WO2013108383A1 - 車体下部構造 - Google Patents

車体下部構造 Download PDF

Info

Publication number
WO2013108383A1
WO2013108383A1 PCT/JP2012/050990 JP2012050990W WO2013108383A1 WO 2013108383 A1 WO2013108383 A1 WO 2013108383A1 JP 2012050990 W JP2012050990 W JP 2012050990W WO 2013108383 A1 WO2013108383 A1 WO 2013108383A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle body
cross
rocker
rockers
cross member
Prior art date
Application number
PCT/JP2012/050990
Other languages
English (en)
French (fr)
Inventor
健雄 森
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112012005696.5T priority Critical patent/DE112012005696T5/de
Priority to CN201280067376.3A priority patent/CN104053591B/zh
Priority to JP2013554152A priority patent/JP5812119B2/ja
Priority to PCT/JP2012/050990 priority patent/WO2013108383A1/ja
Priority to US14/371,051 priority patent/US9108682B2/en
Publication of WO2013108383A1 publication Critical patent/WO2013108383A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • B62D21/157Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body for side impacts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units
    • B62D25/2009Floors or bottom sub-units in connection with other superstructure subunits
    • B62D25/2036Floors or bottom sub-units in connection with other superstructure subunits the subunits being side panels, sills or pillars

