 管理制御データ抽出手段
43 アドレス抽出手段
44 アドレス設定手段
45 制御データ抽出手段
46 管理監視データ送信手段
47 監視データ送信手段
48 出力手段
49 入力手段
50 伝送クロック信号異常検出手段
51 ISTo抽出手段
52 IDXo抽出手段
54 子局アドレス指定検出手段
55 比較手段
551 第一閾値記憶手段
552 第二閾値記憶手段
56 周期タイマ
561 第三閾値記憶手段
562 第四閾値記憶手段
57 CK変化検出手段
58 符号化手段
60 子局出力部
61 A/D変換器
62 第一ゲート手段
63 第二ゲート手段
64 ターミネータ手段
70 子局入力部
80 出力部一体型子局
90 入力部一体型子局
100 ターミネータ一
TR トランジスタ

Claims (10)

  1.  親局と複数の子局が共通データ信号線で接続され、伝送周期方式によりデータの伝送が行われる制御・監視信号伝送システムにおいて、
     前記共通データ信号線に伝送される伝送クロック信号に、制御信号のデータと監視信号のデータとで構成される制御・監視データ領域と異なる管理データ領域を設け、
     前記子局は、伝送クロック信号の異常を検出し、前記管理データ領域に前記伝送クロック信号の異常を示すデータを構成する信号を重畳することを特徴とする伝送クロック信号異常検出方式。
  2.  伝送クロック信号の一周期のローレベル期間の信号レベルが第一閾値よりも小さく、または、伝送クロック信号の一周期のハイレベル期間の信号レベルが第二閾値よりも小さいときに、前記伝送クロック信号の信号レベル異常と判断し、前記管理データ領域に前記伝送クロック信号の信号レベル異常を示すデータを構成する信号を重畳することを特徴とする請求項1に記載の伝送クロック信号異常検出方式。
  3.  伝送クロック信号の一周期が第三閾値よりも小さく、または、伝送クロック信号の一周期が第四閾値よりも大きいときに、前記伝送クロック信号の周期異常と判断し、前記管理データ領域に前記伝送クロック信号の周期異常を示すデータを構成する信号を重畳することを特徴とする請求項1または2に記載の伝送クロック信号異常検出方式。
  4.  前記子局は、前記伝送クロック信号の信号レベル異常を検出した場合には、前記管理データ領域に、正常状態または伝送クロック信号の信号レベル異常と判定された異常の種別を示すデータと、伝送クロック信号の一周期のローレベル期間または伝送クロック信号の一周期のハイレベル期間の信号レベルに対応するデータで構成する信号を重畳した前記伝送クロック信号を前記親局へ送信することを特徴とする請求項2に記載の伝送クロック信号異常検出方式。
  5.  前記子局は、前記伝送クロック信号の周期異常を検出した場合には、前記管理データ領域に、正常状態または伝送クロック信号の周期異常と判定された異常の種別を示すデータと、伝送クロック信号の一周期に対応するデータで構成する信号を重畳した前記伝送クロック信号を前記親局へ送信することを特徴とする請求項3に記載の伝送クロック信号異常検出方式。
  6.  前記管理データ領域は、前記親局からのデータが重畳される管理制御データ領域と、前記子局からのデータが重畳される管理監視データ領域とで構成され、前記子局から前記管理監視データ領域に重畳されるデータを“0”以外のデータとし、前記親局において前記管理監視データ領域から抽出されたデータが“0”のとき、前記共通データ信号線の断線と判断する請求項1、2、3、4または5に記載の伝送クロック信号異常検出方式。
  7.  親局が接続された共通データ信号線に接続され、
     前記共通データ信号線を介して伝送される伝送クロック信号に、制御信号のデータと監視信号のデータとで構成される制御・監視データ領域と異なる管理データ領域から前記親局で重畳された管理制御データを抽出する管理制御データ抽出手段と、
     前記管理データ領域に自局からの情報として管理監視信号を重畳する管理監視データ送信手段と、
     伝送クロック信号の異常を検出したときに、前記伝送クロック信号の異常を示すデータを前記管理監視データ送信手段に引き渡す伝送クロック信号異常検出手段とを備えることを特徴とする子局ターミナル。
  8.  入力部と出力部を持たず、伝送インピーダンスの整合機能を備えたことを特徴とする請求項7に記載の子局ターミナル。
  9.  前記伝送クロック信号異常検出手段は、出力信号切り替え手段を備え、
     前記出力信号切り替え手段は、前記管理監視データ送信手段へ、前記伝送クロック信号の一周期のローレベル期間または伝送クロック信号の一周期のハイレベル期間の信号レベルと、前記伝送クロック信号の異常を示すデータとを切り替えて出力することを特徴とする請求項7または8に記載の子局ターミナル。
  10.  前記出力信号切り替え手段は、更に、前記伝送クロック信号の異常を示すデータと伝送クロック信号の一周期に対応するデータを切り替えて出力することを特徴とする請求項9に記載の子局ターミナル。
PCT/JP2012/051155 2012-01-20 2012-01-20 伝送クロック信号異常検出方式、およびその方式に使用する子局ターミナル WO2013108392A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/051155 WO2013108392A1 (ja) 2012-01-20 2012-01-20 伝送クロック信号異常検出方式、およびその方式に使用する子局ターミナル
JP2012531153A JP5120994B1 (ja) 2012-01-20 2012-01-20 伝送クロック信号異常検出方式、およびその方式に使用する子局ターミナル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/051155 WO2013108392A1 (ja) 2012-01-20 2012-01-20 伝送クロック信号異常検出方式、およびその方式に使用する子局ターミナル

