WO2013108369A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2013108369A1
WO2013108369A1 PCT/JP2012/050862 JP2012050862W WO2013108369A1 WO 2013108369 A1 WO2013108369 A1 WO 2013108369A1 JP 2012050862 W JP2012050862 W JP 2012050862W WO 2013108369 A1 WO2013108369 A1 WO 2013108369A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
cell
fuel cell
lowest
cell voltage
Prior art date
Application number
PCT/JP2012/050862
Other languages
English (en)
French (fr)
Inventor
政史 戸井田
良明 長沼
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2013554120A priority Critical patent/JP5884833B2/ja
Priority to EP12866214.5A priority patent/EP2806489B1/en
Priority to PCT/JP2012/050862 priority patent/WO2013108369A1/ja
Priority to US14/372,504 priority patent/US10267862B2/en
Priority to CN201280067378.2A priority patent/CN104067428B/zh
Publication of WO2013108369A1 publication Critical patent/WO2013108369A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system using as an energy source a fuel cell in which a plurality of cells that generate power by an electrochemical reaction between an oxidizing gas and a fuel gas are stacked, and more particularly to a technique for monitoring a cell voltage.
  • the fuel cell has a stack structure in which a number of cells each having a minimum power generation unit are stacked.
  • Each cell includes an MEA (membrane / electrode structure) in which an air electrode and a fuel electrode are arranged on both sides of an electrolyte membrane made of an ion exchange membrane, and a pair of separators arranged on both sides of the MEA.
  • MEA membrane / electrode structure
  • a cell monitor is generally provided.
  • a large number of cells are stacked in units of several tens to several hundreds, for example. Therefore, instead of detecting the output voltages of all the cells, the output voltage is monitored in units of groups with a group composed of a plurality of cells as one unit.
  • Patent Document 1 discloses a technique for estimating a value obtained by subtracting the average cell voltage from the minimum group voltage as the minimum cell voltage.
  • the electrolyte membrane may melt and a hole may be formed in the electrolyte membrane. It is necessary to take measures such as limiting the output current.
  • the output control of the fuel cell is performed while misunderstanding that the minimum cell voltage is equal to or higher than the predetermined threshold value, so the actual cell voltage is lower than the predetermined threshold value. Nevertheless, a state where no limiting process such as lowering the output current of the fuel cell is performed is left unattended.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fuel cell system capable of suppressing damage to the fuel cell due to cell voltage drop by increasing the estimation accuracy of the minimum cell voltage. Yes.
  • a fuel cell system of the present invention detects a fuel cell in which a plurality of cells that generate power by an electrochemical reaction between a fuel gas and an oxidizing gas are stacked, and a group voltage for each of the plurality of cells.
  • a fuel cell system comprising a cell monitor capable of estimating a minimum cell voltage, and the estimation device includes a maximum cell voltage estimation unit that estimates a maximum cell voltage, When the average voltage of the group having the lowest voltage value is defined as the lowest group average voltage, the lowest cell voltage is estimated using the lowest group average voltage and the estimated value of the highest cell voltage.
  • the inventors of the present invention have made extensive studies on the estimation method of the minimum cell voltage, and as a result, have found that the variation in the maximum cell voltage is smaller than the variation in the minimum cell voltage.
  • the present invention has been made based on such knowledge, and the lowest cell voltage is estimated using the estimated value of the highest cell voltage. Therefore, according to this configuration, it is possible to estimate the minimum cell voltage with higher accuracy.
  • one group is composed of two cells, and the estimation device subtracts the estimated value of the highest cell voltage from a value obtained by doubling the lowest group average voltage.
  • the minimum cell voltage may be estimated.
  • the most unfavorable combination is considered in which the combination of two cells is a combination of a cell that outputs the lowest voltage and a cell that outputs the highest cell voltage among all the cells.
  • the occurrence of a problem that the estimated value of the minimum cell voltage is estimated to be higher than the actual voltage is suppressed.
  • the estimation device is configured to estimate the maximum cell voltage in the maximum cell voltage estimation unit when an oxidizing gas supply amount to the fuel cell is equal to or less than a predetermined value and during other normal operation. May be changed.
  • an estimation method with higher estimation accuracy is selected according to the operating state of the fuel cell, and the maximum cell voltage is estimated.
  • the maximum cell voltage estimation unit adds a value obtained by adding a constant indicating variation in cell voltage to an average voltage obtained by dividing the total voltage of the fuel cell by the total number of cells. It may be an estimated value of the maximum cell voltage.
  • the maximum cell voltage estimation unit when the oxidant gas supply is insufficient, determines the fuel cell from the temperature and output current of the fuel cell and a current-voltage map indicating the relationship between the current and voltage of the fuel cell.
  • a value obtained by estimating the output voltage and dividing the estimated output voltage by the total number of cells may be the estimated value of the highest cell voltage.
  • the estimation device includes the lowest group average voltage and the The lowest cell voltage estimated using the estimated value of the highest cell voltage may be compared with the lowest cell voltage in the end cell, and the minimum value may be estimated as the lowest cell voltage.
  • the amount of water generated as a result of the electrochemical reaction is larger than in other cells, and when this generated water is not discharged well, the cell voltage is lower than in the other cells.
  • the lower value of the estimated value of the lowest cell voltage and the lowest cell voltage value of the end cell is set as the estimated value of the lowest cell voltage, so the estimated value of the lowest cell voltage is the actual voltage. The occurrence of a problem that is estimated to be higher than that is more reliably suppressed.