Definitions

  • the present invention relates to a vehicle body lower structure.
  • a vehicle body lower structure capable of efficiently absorbing energy at the time of a side collision.
  • This vehicle body lower structure is a Z-shaped portion of the cross member that is positioned around the tunnel portion of the floor panel so as to suppress the moment generated in the center pillar at the time of a side collision and to absorb energy. .
  • a reinforcing member such as a cross member is provided around the lower portion of the center pillar in order to suppress the torsional deformation of the rocker, but the side collision performance is not always sufficiently ensured. It was.
  • the present invention intends to provide a vehicle body lower structure capable of improving the side collision performance.
  • the vehicle body lower part structure includes a floor panel extending in the longitudinal direction of the vehicle body, a pair of rockers extending in the longitudinal direction of the vehicle body along both sides of the vehicle body of the floor panel, and spaced from the floor surface of the floor panel. And a cross member constructed between the pair of rockers and having a higher strength than the rockers.
  • the pair of rockers extend in the longitudinal direction of the vehicle body along each side of the vehicle body of the floor panel, and the rockers are spaced from the floor surface of the floor panel between the pair of rockers.
  • a cross member having higher strength is installed.
  • the torsional deformation that causes the upper part of the rocker to fall inward in the vehicle body width direction is suppressed, and the rotational deformation of the center pillar is also suppressed, so that the side collision performance of the vehicle body lower structure can be improved.
  • the rocker may be provided with a projecting portion projecting inward in the vehicle body width direction at the inner lower portion thereof.
  • the cross member includes a first cross part extending in the vehicle body width direction on the front side of the vehicle body, a second cross part extending in the vehicle body width direction on the rear side of the vehicle body, and a pair of rockers.
  • a pair of connecting members that connect the first cross portion and the second cross portion along the first cross portion may be provided.
  • the floor panel may be provided with a bulging portion that bulges upward from the floor surface and contacts the lower surface of the first cross portion.
  • the rigidity of the vehicle body lower structure can be improved by the load transmission from the first cross portion to the bulging portion.
  • the floor panel may be provided with a tunnel portion at the center thereof, and the cross member may be provided with a weak portion that is bent so as to cover the tunnel portion.
  • the cross member may be formed with a smaller sectional height than the rocker. Thereby, the cross-sectional height of the cross member is suppressed, and the cross member can be made into a structure suitable for adopting an ultra high strength steel plate.
  • FIG. 4 is a cross-sectional view showing a vehicle body lower part structure taken along line 4-4 ′ of FIG.
  • FIG. 5 is a cross-sectional view showing a lower body structure along line 5-5 ′ of FIG.
  • FIG. 6 is a cross-sectional view showing a lower body structure along line 6-6 ′ of FIG. It is sectional drawing which shows the detail of the rocker which comprises the vehicle body lower part structure concerning embodiment of this invention.
  • FIG. 1 is a perspective view showing a lower body structure according to an embodiment of the present invention.
  • the vehicle body lower part structure includes a floor panel 10, a pair of rockers (side sills) 20, and a cross member 30.
  • the floor panel 10 extends in the vehicle front-rear direction (left-right direction in FIG. 1) at the lower portion of the vehicle body.
  • the pair of rockers 20 are extended in the longitudinal direction of the vehicle body along the right and left sides of the vehicle body of the floor panel 10.
  • the cross member 30 is installed between the pair of rockers 20 so as to be separated from the floor surface 11 (see FIG. 2) of the floor panel 10, and has a higher strength than the rockers 20.
  • FIG. 2 is a perspective view showing the floor panel 10 and the rocker 20 constituting the lower body structure.
  • the floor panel 10 is provided with a tunnel portion 12 that protrudes upward from the floor surface 11 and bisects the floor panel 10 in the vehicle body width direction.
  • the tunnel portion 12 is formed, for example, in a substantially inverted U shape in cross section.
  • a floor bulging portion (bulging portion) 13 bulging upward from the floor surface 11 on both sides of the tunnel portion 12 is provided.
  • the floor bulging portion 13 is formed in a pillow shape, for example.
  • the floor bulging portion 13 shown in FIG. 2 is provided in contact with the side surface of the rocker 20 and spaced from the side surface of the tunnel portion 12.
  • the floor surface 11 is a flat surface facing the cross member 30 and is a surface (general surface) where the tunnel portion 12 or the floor bulging portion 13 is not formed.
  • the rocker 20 is, for example, a member having a square cross section, and may be a member having a cross section.
  • a center pillar 40 extending in the vehicle height direction is joined to the rocker 20 at the center in the vehicle longitudinal direction (note that only one center pillar 40 is shown in FIG. 2).
  • the rocker 20 includes outer and inner rockers 21 and 22 and a bulkhead (reinforcing portion) 23. Details of the rocker 20 will be described later with reference to FIG.
  • FIG. 3 is a perspective view showing the cross member 30 constituting the vehicle body lower part structure.
  • the cross member 30 is, for example, a substantially rectangular member in plan view.
  • the cross member 30 has, for example, a cross-sectional height of the cross member 30 so that the upper part of the rocker 20 is supported more firmly than the lower part of the rocker 20 by the axial force of the cross member 30 having higher strength than the rocker 20 at the time of a side collision. It is constructed so as to be spaced apart from the floor surface 11. Therefore, the cross member 30 is bridged between the pair of rockers 20 so as to support the upper portion of the rocker 20 by the right side portion and the left side portion thereof.
  • the cross member 30 includes first and second cross portions 31 and 32, a pair of rocker reinforcing portions 33 as connecting members, and a pair of tunnel reinforcing portions 34 as connecting members. These members are preferably integrally formed, but may be assembled.
  • the cross member 30 is formed of an ultra-high strength steel plate of 1500 MPa class or higher, or an aluminum die-cast material.
  • the first and second cross portions 31 and 32 are respectively extended in the vehicle body width direction on the vehicle body front side and the rear side of the cross member 30 and formed, for example, in a substantially hat-shaped cross section.
  • the pair of rocker reinforcing portions 33 are provided along the rockers 20 on the right and left sides of the vehicle body, and connect the first and second cross portions 31 and 32.
  • the rocker reinforcing portion 33 is formed with, for example, a substantially Z-shaped cross section.
  • the pair of tunnel reinforcing portions 34 are provided along the right side and the left side of the tunnel portion 12, respectively, and connect the first and second cross portions 31 and 32 by dividing the cross member 30 in the vehicle body width direction.
  • the tunnel reinforcing portion 34 is formed, for example, in a substantially hat shape in cross section. Between the pair of tunnel reinforcing portions 34, an opening 35 for in-vehicle equipment, wiring arrangement, and the like is provided. Further, the cross member 30 is provided with sheet attachment holes 36 at the four corners thereof.
  • FIG. 4 is a cross-sectional view showing the lower structure of the vehicle body along the line IV-IV ′ of FIG.
  • the cross member 30 is provided so that the lower surface of the first cross portion 31 is joined to the upper surface of the floor bulging portion 13 and the lower surface of the second cross portion 32 is not in contact with the floor surface 11. It is done. Therefore, the first cross part 31 forms a closed section with the floor bulging part 13 in the longitudinal direction of the vehicle body.
  • the second cross portion 32 is supported on the floor surface 11 via another support member 50 so as to secure a foot space of the rear seat between the second cross portion 32 and the floor surface 11.
  • FIG. 5 is a cross-sectional view showing the lower structure of the vehicle body along the line VV ′ of FIG.
  • the cross member 30 has a cross-sectional height that is smaller than the cross-sectional height of the rocker 20.
  • the first cross portion 31 is formed by being bent so as to cover the upper surface of the tunnel portion 12.
  • the bent portion is provided with a fragile portion W having a reduced material strength.
  • the fragile portion W is provided in the bent portion by, for example, heat treatment, cross-sectional cutout, and reduction in member thickness.
  • the second cross portion 32 may be formed in the same manner as the first cross portion 31.
  • the cross member 30 has a lower surface of the first cross portion 31 joined to an upper surface of the floor bulging portion 13, while So as not to contact the floor surface 11.
  • FIG. 6 is a cross-sectional view showing the lower structure of the vehicle body along the line IV-IV ′ of FIG.