Publications (1)

Publication Number Publication Date
WO2013108392A1 true WO2013108392A1 (ja) 2013-07-25

Family

ID=47692853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051155 WO2013108392A1 (ja) 2012-01-20 2012-01-20 伝送クロック信号異常検出方式、およびその方式に使用する子局ターミナル

Country Status (2)

Country Link
JP (1) JP5120994B1 (ja)
WO (1) WO2013108392A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098884A (zh) * 2018-01-31 2019-08-06 慧与发展有限责任合伙企业 确定异常时钟

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599533B1 (ja) * 2013-04-12 2014-10-01 株式会社 エニイワイヤ 制御・監視信号伝送システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152864A (ja) * 2000-11-09 2002-05-24 Haamorinku:Kk 制御・監視信号伝送システム
JP2006344235A (ja) * 2001-05-21 2006-12-21 Omron Corp スレーブ
JP2011114449A (ja) * 2009-11-25 2011-06-09 Anywire:Kk リモート配線チェックシステムおよびそのシステムに使用する接続コネクタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152864A (ja) * 2000-11-09 2002-05-24 Haamorinku:Kk 制御・監視信号伝送システム
JP2006344235A (ja) * 2001-05-21 2006-12-21 Omron Corp スレーブ
JP2011114449A (ja) * 2009-11-25 2011-06-09 Anywire:Kk リモート配線チェックシステムおよびそのシステムに使用する接続コネクタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098884A (zh) * 2018-01-31 2019-08-06 慧与发展有限责任合伙企业 确定异常时钟
US11582706B2 (en) 2018-01-31 2023-02-14 Hewlett Packard Enterprise Development Lp Determine abnormal clock

Also Published As

Publication number Publication date
JPWO2013108392A1 (ja) 2015-05-11
JP5120994B1 (ja) 2013-01-16

Similar Documents

Publication Publication Date Title
KR101111137B1 (ko) 리모트 배선 체크 시스템 및 그 시스템에 사용하는 접속 커넥터
JP5079180B1 (ja) 故障検出方式およびその方式に使用する子局ターミナル
JP5120994B1 (ja) 伝送クロック信号異常検出方式、およびその方式に使用する子局ターミナル
JP4933686B1 (ja) 伝送ライン断線検出方式およびその方式に使用する子局ターミナル
JPWO2013161055A1 (ja) 伝送ラインアドレス重複検出方式およびその方式に使用する子局ターミナル
JP5372256B1 (ja) 入力信号異常検出方式、およびその方式に使用する子局ターミナル
JP5132844B1 (ja) 故障検出方式およびその方式に使用する子局ターミナル
JP5143315B1 (ja) インターフェース故障検出方式およびその方式に使用する子局ターミナル
JP3184345U (ja) 伝送エラー検出方式に使用する子局ターミナル
JP5085811B1 (ja) 断線検出方式およびその方式に使用する子局ターミナル
JP5090581B1 (ja) 寿命検出方式およびその方式に使用する子局ターミナル
JPWO2013150602A1 (ja) 伝送エラー検出方式、およびその方式に使用する子局ターミナル
JP5388941B2 (ja) 制御・監視信号伝送システムにおける始動制御方式
JPWO2014061148A1 (ja) 制御・監視信号伝送システム
JP5441852B2 (ja) 制御・監視信号伝送システムにおける信号伝送方式
JP5591317B2 (ja) 入力信号異常検出方式に使用する子局ターミナル
JP5181402B1 (ja) インターロック異常検出方式およびその方式に使用する子局ターミナル
WO2013150602A1 (ja) 伝送エラー検出方式、およびその方式に使用する子局ターミナル
JP5602328B1 (ja) 一括表示子局

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012531153

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865556

Country of ref document: EP

Kind code of ref document: A1