  • the control device detects that the lowest cell voltage estimated by the estimation device is below a predetermined low voltage threshold. Control for restoring the voltage may be performed.
  • the present invention it is possible to improve the estimation accuracy of the minimum cell voltage and suppress the damage of the fuel cell due to the cell voltage drop.
  • FIG. 1 is a schematic circuit diagram of a fuel cell system according to an embodiment of the present invention. It is a block diagram which shows an example of the control content implemented by the control apparatus 200 of FIG. It is a block diagram which shows the other example of the control content implemented by the control apparatus 200 of FIG.
  • the fuel cell system 1 includes a fuel cell 100 that generates electric power by an electrochemical reaction between an oxidizing gas, which is a reactive gas, and the fuel gas.
  • the fuel cell 100 is, for example, a polymer electrolyte fuel cell, and has a stack structure in which a large number of cells are stacked.
  • the cell has an air electrode on one surface of an electrolyte made of an ion exchange membrane, a fuel electrode on the other surface, and a pair of separators so as to sandwich the air electrode and the fuel electrode from both sides. ing.
  • hydrogen gas is supplied to the hydrogen gas flow path of one separator, and air, which is an oxidizing gas, is supplied to the oxidizing gas flow path of the other separator, and electric power is generated by the electrochemical reaction of these reaction gases.
  • the fuel cell 100 is connected to a cell monitor (output voltage sensor) 170 that measures a group voltage for each cell and for each of a plurality of cells. For example, when the total number of cells is 200, each cell is provided with a cell voltage terminal for 10 cells at one end in the cell stacking direction and 10 cells at the other end, For the remaining 180 cells, one cell voltage terminal is provided for every two cells.
  • a cell monitor output voltage sensor 170 that measures a group voltage for each cell and for each of a plurality of cells. For example, when the total number of cells is 200, each cell is provided with a cell voltage terminal for 10 cells at one end in the cell stacking direction and 10 cells at the other end, For the remaining 180 cells, one cell voltage terminal is provided for every two cells.
  • the cell monitor 170 can monitor the cell voltage for each cell for a plurality of cells (hereinafter also referred to as “end cells”) located at both ends in the cell stacking direction, and the remaining cells. (Hereinafter, it may be referred to as a “central cell”.)
  • the group voltage for every two cells and the average cell voltage of the two cells (average value of the group voltage) can be monitored.
  • the cell monitor 170 can monitor the total voltage of the fuel cell 100 by summing the voltage for each cell and each group voltage.
  • the fuel cell 100 is connected to a drive motor (load) 13 for running the vehicle, and supplies power to the drive motor 110.
  • the first boost converter 120, the capacitor 130, and the drive inverter 140 for the fuel cell 100 are connected to the power supply path from the fuel cell 100 to the drive motor 110 in order from the fuel cell 100 side.
  • the electric power generated by the fuel cell 100 is boosted by the first boost converter 120 and supplied to the drive motor 110 via the drive inverter 140.
  • the first boost converter 120 is, for example, a multi-phase converter that includes a plurality of (for example, four) boosters, and each booster includes a reactor, a transistor, and a diode. Note that the first boost converter 120 may be a single-phase converter.
  • the drive motor 110 is, for example, a three-phase AC motor.
  • the drive inverter 140 to which the drive motor 110 is connected converts a direct current into a three-phase alternating current and supplies it to the drive motor 110.
  • the fuel cell system 1 includes a battery 150 capable of discharging power to the drive motor 110 and charging power from the fuel cell 100.
  • a second boost converter 160 for battery 150 is connected to the power supply path from battery 150 to drive motor 110.
  • the power supply path of the battery 150 is connected to the power supply path of the fuel cell 100, and the power from the battery 150 can be supplied to the drive motor 110.
  • the second boost converter 160 is a DC voltage converter, and has a function of adjusting the DC voltage input from the battery 150 and outputting it to the drive motor 110 side, and a DC input from the fuel cell 100 or the drive motor 110. And a function of adjusting the voltage and outputting it to the battery 150. Such a function of the second boost converter 160 realizes charging / discharging of the battery 150.
  • the fuel cell system 1 includes a control device (estimation device, output control device) 200.
  • the control device 200 is connected to the fuel cell 100, the first boost converter 120, the battery 150, the second boost converter 160, the drive inverter 140, and the drive motor 110.
  • the control device 200 comprehensively controls these connected devices.
  • the cell monitor 170 connected to the fuel cell 100 is also connected to the control device 200, and the detection result of the cell monitor 170 is transmitted to the control device 200.
  • the cell monitor 170 that detects the group voltage of two cells in one channel has been described for the central cell excluding both ends in the cell stacking direction, but three or more cells are detected in one channel.
  • the group voltage may be detected.
  • the total voltage of the fuel cell 100 is obtained.
  • the total voltage A1 of the fuel cell 100 may be a total value of the cell voltages of the end cells detected by the cell monitor 170 and the group voltages of the central cell, or the fuel cell system 1 outputs the output voltage of the fuel cell 100. If a voltage sensor for detecting the voltage is provided, the detection value of this voltage sensor may be used.
  • the average cell of the fuel cell 100 is calculated from the total voltage A1 of the fuel cell 100 and the number of cells of the fuel cell 100 (200 in this embodiment) stored in advance in the memory in the control device 200.
  • the voltage Vave is determined. Specifically, the average cell voltage Vave is obtained by dividing the total voltage A1 of the fuel cell 100 by the number of cells.
  • the cell voltage is output even though there is a cell that outputs a voltage lower than the average cell voltage Vave. There may be a disadvantage that the operation control of the fuel cell 100 is inappropriately performed without being considered.