  • the cross member 30 is formed such that the rocker reinforcing portion 33 is joined to the upper surface and side surfaces of the rocker 20.
  • the rocker reinforcement part 33 can reinforce the ridgeline on the upper side in the vehicle of the rocker 20, and can improve the intensity
  • the cross member 30 is formed such that the lower surfaces of the first and second cross portions 31 and 32 are joined to the upper surface of the tunnel portion 12.
  • the cross member 30 is formed so that the inclined surface of the connection portion between the tunnel reinforcement portion 34 and the first and second cross portions 31 and 32 is joined to the upper ridge line of the tunnel portion 12 to form a closed cross section.
  • the tunnel reinforcement part 34 can reinforce the upper ridgeline of the tunnel part 12, and can improve an intensity
  • FIG. 7 is a cross-sectional view showing details of the rocker 20 constituting the vehicle body lower part structure according to the embodiment of the present invention.
  • the outer and inner rockers 21 and 22 extend in the vehicle body front-rear direction along the outer side and the inner side in the vehicle body width direction.
  • the outer and inner rockers 21 and 22 are members having a substantially C-shaped cross section, for example, and are joined to each other so as to form a rocker 20 having a square tube shape, for example.
  • the bulkhead 23 extends in the longitudinal direction of the vehicle body along the inner lower portion of the rocker 20.
  • the bulkhead 23 is a reinforcing member having a substantially hat-shaped cross section, for example, and two leg portions 23a are provided on the outer side in the vehicle body width direction, and a protruding portion 23b is provided on the inner side in the vehicle body width direction.
  • the outer rocker 21 is centered in the longitudinal direction of the vehicle body, and its upper surface and side surfaces are joined to the lower portion of the center pillar 40.
  • the inner rocker 22 has a rocker reinforcing portion 33 joined to its upper surface and upper side surface (see FIG. 6).
  • the bulkhead 23 is provided such that the two leg portions 23 a are joined to the inner side surface of the outer rocker 21, and the protruding portion 23 b is not opposed to the side portion of the cross member 30 via the inner rocker 22.
  • FIG. 8 is a cross-sectional view showing a deformed state at the time of a side collision of the rocker 20 shown in FIG.
  • a collision load F acts on the center pillar 40 during a side collision
  • a moment M around the longitudinal axis acts on the rocker 20 joined to the lower portion of the center pillar 40 together with the side load H.
  • the lateral load H acting on the rocker 20 is supported by the axial force of the first cross portion 31 (and the second cross portion 32) installed between the pair of rockers 20.
  • the energy at the time of the side collision is absorbed by the deformation of the rocker reinforcing portion 33.
  • the upper part of the rocker 20 is supported more firmly than the lower part of the rocker 20 by the axial force of the first cross part 31 (and the second cross part 32) having higher strength than the rocker 20.
  • the lower part of 20 is deformed by being pushed below the cross member 30 by the side load H. Therefore, torsional deformation that causes the upper portion of the rocker 20 to fall into the inner side in the vehicle body width direction is suppressed.
  • the side load H is transmitted to the lower part of the inner rocker 22, and the lower part of the rocker 20 is connected to the cross member 30. It becomes easy to be pushed further downward.
  • the lower side end portion of the first cross portion 31 (and the second cross portion 32) interferes with the bulkhead 23 via the inner rocker 22, and the rotation center of the rocker 20 is positioned above the lower end thereof. become. As a result, the moment acting on the rocker 20 can be reduced, and therefore the rotational deformation of the center pillar 40 can be suppressed.
  • FIG. 9 is a cross-sectional view showing a deformed state at the time of a side collision of the vehicle body lower structure shown in FIG.
  • the first cross portion 31 (and the second cross portion 32) is provided via the rocker 20 by providing the weakened portion W in the first cross portion 31 (and the second cross portion 32).
  • the rocker 20 is displaced so as to move substantially parallel to the vehicle body width direction, rather than causing the upper portion of the rocker 20 to fall inward in the vehicle body width direction.
  • the torsional deformation that causes the upper portion of the rocker 20 to fall inward in the vehicle body width direction is suppressed, and therefore, the rotational deformation that causes the center pillar 40 to fall inward in the vehicle body width direction is suppressed.
  • the performance can be improved.
  • the cross member 30 and the bulkhead 23 can cooperate to effectively suppress the torsional deformation of the rocker 20.
  • FIG. 10 is a sectional view showing details of the rocker 2 according to the prior art.
  • the rocker 2 includes an outer and inner rockers 2 a and 2 b, and a pair of bulkheads 2 c having a substantially rectangular cross section provided inside the rocker 2.
  • the upper surface and the entire side surface of the inner rocker 2 b are joined to the side portion of the cross member 3.
  • the bulkhead 2 c is provided so as to be in contact with the entire inner surface of the rocker 2, and the entire inner side in the vehicle body width direction faces the side portion of the cross member 3.
  • FIG. 11 is a cross-sectional view showing a deformed state at the time of a side collision of the rocker 2 shown in FIG.
  • a collision load F acts on the center pillar 4 during a side collision
  • a moment M around the longitudinal axis acts on the rocker 2.
  • the rocker 2 is supported at its upper and lower portions by the axial force of the cross member 3, its lower portion is deformed without being pushed below the cross member 3.
  • the strength of the cross member 3 is not high, the rocker 2 cannot be firmly supported. Therefore, the torsional deformation that causes the upper portion of the rocker 2 to fall into the inner side in the vehicle body width direction cannot be suppressed.
  • FIGS. 12 and 13 are perspective views showing first and second modifications 60 and 70 of the floor panel 10, respectively.
  • the floor bulging portion 63 may be provided in contact with the rocker 20 and in contact with the tunnel portion 62. As a result, the collision load F can be easily transmitted from the floor bulging portion 63 to the tunnel portion 62, so that the rigidity of the vehicle body lower structure can be improved.
  • the floor bulging portion 73 may be extended to the rear side in the vehicle front-rear direction so that the lower surfaces of the first and second cross portions 31 and 32 are in contact with the upper surface thereof. . Therefore, the first and second cross portions 31 and 32 form a closed cross section with the floor bulging portion 73 in the longitudinal direction of the vehicle body. Thereby, since it becomes easy to transmit the collision load F from the cross member 30 to the floor panel 70, the rigidity of the vehicle body lower structure can be improved.
  • the pair of rockers 20 extend in the vehicle longitudinal direction along each of the vehicle body side portions of the floor panels 10, 60, and 70.
  • a cross member 30 having a higher strength than the rocker 20 is installed between the pair of rockers 20 so as to be separated from the floor surfaces 11, 61, 71 of the panels 10, 60, 70.
  • the torsional deformation that causes the upper part of the rocker 20 to fall inward in the vehicle body width direction is suppressed, and the rotational deformation of the center pillar 40 is also suppressed, so that the side collision performance of the vehicle body lower structure can be improved.
  • the lower portion of the rocker 20 is further pushed below the cross member 30 by abutment of the protrusion 23c at the time of a side collision. It will be easier.
  • first and second cross portions 31 and 32 with a pair of rocker reinforcing portions 33, energy at the time of a side collision can be absorbed by deformation of the rocker reinforcing portion 33. Moreover, the number of parts of the reinforcing material that reinforces the lower periphery of the center pillar 40 can be reduced.
  • the vehicle body can be transmitted by the load transmission from the first cross portion 31 to the floor bulging portions 13, 63, 73.
  • the rigidity of the lower structure can be improved.
  • the weak portion W that is bent so as to cover the tunnel portions 12, 62, and 72, the weak portion W is deformed into a substantially Z-shaped cross section at the time of a side collision, and the rocker 20 is substantially in the vehicle body width direction. It becomes easy to deform so as to move in parallel, and torsional deformation of the rocker 20 can be suppressed.
  • the cross-sectional height of the cross member 30 is suppressed, and the cross member 30 can be made a structure suitable for adopting an ultra high strength steel plate.
  • the above-described embodiment describes the best embodiment of the vehicle body lower structure according to the present invention, and the vehicle body lower structure according to the present invention is not limited to the one described in the present embodiment. .
  • the vehicle body lower structure according to the present invention may be obtained by modifying the vehicle body lower structure according to the present embodiment or applying it to other structures without departing from the gist of the invention described in each claim.