  • the combination of the two cells is the most unfavorable combination, which is a combination of a cell that outputs the lowest voltage and a cell that outputs the highest cell voltage among all the cells.
  • the maximum cell voltage is estimated from the average cell voltage Vave.
  • the variation of the cell voltage is quantified to a predetermined constant by, for example, statistically processing the results of experiments and simulations in advance, and this constant is stored in the memory of the control device 200.
  • the added value of this constant and the average cell voltage Vave is set to the first estimated value Vmax1 of the highest cell voltage.
  • constants applicable constants and standard deviations can be applied, but are not limited thereto.
  • the variation in cell voltage is represented by a normal distribution, for example.
  • the variation in the cell voltage varies depending on the operating conditions of the fuel cell 100, for example, the temperature of the fuel cell 100 or the coolant temperature of the fuel cell 100, the output current of the fuel cell 100, the load, or the required power for the fuel cell 100. Variations in the cell voltage set for each operating condition of the battery 100 may be mapped, and these maps may be used properly.
  • ⁇ Insufficient oxidizing gas supply> For example, when the amount of oxidant gas supplied to the fuel cell 100 is lower than a predetermined value, such as during rapid warm-up operation or intermittent operation, the cell voltage varies significantly.
  • the rapid warm-up operation is to reduce the power generation efficiency by reducing the air stoichiometry at the time of low temperature start (for example, below the freezing point) than during the normal operation, and increase the heat generation amount of the fuel cell 100 instead.
  • the intermittent operation is an operation in which the supply of the oxidizing gas and the fuel gas to the fuel cell 100 is temporarily stopped at the time of low load operation (for example, during idling or traveling in traffic).
  • the second highest cell voltage estimation unit 220 calculates the output current and output voltage of the fuel cell 100 during normal power generation.
  • a reference IV map current voltage map showing the relationship is referred to. Since the IV characteristics vary depending on the temperature (cooling water temperature) of the fuel cell 100, the maximum cell voltage is estimated from the reference IV map, the temperature (or cooling water temperature) A5 of the fuel cell 100, and the output current A6.
  • a value obtained by dividing the output voltage V of the fuel cell 100 estimated from the reference IV map by the number of cells is set as the second estimated value Vmax2 of the highest cell voltage.
  • the reference IV map is stored in a memory in the control device 200.
  • the lowest cell voltage estimation unit 230 first, the lowest channel voltage (lowest group average voltage) A2 having the lowest average cell voltage is specified from each group in the central cell. Next, from the value obtained by doubling the lowest channel voltage A2, the first estimated value Vmax1 or the second estimated value Vmax2 of the highest cell voltage that is selected by the switch 240 depending on the operating state of the fuel cell 100 is obtained. Subtraction is performed to obtain a provisional estimate of the lowest cell voltage.
  • the first estimated value Vmax1 of the highest cell voltage is subtracted from the value obtained by doubling the lowest channel voltage A2, thereby obtaining the provisional estimated value Vmin1 of the lowest cell voltage. It is done. Further, when the oxidizing gas supply is insufficient, as shown in FIG. 3, the second estimated value Vmax2 of the highest cell voltage is subtracted from the value obtained by doubling the lowest channel voltage A2, thereby obtaining the provisional estimated value Vmin2 of the lowest cell voltage. Is required.
  • the comparison setting unit 250 compares the provisional estimated value Vmin1 or Vmin2 of the lowest cell voltage thus obtained with each cell voltage Vc of the end cell, and finally the minimum value thereof is determined. It is selected and set to the lowest cell voltage estimated value A3.
  • control device 200 When the control device 200 detects that the minimum cell voltage estimated value A3 is lower than a predetermined low voltage threshold, it imposes a limit on the upper limit value of the output current of the fuel cell 100 or supplies an oxidizing gas. Implement voltage recovery control such as increasing the amount (air blow). As a result, it is possible to prevent damage to the fuel cell 100 due to the cell voltage of a specific cell being lower than a predetermined threshold.
  • the lowest cell voltage is estimated using the estimated value (Vmax1 or Vmax2) of the highest cell voltage. This is based on the knowledge of the inventors of the present invention that the variation in the highest cell voltage is smaller than the variation in the lowest cell voltage.
  • the estimation method of the maximum cell voltage is changed between the normal operation and the shortage of the oxidizing gas supply.
  • the measured value of the cell voltage that is, the voltage detected by the cell monitor 170 is used for estimation of the maximum cell voltage, so that the highest cell can be referred to the reference IV map.
  • the minimum cell voltage it is possible to estimate the minimum cell voltage with high accuracy.
  • the maximum cell voltage is estimated by referring to the reference IV map. It is possible to estimate the minimum cell voltage with higher accuracy than in the case where measured values are used.
  • one group is formed by two cells has been described as an example, but one group is formed by an arbitrary number of three or more cells, and cell voltages of three or more cells are formed. May be monitored on one channel.
  • the lowest cell voltage estimation unit 230 obtains the first estimated value Vmax1 or Vmax2 of the highest cell voltage from a value obtained by multiplying the lowest cell group voltage A2 by N. By subtracting a value obtained by multiplying (N-1) times, an estimated value or provisional estimated value of the minimum cell voltage is obtained.
  • SYMBOLS 1 Fuel cell system, 100 ... Fuel cell, 170 ... Cell monitor (output voltage sensor), 200 ... Control apparatus (estimation apparatus, output control apparatus), 210 ... 1st highest cell voltage estimation part, 220 ... 2nd highest Cell voltage estimation unit, 230 ... lowest cell voltage estimation unit, 240 ... switch, 250 ... comparison setting unit

Landscapes

  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 燃料ガスと酸化ガスとの電気化学反応によって発電するセルが複数積層してなる燃料電池と、複数セル毎の群電圧を検出することが可能なセルモニタと、最低セル電圧を推定する推定装置と、を備えた燃料電池システムであって、前記推定装置は、最高セル電圧を推定する最高セル電圧推定部を備え、前記群電圧のうち最低電圧値である群の平均電圧を最低郡平均電圧と定義した場合に、この最低群平均電圧と前記最高セル電圧の推定値とを用いて前記最低セル電圧を推定する。

Description

燃料電池システム
 本発明は、酸化ガスと燃料ガスとの電気化学反応により発電するセルが複数積層されてなる燃料電池をエネルギ源とする燃料電池システムに係り、特に、セル電圧を監視する技術に関する。
 従来から、燃料ガスと酸化ガスとの電気化学反応によって発電する燃料電池をエネルギ源とする燃料電池システムとして種々のものが開発されている。その多くは、燃料電池が最小発電単位であるセルを多数積層してなるスタック構造とされている。各セルは、イオン交換膜からなる電解質膜の両側にそれぞれ空気極及び燃料極が配置されたMEA(膜・電極構造体)と、MEAの両側に配置された一対のセパレータとを備えてなる。
 スタック構造の燃料電池を備えた燃料電池システムにおいては、各セルが所望の発電性能を有しているか否かを常時監視する必要があることから、セルモニタを備えているのが一般的である。ここで、セルは例えば数十から数百という単位で多数積層されるものである。そこで、全てのセルの出力電圧を検出する代わりに、複数のセルで構成される群を1つの単位として、群単位で出力電圧を監視することが行なわれる。
 しかしながら、群単位での電圧監視では、所定電圧値以下に電圧低下を来たしているセルが存在している群を特定することはできても、最低セル電圧を特定することはできない。その対策として、例えば特許文献1には、最低群電圧から平均セル電圧を差し引いた値を最低セル電圧と推定する技術が開示されている。
特開2008-021611号公報
 ところで、セル電圧が所定の閾値よりも低下した場合は、その状態を放置すると、セルが過熱状態となり、電解質膜が溶融して電解質膜に孔が空いてしまうことがあることから、燃料電池の出力電流を制限する等の対応が必要となる。
 しかしながら、最低セル電圧の推定精度が低いと、最低セル電圧が所定の閾値以上であると誤認したまま燃料電池の出力制御が行なわれるため、実際のセル電圧が所定の閾値よりも低下しているにも拘らず、燃料電池の出力電流を下げるなどの制限処理が何ら行なわれない状態が放置されてしまう。
 特許文献1に開示の技術によれば、最低セル電圧の推定精度をある程度高めることはできるものの、セル電圧が低い側と高い側とでは、低電圧側の方がセル電圧のばらつきが大きくなることから、最低群電圧と平均セル電圧との差からでは、実際の最低セル電圧を高精度に推定することに一定の限界があった。
 本発明は、上記事情に鑑みてなされたもので、最低セル電圧の推定精度を高めることにより、セル電圧低下による燃料電池の損傷を抑制することが可能な燃料電池システムを提供することを目的としている。
 上記目的を達成するために、本発明の燃料電池システムは、燃料ガスと酸化ガスとの電気化学反応によって発電するセルが複数積層してなる燃料電池と、複数セル毎の群電圧を検出することが可能なセルモニタと、最低セル電圧を推定する推定装置と、を備えた燃料電池システムであって、前記推定装置は、最高セル電圧を推定する最高セル電圧推定部を備え、前記群電圧のうち最低電圧値である群の平均電圧を最低郡平均電圧と定義した場合に、この最低群平均電圧と前記最高セル電圧の推定値とを用いて前記最低セル電圧を推定するものである。
 本発明の発明者は、最低セル電圧の推定方法について鋭意研究を積み重ねてきた結果、最高セル電圧のばらつきの方が、最低セル電圧のばらつきよりも小さいという知見を得た。本発明はこのような知見に基づきなされたもので、最高セル電圧の推定値を用いて最低セル電圧が推定される。よって、この構成によれば、より高精度に最低セル電圧を推定することが可能となる。
 上記構成において、1つの前記群が2つの前記セルから構成されるものであり、前記推定装置は、前記最低群平均電圧を2倍した値から前記最高セル電圧の推定値を減算した値を前記最低セル電圧と推定してもよい。
 この構成によれば、2つのセルの組み合わせが、全てのセルの中で最低電圧を出力しているセルと最高セル電圧を出力しているセルとの組み合わせとなる、最も好ましくない組み合わせが考慮され、最低セル電圧の推定値が実電圧よりも高く推定されてしまう不具合の発生が抑制される。
 前記推定装置は、前記燃料電池への酸化ガス供給量が所定値以下である酸化ガス供給不足時と、それ以外の通常運転時とで、前記最高セル電圧推定部における前記最高セル電圧の推定方法を変更してもよい。
 この構成においては、燃料電池の運転状態に応じて、より推定精度の高い推定方法が選択されて最高セル電圧が推定される。
 例えば、前記最高セル電圧推定部は、前記通常運転時においては、前記燃料電池の総電圧を前記セルの総数で除算して求められる平均電圧にセル電圧のばらつきを示す定数を加算した値を前記最高セル電圧の推定値としてもよい。
 また、前記最高セル電圧推定部は、前記酸化ガス供給不足時においては、前記燃料電池の温度及び出力電流と、前記燃料電池の電流と電圧との関係を示す電流電圧マップとから前記燃料電池の出力電圧を推定し、その推定した出力電圧を前記セルの総数で除算した値を前記最高セル電圧の推定値としてもよい。
 前記セルモニタが、前記燃料電池のセル積層方向両端部にそれぞれ位置する端部セルの各セルのセル電圧も検出可能に構成されている場合には、前記推定装置は、前記最低群平均電圧と前記最高セル電圧の推定値とを用いて推定した前記最低セル電圧と、前記端部セル中の最低セル電圧とを比較し、それらの最小値を最低セル電圧と推定してもよい。
 端部セルでは、他のセルよりも電気化学反応の結果生成される水の量が多く、この生成水が良好に排出されない場合には、他のセルよりもセル電圧が低くなる。
 この構成においては、最低セル電圧の推定値と端部セルの最低セル電圧値のうち、より低い方の値が最低セル電圧の推定値に設定されるので、最低セル電圧の推定値が実電圧よりも高く推定されてしまう不具合の発生がより確実に抑制される。