Abstract

 車体下部構造は、車体前後方向に延設されるフロアパネル10と、フロアパネル10の車体両側部のそれぞれに沿って車体前後方向に延設される一対のロッカ20と、フロアパネル10のフロア面11から離間して一対のロッカ20間に架設され、ロッカ20より高い強度を有するクロスメンバ30とを備える。これにより、側面衝突時には、ロッカ20より高い強度を有するクロスメンバ30の軸力によって、ロッカ20の上部がロッカ20の下部よりも強固に支持されることで、ロッカ20の下部がクロスメンバ30の下方に押し込まれ易くなる。よって、ロッカ20の上部を車体幅方向の内側に倒れ込ませる捩れ変形が抑制され、センタピラー40の回転変形も抑制されるので、車体下部構造の側面衝突性能を向上することができる。

Description

車体下部構造
 本発明は、車体下部構造に関する。
 従来、例えば特開2000-168627号公報に示すように、側面衝突時のエネルギを効率的に吸収可能な車体下部構造が知られている。この車体下部構造は、クロスメンバのうちフロアパネルのトンネル部周辺に位置する部分をZ字状に形成して、側面衝突時にセンタピラーに生じるモーメントを抑制すると共にエネルギを吸収しようとするものである。
 ところで、センタピラーなどに衝突荷重が作用すると、センタピラーの下部に接合されるロッカ(サイドシル)に長手軸回りのモーメントが作用し、ロッカの上部を車体幅方向の内側に倒れ込ませる捩れ変形が生じる。そして、このような捩れ変形が大きくなると、センタピラーを車体幅方向の内側に倒れ込ませる回転変形が大きくなり、車体下部構造の側面衝突性能を十分に確保できなくなってしまう。
特開2000-168627号公報
 このため、従来の車体下部構造では、ロッカの捩れ変形を抑制するために、センタピラーの下部周辺にクロスメンバなどの補強材が設けられているが、側面衝突性能を必ずしも十分に確保できていなかった。
 そこで、本発明は、側面衝突性能を向上可能な車体下部構造を提供しようとするものである。
 本発明に係る車体下部構造は、車体前後方向に延設されるフロアパネルと、フロアパネルの車体両側部に沿って車体前後方向に延設される一対のロッカと、フロアパネルのフロア面から離間して一対のロッカ間に架設され、ロッカより高い強度を有するクロスメンバとを備える。
 本発明に係る車体下部構造によれば、フロアパネルの車体両側部のそれぞれに沿って車体前後方向に一対のロッカが延設され、フロアパネルのフロア面から離間して一対のロッカ間に、ロッカより高い強度を有するクロスメンバが架設される。これにより、側面衝突時には、ロッカより高い強度を有するクロスメンバの軸力によって、ロッカの上部がロッカの下部よりも強固に支持されることで、ロッカの下部がクロスメンバの下方に押し込まれ易くなる。よって、ロッカの上部を車体幅方向の内側に倒れ込ませる捩れ変形が抑制され、センタピラーの回転変形も抑制されるので、車体下部構造の側面衝突性能を向上することができる。
 また、ロッカには、その内側下部に車体幅方向の内側に向けて突出する突出部が設けられてもよい。これにより、側面衝突時には、突出部の突き当てによりロッカの下部がクロスメンバの下方にさらに押し込まれ易くなる。
 また、クロスメンバには、車体前側に車体幅方向に延設される第1のクロス部と、車体後側に車体幅方向に延設される第2のクロス部と、一対のロッカのそれぞれに沿って第1のクロス部と第2のクロス部を連結する一対の連結部材とが設けられてもよい。これにより、側面衝突時のエネルギを連結部材の変形により吸収することができる。また、センタピラーの下部周辺を補強する補強材の部品点数を低減することができる。
 また、フロアパネルには、フロア面から上方に膨出して第1のクロス部の下面と接触する膨出部が設けられてもよい。これにより、第1のクロス部から膨出部への荷重伝達により、車体下部構造の剛性を向上することができる。
 また、フロアパネルには、その中央部にトンネル部が設けられ、クロスメンバには、トンネル部を覆うように折曲される脆弱部が設けられてもよい。これにより、側面衝突時には、脆弱部が断面略Z字状に変形し、ロッカが車体幅方向に略平行に移動するように変形し易くなり、ロッカの捩れ変形を抑制することができる。
 また、クロスメンバが、ロッカより小さな断面高で形成されてもよい。これにより、クロスメンバの断面高が抑制され、クロスメンバを超高張力鋼板の採用に適した構造とすることができる。
 本発明によれば、側面衝突性能を向上可能な車体下部構造を提供することができる。
本発明の実施形態に係る車体下部構造を示す斜視図である。 車体下部構造を構成するフロアパネルおよびロッカを示す斜視図である。 車体下部構造を構成するクロスメンバを示す斜視図である。 図1の4-4´線に沿って車体下部構造を示す断面図である。 図1の5-5´線に沿って車体下部構造を示す断面図である。 図1の6-6´線に沿って車体下部構造を示す断面図である。 本発明の実施形態に係る車体下部構造を構成するロッカの詳細を示す断面図である。 図7に示すロッカの側面衝突時の変形状態を示す断面図である。 図6に示す車体下部構造の側面衝突時の変形状態を示す断面図である。 従来技術に係るロッカの詳細を示す断面図である。 図10に示すロッカの側面衝突時の変形状態を示す断面図である。 フロアパネルの第1の変形例を示す斜視図である。 フロアパネルの第2の変形例を示す斜視図である。
 以下、添付図面を参照して、本発明の実施形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 まず、図1から図7を参照して、本発明の実施形態に係る車体下部構造について説明する。
 図1は、本発明の実施形態に係る車体下部構造を示す斜視図である。図1に示すように、車体下部構造は、フロアパネル10、一対のロッカ(サイドシル)20、およびクロスメンバ30を含む。フロアパネル10は、車体下部で車体前後方向(図1では左右方向)に延設される。一対のロッカ20は、フロアパネル10の車体右側および左側のそれぞれに沿って車体前後方向に延設される。クロスメンバ30は、フロアパネル10のフロア面11(図2参照)から離間して一対のロッカ20間に架設され、ロッカ20より高い強度を有する。
 図2は、車体下部構造を構成するフロアパネル10およびロッカ20を示す斜視図である。図2に示すように、フロアパネル10には、フロア面11から上方に突出してフロアパネル10を車体幅方向に二分するトンネル部12が設けられる。トンネル部12は、例えば断面略逆U字状に形成される。また、トンネル部12の両側のフロア面11から上方に膨出するフロア膨出部(膨出部)13が設けられる。フロア膨出部13は、例えば枕状に形成される。図2に示すフロア膨出部13は、ロッカ20の側面に接触すると共に、トンネル部12の側面から離間して設けられる。なお、フロア面11は、クロスメンバ30と対向する平坦な面であり、トンネル部12またはフロア膨出部13が形成されない面(一般面)である。
 図2に示すように、ロッカ20は、例えば断面角筒状の部材であり、断面筒状の部材でもよい。ロッカ20には、その車体前後方向の中央で、車高方向に延設されるセンタピラー40が接合される(なお、図2では、片方のセンタピラー40のみが示されている。)。ロッカ20は、外側および内側ロッカ21、22、バルクヘッド(補強部)23からなる。ロッカ20の詳細については、図7を参照して後述する。
 図3は、車体下部構造を構成するクロスメンバ30を示す斜視図である。クロスメンバ30は、例えば平面視略矩形状の部材である。クロスメンバ30は、側面衝突時に、ロッカ20より高い強度を有するクロスメンバ30の軸力によって、ロッカ20の上部がロッカ20の下部よりも強固に支持されるように、例えばクロスメンバ30の断面高程度、フロア面11から離間して架設される。よって、クロスメンバ30は、その右側部および左側部によりロッカ20の上部を支持するように一対のロッカ20の間に架け渡される。クロスメンバ30は、第1および第2のクロス部31、32、連結部材としての一対のロッカ補強部33、連結部材としての一対のトンネル補強部34からなる。これらの部材は、一体形成されることが好ましいが、組立て形成されてもよい。クロスメンバ30は、1500MPa級以上の超高張力鋼板、またはアルミニウムのダイカスト材などで形成される。
 第1および第2のクロス部31、32は、クロスメンバ30の車体前側および後側で、それぞれ車体幅方向に延設され、例えば断面略ハット状に形成される。一対のロッカ補強部33は、車体右側および左側のそれぞれのロッカ20に沿って設けられ、第1および第2のクロス部31、32を連結する。ロッカ補強部33は、例えば断面略Z字に形成される。一対のトンネル補強部34は、トンネル部12の右側および左側のそれぞれに沿って設けられ、クロスメンバ30を車体幅方向に二分して第1および第2のクロス部31、32を連結する。トンネル補強部34は、例えば断面略ハット状に形成される。一対のトンネル補強部34の間には、車載設備、配線の配置などのための開口35が設けられる。また、クロスメンバ30には、その四隅にシート取り付け孔36が設けられる。
 図4は、図1のIV-IV´線に沿って車体下部構造を示す断面図である。図4に示すように、クロスメンバ30は、第1のクロス部31の下面がフロア膨出部13の上面に接合され、第2のクロス部32の下面がフロア面11に接触しないように設けられる。よって、第1のクロス部31は、車体前後方向でフロア膨出部13と閉断面を形成する。なお、第2のクロス部32は、フロア面11との間に後部座席の足元空間を確保するように他の支持部材50を介してフロア面11に支持される。
 図5は、図1のV-V´線に沿って車体下部構造を示す断面図である。図5に示すように、クロスメンバ30は、その断面高がロッカ20の断面高よりも小さく形成される。また、第1のクロス部31は、トンネル部12の上面を覆うように折り曲げて形成される。この折り曲げ部には、材料強度を低下させた脆弱部Wが設けられる。脆弱部Wは、折り曲げ部に、例えば、熱処理、断面の切り欠き、部材厚の低減を施して設けられる。なお、第2のクロス部32も第1のクロス部31と同様に形成してもよい。また、図4の説明とも関連するが、クロスメンバ30は、第1のクロス部31の下面がフロア膨出部13の上面に接合される一方で、フロア膨出部13とトンネル部12の間でフロア面11と接触しないように設けられる。
 図6は、図1のIV-IV´線に沿って車体下部構造を示す断面図である。図6に示すように、クロスメンバ30は、ロッカ補強部33がロッカ20の上面および側面に接合されるように形成される。これにより、ロッカ補強部33は、ロッカ20の車内上側の稜線を補強し、側部からの入力に対する強度を向上することができる。また、クロスメンバ30は、第1および第2のクロス部31、32の下面がトンネル部12の上面に接合されるように形成される。また、クロスメンバ30は、トンネル補強部34と第1および第2のクロス部31、32との接続部の傾斜面がトンネル部12の上部稜線に接合されて閉断面を形成するように形成される。これにより、トンネル補強部34は、トンネル部12の上部稜線を補強し、強度を向上することができる。
 図7は、本発明の実施形態に係る車体下部構造を構成するロッカ20の詳細を示す断面図である。図7に示すように、外側および内側ロッカ21、22は、車体幅方向の外側および内側にそれぞれに沿って車体前後方向に延設される。外側および内側ロッカ21、22は、例えば断面略C字状の部材であり、例えば断面角筒状のロッカ20を構成するように互いに接合される。バルクヘッド23は、ロッカ20の内側下部に沿って車体前後方向に延設される。バルクヘッド23は、例えば断面略ハット状の補強部材であり、車体幅方向の外側に2つの脚部23aが設けられ、車体幅方向の内側に突出部23bが設けられる。
 外側ロッカ21は、その車体前後方向の中央で、その上面および側面がセンタピラー40の下部に接合される。内側ロッカ22は、その上面および側面上部にロッカ補強部33が接合される(図6参照)。バルクヘッド23は、2つの脚部23aが外側ロッカ21の内側面に接合され、突出部23bが内側ロッカ22を介してクロスメンバ30の側部と対向しないように設けられる。
 つぎに、図8から図11を参照して、側面衝突時の車体下部構造の作用について説明する。
 図8は、図7に示すロッカ20の側面衝突時の変形状態を示す断面図である。図8に示すように、側面衝突時にセンタピラー40に衝突荷重Fが作用すると、センタピラー40の下部に接合されるロッカ20に側方荷重Hと共に、長手軸回りのモーメントMが作用する。すると、ロッカ20に作用する側方荷重Hは、一対のロッカ20間に架設される第1のクロス部31(および第2のクロス部32)の軸力により支持される。また、側面衝突時のエネルギは、ロッカ補強部33の変形により吸収される。
 ここで、ロッカ20より高い強度を有する第1のクロス部31(および第2のクロス部32)の軸力によって、ロッカ20の上部がロッカ20の下部よりも強固に支持されることで、ロッカ20の下部が側方荷重Hによりクロスメンバ30の下方に押し込まれて変形する。よって、ロッカ20の上部を車体幅方向の内側に倒れ込ませる捩れ変形が抑制される。ここで、バルクヘッド23の突出部23bをクロスメンバ30の側部に対向しないように配置することで、側方荷重Hが内側ロッカ22の下部に伝達され、ロッカ20の下部がクロスメンバ30の下方にさらに押し込まれ易くなる。また、第1のクロス部31(および第2のクロス部32)の側端下部が内側ロッカ22を介してバルクヘッド23と干渉し、ロッカ20の回転中心がその下端よりも上方に位置することになる。これにより、ロッカ20に作用するモーメントを低減でき、従ってセンタピラー40の回転変形を抑制することができる。
 図9は、図6に示す車体下部構造の側面衝突時の変形状態を示す断面図である。図9に示すように、第1のクロス部31(および第2のクロス部32)に脆弱部Wを設けることで、ロッカ20を介して第1のクロス部31(および第2のクロス部32)に側方荷重Hが作用すると、脆弱部Wに断面略Z字状の座屈変形が生じる。よって、ロッカ20は、その上部を車体幅方向の内側に倒れ込ませるよりも、車体幅方向に略平行に移動するように変位する。
 これにより、ロッカ20の上部を車体幅方向の内側に倒れ込ませる捩れ変形が抑制されるので、センタピラー40を車体幅方向の内側に倒れ込ませる回転変形が抑制され、車体下部構造の側面衝突性能を向上することができる。さらに、超高強度鋼板などを用いてクロスメンバ30の強度を高めることで、クロスメンバ30とバルクヘッド23を協働させてロッカ20の捩れ変形を効果的に抑制することができる。
 一方、図10は、従来技術に係るロッカ2の詳細を示す断面図である。図10に示すような従来の車体下部構造では、ロッカ2は、外側および内側ロッカ2a、2b、およびロッカ2の内側に設けられる一対の略矩形状断面のバルクヘッド2cからなる。ここで、内側ロッカ2bは、その上面および側面全体がクロスメンバ3の側部に接合される。バルクヘッド2cは、ロッカ2の内面全体に接触し、その車体幅方向の内側全体がクロスメンバ3の側部と対向するように設けられる。
 図11は、図10に示すロッカ2の側面衝突時の変形状態を示す断面図である。図11に示すように、側面衝突時にセンタピラー4に衝突荷重Fが作用すると、ロッカ2に長手軸回りのモーメントMが作用する。しかし、ロッカ2は、クロスメンバ3の軸力によって、その上部および下部が支持されるので、その下部がクロスメンバ3の下方に押し込まれずに変形する。また、クロスメンバ3の強度が高くないので、ロッカ2を強固に支持することもできない。よって、ロッカ2の上部を車体幅方向の内側に倒れ込ませる捩れ変形を抑制できない。また、ロッカ2の回転中心がその下端に位置することになるので、ロッカ2に作用するモーメントを低減することができない。このため、センタピラー4を車体幅方向の内側に倒れ込ませる回転変形が大きくなり、車体下部構造の側面衝突性能を十分に確保できない。
 つぎに、図12および図13を参照して、フロアパネル10の変形例について説明する。図12および図13は、フロアパネル10の第1および第2の変形例60、70をそれぞれに示す斜視図である。
 図12に示すように、フロア膨出部63は、ロッカ20に接触すると共にトンネル部62に接触して設けられてもよい。これにより、フロア膨出部63からトンネル部62へ衝突荷重Fを伝達し易くなるので、車体下部構造の剛性を向上することができる。
 また、図13に示すように、フロア膨出部73は、その上面に第1および第2のクロス部31、32の下面が接触するように車体前後方向の後側に延設されてもよい。よって、第1および第2のクロス部31、32は、車体前後方向でフロア膨出部73と閉断面を形成する。これにより、クロスメンバ30からフロアパネル70へ衝突荷重Fを伝達し易くなるので、車体下部構造の剛性を向上することができる。
 以上説明したように、本発明の実施形態に係る車体下部構造によれば、フロアパネル10、60、70の車体両側部のそれぞれに沿って車体前後方向に一対のロッカ20が延設され、フロアパネル10、60、70のフロア面11、61、71から離間して一対のロッカ20間にロッカ20より高い強度を有するクロスメンバ30が架設される。これにより、側面衝突時には、ロッカ20より高い強度を有するクロスメンバ30の軸力によって、ロッカ20の上部がロッカ20の下部よりも強固に支持されることで、ロッカ20の下部がクロスメンバ30の下方に押し込まれ易くなる。よって、ロッカ20の上部を車体幅方向の内側に倒れ込ませる捩れ変形が抑制され、センタピラー40の回転変形も抑制されるので、車体下部構造の側面衝突性能を向上することができる。
 また、ロッカ20の内側下部に車体幅方向の内側に向けて突出する突出部23cを設けることで、側面衝突時には、突出部23cの突き当てによりロッカ20の下部がクロスメンバ30の下方にさらに押し込まれ易くなる。
 また、第1および第2のクロス部31、32を一対のロッカ補強部33により連結することで、側面衝突時のエネルギをロッカ補強部33の変形により吸収することができる。また、センタピラー40の下部周辺を補強する補強材の部品点数を低減することができる。
 また、第1のクロス部31の下面と接触するフロア膨出部13、63、73を設けることで、第1のクロス部31からフロア膨出部13、63、73への荷重伝達により、車体下部構造の剛性を向上することができる。
 また、トンネル部12、62、72を覆うように折曲される脆弱部Wを設けることで、側面衝突時には、脆弱部Wが断面略Z字状に変形し、ロッカ20が車体幅方向に略平行に移動するように変形し易くなり、ロッカ20の捩れ変形を抑制することができる。
 また、クロスメンバ30の断面高を抑制することで、クロスメンバ30の断面高が抑制され、クロスメンバ30を超高張力鋼板の採用に適した構造とすることができる。
 なお、前述した実施形態は、本発明に係る車体下部構造の最良な実施形態を説明したものであり、本発明に係る車体下部構造は、本実施形態に記載したものに限定されるものではない。本発明に係る車体下部構造は、各請求項に記載した発明の要旨を逸脱しない範囲で本実施形態に係る車体下部構造を変形し、または他のものに適用したものであってもよい。
 10、60、70…フロアパネル、11、61、71…フロア面、12、62、72…トンネル部、13、63、73…フロア膨出部、20…ロッカ、23c…突出部、30…クロスメンバ、31…第1のクロス部、32…第2のクロス部、33…ロッカ補強部、40…センタピラー、W…脆弱部。

Claims (7)

  1.  車体前後方向に延設されるフロアパネルと、
     前記フロアパネルの車体両側部のそれぞれに沿って車体前後方向に延設される一対のロッカと、
     前記フロアパネルのフロア面から離間して前記一対のロッカ間に架設され、前記ロッカより高い強度を有するクロスメンバと、
    を備える車体下部構造。
  2.  前記ロッカには、その内側下部に車体幅方向の内側に向けて突出する突出部が設けられる、請求項1に記載の車体下部構造。
  3.  前記クロスメンバには、
     車体前側に車体幅方向に延設される第1のクロス部と、
     車体後側に車体幅方向に延設される第2のクロス部と、
     前記一対のロッカのそれぞれに沿って前記第1のクロス部と前記第2のクロス部を連結する一対の連結部材と、
    が設けられる、請求項1または2に記載の車体下部構造。
  4.  前記フロアパネルには、前記フロア面から上方に膨出して前記第1のクロス部の下面と接触する膨出部が設けられる、請求項3に記載の車体下部構造。
  5.  前記フロアパネルには、その中央部にトンネル部が設けられ、
     前記クロスメンバには、前記トンネル部を覆うように折曲される脆弱部が設けられる、請求項1~4のいずれか一項に記載の車体下部構造。
  6.  前記クロスメンバが、前記ロッカより小さな断面高で形成される、請求項1~5のいずれか一項に記載の車体下部構造。
  7.  車体前後方向に延設されるフロアパネルと、
     前記フロアパネルの車体両側部のそれぞれに沿って車体前後方向に延設される一対のロッカであり、内側下部に車体幅方向の内側に向けて突出する突出部を有する一対のロッカと、
     前記フロアパネルのフロア面から離間して前記一対のロッカ間に架設されるクロスメンバと、
    を備える車体下部構造。
PCT/JP2012/050990 2012-01-18 2012-01-18 車体下部構造 WO2013108383A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112012005696.5T DE112012005696T5 (de) 2012-01-18 2012-01-18 Fahrzeugunterbodenstruktur
CN201280067376.3A CN104053591B (zh) 2012-01-18 2012-01-18 车身下部结构
JP2013554152A JP5812119B2 (ja) 2012-01-18 2012-01-18 車体下部構造
PCT/JP2012/050990 WO2013108383A1 (ja) 2012-01-18 2012-01-18 車体下部構造
US14/371,051 US9108682B2 (en) 2012-01-18 2012-01-18 Vehicle underbody structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/050990 WO2013108383A1 (ja) 2012-01-18 2012-01-18 車体下部構造

Publications (1)

Publication Number Publication Date
WO2013108383A1 true WO2013108383A1 (ja) 2013-07-25

Family

ID=48798831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050990 WO2013108383A1 (ja) 2012-01-18 2012-01-18 車体下部構造

Country Status (5)

Country Link
US (1) US9108682B2 (ja)
JP (1) JP5812119B2 (ja)
CN (1) CN104053591B (ja)
DE (1) DE112012005696T5 (ja)
WO (1) WO2013108383A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142613A (ja) * 2019-03-06 2020-09-10 マツダ株式会社 車両の下部車体構造
JP2020534207A (ja) * 2017-09-20 2020-11-26 イェスタムプ・ハードテック・アクチエボラーグ 車両側部構造

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101526397B1 (ko) * 2013-12-18 2015-06-05 현대자동차 주식회사 차체 시트 장착부 보강구조
DE102013021403A1 (de) * 2013-12-18 2015-06-18 Daimler Ag Unterbodenaussteifungs- und Verkleidungsmodul, Herstellverfahren sowie Kraftfahrzeug-Unterboden und Montageverfahren
JP5928491B2 (ja) * 2014-01-14 2016-06-01 トヨタ自動車株式会社 車両の骨格構造
US9187136B1 (en) * 2014-08-01 2015-11-17 Honda Motor Co., Ltd. Structural pan for automotive body/frame
BR112017009717A2 (ja) * 2014-11-10 2018-01-02 Nippon Steel & Sumitomo Metal Corporation T character joint structure
JP6478031B2 (ja) * 2015-03-12 2019-03-06 三菱自動車工業株式会社 車体下部骨格構造
CN107428376A (zh) * 2015-03-17 2017-12-01 自动工程公司 用于车辆的边梁和包括这样的边梁的车辆
DE102015106272A1 (de) * 2015-04-23 2016-10-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Bodenstruktur eines Kraftfahrzeugs
DE102016006195A1 (de) 2016-05-19 2017-11-23 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Kraftfahrzeugkarosserie
US10343554B2 (en) * 2016-09-07 2019-07-09 Thunder Power New Energy Vehicle Development Company Limited Seat rail
US10155548B2 (en) * 2017-03-14 2018-12-18 Ford Global Technologies, Llc Vehicle structure including reinforcement extending between rockers
CN110636968B (zh) * 2017-05-22 2022-04-08 本田技研工业株式会社 车身下部结构
KR102440609B1 (ko) * 2017-12-27 2022-09-05 현대자동차 주식회사 측방 차체 보강구조
JP6954154B2 (ja) * 2018-01-30 2021-10-27 トヨタ自動車株式会社 車両のフロア構造
JP6915592B2 (ja) * 2018-06-15 2021-08-04 マツダ株式会社 下部車体構造
KR20210071619A (ko) * 2019-12-06 2021-06-16 현대자동차주식회사 시트크로스멤버 및 이를 포함한 차량용 플로어구조
JP7216037B2 (ja) * 2020-03-16 2023-01-31 トヨタ自動車株式会社 車体下部構造

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138655A (ja) * 2003-11-05 2005-06-02 Toyota Motor Corp 車体フロア構造
JP2008068720A (ja) * 2006-09-13 2008-03-27 Toyota Motor Corp 車体パネル構造
JP2010120404A (ja) * 2008-11-17 2010-06-03 Toyota Motor Corp 車両のフロア構造

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3381404B2 (ja) * 1994-09-14 2003-02-24 日産自動車株式会社 自動車の車体フロア構造
JPH10203426A (ja) 1997-01-17 1998-08-04 Hyundai Motor Co Ltd 自動車用フロントシ−トクロスメンバの構造
US5954390A (en) * 1997-12-18 1999-09-21 Chrysler Corporation Vehicle dynamic side impact system
JP2000168627A (ja) * 1998-12-11 2000-06-20 Nissan Motor Co Ltd 車体下部構造
JP4032657B2 (ja) * 2001-03-22 2008-01-16 三菱自動車工業株式会社 車体構造
JP4207806B2 (ja) * 2004-03-02 2009-01-14 日産自動車株式会社 車体フロア構造
JP4483830B2 (ja) 2006-05-29 2010-06-16 トヨタ自動車株式会社 車体下部構造
DE102007056673A1 (de) * 2007-11-24 2009-05-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Karosserieaufbau
US8292356B2 (en) * 2009-03-17 2012-10-23 Mazda Motor Corporation Lower vehicle-body structure of vehicle
US8167360B2 (en) * 2010-07-26 2012-05-01 Ford Global Technologies, Llc Vehicle cross member assembly with tunnel bracket

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138655A (ja) * 2003-11-05 2005-06-02 Toyota Motor Corp 車体フロア構造
JP2008068720A (ja) * 2006-09-13 2008-03-27 Toyota Motor Corp 車体パネル構造
JP2010120404A (ja) * 2008-11-17 2010-06-03 Toyota Motor Corp 車両のフロア構造

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020534207A (ja) * 2017-09-20 2020-11-26 イェスタムプ・ハードテック・アクチエボラーグ 車両側部構造
JP7181924B2 (ja) 2017-09-20 2022-12-01 イェスタムプ・ハードテック・アクチエボラーグ 車両側部構造
JP2020142613A (ja) * 2019-03-06 2020-09-10 マツダ株式会社 車両の下部車体構造
JP7256445B2 (ja) 2019-03-06 2023-04-12 マツダ株式会社 車両の下部車体構造

Also Published As

Publication number Publication date
US20140327268A1 (en) 2014-11-06
CN104053591A (zh) 2014-09-17
JP5812119B2 (ja) 2015-11-11
CN104053591B (zh) 2016-07-06
US9108682B2 (en) 2015-08-18
JPWO2013108383A1 (ja) 2015-05-11
DE112012005696T5 (de) 2014-10-02

Similar Documents

Publication Publication Date Title
JP5812119B2 (ja) 車体下部構造
US11180194B2 (en) Vehicle body and vehicle
JP4272626B2 (ja) 車体下側部構造
JP5765310B2 (ja) 車体前部構造
JP6079662B2 (ja) 車体下部構造
JP5963060B2 (ja) 車体後部のフロア構造
JP6319251B2 (ja) 車両骨格構造
JP6557290B2 (ja) 車体前部構造
JP2008174181A (ja) 車体下部構造
JP2008105561A (ja) 車両前部構造
WO2015056527A1 (ja) 車両下部構造
JP2014043133A (ja) 車体前部構造
JP6421534B2 (ja) 車両フロア構造
JP5009068B2 (ja) 車体後部構造
JP5803685B2 (ja) 車体構造
JP6003273B2 (ja) 車体前部構造
JP2012126166A (ja) 自動車用車体骨格における補強構造
JP6384257B2 (ja) 車両フロア構造
US10518809B2 (en) Vehicle rear structure
JP6471768B2 (ja) 車両の前部車体構造
JP2020203650A (ja) 車両構造
JP5277053B2 (ja) 車体フレーム構造
JP2015110397A (ja) 車体樹脂パネル構造
JP2015036281A (ja) 車両前部構造
JP6213171B2 (ja) 車両のフロア構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865581

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013554152

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14371051

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012005696

Country of ref document: DE

Ref document number: 1120120056965

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865581

Country of ref document: EP

Kind code of ref document: A1