 前記燃料電池の出力を制御する出力制御装置を備える場合には、前記制御装置は、前記推定装置が推定した最低セル電圧が所定の低電圧閾値を下回っていることを検知した場合には、セル電圧を回復させるための制御を実施してもよい。
 この構成においては、特定のセルのセル電圧が所定の閾値よりも低下している場合に、セル電圧の回復措置が採られるので、燃料電池の破損を未然に防止することが可能となる。
 本発明によれば、最低セル電圧の推定精度が向上し、セル電圧低下による燃料電池の損傷を抑制することが可能になる。
本発明の一実施形態に係る燃料電池システムの概略回路図である。 図1の制御装置200によって実施される制御内容の一例を示すブロック図である。 図1の制御装置200によって実施される制御内容の他の例を示すブロック図である。
 以下、添付図面を参照して、本発明に係る燃料電池システムの実施形態について説明する。本実施形態では、本発明に係る燃料電池システムを燃料電池車両(FCHV;Fuel Cell Hybrid Vehicle)の車載発電システムとして用いた場合について説明する。
 図1に示すように、燃料電池システム1は、反応ガスである酸化ガスと燃料ガスの電気化学反応により電力を発生する燃料電池100を備えている。燃料電池100は、例えば、高分子電解質形燃料電池であり、多数のセルを積層したスタック構造となっている。
 セルは、イオン交換膜からなる電解質の一方の面に空気極を有し、他方の面に燃料極を有し、さらに空気極および燃料極を両側から挟み込むように一対のセパレータを有する構造となっている。この場合、一方のセパレータの水素ガス流路に水素ガスが供給され、他方のセパレータの酸化ガス流路に酸化ガスである空気が供給され、これらの反応ガスが電気化学反応することで電力が発生する。
 燃料電池100には、セル毎及び複数セル毎の群電圧を測定するセルモニタ(出力電圧センサ)170が接続されている。例えば、総セル数が200である場合に、セル積層方向の一方の端部における10個のセルと他方の端部における10個のセルについては、各セルにセル電圧端子が設けられており、残り180個のセルについては、2つのセル毎に1つのセル電圧端子が設けられている。
 つまり、セルモニタ170は、セル積層方向の両端部に位置する複数のセル(以下、「端部セル」と称する場合がある。)についてはセル毎にセル電圧を監視することができ、残りのセル(以下、「中央部セル」と称する場合がある。)については2つのセル毎の群電圧及び2つのセルの平均セル電圧(群電圧の平均値)を監視することができる。加えて、セルモニタ170は、それらセル毎の電圧と各群電圧とを合計することによって、燃料電池100の総電圧を監視することができる。
 燃料電池100は、車両を走行させるための駆動モータ(負荷)13に接続されており、駆動モータ110へ電力を供給する。この燃料電池100から駆動モータ110への電力供給経路には、燃料電池100側から順に、燃料電池100用の第1の昇圧コンバータ120、コンデンサ130及び駆動インバータ140が接続されている。そして、燃料電池100で発電された電力が第1の昇圧コンバータ120で昇圧され、駆動インバータ140を介して駆動モータ110へ給電される。
 第1の昇圧コンバータ120は、例えば複数(例えば、4つ)の昇圧部を備えてなるマルチフェーズ(多相)コンバータであり、各昇圧部は、それぞれリアクトル,トランジスタ及びダイオードを備えている。なお、第1の昇圧コンバータ120は、単相のコンバータであってもよい。
 駆動モータ110は、例えば三相交流モータである。駆動モータ110が接続された駆動インバータ140は、直流電流を三相交流に変換し、駆動モータ110に供給する。
 燃料電池システム1は、駆動モータ110へ電力を放電可能かつ燃料電池100からの電力を充電可能なバッテリ150を備えている。また、バッテリ150から駆動モータ110への電力供給経路には、バッテリ150用の第2の昇圧コンバータ160が接続されている。
 バッテリ150の電力供給経路は、燃料電池100の電力供給経路に接続されており、バッテリ150からの電力が駆動モータ110へ供給可能とされている。
 第2の昇圧コンバータ160は、直流の電圧変換器であり、バッテリ150から入力された直流電圧を調整して駆動モータ110側へ出力する機能と、燃料電池100または駆動モータ110から入力された直流電圧を調整してバッテリ150に出力する機能と、を有する。このような第2の昇圧コンバータ160の機能により、バッテリ150の充放電が実現される。
 燃料電池システム1は、制御装置(推定装置、出力制御装置)200を備えている。この制御装置200には、燃料電池100、第1の昇圧コンバータ120、バッテリ150、第2の昇圧コンバータ160、駆動インバータ140及び駆動モータ110が接続されている。制御装置200は、これら接続機器を統括的に制御する。
 制御装置200には、燃料電池100に接続されたセルモニタ170も接続されており、このセルモニタ170の検出結果が制御装置200へ送信される。本実施形態では、セル積層方向の両端部を除く中央部セルについては、1つのチャンネルで2つのセルの群電圧を検出するセルモニタ170の例について説明したが、1つのチャンネルで3以上のセルの群電圧を検出することとしてもよい。
 次に、図2を参照しながら、最低セル電圧を推定する処理の一例及び最低セル電圧の推定値を用いた電圧回復制御の一例について説明する。これらの処理及び制御は、いずれも制御装置200によって実施される。
 本実施形態においては、最高セル電圧の推定値を用いて最低セル電圧を推定することに第1の特徴があり、また、通常発電時と酸化ガス供給不足時とで最高セル電圧の推定方法を変えることに第2の特徴がある。まず、最高セル電圧の推定方法について、通常発電時と酸化ガス供給不足時とに場合を分けて説明する。
<通常発電時>
 第1の最高セル電圧推定部210においては、まず、燃料電池100の総電圧が求められる。燃料電池100の総電圧A1は、セルモニタ170によって検出された端部セルの各セル電圧と中央部セルの各群電圧との合計値としてもよいし、燃料電池システム1が燃料電池100の出力電圧を検出する電圧センサを備えている場合には、この電圧センサの検出値としてもよい。
 次に、燃料電池100の総電圧A1と、制御装置200内のメモリに予め記憶されている燃料電池100のセル枚数(本実施形態では、200となる。)とから、燃料電池100の平均セル電圧Vaveが求められる。具体的には、燃料電池100の総電圧A1がセル数で除算されることにより、平均セル電圧Vaveが求められる。
 セル電圧の実測値は、セル毎にバラつくことがあるので、このバラつきを何ら考慮しないと、平均セル電圧Vaveよりも低い電圧を出力しているセルが存在するにもかかわらず、その存在が考慮されないまま燃料電池100の運転制御が不適切に行われるという不都合が生じ得る。
 そこで、本実施形態では、2つのセルの組み合わせが、全てのセルの中で最低電圧を出力しているセルと最高セル電圧を出力しているセルとの組み合わせとなる、最も好ましくない組み合わせの可能性を考慮したうえで、まず、平均セル電圧Vaveから最高セル電圧を推定することとしている。
 例えば、予め実験やシミューレーションの結果が統計的に処理される等してセル電圧のばらつきが所定の定数に定量化され、この定数が制御装置200のメモリに記憶されている。そして、この定数と平均セル電圧Vaveとの加算値が最高セル電圧の第1推定値Vmax1に設定される。定数の例としては、適合定数や標準偏差の適用が可能であるが、それらに限定されるわけではない。
 セル電圧のばらつきは、例えば正規分布によって表される。セル電圧のばらつきは、燃料電池100の運転条件、例えば、燃料電池100の温度あるいは燃料電池100の冷却水温度、燃料電池100の出力電流、負荷あるいは燃料電池100に対する要求電力によって変動するため、燃料電池100の運転条件毎に設定されたセル電圧のばらつきがマップ化されていて、それらのマップの使い分けが可能とされていてもよい。
<酸化ガス供給不足時>
 例えば急速暖機運転時や間欠運転時のように、燃料電池100への酸化ガス供給量が所定値よりも低い場合には、セル電圧のばらつきが顕著になる。なお、急速暖機運転とは、低温始動時(例えば、氷点下指導時)にエアストイキを通常運転時よりも絞ることにより、発電効率を敢えて下げ、その代わりに燃料電池100の発熱量を増やすことを意図した運転である。間欠運転とは、低負荷運転時(例えば、アイドリング中や渋滞走行中等)に燃料電池100への酸化ガス及び燃料ガスの供給を一時的に停止させる運転である。
 以上のような酸化ガス供給量の不足時は、セルモニタ170の検出値が用いられる代わりに、第2の最高セル電圧推定部220において、通常発電時における燃料電池100の出力電流と出力電圧との関係を示す基準IVマップ(電流電圧マップ)が参照される。IV特性は、燃料電池100の温度(冷却水温)によって異なるため、この基準IVマップと燃料電池100の温度(又は冷却水温度)A5及び出力電流A6から、最高セル電圧が推定される。
 具体的には、基準IVマップから推定された燃料電池100の出力電圧Vがセル数で除算された値が最高セル電圧の第2推定値Vmax2に設定される。なお、基準IVマップは、制御装置200内のメモリに記憶されている。
 次に、以上のようにして推定された最高セル電圧を用いて最低セル電圧が推定されるプロセスについて説明する。
 最低セル電圧推定部230においては、まず、中央部セルにおける各群の中から、最も平均セル電圧の低い最低チャンネル電圧(最低群平均電圧)A2が特定される。次に、この最低チャンネル電圧A2を2倍した値から、燃料電池100の運転状態に応じてスイッチ240によっていずれか一方が選択される最高セル電圧の第1推定値Vmax1又は第2推定値Vmax2が減算され、最低セル電圧の暫定推定値が求められる。
 つまり、通常運転時は、図2に示すように、最低チャンネル電圧A2を2倍した値から最高セル電圧の第1推定値Vmax1が減算されることにより、最低セル電圧の暫定推定値Vmin1が求められる。また、酸化ガス供給不足時は、図3に示すように、最低チャンネル電圧A2を2倍した値から最高セル電圧の第2推定値Vmax2が減算されることにより、最低セル電圧の暫定推定値Vmin2が求められる。
 しかる後に、比較設定部250において、このようにして求められた最低セル電圧の暫定推定値Vmin1又はVmin2と、端部セルの各セル電圧Vcとが比較され、最終的に、それらの最小値が選択されて最低セル電圧推定値A3に設定される。
 そして、制御装置200は、最低セル電圧推定値A3が所定の低電圧閾値よりも低下したことを検知した場合には、燃料電池100の出力電流の上限値に制限を課す、或いは、酸化ガス供給量を増量する(エアブロー)等の電圧回復制御を実施する。これにより、特定のセルのセル電圧が所定の閾値よりも低下していることによる燃料電池100の破損を未然に防止することが可能となる。
 また、本実施形態では、最高セル電圧の推定値(Vmax1又はVmax2)を用いて最低セル電圧を推定している。これは、最高セル電圧のばらつきの方が、最低セル電圧のばらつきよりも小さいという本発明の発明者の知見に基づくものである。
 この知見によれば、最低チャンネル電圧A2をそのまま最低セル電圧の推定値とする場合や、上記特許文献1に開示されている技術と比較して、より高精度に最低セル電圧を推定することができる。よって、本実施形態では、燃料電池100の破損防止をより確実にすることが可能になることに加えて、上記電圧回復制御の実施を極力抑制することも可能になる。
 さらに、本実施形態では、通常運転時と酸化ガス供給不足時とで、最高セル電圧の推定方法を変えている。これにより、セル電圧のばらつきの比較的小さい通常運転時においては、セル電圧の実測値、すなわち、セルモニタ170による検出電圧を最高セル電圧の推定に用いることで、基準IVマップを参照して最高セル電圧を推定する場合と比較して、高精度の最低セル電圧の推定が可能になっている。
 一方、セル電圧のばらつきの比較的大きい酸化ガス供給不足時においては、セルモニタ170による検出電圧を最高セル電圧の推定に用いる代わりに、基準IVマップを参照して最高セル電圧を推定することで、実測値を用いる場合よりも高精度の最低セル電圧の推定が可能になっている。
 上述した実施形態においては、2つのセルで1つの群を構成する場合を例に説明したが、3つ以上の任意の数のセルで1つの群を構成し、3つ以上のセルのセル電圧を1つのチャンネルで監視してもよい。
 例えば、1つの群を構成するセル数をNとした場合には、最低セル電圧推定部230においては、最低セル群電圧A2をN倍した値から、最高セル電圧の第1推定値Vmax1又はVmax2を(N-1)倍した値を減算することにより、最低セル電圧の推定値あるいは暫定推定値が求められる。
1…燃料電池システム、100…燃料電池、170…セルモニタ(出力電圧センサ)、200…制御装置(推定装置、出力制御装置)、210…第1の最高セル電圧推定部、220…第2の最高セル電圧推定部、230…最低セル電圧推定部、240…スイッチ、250…比較設定部

Claims (7)

  1.  燃料ガスと酸化ガスとの電気化学反応によって発電するセルが複数積層してなる燃料電池と、
     複数セル毎の群電圧を検出することが可能なセルモニタと、
     最低セル電圧を推定する推定装置と、を備え、
     前記推定装置は、最高セル電圧を推定する最高セル電圧推定部を備え、前記群電圧のうち最低電圧値である群の平均電圧を最低郡平均電圧と定義した場合に、この最低群平均電圧と前記最高セル電圧の推定値とを用いて前記最低セル電圧を推定する燃料電池システム。
  2.  請求項1に記載の燃料電池システムにおいて、
     1つの前記群が2つの前記セルから構成されるものであり、
     前記推定装置は、前記最低群平均電圧を2倍した値から前記最高セル電圧の推定値を減算した値を前記最低セル電圧と推定する燃料電池システム。
  3.  請求項1又は2に記載の燃料電池システムにおいて、
     前記推定装置は、前記燃料電池への酸化ガス供給量が所定値以下である酸化ガス供給不足時と、それ以外の通常運転時とで、前記最高セル電圧推定部における前記最高セル電圧の推定方法を変更する燃料電池システム。
  4.  請求項3に記載の燃料電池システムにおいて、
     前記最高セル電圧推定部は、前記通常運転時においては、前記燃料電池の総電圧を前記セルの総数で除算して求められる平均電圧にセル電圧のばらつきを示す定数を加算した値を前記最高セル電圧の推定値とする燃料電池システム。
  5.  請求項3に記載の燃料電池システムにおいて、
     前記最高セル電圧推定部は、前記酸化ガス供給不足時においては、前記燃料電池の温度及び出力電流と、前記燃料電池の電流と電圧との関係を示す電流電圧マップとから前記燃料電池の出力電圧を推定し、その推定した出力電圧を前記セルの総数で除算した値を前記最高セル電圧の推定値とする燃料電池システム。
  6.  請求項1から5のいずれか1項に記載の燃料電池システムにおいて、
     前記セルモニタは、前記燃料電池のセル積層方向両端部にそれぞれ位置する端部セルの各セルのセル電圧も検出可能に構成されており、
     前記推定装置は、前記最低群平均電圧と前記最高セル電圧の推定値とを用いて推定した前記最低セル電圧と、前記端部セル中の最低セル電圧とを比較し、それらの最小値を最低セル電圧と推定する燃料電池システム。
  7.  請求項1から6のいずれか1項に記載の燃料電池システムにおいて、
     前記燃料電池の出力を制御する出力制御装置を備え、
     前記制御装置は、前記推定装置が推定した最低セル電圧が所定の低電圧閾値を下回っていることを検知した場合には、セル電圧を回復させるための制御を実施する燃料電池システム。
PCT/JP2012/050862 2012-01-17 2012-01-17 燃料電池システム WO2013108369A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013554120A JP5884833B2 (ja) 2012-01-17 2012-01-17 燃料電池システム
EP12866214.5A EP2806489B1 (en) 2012-01-17 2012-01-17 Fuel cell system
PCT/JP2012/050862 WO2013108369A1 (ja) 2012-01-17 2012-01-17 燃料電池システム
US14/372,504 US10267862B2 (en) 2012-01-17 2012-01-17 Fuel cell system with minimum cell voltage estimation
CN201280067378.2A CN104067428B (zh) 2012-01-17 2012-01-17 燃料电池系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/050862 WO2013108369A1 (ja) 2012-01-17 2012-01-17 燃料電池システム

Publications (1)

Publication Number Publication Date
WO2013108369A1 true WO2013108369A1 (ja) 2013-07-25

Family

ID=48798819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050862 WO2013108369A1 (ja) 2012-01-17 2012-01-17 燃料電池システム

Country Status (5)

Country Link
US (1) US10267862B2 (ja)
EP (1) EP2806489B1 (ja)
JP (1) JP5884833B2 (ja)
CN (1) CN104067428B (ja)
WO (1) WO2013108369A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053037A1 (ja) * 2013-10-09 2015-04-16 日産自動車株式会社 燃料電池システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104360128B (zh) * 2014-11-03 2017-05-17 上海空间电源研究所 一种蓄电池单体取平均电压的电路和方法
JP6399053B2 (ja) * 2016-07-26 2018-10-03 トヨタ自動車株式会社 燃料電池システム
DE102017214974A1 (de) * 2017-08-28 2019-02-28 Audi Ag Verfahren zum Schutz von Einzelzellen, Brennstoffzellensystem und Kraftfahrzeug
US10634727B2 (en) * 2017-11-29 2020-04-28 GM Global Technology Operations LLC Fuel cell stack cell voltage sensor diagnostic
JP7306320B2 (ja) * 2020-05-11 2023-07-11 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御プログラム
CN112713289B (zh) * 2020-12-25 2022-04-15 中国第一汽车股份有限公司 一种燃料电池控制方法、装置、设备及存储介质
CN113193216B (zh) * 2021-04-25 2022-08-05 湖北工业大学 不依赖单片电压巡检的多电堆燃料电池系统及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006508508A (ja) * 2002-12-03 2006-03-09 ハイドロジェニクス コーポレイション 燃料電池電圧を監視するための方法及び装置
JP2007059319A (ja) * 2005-08-26 2007-03-08 Nissan Motor Co Ltd 燃料電池システム
JP2008002161A (ja) 2006-06-22 2008-01-10 Zen Giken Kk 高負荷用鉄筋交差部締結具
JP2008171677A (ja) * 2007-01-11 2008-07-24 Toyota Motor Corp 燃料電池システム
JP2008226674A (ja) * 2007-03-13 2008-09-25 Honda Motor Co Ltd 燃料電池システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2018639A1 (en) * 1990-06-08 1991-12-08 James D. Blair Method and apparatus for comparing fuel cell voltage
JP4396173B2 (ja) * 2003-07-31 2010-01-13 トヨタ自動車株式会社 燃料電池の制御装置及びコンピュータプログラム
JP5034160B2 (ja) * 2004-11-26 2012-09-26 日産自動車株式会社 燃料電池システム
WO2006103504A1 (en) * 2005-03-29 2006-10-05 Nissan Motor Co., Ltd. Fuel cell system and fuel cell system control method
US20080032163A1 (en) * 2006-06-23 2008-02-07 Usborne John D Preventing corrosion during start up and shut down of a fuel cell
JP2008021611A (ja) * 2006-07-14 2008-01-31 Honda Motor Co Ltd 燃料電池の電圧測定システム及び電圧測定方法
JP4501908B2 (ja) * 2006-08-11 2010-07-14 日産自動車株式会社 電動機システム
JP5109330B2 (ja) * 2006-10-19 2012-12-26 日産自動車株式会社 燃料電池システム
JP5099580B2 (ja) 2006-11-22 2012-12-19 トヨタ自動車株式会社 燃料電池システム
US20100114513A1 (en) * 2008-10-31 2010-05-06 Gm Global Technology Operations, Inc. Estimating minimum voltage of fuel cells
US8093910B2 (en) * 2009-03-04 2012-01-10 International Business Machines Corporation Cross-talk processing in serial link buses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006508508A (ja) * 2002-12-03 2006-03-09 ハイドロジェニクス コーポレイション 燃料電池電圧を監視するための方法及び装置
JP2007059319A (ja) * 2005-08-26 2007-03-08 Nissan Motor Co Ltd 燃料電池システム
JP2008002161A (ja) 2006-06-22 2008-01-10 Zen Giken Kk 高負荷用鉄筋交差部締結具
JP2008171677A (ja) * 2007-01-11 2008-07-24 Toyota Motor Corp 燃料電池システム
JP2008226674A (ja) * 2007-03-13 2008-09-25 Honda Motor Co Ltd 燃料電池システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053037A1 (ja) * 2013-10-09 2015-04-16 日産自動車株式会社 燃料電池システム
JPWO2015053037A1 (ja) * 2013-10-09 2017-03-09 日産自動車株式会社 燃料電池システム
US10511040B2 (en) 2013-10-09 2019-12-17 Nissan Motor Co., Ltd. Fuel cell system

Also Published As

Publication number Publication date
JP5884833B2 (ja) 2016-03-15
JPWO2013108369A1 (ja) 2015-05-11
EP2806489B1 (en) 2017-08-16
EP2806489A4 (en) 2015-11-11
CN104067428B (zh) 2017-03-08
CN104067428A (zh) 2014-09-24
US20140333316A1 (en) 2014-11-13
EP2806489A1 (en) 2014-11-26
US10267862B2 (en) 2019-04-23

Similar Documents

Publication Publication Date Title
JP5884833B2 (ja) 燃料電池システム
US8546033B2 (en) Fuel cell apparatus comprising a high potential avoidance voltage setting device
JP4877656B2 (ja) 燃料電池システムおよびその電流制御方法
JP5126480B2 (ja) 燃料電池システム
JP5041010B2 (ja) 燃料電池システム
JP4320686B2 (ja) 燃料電池システムおよびその電流制限方法
KR101151748B1 (ko) 연료전지시스템 및 연료전지 차량
JP4761162B2 (ja) 燃料電池システム
JP4424419B2 (ja) 燃料電池システム
JP4274278B2 (ja) 燃料電池システム
WO2013099009A1 (ja) 燃料電池システム
JP2008103250A (ja) 燃料電池システム及びその運転方法
JP2016096019A (ja) 燃料電池システムおよびそのセル電圧の復帰方法
US7164976B2 (en) Control apparatus for fuel cell vehicle
JP4615379B2 (ja) 燃料電池システム
JP4772391B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
US20170077533A1 (en) Control method and system of fuel cell system
JP5769083B2 (ja) 燃料電池システム及び燃料電池車両
JP2008293674A (ja) 漏電検出器
JP5780126B2 (ja) 燃料電池システム
JP2013171682A (ja) 燃料電池システム及び燃料電池の制御方法
JP2005063801A (ja) 燃料電池システムおよび移動体
JP2009043645A (ja) 燃料電池の劣化判定システム
US20200276903A1 (en) Power source system and power source system control method
JP2008282616A (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013554120

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012866214

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012866214

Country of ref document: EP

Ref document number: 14372504

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE