WO2013107355A1 - Anti-hbc 定量检测方法及其在监控慢性乙肝患者病情发展和预测治疗疗效中的用途 - Google Patents

Anti-hbc 定量检测方法及其在监控慢性乙肝患者病情发展和预测治疗疗效中的用途 Download PDF

Info

Publication number
WO2013107355A1
WO2013107355A1 PCT/CN2013/070573 CN2013070573W WO2013107355A1 WO 2013107355 A1 WO2013107355 A1 WO 2013107355A1 CN 2013070573 W CN2013070573 W CN 2013070573W WO 2013107355 A1 WO2013107355 A1 WO 2013107355A1
Authority
WO
WIPO (PCT)
Prior art keywords
hepatitis
hbc
patients
core protein
virus core
Prior art date
Application number
PCT/CN2013/070573
Other languages
English (en)
French (fr)
Inventor
袁权
宋浏伟
周文彬
翁祖星
徐飞海
葛胜祥
张军
夏宁邵
Original Assignee
厦门大学
厦门万泰沧海生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学, 厦门万泰沧海生物技术有限公司 filed Critical 厦门大学
Priority to US14/373,611 priority Critical patent/US9952217B2/en
Priority to JP2014552496A priority patent/JP6283319B2/ja
Priority to CA2861917A priority patent/CA2861917C/en
Priority to EP13738450.9A priority patent/EP2805729B1/en
Priority to BR112014017877-1A priority patent/BR112014017877B1/pt
Priority to KR1020147023123A priority patent/KR101739953B1/ko
Priority to AU2013211346A priority patent/AU2013211346B2/en
Priority to ES13738450T priority patent/ES2714274T3/es
Publication of WO2013107355A1 publication Critical patent/WO2013107355A1/zh
Priority to HK14112645.8A priority patent/HK1198945A1/zh
Priority to AU2018200744A priority patent/AU2018200744B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/29Hepatitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5014Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/576Immunoassay; Biospecific binding assay; Materials therefor for hepatitis
    • G01N33/5761Hepatitis B
    • G01N33/5762Hepatitis B core antigen
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • A01K2217/052Animals comprising random inserted nucleic acids (transgenic) inducing gain of function
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0393Animal model comprising a reporter system for screening tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/01DNA viruses
    • G01N2333/02Hepadnaviridae, e.g. hepatitis B virus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2469/00Immunoassays for the detection of microorganisms
    • G01N2469/20Detection of antibodies in sample from host which are directed against antigens from microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/56Staging of a disease; Further complications associated with the disease

Definitions

  • the invention relates to the detection of Hepatitis B virus (HBV) and the clinical diagnosis of hepatitis B virus, and more particularly to the quantitative detection of hepatitis B virus core protein antibody (PE against hepatitis B core protein, Anti-HBc) ) monitoring the progression of chronic hepatitis B patients and effectively predicting patients with chronic hepatitis B (Chronic hepatitis B) receiving anti-hepatitis B virus therapy (especially interferon-based therapy and nucleoside/nucleotide-like treatment)
  • anti-HBV drugs especially interferon-based therapy and nucleoside/nucleotide-like treatment
  • Hepatitis B virus infection is one of the most important public health problems in the world. There are currently more than 350 million people infected with chronic hepatitis B virus worldwide. Chronic hepatitis B virus infection can cause chronic liver disease such as Chronic hepatitis B (CHB), Liver cirrhosis (LC) and Hepatocellular carcinoma (HCC). Hepatitis virus infection and related diseases caused by death, more than 1 million people worldwide each year [1].
  • CHB Chronic hepatitis B
  • LC Liver cirrhosis
  • HCC Hepatocellular carcinoma
  • interferon interferon
  • nucleoside or nucleotide nucleotide
  • the former includes common interferon (IFN) and peginterferon (Peg-feron, also known as long-acting interferon), mainly through the overall enhancement of the patient's immune ability, to achieve the effect of inhibiting HBV and treating CHB;
  • LMV lamivudine
  • ADV adefovir dipivoxi
  • ETV entecavir
  • telbivudine LdT
  • tenofovir etc.
  • Five species inhibit HBV replication primarily by directly inhibiting the polymerase activity of HBV.
  • HBsAg hepatitis B virus ant igen
  • HBsAg loss or HBsAg seroconvers ion the hepatitis B virus ant igen
  • Hepatitis B virus E antigen serological conversion (HBeAg seroconvers ion) is another important milestone in the natural history of chronic hepatitis B virus infection, usually accompanied by the relief of clinical hepatitis and good disease prognosis, so currently Clinicians and researchers often use "prevalence of HBeAg seroconversion in patients after treatment" as the main indicator to determine whether treatment is effective.
  • Sus ta ined virologica response SVR is also a secondary indicator for clinical efficacy in the treatment of chronic hepatitis B [2, 3].
  • IFNs and s drugs have great differences in therapeutic efficacy and drug acceptability.
  • IFNs mainly Peg-IFN or long-acting interferon
  • NAs NAs
  • the former treatment for 1 year (52 weeks) can make 30-5% of HBeAg-positive patients achieve HBeAg seroconversion, while the latter usually Only 10-30% of HBeAg-positive patients can achieve HBeAg seroconversion.
  • side effects of IFNs are more serious than those of s. Drugs are often accompanied by adverse reactions such as fever, headache, fatigue, hair loss, and leukopenia.
  • IFNs drugs mainly Peg-IFN or long-acting interferon
  • Ms drugs usually have a treatment cost below 10,000RMB.
  • HBeAg seroconversion depends on whether the patient has sufficient specific immunity against HBV, or whether he can obtain sufficient specific immunity against HBV through drug therapy. Therefore, quantitative determination of HBV-specific immunity in patients with chronic hepatitis B can predict the probability of HBeAg seroconversion when patients with chronic hepatitis B receive treatment. Serum ALT levels in patients with chronic hepatitis B have long been used as an indirect surrogate for measuring host immunity against HBV.
  • the serum ALT level of patients with chronic hepatitis B can reflect the degree of hepatocyte inflammation/necrosis, and HBV is an immunopathic virus, which causes liver inflammation/hepatocyte necrosis due to anti-HBV T cell-mediated immune response, so serum There is a correlation between ALT levels and host anti-HBV immunity. It is generally believed that patients with serum ALT levels greater than 2 times the upper limit of normal (The upper norma ll imi t, UL) have significantly higher anti-HBV treatment (meaning the probability of HBeAg seroconversion through treatment) than those without hepatitis response.
  • the upper norma ll imi t, UL have significantly higher anti-HBV treatment (meaning the probability of HBeAg seroconversion through treatment) than those without hepatitis response.
  • ALT level is more to reflect the degree of inflammation of the liver. ALT is not a specific indicator of HBV and is susceptible to other factors (such as co-immune hepatitis, alcoholic liver disease, other hepatitis viruses such as HCV infection). ), and its half-life is relatively short, and its prediction of slow hepatitis B treatment is not very reliable.
  • HBV-specific T cell immune response detection methods may also have application value in predicting the efficacy of chronic hepatitis B treatment, but its operation is cumbersome, clinical practice is very difficult to promote, and The requirements for testing specimens are high (requires detection of fresh whole blood specimens), and the application prospects are limited. In summary, there is currently no effective pre-treatment assessment in the field. Test method.
  • Hepatitis B virus protein is one of the most classical serological markers of HBV infection.
  • the qualitative detection of Anti-HBc determination of whether Anti-HBc is positive
  • the clinical diagnosis of hepatitis B virus infection has been used for more than 35 years.
  • Serum Anti-HBc positivity indicates that the subject has been or is being infected with HBV, and that the antibody is often persistent throughout the serum of HBV-infected patients.
  • the methods for detecting serum Anti-HBc antibodies have been invented mainly based on the principle of competition or inhibition of immunoassay.
  • the hepatitis B virus core protein is highly immunogenic, its serum antibody level indicates the host cell specific BBC immune response, which reflects the host's overall immunity against HBV.
  • the present inventors believe that accurate detection of serum anti-HBc levels in patients with chronic hepatitis B can indicate the specific immune response of patients with HBV, and can predict their acceptance of drugs (including interferon drugs, nucleosides / The final efficacy of the treatment of nucleotide analogues, etc.).
  • the invention relates to a method for accurately and quantitatively detecting the level of Anti-HBc antibody in serum/plasma of patients infected with hepatitis B, and the quantitative detection of Anti-HBc in monitoring the progress of chronic hepatitis B patients and predicting the treatment of patients with chronic hepatitis B The application of curative effect.
  • the present invention relates to an accurate quantitative detection of serum Anti-HBc levels
  • the immunological detection method can be realized by enzyme-linked immunosorbent or chemiluminescence detection.
  • the performance advantage of this method is that the linear dynamic range of its single detection is more than 1.5 orders of magnitude, that is, the upper limit of the single quantitative detection is more than 32 times higher than the lower limit of the accurate quantitative.
  • the basis for accurate quantitative detection of serum Ant i-HBc levels is not available in the Ant i-HBc assay prior to the present invention.
  • results obtained using this method in a series of specimens of patients with chronic hepatitis B virus infection at different stages of the disease and the natural progression of the patient's course indicate that the quantitative level of serum Ant i-HBc is highly correlated with the patient's hepatitis activity and host immune status.
  • the quantitative measurement of Ant i-HBc can effectively distinguish whether the patient is in the stage of immune activation or hepatitis activity. This indicates that the use of the Ant i-HBc quantitative detection method disclosed in the present invention or other equivalent methods is useful for monitoring and judging the progress of disease in patients with chronic hepatitis B.
  • the invention relates to an agent for quantitatively detecting hepatitis B virus core protein antibody levels for preparing a condition for monitoring chronic hepatitis B patients and/or for treating patients with chronic hepatitis B receiving anti-hepatitis B virus treatment Use in a diagnostic agent that effectively predicts its therapeutic effect.
  • the quantitative detection of the hepatitis B virus core protein antibody is achieved by one or more of the following methods: enzyme-linked immunosorbent assay, chemiluminescent immunoassay, time-resolved fluorescence assay, immunization Turbidimetry, immune layer Analytical method, immunofiltration method.
  • the linear kinetic range of the single detection of the hepatitis B virus core protein antibody level is above 1.5 orders of magnitude, that is, the upper limit of the accurate determination of the single test is higher than the lower limit of the accurate quantitation.
  • the value is 32 times or more.
  • the quantitative detection of hepatitis B virus core protein antibodies comprises the steps of:
  • a hepatitis B virus protein that specifically binds to a hepatitis B virus core protein antibody, which may be a full-length amino acid sequence comprising a hepatitis B virus core protein (from amino acid 1 to amino acid 183) , or an amino acid sequence comprising only the main immunodominant region of the hepatitis B virus core protein (eg, from amino acid 1 to amino acid 149), the protein is immobilized on a solid phase carrier as a solid phase An antigen for capturing a hepatitis B virus core protein antibody present in a serum sample;
  • a hepatitis B virus core protein antibody that is captured on a solid phase antigen, which may be a full length amino acid sequence comprising a hepatitis B virus core protein (from amino acid 1)
  • the amino acid sequence of the main immunodominant region containing only the hepatitis B virus core protein eg, from amino acid 1 to amino acid 149
  • the signal generator may be horseradish Peroxidase, alkaline phosphatase or acridinium ester;
  • c) Provide a quantitative standard of known concentration for plotting a quantitative standard curve, typically consisting of 3-6 samples containing different concentrations of hepatitis B virus core protein antibodies.
  • the unit of concentration can be IU/mL, PEIU/mL, or other concentration or titer unit that can be used as a source;
  • sample sample or quantitative standard to be tested
  • the sample is in contact with the solid phase antigen, so that the hepatitis B virus core protein antibody in the sample, if present, is captured to form a solid phase antigen-hepatitis B virus core protein antibody Complex
  • step e) contacting the substrate or the solution capable of exciting the signal with the solid phase antigen-hepatitis B virus core protein antibody-antigen marker complex formed in step e) to produce a measurable signal and corresponding determination
  • the instrument measures the intensity of the signal generated; g) linearly regressions the measured quantitative standard (usually 3-6 parts) with its corresponding concentration value to obtain a mathematical formula for calculating the sample concentration from the measured signal;
  • step g introducing the signal measured by the sample to be tested into the formula obtained in step g), thereby calculating the concentration of the hepatitis B virus core protein antibody contained in the sample to be tested;
  • step h) If the concentration of the hepatitis B virus core protein antibody calculated in step h) is higher than the upper limit of the amount that can be accurately quantified by the detection method, the sample to be treated should be diluted, and steps a) to h) are repeated until the concentration is determined. The value falls between the upper limit of the quantity and the lower limit of the quantity that can be accurately quantified by the corresponding detection method.
  • concentration of the hepatitis B virus core protein antibody contained in the sample to be tested is calculated from the diluted measurement value X corresponding to the dilution factor.
  • the diagnostic agent of the present invention is for use in a chronic hepatitis B patient receiving different therapeutic agents, the drug comprising: long-acting interferon (PEGylated interferon, Peginterferon), general interference Interferon, lamivudine (LVV), adefovir dipivoxi 1, ADV, Entecavir (ETV), Telbivudine (LdT), tenofovir ( Tenof ov ir) or other drugs that can be used in the treatment of chronic hepatitis B.
  • the general criteria for predicting the therapeutic efficacy of a patient prior to treatment are:
  • the pre-treatment patient's serum in patients with high levels of hepatitis B virus core protein antibody has a higher therapeutic effect (response rate) than in the pre-treatment patient serum.
  • Hepatitis B virus core protein antibody level of patients the therapeutic efficacy can be determined by hepatitis B virus E antigen seroconversion (ie, chronic hepatitis B patients treated with HBeAg (+) / Ant i-HBe (-) changes to HBeAg (-) / Ant i-HBe (+)), may also be a virological response ( That is, the serum HBV DNA load of patients with chronic hepatitis B drops below 1000 Copies/mL), and it can be another clinical indicator that can indicate the disease remission or good prognosis.
  • hepatitis B virus E antigen seroconversion ie, chronic hepatitis B patients treated with HBeAg (+) / Ant i-HBe (-) changes to HBeAg (-) / Ant i-HBe (+)
  • may also be a virological response That is, the serum HBV DNA load of patients with chronic hepatitis B drops below 1000 Copies/mL), and it can
  • the general criteria for monitoring the progression of chronic hepatitis B patients are: An abnormally elevated level of hepatitis B virus core protein antibody is indicative of the development of a patient's liver inflammatory response and host anti-hepatitis B virus-specific immune response Activation.
  • the invention relates to the use of Ant i-HBc for the preparation of a kit for assessing the therapeutic response of a patient with chronic hepatitis B receiving adefovir dipivoxil and peginterferon.
  • the invention relates to the use of Ant i-HBc for the preparation of a kit for monitoring the progression of a condition in a chronic hepatitis B patient.
  • the invention relates to the use of Ant i-HBc for the preparation of a kit for predicting the stage of disease in a hepatitis B patient.
  • FIG. 1 Distribution of serum Anti-HBc levels in HBV-infected patients at different stages (A), serum anti-HBc levels and ALT in HBV-infected patients at different stages Level;
  • PBI formerly infected
  • IT immunotolerant patients
  • IC immunosuppressed patients
  • LR low-copy patients
  • ENH HBeAg-negative hepatitis
  • LC cirrhosis patients
  • HCC primary liver cancer patient.
  • Example 1 of the present invention an Ant i-HBc ELISA (Enzyme-Linked Immunosorbent Assay, Microplate Method) quantitative detection method was established, which can accurately determine the content of Ant i-HBc in the serum of the sample, The linear dynamic range of the accurate detection is up to 1.8 orders of magnitude (0.04 - 2. 5 IU/mL). The above characteristics are not available in the published Ant i-HBc detection method [4, 5]. .
  • Example 2 an Ant i-HBc CLEIA (enzyme-linked chemiluminescence immunoassay, microplate method) quantitative detection method was established, which can accurately determine the content of Ant i-HBc in the serum of the sample, and its single detection
  • the linear dynamic range of accurate quantification is 2.7 orders of magnitude (0.04 -20 IU/mL).
  • the method significantly improves the linear kinetic range of single detection, which greatly reduces the number of dilutions required for the detection of Ant i-HBc high value specimens, and improves the efficiency. .
  • Example 3 an Ant i-HBc CLIA (direct chemiluminescence immunoassay, microparticle method) quantitative detection method was established, which can accurately determine the content of Ant i-HBc in the serum of the sample, and the single detection can accurately quantify The linear dynamic range is 3. 02 orders of magnitude (0. 02 -20. 8 IU/mL).
  • the method significantly improves the linear kinetic range of single detection, which greatly reduces the number of dilutions required for the detection of Ant i-HBc high value specimens, and improves the efficiency.
  • This method is more quantitative than the Ant i-HBc CLEIA described in Example 2.
  • the difference between the measurement methods is the use of single-tube detection, such as with fully automatic equipment, which is convenient for clinical follow-up.
  • Example 4 the above-described Ant i-HBc quantitative detection method was applied to evaluate the distribution of serum Ant i-HBc levels in HBV infected persons at different times.
  • the results of the assessment showed that in patients with chronic hepatitis B infection, serum levels of Ant i-HBc were associated with hepatitis activity and host immune status in infected individuals.
  • the level of Ant i-HBc can be used to determine whether the person with hepatitis B infection is in an immune-activated state or a state of hepatitis activity.
  • the diagnostic accuracy (AUR0C) is 0. 918 (95% CI: 0. 888-0. 948) , determine the critical value is 7400 IU / mL. This result indicates that the test results obtained by the Ant i-HBc quantitative detection method disclosed in the present invention are useful for the clinician to judge the disease stage of the patient.
  • Example 5 the above-described Ant i-HBc quantitative detection method was applied to evaluate the dynamic changes of Ant i-HBc levels during natural progression of chronic hepatitis B virus infection and its association with other indicators.
  • the results of the assessment showed that Ant i-HBc and ALT increased almost simultaneously in patients with chronic hepatitis B virus infection.
  • the peak of Ant i-HBc is usually 3-8 weeks later than the peak of ALT, but sometimes it may be earlier than or with ALT.
  • ALT quickly regains, and Ant i-HBc takes 12-20 weeks to return to baseline.
  • Example 6 the Ant i-HBc quantitative assay was applied to assess the therapeutic response of adefovir dipivoxil and peginterferon in patients with chronic hepatitis B.
  • the results showed that the level of Ant i-HBc in patients with chronic hepatitis B was positively correlated with the HBeAg seroconversion rate after treatment: the level of Ant i-HBc before treatment (> 29000 IU/mL in this example)
  • Even patients with low-cost side effects but less effective adefovir dipivoxil can achieve better results;
  • Patients with Ant i-HBc at a moderate level (9000-29000 IU/mL in this example) or low levels ( ⁇ 9000 IU/mL in this example) were significantly less effective with adefovir dipivoxil.
  • the solid phase antigen and the labeled antigen used in the method are hepatitis B virus core antigen (HBcAg) capable of specifically binding to an Ant i-HBc antibody in a sample, and the antigen may be a full-length amino acid sequence comprising HBcAg (Cpl83) ), may also be the amino acid sequence (Cpl49) containing only the major immunodominant region of HBcAg.
  • HBcAg antigens used in the present invention are all obtained by recombinant expression and purification of E. Col i.
  • the expression and purification method of Cpl49 recombinant antigen is prepared by the method published by Adam Zlotnick et al.
  • a Cpl49 recombinant antigen is usually used as a solid phase antigen, and a Cpl83 recombinant antigen is used as a labeling antigen.
  • the antigen was CpM9 ⁇ 5 0mM CB buffer (NaHC0 3 / Na 2 C0 3 buffer, final concentration of 50mM, pH value 9.6) was diluted to 9.6, final concentration of 3 ⁇ g/ml.
  • a modified sodium periodate method is employed. Take the marker 10mg Cpl83 recombinant antigen as an example:
  • the HRP activation solution prepared by the procedure of 1.3.2 was added to the dialysis bag containing the recombinant antigen of Cpl83. After mixing the sentence, the 50 mM CB buffer was further dialyzed at 4 ° C in the dark. The dialysis buffer was replaced once for 2 hours and dialysis for 6-8 hours.
  • the Cpl83-HRP label prepared by the procedure of 1.3.7 was diluted to 1/4000 by volume to the enzyme label dilution buffer (containing 20% calf serum, 1% casein, 10%). Sucrose, 0.05% aminopyrine pH 7.4 in 20 mM Na 2 HP0 4 /NaH 2 P0 4 buffer solution), prepared as an enzyme label reaction solution, mixed and stored at 2-8 ° C for use.
  • the quantitative standard for Anti-HBc quantitative detection consists of a series of samples containing different concentrations of hepatitis B virus core protein antibodies.
  • the unit of concentration can be IU/mL, PEIU/mL, or other concentration or titer unit that can be used as a source.
  • the prevailing International Unit (IU/mL) is used as a unit for quantification of Anti-HBc, and the anti-HBc WHO standard published by NIBSC (Code: 95/522, 50 IU/ampoule) [7], dilution ratio Up to 40 IU/mL, 20 IU/mL, 10 IU/mL, 5 IU/mL, 2.5 IU/mL, 1.25 IU/mL, 0.625 IU/mL, 0.3125 IU/mL, 0.156 IU/mL, 0.078 IU/mL , 0.039 IU/mL, 0.02 IU/mL, 0.01 IU/mL for 13 different concentrations.
  • the matrix solution for dilution of the standard may be Anti-HBc negative healthy blood donor plasma or serum, or PBS solution containing 20% newborn calf serum.
  • the serum (No. P1) of a patient with chronic hepatitis B was selected to perform quantitative detection of Anti-HBc according to the following procedure.
  • Sample reaction Take a coated enzyme plate, add 90 sample dilutions to each well, add 10 specimens or standard to each well, mix well after shaking, and place in a 37 °C incubator. minute.
  • Enzyme label reaction After the step 1.5.1 is completed, the plate is washed 5 times with PBST washing solution (20 mM PB7.4, 150 mM NaCl, 0.1% Tween 20), and 100 L is added per well. 1.3.8 The enzyme label reaction solution prepared in the step was placed in a 37 ° C incubator for 30 minutes.
  • Termination reaction and reading measurement After completing step 1.5.3, add stop solution (provided by Beijing Wantai Biopharmaceutical Co., Ltd.) 50 L to each well in the reaction plate. The 0D value of each well was detected on a microplate reader.
  • the serial dilution sample of PI serum was measured by the procedure of 1.5.1-1.5.5, and its 1:500 diluted 0D 45 . /63 .
  • the measured value is 3.899, 1: 2500 diluted OD 45 . /63 .
  • the measured value is 3.801, 1:12500 diluted 0D 45 . /63 .
  • the measured value is 2.988, 1: 62500 diluted OD 45 . /63 .
  • the measured value is 0.301; the above measured value is substituted into the Anti-HBc concentration calculated in step 1.5.5.
  • Intra-assay accuracy evaluation of the test method Take 6 samples of known concentration, and the Anti-HBc quantitative values are 5 IU/mL, 2.5 IU/mL, 1.25 IU/mL, respectively. 0.625 IU/mL, 0.3125 IU/mL, 0.156 IU/mL. In the same experiment, each sample was repeatedly tested for 16 wells according to the procedure of 1.5.1-1.5.4. After the test, each sample was calculated as 0D 45fl/ The intra- assay coefficient of variation of the 63fl measured value, as shown in Fig. 2A, the intra-assay coefficient of variation of the six samples was between 2.8% and 10.1%.
  • Inter-assay accuracy evaluation of the test method Take 6 samples of known concentration, and the Anti-HBc quantitative values are 5 IU/mL, 2.5 IU/mL, 1.25 IU/mL, respectively. , 0.625 IU/mL, 0.3125 IU/mL, 0.156 IU/mL.
  • 16 independent test experiments were carried out according to the procedure of 1.5.1-1.5.4, and after completing all the tests, each sample was calculated as 0D 45 . /63 .
  • the inter-assay coefficient of variation of the measured values as shown in Fig. 2B, the inter-assay coefficient of variation of the six samples was between 4.4% and 10.5%.
  • Example 1 of the present invention The method and procedure described in Section 1.3 of Example 1 of the present invention are carried out.
  • the serum (No. P1) of a patient with chronic hepatitis B was selected for the quantitative detection of Anti-HBc according to the following procedure.
  • CLEIA quantitative detection of Anti-HBc
  • Sample reaction Take a coated chemiluminescence reaction plate, add 90 sample dilution solution to each well, add 10 specimens or standard to each well, shake and mix, and place in 37 ° C incubator reaction. 30 minutes.
  • step 1.5.1 After completing step 1.5.1, the chemiluminescent reaction plate was washed 5 times with PBST washing solution (20 mM PB7.4, 150 mM NaCl, 0.1% Tween20), and 100 was added per well. 1.3.8 The enzyme label reaction solution prepared in the step was placed in a 37 ° C incubator for 30 minutes.
  • the upper limit of the accurate quantitation of the Ant i-HBc CLEIA method is 20 IU/mL, and the lower limit value is 0. 04 IU/mL, and the linear dynamic range is 2.7 orders of magnitude.
  • the average concentration of the two measurements was 22,613 IU/mL, which was 2.4% of the value of the specimen with a concentration of 22,083 IU/mL measured by ELISA, which is within the normal deviation range.
  • step (3.3.1) Add 100 stop buffer (phosphate buffer containing 100 mM glycine, pH 8.0) to the well-reacted label in step (3.3.1), and react for 30 minutes in the dark room.
  • stop buffer phosphate buffer containing 100 mM glycine, pH 8.0
  • step (3.3.4) Move the marker obtained in step (3.3.3) into the preservation tube, add 2% BSA and 50% glycerol, and store at -20 °C for later use.
  • the Cpl83-SAE label prepared by the procedure of 3.3.4 is diluted to 1/500 by volume to the acridinium ester label dilution buffer (containing 20% calf serum, 1% casein, 10% sucrose, 0.05% J ⁇ lin, pH 7.4, 20 mM Na2HP04 /NaH2P04 buffer solution), prepared into a luminescent recording reaction solution, stored at 2-8 ° C after mixed sentences Alternate.
  • the acridinium ester label dilution buffer containing 20% calf serum, 1% casein, 10% sucrose, 0.05% J ⁇ lin, pH 7.4, 20 mM Na2HP04 /NaH2P04 buffer solution
  • the serum (No. P2) of a patient with chronic hepatitis B was selected for the quantitative detection of Anti-HBc according to the following procedure.
  • serum anti-HBc levels are usually higher in patients with chronic hepatitis B
  • we quantify the CLIA test by diluting the sample into 1:500, 1:2500 with 2 dilutions of PBS containing 20% newborn calf serum.
  • the P2 specimen was detected by the Anti-HBc EL ISA quantitative method described in Example 1, and its Anti-HBc concentration was determined to be 8069 IU/mL.
  • Sample reaction Add 50 L magnetic bead reagent to the reaction tube, add 10 specimens or standard to each well, shake and mix, and place in a 37 ° C incubator for 15 minutes.
  • Luminescent label reaction After completing step 3.5.1, the chemiluminescent reaction tube was washed 5 times with PBST washing solution (20 mM PB7.4, 150 mM NaCl, 0.1 Lween20), and 50 ⁇ L was added per well. 3.3.5 The luminescent label reaction solution prepared in the step was placed in a 37 ° C incubator for 10 minutes.
  • Luminescence reaction and measurement After completing step 3.5.2, the chemiluminescent reaction plate was washed 5 times with PBST washing solution (20 mM PB7.4, 150 mM NaCl, 0.1% Tween20), using Sirius-L single The tubular chemiluminescence detector injects the excitation liquid through in-situ injection and simultaneously performs light intensity detection.
  • the average concentration of the two measurements was 8044 IU/mL, and the error between the concentration value and the concentration of the sample measured by the ELISA method of 8069 IU/mL was 3.1%, which was within the normal deviation range.
  • the detection in time is less than the upper limit of normal (ULN, in the present invention refers to 40 U / L); 104 patients in the immune clearance phase (IC), characterized by HBeAg-positive, serum HBV DNA load greater than 1 ⁇ 10 4 copies/mL, ALT level is greater than 2 times ULN; 75 patients are in low-replicative phase (LR), characterized by HBeAg-negative, serum HBV DNA load is less than ⁇ ⁇ ⁇ 4 copies/mL, ALT levels were less than ULN in the past 12 months; 85 patients were in HBeAg-negative hepatitis, characterized by HBeAg-negative, serum HBV DNA load greater than 2 ⁇ 10 4 copies/mL, ALT levels greater than 2 Double ULN.
  • IC immune clearance phase
  • LR low-replicative phase
  • Serum ALT levels and other biochemical indicators of liver function were measured 24 hours after specimen collection; serum HBV DM load and HBV genotype detection were performed by literature report method; HBsAg quantification was performed by HBsAg chemiluminescence of Beijing Wantai Biopharmaceutical Co., Ltd. Quantitative kits; HBeAg, Anti-HBe was measured using the Architect Chemiluminescence Automatic Detection System from Abbott Laboratories, USA.
  • the grouped continuous variables were compared using unpaired t-test Kruskal-Wallis ANOVA, and the categorical variables were compared using Mantebra Haenszel x 2 test or Fisher exact probability, and Pearson test was used for correlation analysis. Diagnostic accuracy analysis The receiver operating characteristic (ROC) was used and the diagnostic efficacy (area under the ROC curve, AUR0C;) was calculated. A P value of less than 0.05 was considered to have a significant statistical difference.
  • ROC receiver operating characteristic
  • Table 1 List of demographic, clinical virology, and blood biochemical background data for HBV-infected individuals at different times.
  • Figure 6A/B shows the distribution of serum anti-HBc levels, ALT levels, HBsAg levels, and HBV DM loading in cross-sectional patients over different disease periods.
  • Serum Anti-HBc levels were significantly lower in previously infected individuals than in chronic HBV carriers (median: 0.4 vs. 4.1 log 10 IU/mL, j O.001, less than 1000 times lower); simple in different infection periods In patients with chronic hepatitis B, serum Anti-HBc levels are significantly different.
  • the median value of serum anti-HBc levels in patients with immune tolerance was 3.4 log 10 IU/mL, and the median value of serum anti-HBc levels in patients with immune clearance was 4.4 log 10 IU/mL, in low replication.
  • the median value of serum anti-HBc levels in patients was 3.3 log lfl IU/mL, and the median value of serum Anti-HBc levels in patients with HBeAg-negative hepatitis was 4.4 loglO IU/mL. From the above data analysis, serum anti-HBc levels in patients with immune clearance and HBeAg-negative hepatitis were significantly higher than those in patients with immune tolerance and low replication (p ⁇ 0.001); patients with immune clearance and patients with HBeAg-negative hepatitis There was no significant difference in serum Anti-HBc levels (p>0.05), and there was no significant difference in serum anti-HBc levels between patients with immune tolerance and low-replication (p>0.05).
  • Serum anti-HBc levels in patients with hepatitis B cirrhosis and hepatitis B primary hepatocellular carcinoma were analyzed and the results are shown in Figure 6A/B.
  • the longitudinal data analysis uses Genera l ized es t imat ing equat ions (GEE), and the remaining statistical analysis methods are carried out as described in Example 4.
  • GEM Genera l ized es t imat ing equat ions
  • Fig. 7 The dynamic changes of Ant i-HBc level, ALT level, HBsAg level and serum HBV DNA load in 9 patients (AG) during follow-up observation are shown in Fig. 7.
  • Patient A was in a period of immune tolerance during follow-up, with serum HBV DM load, HBsAg—at a high level, and ALT levels and Ant i-HBc levels were consistently at a low level of 4 ⁇ .
  • BG other patients experienced one or more hepatitis activities during follow-up observation. Observations of these patients revealed that elevated levels of Ant i-HBc were always accompanied by an increase in ALT levels, which is accompanied by the development of hepatitis.
  • the level of serum Ant i-HBc in patients with acute hepatitis episodes generally peaks 3-8 weeks later than ALT levels (Figure 7, eg patient C, patient D, first period, patient F, first period, patient) In the case of G and I); in some cases, patient serum levels of Ant i-HBc may also peak before or at the same time as ALT ( Figure 7, eg Patient B, Patient D, Patient F, and Patient H) In the second period, the situation of patient E is shown). In the liver During the recovery period of inflammation, the decline of Ant i-HBc is slower than that of ALT. "Man, Ant i-HBc usually returns to baseline levels 12-20 weeks after ALT recurrence.
  • Ant i-HBc quantitative level can predict the antiviral treatment effect of patients with chronic hepatitis B
  • Patient cohort A 49 patients with HBeAg-positive patients, all patients received adefovir dipivoxi l (adefovir dipivoxil, 10 mg / day) for a total of 96 weeks, followed up for 12 weeks after discontinuation.
  • adefovir dipivoxi l adefovir dipivoxil, 10 mg / day
  • Patient cohort B 48 patients with HBeAg-positive patients, all patients received Peginterferon alpha_2a (long-acting interferon a _2a, 180 g/week) for 24 weeks, followed up for 24 weeks after discontinuation.
  • Peginterferon alpha_2a long-acting interferon a _2a, 180 g/week
  • the primary treatment endpoint was defined as HBeAg seroconversion at the end of follow-up.
  • HBV DNA login copies/ml, median (range) 7. 58 (3. 97 - 9. 29) 7. 55 (3. 44 - 9. 59) 0. 50
  • Ant i-HBc login IU/ml, median (range) 4. 29 (3. 08 - 5. 11) 3. 98 (2. 41 - 5. 36) 0. 15 Note.
  • a All patients are HBeAg positive
  • the ALT level was greater than 2 X ULN in the pre-treatment screening period.
  • 11 patients (5 in cohort A and 6 in cohort B) had ATL levels below 2 X ULN.
  • ADV adefovir dipivoxil; Pegasys, peginterferon a -2a; ULN, upper limit of normal value.
  • Queue A (adefovir oxime) cohort B (poly(ethylene glycol) interferon a-2a)
  • HBV DNA log 10 copies/mL 7.03 ⁇ 1.40 7.65 ⁇ 1.13 0.16 0.12 7.64 ⁇ 0.92 7.04 ⁇ 1.61 0.12 0.11
  • Anti-HBc-lgM, S/CO value 3.13 ⁇ 1.39 2.51 ⁇ 2.49 0.47 0.88 3.38 ⁇ 2.85 2.72 ⁇ 3.43 0.47 0.75

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Communicable Diseases (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Mycology (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)

Abstract

本发明公开了一种Anti-HBc定量检测方法及其在监控慢性乙肝患者病情发展和预测治疗疗效中的用途。通过定量检测乙型肝炎病毒核心抗体(Antibodies against hepatitis B core protein,Anti-HBc),监控慢性乙型肝炎患者病情进展,并有效预测慢性乙型病毒性肝炎(Chronic hepatitis B)患者接受抗乙型肝炎病毒治疗(特别是基于干扰素的治疗和基于核苷/核苷酸类似物抗HBV药物的治疗)的疗效,从而指导病人进行合理药物选择。

Description

Anti- HBc定量检测方法及其在监控慢性乙肝患者病情 发展和预测治疗疗效中的用途 技术领域
本发明涉及乙型肝炎病毒(Hepatitis B virus, HBV)检测及乙 型病毒性肝炎临床诊断领域, 更具体地涉及通过定量检测乙型肝炎 病毒核心蛋白抗体 ( Antibodies against hepatitis B core protein, Anti-HBc) , 监控慢性乙型肝炎患者病情进展, 并有效 预测慢性乙型病毒性肝炎(Chronic hepatitis B) 患者接受抗乙 型肝炎病毒治疗 (特别是基于干扰素的治疗和基于核苷 /核苷酸类 似物抗 HBV药物的治疗)的疗效, 从而指导病人进行合理药物选择 的方法。 背景技术
乙型肝炎病毒感染,尤其是慢性乙型肝炎病毒感染是全球最为 重要的公共卫生问题之一, 目前全球约有超过 3.5亿的慢性乙型肝 炎病毒感染者。慢性乙型肝炎病毒感染可造成慢性乙型病毒性肝炎 ( Chronic hepatitis B, CHB) 、 肝硬化 (Liver cirrhosis, LC ) 和原发性肝细胞癌 (Hepatocellular carcinoma, HCC )等肝脏疾 病, 由慢性乙型肝炎病毒感染及其所引起的相关疾病所导致的死 亡, 全球每年超过 100万人 [1]。
当前针对慢性乙型肝炎病毒感染的治疗药物主要可分为干扰 素 ( Interferon, IFNs ) 和核苷 /核苷酸类似物 ( nucleoside or nucleotide, NAs)两类。 前者包括普通干扰素 (IFN)和聚乙二醇干 扰素 (Peginterferon, Peg-IFN,又称为长效干扰素) , 主要通过 整体增强患者免疫能力, 来达到抑制 HBV和治疗 CHB的效果; 后者 主要包括拉米夫定 ( lamivudine , LMV ) 、 阿德福韦酯(adefovir dipivoxi l, ADV) 、 恩替卡韦 (Entecavir, ETV) 、 替比夫定 (Telbivudine, LdT)、 替诺福韦 (Tenofovir)等 5种, 主要通过直 接抑制 HBV的聚合酶活性从而抑制 HBV复制。对慢性乙型肝炎病毒 感染来说,采用上述药物进行慢性乙型肝炎治疗的最终目标是患者 患者达到乙型肝炎病毒表面抗原 ( Hepat i t i s B surface ant igen, HBsAg ) 血清学阴转或血清学转换 ( HBsAg loss or HBsAg seroconvers ion )。 但由于现有的上述药物实现 HBsAg血清学阴转 或血清学转换的效果十分有限, 常常需要持续治疗数年以上的时 间。 而乙型肝炎病毒 E抗原血清学转换(HBeAg seroconvers ion ) 是慢性乙型肝炎病毒感染自然历史过程中的另一个重要的里程碑 事件, 通常伴随着临床肝炎病情的緩解和良好的疾病预后, 因此目 前临床医生和研究者常以 "接受治疗后患者是否发生 HBeAg血清学 转换"作为判断治疗是否有效的主要指标。 除 HBeAg血清学转换之 夕卜, 持续病毒学应答 ( Sus ta ined virologica l response, SVR ) 也是临床判断慢性乙型肝炎治疗疗效的次要指标 [2, 3]。
以能使慢性乙型肝炎病人达到 HBeAg血清学转换的为治疗终点 来看, IFNs类药物和 s类药物在治疗疗效和药物可接受性上有较 大区别。 IFNs 类药物(主要指 Peg-IFN或长效干扰素)疗效优于 NAs类药物, 前者治疗 1年( 52周)可使得 30-50%的 HBeAg阳性的 病人实现 HBeAg血清学转换,而后者通常只能使得 10-30%的 HBeAg 阳性的的病人实现 HBeAg血清学转换。 但 IFNs类药物治疗的副作 用较 s类药物更大, 受试者常伴有发热、 头疼、乏力、头发脱落、 白细胞减少等不良反应, 部分患者常无法忍受这些副作用; 相比而 言, 口服 s类药物副作用很小,可接受性较强。在价格方面, IFNs 类药物(主要指 Peg-IFN或长效干扰素)治疗一年的药物费用约在 15000RMB以上, 而 Ms类药物通常治疗费用在 10000RMB以下。 鉴 于两类治疗药物的上述区别, 在患者治疗前进行有效评估预测, 进 而选择最优药物进行慢性乙型肝炎治疗, 具有十分重要的意义。
由于患者能否获得实现 HBeAg血清学转换,主要依赖于患者自 身是否具有足够的针对 HBV的特异性免疫能力,或能否通过药物治 疗获得足够的针对 HBV的特异性免疫能力。 因此, 定量测定慢性乙 型肝炎患者针对 HBV特异性免疫能力能够预测慢性乙肝患者接受治 疗时发现 HBeAg血清学转换几率的大小。 长期以来, 慢乙肝患者血 清 ALT水平被作为衡量宿主抗 HBV免疫能力的间接替代指标。这主 要是因为慢性乙肝患者血清 ALT水平能反映其肝细胞炎症 /坏死程 度, 而 HBV是免疫致病病毒, 其导致肝脏炎症 /肝细胞坏死是由于 抗 HBV T细胞介导的免疫反应, 因此血清 ALT水平与宿主抗 HBV免 疫能力之间存在一定的相关性。 一般认为, 血清 ALT水平大于 2倍 正常值上限 ( The upper norma l l imi t, UL ) 的患者抗 HBV治疗 的疗效(指通过治疗达到 HBeAg血清转换的几率)要显著高于那些 没有肝炎反应, 亦即血清 ALT水平小于正常值上限的慢性乙肝感染 者, 而血清 ALT水平大于 5倍正常值上限的患者抗 HBV治疗的疗效 又要优于那些有肝炎反应但 ALT水平较低的患者。但 ALT水平的测 定, 更多的是反应肝脏炎症的程度, ALT不是一个 HBV特异性的指 标, 易受其他因素的影响 (如共发自身免疫性肝炎、 酒精性肝病、 感染 HCV等其它肝炎病毒), 而且其半衰期较短, 其预测慢乙肝治 疗疗效并非十分可靠。 除了血清 ALT外, HBV特异性的 T细胞免疫 应答检测方法(如体外刺激细胞因子释放试验)等可能也具有预测 慢性乙肝治疗疗效的应用价值, 但其操作比较繁瑣, 临床实践推广 十分困难, 且对检测标本的要求较高 (需要检测新鲜全血标本) , 应用前景有限。 综上所述, 本领域目前尚缺乏有效的治疗前评估检 测方法。
乙型肝炎病毒核心蛋白抗体 ( Antibodies against hepatitis B core protein, Anti-HBc)是最经典的 HBV感染的血清学指标之 一, Anti-HBc的定性检测 (判断 Anti-HBc是否阳性)迄今已在乙 型肝炎病毒感染的临床诊断中使用超过 35年。血清 Anti-HBc阳性 指示受试者曾经或正被 HBV感染, 同时该抗体在 HBV感染者血清中 常常持续终身存在。 目前已经发明的检测血清 Anti-HBc抗体的方 法主要是基于竟争或抑制免疫检测原理,此类方法可较好地应用于 Anti-HBc的定性检测,但受技术原理限制,其检测动力学线性范围 一般较窄 (通常在 1个数量级范围内) , 且检测稳定性较差, 不能 4艮好地应用于 Anti-HBc的定量检测。 综述文献可知, 在本发明公 布以前, 尚无有效的 Anti-HBc定量检测方法及试剂; 同时尚不清 楚 Anti-HBc定量检测的临床价值和对应用途。 发明内容
由于乙型肝炎病毒核心蛋白的免疫原性极强,其血清抗体水平 指示着宿主个体特异性针对 HBV 的体液免疫反应能力 (B cell immune response ) , 从而反映出宿主抗 HBV的整体免疫能力。 有 鉴于此, 本发明的研究者认为, 精确检测慢性乙肝患者血清 Anti-HBc水平能指示患者针对 HBV的特异性免疫应答强弱,并能预 测其接受药物 (包括干扰素类药物、 核苷 /核苷酸类似物等)治疗 的最终疗效。本发明涉及一种能精确定量检测乙型肝炎病感染者血 清 /血浆中 Anti-HBc抗体水平的方法, 以及 Anti-HBc定量检测在 监控慢性乙型肝炎患者病情进展和预测慢性乙型肝炎患者治疗疗 效中的应用。
具体地, 本发明涉及一种能精确定量检测血清 Anti-HBc水平 的免疫学检测方法,该方法可以通过酶联免疫或者化学发光的检测 方式加以实现。
该方法的性能优势在于其单次检测的线性动力学范围在 1. 5个 数量级以上, 亦即单次检测准确定量的上限值高于准确定量的下限 值 32倍以上,这一特征是精确定量检测血清 Ant i-HBc水平的基础, 是本发明之前的 Ant i-HBc检测方法所不具备的。
使用该方法在慢性乙型肝炎病毒感染不同时期的病人标本及 病人病程自然进展的系列标本中所获得的结果表明,血清 Ant i-HBc 的定量水平与病人的肝炎活动性及宿主免疫状态高度相关, Ant i-HBc 的定量测定值能有效分辨患者是否处于免疫活化或肝炎 活动阶段。 这说明在临床上使用本发明公布的 Ant i-HBc定量检测 方法或其他等效方法有助于对慢性乙型肝炎患者疾病进展情况的 监测和判断。
使用该方法对接受阿德福韦酯和长效干扰素治疗的慢性肝炎 病人队列标本中所获得的结果表明, 基线 Ant i-HBc水平与患者的 治疗应答率呈正相关。这说明在临床上使用本发明公布的 An t i -HBc 定量检测方法或其他等效方法, 能在慢性乙型肝炎患者接受阿德福 韦酯、 长效干扰素或其他基于类似原理的药物治疗前评估预期疗 效, 有利于指导治疗药物和治疗时机的选择, 进而提高治疗效率。
在另一方面,本发明涉及定量检测乙型肝炎病毒核心蛋白抗体 水平的试剂在制备用于监控慢性乙型肝炎患者的病情发展和 /或在 慢性乙型肝炎患者接受抗乙型肝炎病毒治疗前有效预测其治疗效 果的诊断剂中的用途。
在一个具体实施方式中, 乙型肝炎病毒核心蛋白抗体的定量检 测通过如下方法中的一种或者几种方法来实现: 酶联免疫吸附法、 化学发光免疫检测法、 时间分辨荧光检测法、 免疫比浊法、 免疫层 析法、 免疫渗滤法。
在一个具体实施方式中, 乙型肝炎病毒核心蛋白抗体水平的单 次检测的线性动力学范围在 1. 5个数量级以上, 亦即单次检测准确 定量的上限值高于准确定量的下限值 32倍以上。
在一个具体实施方式中, 乙型肝炎病毒核心蛋白抗体的定量检 测包括以下步骤:
a) 提供可与乙型肝炎病毒核心蛋白抗体特异性结合的乙型 肝炎病毒蛋白,该蛋白可以是包含乙型肝炎病毒核心蛋白的全长氨 基酸序列 (从第 1位氨基酸到第 183位氨基酸), 也可以是只包含 乙型肝炎病毒核心蛋白的主要免疫优势区的氨基酸序列 (如从第 1 位氨基酸到第 149位氨基酸) , 该蛋白被固相化于固相化载体上, 作为固相抗原,用于捕获血清样品中存在的乙型肝炎病毒核心蛋白 抗体;
b) 提供可与被捕获到固相抗原上的乙型肝炎病毒核心蛋白 抗体特异性结合的抗原标记物,该蛋白可以是包含乙型肝炎病毒核 心蛋白的全长氨基酸序列 (从第 1位氨基酸到第 183位氨基酸) , 也可以是只包含乙型肝炎病毒核心蛋白的主要免疫优势区的氨基 酸序列 (如从第 1位氨基酸到第 149位氨基酸), 所标记的信号产 生物可以是辣根过氧化物酶、 碱性磷酸酶或吖啶酯;
c) 提供用于绘制定量标准曲线的已知浓度的定量标准品,通 常为 3-6份含不同浓度的乙型肝炎病毒核心蛋白抗体的样品组成。 浓度的单位可以是 IU/mL, PEIU/mL,也可以是其他可以朔源的浓度 或滴度单位;
d) 样品(待测样品或定量标准品)与固相抗原相互接触, 使 得样品中的乙型肝炎病毒核心蛋白抗体, 如果存在的话, 被捕获, 形成固相抗原-乙型肝炎病毒核心蛋白抗体复合物; e) 使抗原标记物与步骤 c) 的产物, 即固相抗原-乙型肝炎 病毒核心蛋白抗体复合物相互接触, 从而形成固相抗原-乙型肝炎 病毒核心蛋白抗体 -抗原标记物复合物;
f) 使底物或能激发信号产生的溶液也步骤 e)形成的固相抗 原 -乙型肝炎病毒核心蛋白抗体 -抗原标记物复合物相互接触,从而 生产可测量的信号, 并以相应的测定仪器测定所产生的信号强度; g) 将测量得到的定量标准品(通常为 3-6份)的信号, 与其 对应的浓度值进行线性回归拟合,获得由测量信号计算样品浓度的 数学公式;
h) 将待测样品测量得到的信号, 引入步骤 g)中得到的公式, 从而计算出待测样品含有的乙型肝炎病毒核心蛋白抗体浓度;
i) 如果步骤 h)中计算出的乙型肝炎病毒核心蛋白抗体浓度 高于检测方法能准确定量的量值上限, 则需对待侧样品进行稀释, 重复步骤 a)到 h), 直至测定的浓度值落在相应检测方法能准确定 量的量值上限和量值下限之间。待测样品含有的乙型肝炎病毒核心 蛋白抗体浓度由稀释后测量值 X对应稀释倍数计算获得。
在一个具体实施方式中,本发明的诊断剂用于在接受不同治疗 药物的慢性乙型肝炎病人中, 所述药物包括: 长效干扰素(聚乙二 醇化的干扰素, Peginterferon ) 、 普通干扰素 ( Interferon ) 、 拉米夫定 ( lamivudine, LMV )、 阿德福韦酉 (adefovir dipivoxi 1, ADV)、 恩替卡韦(Entecavir, ETV)、替比夫定(Telbivudine, LdT)、 替诺福韦(Tenof ov i r)或其他可用于慢性乙型肝炎治疗的药物。
在一个具体实施方式中,在治疗前预测病人治疗疗效的通常准 则是: 治疗前患者血清中乙型肝炎病毒核心蛋白抗体水平高的病人 治疗所获疗效(应答率)高于治疗前患者血清中乙型肝炎病毒核心 蛋白抗体水平低的病人; 治疗疗效的判定标准可以是乙型肝炎病毒 E 抗原血清转换 ( 即接受治 疗 的慢性 乙肝患者 由 HBeAg (+) /Ant i-HBe (-)的状态改变为 HBeAg (-) /Ant i-HBe (+) ) , 也可以是病毒学应答(即慢性乙肝患者血清 HBV DNA载量降至 1000 Copies/mL以下) , 还可以是其他能指示病情緩解或良好预后的临 床指标。
在一个具体实施方式中,监控慢性乙型肝炎患者病情进展的通 常准则是: 乙型肝炎病毒核心蛋白抗体水平的异常升高指示病人肝 脏炎症反应的发生和宿主抗乙型肝炎病毒特异性免疫应答的活化。
在一个具体实施方式中, 本发明涉及 Ant i-HBc用于制备用来 评估慢性乙型肝炎患者接受阿德福韦酯和聚乙二醇干扰素的治疗 应答情况的试剂盒的用途。
在一个具体实施方式中, 本发明涉及 Ant i-HBc用于制备用来 监控慢性乙肝患者病情发展的试剂盒的用途。
在一个具体实施方式中, 本发明涉及 Ant i-HBc用于制备用来 预测乙肝患者疾病阶段的试剂盒的用途。 附图说明
图 1、 Anti-HBc ELISA定量方法的动力学线性范围
图 2、 Anti-HBc ELISA定量方法的实验内(A)和实验间(B)精确 性
图 3、 104份标本 Anti-HBc ELISA定量检测结果的一致性 图 4、 Anti-HBcCLEIA定量方法的动力学线性范围
图 5、 Anti-HBcCLIA定量方法的动力学线性范围
图 6、不同时期的 HBV感染者血清 Anti-HBc水平的分布情况 ( A ) 、 不同时期的 HBV感染者血清 Anti-HBc水平和 ALT 水平;
( B )、不同时期的 HBV感染者血清 HBV DNA水平和 HBsAg 水平;
( C )、以血清 Anti-HBc水平判别受试者免疫活化状态的 ROC 曲线分析;
( D ) 、 不同 ALT分层病人的平均 Anti-HBc水平; ( E )血 清 Anti-HBc水平与 ALT水平的相关性分析。
缩写注释: PBI, 既往感染者; IT, 免疫耐受期病人; IC, 免 疫清除期病人; LR, 低复制期病人; ENH, HBeAg阴性的肝炎; LC, 肝硬化病人; HCC, 原发性肝癌病人。
图 7、 慢性乙型肝炎病毒携带者自然进展过程中血清 Anti-HBc、 ALT, HBV DNA及 HBsAg水平的动态变化
图 8、慢性乙肝病治疗前血清 Anti-HBc水平预测治疗后 HBeAg 血清学转换率
( A ) 、 治疗前 Anti-HBc 水平预测慢性乙肝病人接受阿德福 韦酯治疗后 HBeAg血清转换;
( B )、治疗前 Anti-HBc水平预测' I曼性乙肝病人接受聚乙二醇 干扰素治疗后 HBeAg血清转换;
( C ) 、 以血清 Anti-HBc 水平高低预测病人接受阿德福韦酯 治疗后 HBeAg血清转换发生率;
( D ) 、 以血清 Anti-HBc 水平高低预测病人接受聚乙二醇干 扰素治疗后 HBeAg血清转换发生率;
( E )在基线 ALT水平不同分层的病人中治疗前 Anti-HBc水 平预测 HBeAg血清转换率。 图 9、 基线 Anti-HBc水平不同分层的病人接受阿德福韦酯和 聚乙二醇干扰素治疗后 HBeAg血清学转换发生率
图 10、阿德福韦酯治疗过程中和停药后病人血清标志物量化水 平的动态变化 具体实施方式
除非另外定义,本文件中所用的技术和科学名词都表达的是在 本发明涉及领域的熟练技术人员所理解的通常含义。
在本发明的实施例 1中, 建立了 Ant i-HBc ELISA (酶联免疫分 析, 微孔板法)定量检测方法, 该方法能较为精确地确定样本血清 中 Ant i-HBc的含量, 其单次检测能准确定量的线性动力学范围达 1. 8个数量级( 0. 04 -2. 5 IU/mL ) ,上述特征是已经公布的 Ant i-HBc 检测方法所不具备的 [4, 5]。
在实施例 2中,建立 Ant i-HBc CLEIA(酶联化学发光免疫分析, 微孔板法) 定量检测方法, 该方法能较为精确地确定样本血清中 Ant i-HBc的含量,其单次检测能准确定量的线性动力学范围达 2. 7 个数量级( 0. 04 -20 IU/mL )。该方法较实施例 1中描述的 Ant i-HBc ELISA定量检测方法显著提高了单次检测的线性动力学范围, 使得 Ant i-HBc高值标本的检测所需的稀释次数大大减少, 提高了效率。
在实施例 3中, 建立 Ant i-HBc CLIA (直接化学发光免疫分析, 微粒子法) 定量检测方法, 该方法能较为精确地确定样本血清中 Ant i-HBc的含量,其单次检测能准确定量的线性动力学范围达 3. 02 个数量级( 0. 02 -20. 8 IU/mL ) 。 该方法较实施例 1 中描述的 Ant i-HBc ELISA 定量检测方法显著提高了单次检测的线性动力学 范围, 使得 Ant i-HBc 高值标本的检测所需的稀释次数大大减少, 提高了效率。 该方法较实施例 2中描述的 Ant i-HBc CLEIA定量检 测方法的区别在于采用单管式检测, 如配以全自动设备, 在临床上 便于实现随到随检。
在实施例 4中, 将上述 Ant i-HBc定量检测方法应用于评估不 同时期的 HBV感染者血清 Ant i-HBc水平的分布情况。 评估结果表 明, 在慢性乙型肝炎感染者中, 血清 Ant i-HBc水平高低与感染者 的肝炎活动性及宿主免疫状况相关。 Ant i-HBc水平可以用于判断 'I 性乙型肝炎感染者是否处于免疫激活状态或肝炎活动状态,诊断准 确性(AUR0C ) 为 0. 918 ( 95%CI: 0. 888-0. 948 ) , 判断临界值为 7400 IU/mL。 这一结果表明, 本发明公布的 Ant i-HBc定量检测方 法所获检测结果有助于临床医生对患者疾病阶段的判断。
在实施例 5中, 将上述 Ant i-HBc定量检测方法应用于评估慢 性乙型肝炎病毒感染者自然进展过程中 Ant i-HBc水平的动态变化 及其与其他指标的联系。 评估结果表明, 慢性乙型肝炎病毒感染者 发生肝炎活动时, Ant i-HBc与 ALT几乎同时升高, Ant i-HBc峰值 通常较 ALT峰值晚 3-8周, 但有时可能早于或与 ALT峰值同时; 在 肝炎恢复期, ALT很快复常, Ant i-HBc则需晚 12-20周才能回到基 线水平。 这一结果进一步表明, 采用发明公布的方法定量测定慢性 乙型肝炎病毒感染者的 Ant i-HBc水平, 可作为 ALT测量的补充指 标, 有助于临床医生判断患者是否正处于肝炎活动期或在最近 3-4 个月时间内曾经有肝炎活动。
在实施例 6中, 将 Ant i-HBc定量检测方法应用于评估慢性乙 型肝炎患者接受阿德福韦酯和聚乙二醇干扰素的治疗应答情况。结 果表明, 慢性乙型肝炎患者接受治疗前 Ant i-HBc水平高低与治疗 后 HBeAg血清学转换率正相关: 治疗前 Ant i-HBc水平高 (在本实 施例中为> 29000 IU/mL ) 的患者即使采用价格便宜副作用小但疗 效较差的阿德福韦酯治疗也能达至较为理想的效果; 而治疗前 Ant i-HBc处于中等水平 (在本实施例中为 9000-29000 IU/mL )或 低水平 (在本实施例中 <9000 IU/mL ) 的患者, 采用阿德福韦酯治 疗疗效显著低于费用高副作用相对较大但强效的长效干扰素。在治 疗前 Ant i-HBc水平高 ( > 29000 IU/mL ) 的患者中, 阿德福韦酯对 病毒复制的抑制效果显著优于治疗前 Ant i-HBc 水平低(〈29000 IU/mL ) 的患者。 这一结果表明, 采用发明公布的方法定量测定慢 性乙型肝炎病毒感染者接受治疗前的 Ant i-HBc水平, 能够预测其 接受阿德福韦酯、长效干扰素或其他基于类似原理的药物治疗后的 预期疗效, 有利于指导治疗药物和治疗时机的选择, 进而提高治疗 效率。
下面采用实施例对本发明进行进一步描述和说明。所述实施例 旨在以举例方式具体阐明本发明, 各实施例中所用试剂、化学品或 生物活性材料浓度、所用病人队列和其他变量值等只是举例说明本 发明的应用, 而不构成对本发明的限制。 实施例
1、 双抗原夹心法 Ant i-HBc定量的酶联免疫检测( ELISA )方 法
1. 1 固相化抗原及标记抗原的制备
本方法中采用的固相化抗原及标记抗原是能与样品中的 Ant i-HBc抗体特异性结合的乙型肝炎病毒核心抗原 ( HBcAg ) , 该 抗原可以是包含 HBcAg的全长氨基酸序列 (Cpl83 ) , 也可以是只 包含 HBcAg的主要免疫优势区的氨基酸序列 (Cpl49 ) 。 本发明采 用的 HBcAg抗原均是 E. Col i重组表达纯化所获得的。 Cpl49重组抗 原的表达纯化方法参考 Adam Zlotnick等公布的方法进行制备 [6], Cpl83 重组抗原表达纯化方法参考 An Li 等公布的方法进行制备 [5]。 在本发明中通常以 Cpl49 重组抗原作为固相化抗原, 而以 Cpl83重组抗原作为标记抗原。
1.2 反应板的制备
( 1.2· 1 )将 CpM9抗原用 ρΗ9· 6的 50mM CB緩冲液( NaHC03 / Na2C03緩冲液, 终浓度为 50mM, pH值为 9.6)稀释, 终浓度为 3μ g/ml。
( 1.2.2 )在 96孔酶标板每孔加入 100 μ 1的包被液, 2 ~ 8°C 包被 16 ~ 24小时后再 37°C包被 2小时。
( 1.2.3 ) 用 PBST 洗涤液 ( 20mM PB7.4 , 150mM NaCl , 0. l%Tween20 )洗涤 1次。然后每孔加入 200 μ 1的封闭液(含有 20% 小牛血清及 1%酪蛋白的 pH值为 7.4的 20mM Na2HP04 /NaH2P04緩冲 液溶液), 放入 37°C封闭 2小时; 弃去封闭液。 干燥后装入铝箔袋 2-8 °C保存备用。
1.3 Cpl83抗原的 HRP标 i己
采用改良过碘酸钠法。 以标记 10mg Cpl83重组抗原为例:
( 1.3.1 )将浓度为 2mg/L的 Cpl83重组抗原( 5mL )装入透析 袋, 对 50mM CB緩冲液在 4°C透析 4小时, 中途每 2小时更换透析 緩冲液 1次。
( 1.3.2)准确称取 HRP 40mg, 溶解于 2mL ddH20, 溶解后加 入 20mg/mL的 NaI04溶液 2ml,室温反应 30分钟;加入乙二醇 40uL, 4°C反应 30分钟后制成 HRP活化溶液( 10mg/mL, 4mL ) 。
( 1.3.3 ) 经 1.3.2步骤制成的 HRP活化溶液,加入装有 Cpl83 重组抗原的透析袋, 混句后继续对 50mM CB緩冲液在 4°C避光条件 下进行透析, 中途每 2小时更换透析緩冲液 1次, 透析 6-8小时。
( 1.3.4)配制 aBH4溶液 ( 5mg/mL ) 0.4mL, 加入完成 1.3.3 步骤的标记反应溶液, 并混匀, 置于 4°C避光条件下反应 2小时。 (1.3.5)完成 1.3.4步骤后, 再次将标记反应溶液装入新的 透析袋, 对 PBS緩冲液在 4°C透析 4小时。
(1.3.6)完成 1.3.5 步骤后, 用 GE公司生产的 Sephacryl S-300 HR层析柱进行纯化, 分离出 Cpl83-HRP标记物。
(1.3.7)将经 1.3.6步骤分离纯化出的 Cpl83-HRP标记物浓 缩至 2mg/mL,并按照体积比 1: 1加入甘油,混匀后 -20°C保存备用。
(1.3.8)将经 1.3.7步骤制得的 Cpl83-HRP标记物, 按体积 比 1/4000稀释至酶标记物稀释緩冲液(含有 20%小牛血清、 1%酪蛋 白、 10%蔗糖、 0.05%氨基比林的 pH值为 7.4的 20mMNa2HP04 /NaH2P04 緩沖液溶液) , 制成酶标记物反应液, 混匀后 2-8°C保存备用。
1.4 定量标准品
Anti-HBc 定量检测的定量标准品为含不同浓度的乙型肝炎病 毒核心蛋白抗体的系列样品组成。 浓度的单位可以是 IU/mL, PEIU/mL, 也可以是其他可以朔源的浓度或滴度单位。 在本发明中 使用通行的国际单位( IU/mL)为 Anti-HBc定量的单位, 以 NIBSC 公布的 Anti-HBc WHO标准品(Code: 95/522, 50IU/ampoule ) [7], 倍比稀释至 40 IU/mL, 20 IU/mL, 10 IU/mL, 5 IU/mL, 2.5 IU/mL, 1.25 IU/mL, 0.625 IU/mL, 0.3125 IU/mL, 0.156 IU/mL, 0.078 IU/mL, 0.039 IU/mL, 0.02 IU/mL, 0.01 IU/mL共 13种不同浓度。 稀释标准品用的基质溶液可以为 Anti-HBc 阴性的健康献血者血浆 或血清, 也可以是含 20%新生牛血清的 PBS溶液。
1.5 Anti-HBc的 ELISA定量检测
选取 1份慢性乙型肝炎患者的血清(编号 P1 )按照下列步骤进 行 Anti-HBc的定量检测。鉴于慢性乙型肝炎患者血清 Anti-HBc水 平通常较高, 我们将该标本以含 20%新生牛血清的 PBS溶液稀释成 1: 500、 1: 2500、 1: 12500、 1: 62500共 4个稀释度进行定量 ELISA 检测。
(1.5.1)样品反应: 取已包被的酶标板一块,每孔加入 90 样品稀释液, 每孔再加入 10 标本或者标准品, 震荡混匀后, 置 于 37°C温箱反应 30分钟。
(1.5.2 )酶标记物反应:完成 1.5.1步骤后,将酶标板用 PBST 洗液(20mM PB7.4, 150mM NaCl, 0. l%Tween20)洗涤 5遍, 每孔 加入 100 L如 1.3.8步骤制备的酶标记物反应液, 置于 37°C温箱 反应 30分钟。
( 1.5.3)显色反应: 完成 1.5.2步骤后, 将酶标板用 PBST洗 液(20mM PB7.4, 150mM NaCl, 0. l%Tween20)洗涤 5遍, 每孔加 入 TMB显色剂(由北京万泰生物药业股份有限公司提供)各 50 L, 置于 37°C温箱反应 15分钟。
(1.5.4)终止反应及读值测量: 完成 1.5.3步骤后, 在反应 完的酶标板中每孔加入终止液(由北京万泰生物药业股份有限公司 提供) 50 L, 并于酶标仪上检测各孔的 0D 值。
(1.5.5)定量标准曲线的绘制: 完成 1.5.4步骤后, 对 13个 定量标准品的测量值及其对应浓度进行线性回归,绘制出如图 1的 定量标准曲线。 由图 1可知, Anti-HBcELISA方法能准确定量的上 限值为 2.5 IU/mL,下限值为 0.04 IU/mL,其线性动力学范围为 1.8 个数量级。由 0D45/63。测量值计算 Anti-HBc浓度的公式为: Cone. anti-„Bc (IU/mL) = 1.2104xOD450/63o - 0.011。
(1.5.6)待测样品 Ant i-HBc浓度的获得: PI血清的系列稀释 样本经 1.5.1-1.5.5的步骤测量后, 其 1: 500稀释的 0D45/63。测量 值为 3.899、 1: 2500稀释的 OD45/63。测量值为 3.801、 1: 12500稀 释的 0D45/63。测量值为 2.988、 1: 62500 稀释的 OD45/63。测量值为 0.301;将上述测量值代入步骤 1.5.5中获得的 Anti-HBc浓度计算 公式, 其中 1: 500测得的浓度值为 4.71 IU/mL, 1: 2500测得的 浓度值为 4.59 IU/mL, 1: 12500测得的浓度值为 3.61 IU/mL, 1: 62500测得的浓度值为 0.35 IU/mL。 1: 62500稀释度测得的浓度值 落在本 ELISA方法能准确定量的线性动力学范围( 0.04-2.5 IU/mL ) 内,因此该样本的原始 Ant i-HBc浓度为 0.35 χ 62500=22083 IU/mL。
(1.5.7)检测方法的试验内 ( Intra-assay )精确性评价: 取 已知浓度的 6份标本, 其 Anti-HBc定量值分别为 5 IU/mL, 2.5 IU/mL, 1.25 IU/mL, 0.625 IU/mL, 0.3125 IU/mL, 0.156 IU/mL, 在同次实验中,每份样本按照 1.5.1-1.5.4的步骤重复检测 16孔, 检测完后分别计算各样品 0D45fl/63fl测量值的试验内变异系数, 如图 2A所示, 6份样本的试验内变异系数在 2.8%-10.1%之间。
(1.5.8)检测方法的试验间 ( Inter-assay )精确性评价: 取 已知浓度的 6份标本, 其 Anti-HBc定量值分别为 5 IU/mL, 2.5 IU/mL, 1.25 IU/mL, 0.625 IU/mL, 0.3125 IU/mL, 0.156 IU/mL。 对上述 6份样品按照 1.5.1-1.5.4的步骤进行 16次独立的检测实 验,完成全部检测后分别计算各份样品 0D45/63。测量值的试验间变异 系数, 如图 2B所示, 6份样本的试验间变异系数在 4.4%-10.5%之 间。
(1.5.9) Ant i-HBc定量检测的重现性评估: 随机选择 104份 慢性乙型肝炎患者血清标本(Anti-HBc水平在 2.23 log10 IU/mL 至 5.37 log10 IU/mL之间 ) , 按照 1.5.1-1.5.6的步骤进行 Ant i-HBc 的定量测定,独立重复测量 2次,并对两次测量结果进行回归分析, 如图 3所示, 两次测量结果高度一致, R2=0.988。
2、 双抗原夹心法 Anti-HBc 定量的化学发光酶联免疫检测 (CLEIA)方法 2.1 固相化抗原及标记抗原的制备
按照本发明中实施例 1第 1.1节所述的方法进行。
2.2 化学发光反应板的制备
按照本发明中实施例 1第 1.2节所述的方法进行, 但采用化学 发光反应板作为抗原固相化载体。
2.3 Cpl83抗原的 HRP标 i己
按照本发明中实施例 1第 1.3节所述的方法和步骤进行。
2.4 定量标准品
同本发明实施例 1第 1.4节所述。
2.5 Anti-HBc的 CLE I A定量检测
选取 1份慢性乙型肝炎患者的血清(编号 P1 )按照下列步骤进 行 Anti-HBc的定量检测。鉴于慢性乙型肝炎患者血清 Anti-HBc水 平通常较高, 我们将该标本以含 20%新生牛血清的 PBS溶液稀释成 1: 500、 1: 2500、 1: 12500共 3个稀释度进行定量 CLEIA检测。
(2.5.1)样品反应: 取已包被的化学发光反应板一块, 每孔加 入 90 样品稀释液, 每孔再加入 10 标本或者标准品, 震荡混 匀后, 置于 37°C温箱反应 30分钟。
(2.5.2)酶标记物反应: 完成 1.5.1 步骤后, 将化学发光反 应板用 PBST洗液 ( 20mM PB7.4, 150mM NaCl, 0. l%Tween20 )洗涤 5遍,每孔加入 100 如 1.3.8步骤制备的酶标记物反应液,置于 37 °C温箱反应 30分钟。
(2.5.3)发光反应和测量: 完成 2.5.2步骤后, 将化学发光 反应板用 PBST洗液( 20mM PB7.4, 150mM NaCl, 0. l%Tween20 )洗 涂 5 遍, 每孑加入 Pierce公司生产的 PICO Chemi luminescent Substrate 100 L, 立即采用 Orin II化学发光检测仪读取各反应 孔发光值 (RLU) 。 ( 2. 5. 4 )定量标准曲线的绘制: 完成 2. 5. 3步骤后, 对 13个 定量标准品的测量值及其对应浓度进行线性回归, 绘制出如图 4的 定量标准曲线。 由图 4可知, Ant i-HBc CLEIA方法能准确定量的上 限值为 20 IU/mL, 下限值为 0. 04 IU/mL, 其线性动力学范围为 2. 7 个数量级。 由 RLU 测量值计算 Ant i-HBc 浓度的公式为: Cone. ant i-HBc (IU/mL) =
1 Q (Log 10 (RLU) x 0. 9337-5. 3006)
( 2. 5. 4 )待测样品 Ant i-HBc浓度的获得: PI血清的系列稀释 样本经 2. 5. 1-2. 5. 4的步骤测量后, 其 1: 500稀释的 RLU测量值 为 12115100、 1: 2500稀释的 RLU测量值为 5067890、 1: 12500稀 释的 RLU测量值为 889610;将上述测量值代入步骤 2. 5. 4中获得的 Ant i-HBc浓度计算公式,其中 1: 500测得的浓度值为 20. 56 IU/mL, 1: 2500测得的浓度值为 9. 114 IU/mL, 1: 12500测得的浓度值为 1. 795IU/mL, 其中 1: 2500和 1: 12500两个稀释度的测量值落在 本 CLEIA方法能准确定量的线性动力学范围 ( 0. 04-20 IU/mL ) 。 据此如以 1: 2500的测量值计算, 该样本的原始 Ant i-HBc浓度为 9. 114 X 2500=22784 IU/mL; 而如以 1: 12500的测量值计算, 该样 本的原始 Ant i-HBc浓度为 1. 795 X 12500=22442 IU/mL。 两个测量 值的平均浓度为 22613 IU/mL, 该浓度值与采用 ELISA方法测得的 该标本的浓度值 22083 IU/mL的误差为 2. 4%,属于正常偏差范围内。
3、 双抗原夹心法 Ant i-HBc 定量的管式微粒化学发光检测 ( CLIA )方法
3. 1 固相化抗原及标记抗原的制备
按照本发明中实施例 1第 1. 1节所述的方法进行。
3. 2 化学发光反应板的制备 ( 3· 2· 1 )取 lmg磁珠, 用 lmL活化緩冲体系 ( 50mM MES 5.0 ) 洗涂 2遍, 弃上清。 加入 lmg EDC和 lmg NHS试剂 (均用 50mMMES 5.0配置成 10mg/mL) , 混匀后, 室温振荡活化 20分钟;
( 3.2.2 )将活化好的磁珠用 lmL活化緩冲体系( 50mMMES 5.0 ) 洗涤 2遍, 弃上清。 加入 Cpl49抗原 25 g, 混匀后, 室温振荡反 应 3h; 。
( 3.2.3 ) 用 PBST 洗涤液 ( 20mM PB7.4 , 150mM NaCl , 0. l%Tween20 )洗涤 3次。 然后每孔加入 2500 μ 1的保存液( 20mM ΡΒ7·4、 0.1% BSA、 lOOmM Gly、 0.05% TW-20、 0.1% Proclin) , 2-8 °C保存备用。
3.3 Cpl83抗原的吖啶酯标记
(3.3.1)取 50μδ蛋白 Cpl83, 加入到 300 μΐ标记緩冲体系 ( 50mM磷酸盐緩冲液,PH8.0 )中,加入 8 μ L吖啶酯( 5mM NHS-SAE ), 避光室温反应 30mino
(3.3.2)在步骤(3.3.1) 中反应好的标记物中加入 100 终止緩沖液(含 lOOmM甘氨酸的磷酸盐緩沖液, PH8.0) , 避光室 温反应 30min。
(3.3.3)将经过步骤( 3.3.2 )的标记物装入透析袋, 用透析 緩冲液( 20mM磷酸盐緩冲液, pH 7.4 )在 4°C避光条件下进行透析, 中途每 2小时更换透析緩冲液 1次, 透析 6-8小时。
(3.3.4)将步骤 ( 3.3.3 )所得标记物移入保存管,加入 2%BSA 和 50%甘油, -20 °C保存备用。
( 3.3.5 )将经 3.3.4步骤制得的 Cpl83-SAE标记物, 按体积 比 1/500稀释至吖啶酯标记物稀释緩冲液(含有 20%小牛血清、 1% 酪蛋白、 10%蔗糖、 0.05% J^比林的 pH值为 7.4的 20mM Na2HP04 /NaH2P04緩沖液溶液), 制成发光记物反应液, 混句后 2-8°C保存 备用。
3.4 定量标准品
取已知浓度的 Anti-HBc 高浓度样本 PI ( Ant i-HBc=22083 IU/mL ) , 以含 20%新生牛血清的 PBS溶液进行系列稀释, 分别稀释 至 4000 IU/mL, 1333 IU/mL 333 IU/mL, 83.3 IU/mL, 20.8 IU/mL, 5.21 IU/mL, 1.30 IU/mL, 0.33 IU/mL, 0.08 IU/mL, 0.02 IU/mL, 0.005 IU/mL作为 CLIA方法的定量标准品。
3.5 Ant i-HBc的 CLEIA定量检测
选取 1份慢性乙型肝炎患者的血清(编号 P2 )按照下列步骤进 行 Anti-HBc的定量检测。鉴于慢性乙型肝炎患者血清 Anti-HBc水 平通常较高, 我们将该标本以含 20%新生牛血清的 PBS溶液稀释成 1: 500、 1: 2500共 2个稀释度进行定量 CLIA检测。 P2标本经实 施例 1所述的 Anti-HBc EL ISA定量方法检测, 确定其 Anti-HBc浓 度为 8069 IU/mL。
( 3.5.1 )样品反应: 取 50 L磁珠试剂加入反应管, 每孔再 加入 10 标本或者标准品, 震荡混匀后, 置于 37°C温箱反应 15 分钟。
(3.5.2)发光标记物反应: 完成 3.5.1 步骤后, 将化学发光 反应管用 PBST洗液( 20mM PB7.4, 150mM NaCl, 0. l Tween20 )洗 涤 5遍, 每孔加入 50 μ L如 3.3.5步骤制备的发光标记物反应液, 置于 37°C温箱反应 10分钟。
(3.5.3)发光反应和测量: 完成 3.5.2步骤后, 将化学发光 反应板用 PBST洗液( 20mM PB7.4, 150mM NaCl, 0. l%Tween20 )洗 涤 5遍, 用 Sirius-L单管式化学发光检测仪通过原位进样注入激 发液, 同时进行光强检测。
(3.5.4)定量标准曲线的绘制: 完成 3.5.3步骤后, 对 11个 定量标准品的测量值及其对应浓度进行线性回归, 绘制出如图 5的 定量标准曲线。由图 5可知, Ant i-HBc管式微粒化学发光检测( CLIA ) 方法能准确定量的上限值为 20. 8 IU/mL, 下限值为 0. 02 IU/mL, 其 线性动力学范围为 3. 02个数量级。 由 RLU测量值计算 Ant i-HBc浓 度的公式为: Conc. ant i-HBc (IU/mL) : ^^ ^彻-^"。
( 3. 5. 5 )待测样品 Ant i-HBc浓度的获得: P2血清的系列稀释 样本经 3. 5. 1-3. 5. 4的步骤测量后, 其 1: 500稀释的 RLU测量值 为 1571400、 1: 2500稀释的 RLU测量值为 380560; 将上述测量值 代入步骤 3. 5. 4中获得的 Ant i-HBc浓度计算公式, 其中 1: 500测 得的浓度值为 16. 16 IU/mL, 1: 2500测得的浓度值为 3. 204 IU/mL, 均落在本 CLIA 方法能准确定量的线性动力学范围 ( 0. 02-20. 8 IU/mL )。 据此如以 1: 500的测量值计算, 该样本的原始 Ant i-HBc 浓度为 16. 16 X 500=8078 IU/mL; 而如以 1: 2500的测量值计算, 该样本的原始 Ant i-HBc浓度为 3. 204 X 2500=8010 IU/mL。 两个测 量值的平均浓度为 8044 IU/mL,该浓度值与采用 ELISA方法测得的 该标本的浓度值 8069 IU/mL的误差为 3. 1%,属于正常偏差范围内。
4、 不同时期的 HBV感染者血清 Ant i-HBc水平的分布情况 4. 1 横断面病人血清标本的选择
本发明中,为研究不同时期的 HBV感染者血清 Ant i-HBc水平的 分布情况,共收集 350例既往 HBV感染恢复的健康人血清标本和 488 例慢性乙肝携带的病人血清标本, 所有血清标本均分离血清后, 储 存于 -80°C。 488例病人中, 109例为原发性肝癌病人, 63例为肝硬 化病人, 其余 316例为单纯的慢性乙肝病人, 所有的病人均排除了 同时伴有丙型肝炎病毒(HCV )、 人类免疫缺陷病毒(HIV )、 丁型肝 炎病毒(HDV )、 戊型肝炎病毒(HEV )感染的可能性, 也无同时伴有 自身免疫性或代谢性肝脏疾病的临床医学证据。
依据欧洲肝脏病协会 2009年慢性乙肝临床管理指南,将 316例 单纯的慢性乙肝病人划分为不同感染阶段。其中 52例病人处于免疫 耐受期( immune tolerance phase, IT), 其特征是年龄小于 35岁, HBeAg阳性, 血清 HBV DNA载量大于 5 x l07 copies/mL, ALT水平在 过去 12个月的时间内的检测均小于正常值上限(ULN, 在本发明中 指 40 U/L ); 104例病人处于免疫清除期 ( immune clearance phase, IC),其特征是 HBeAg阳性,血清 HBV DNA载量大于 1 χ 104 copies/mL, ALT水平大于 2倍 ULN; 75例病人处于低复制期( low-replicative phase, LR ), 其特征是 HBeAg阴性, 血清 HBV DNA载量小于 Ι χ ΙΟ4 copies/mL, ALT水平在过去 12个月的时间内的检测均小于 ULN; 85 例病人处于 HBeAg阴性的肝炎期,其特征是 HBeAg阴性,血清 HBV DNA 载量大于 2 χ 104 copies/mL, ALT水平大于 2倍 ULN。
4.2临床检验方法
病人血清 ALT水平和其他肝功能生化指标在标本采集后 24小 时后测定; 血清 HBV DM载量和 HBV基因型检测采用文献报告的方 法进行; HBsAg定量采用北京万泰生物药业公司的 HBsAg化学发光 定量试剂盒; HBeAg, Anti-HBe 的测定采用美国雅培公司的 Architect化学发光全自动检测系统。
4.3病人血清标本的 Anti-HBc定量
采用如本发明实施例 1、 或实施例 2、 或实施例 3中所述的方 法进行。
4.4 统计学方法
分组连续变量的比较采用 unpaired t-test Kruskal-Wallis ANOVA, 分类变量的组间比较采用 Mante卜 Haenszel x 2 test 或 Fisher确切概率, Pearson test用于相关分析。 诊断精确性分析采 用受试者工作曲线 ( Receiver operating characteristic, ROC ) 并计算诊断效能(ROC曲线下面积, AUR0C;)。 P值小于 0.05被视为 具有显著的统计学差异。
4.4 病人队列的基本特征
4.1节中描述的 HBV既往感染者及慢性 HBV携带者的人口统计 学、 临床病毒学及血液生物化学背景数据如表 1所示。
表 1. 处于不同时期的 HBV感染者的人口统计学、 临床病毒学及血液生物化学背景数据列表。
疾病分期: 既往 HBV 免疫耐受期 免疫清除期 低复制期 E抗原阴性肝炎 乙肝肝硬化 乙肝原发性 病人数目: (n=350) (n=52) (η=104) (η=75) (n=85) (n=63) (η=109)
Age, years, median (range) 36 (1 - 59) 22 (4 - 35) 33 (10 - 65) 46 (11 - 75) 42 (17 - 82) 51 (26 - 77) 51 (35 - 7
Gender, males/females 156/194 26/26 84/20 46/29 70/16 47/16 96/13
Genotype, B/C 36/16 71/33 34/14 1 56/29 24/39 52/57
0
HBeAg-positive, n (%) 52 (100) 103 (100) 0 0 20 (32) 21 (19.2)
266 (81 ~
ALT, U/L, median (range) 14(6-40) 21 (8 ~ 38) 460 (80 - 4093) 56 (11 - 1831) 59 (18 - 13
3525)
ALT- e leva t ion (> 40 U/L), n (%) 0 0 104 (100) 0 85 (100) 39 (62) 80 (73)
HBV DNA- positive, % 0 100 100 100 100 100 100
8.6(7.4- 7.2(3.6- 2.9(0.3 ~
Login copies/mL, median (range) 4.9(0.4-7
9.6) 9.6)) 3.7)
HBsAg-positive, % 0 100 100 100 100 100 100
4.7(3.5 ~ 3.9(0.9 ~ 3.3(0.8 ~
Login IU/mL, median (range) 3.6 (-0.3-5.6) 3.2 (-0.2 ~
6.0) 5.7) 5.2)
Ant i-HBc-pos i t i ve, % 100 100 100 100 100 100 100
0.4 (-0.6 ~ 4.4(2.7- 4.1 (2.3 ~
Login IU/mL, median (range) 4.4(2.0-5.2)
2.5) 5.3) 5.3)
注 .a 由于 HBV DNA载量过低, 有 27例处于低复制期(LR) 的病人未能成功测定 HBV基因型。
! 4.5 不同时期的 HBV感染者血清 Anti-HBc水平
图 6A/B展现了横断面病人的血清 Anti-HBc水平、 ALT水平、 HBsAg水平及 HBV DM载量在不同疾病时期的分布状况。 既往感染 者的血清 Anti-HBc水平显著低于慢性 HBV携带者(中位值: 0.4 vs. 4.1 log10 IU/mL, j O.001, 低超过 1000倍) ; 在处于不同感染时 期的单纯的慢性乙肝病人中, 血清 Anti-HBc的水平显著不同。 处 于免疫耐受期的病人血清 Anti-HBc 水平的中位值为 3.4 log10 IU/mL, 处于免疫清除期的病人血清 Anti-HBc水平的中位值为 4.4 log10 IU/mL,处于低复制的病人血清 Anti-HBc水平的中位值为 3.3 loglfl IU/mL, 处于 HBeAg阴性肝炎期的病人血清 Anti-HBc水平的 中位值为 4.4 loglO IU/mL。 从以上数据分析可知, 处于免疫清除 期和 HBeAg阴性肝炎期的病人血清 Anti-HBc水平显著高于处于免 疫耐受期和低复制的病人(p<0.001 ) ; 免疫清除期和 HBeAg 阴性 肝炎期病人的血清 Anti-HBc水平无统计学差异( p>0.05) , 免疫 耐受期和低复制病人的血清 Anti-HBc 水平也无统计学差异 (p>0.05 ) 。 上述结果表明慢性乙肝病人血清 Anti-HBc水平与宿 主免疫状态高度相关。 高水平的 Anti-HBc指示病人处于 Anti-HBV 的免疫活化状态, 如以 Anti-HBc水平来判别受试个体是否处于免 疫活化状态(免疫清除期或 HBeAg阴性肝炎期), 经过 R0C曲线分 析(如图 6C所示),诊断效能( AUR0C, 曲线下面积)为 0.918 ( 95% 置信区间: 0.888-0.948 )。 当以 R0C曲线计算出的最优 Cutoff值 7400 IU/mL为临界值时,诊断灵敏度为 87.3%,诊断特异性为 83.5%。
分析乙肝肝硬化病人和乙肝原发性肝细胞癌病人的血清 Anti-HBc水平, 结果如图 6A/B所示。 在乙肝肝硬化病人中, ALT > UL 的 39例病人( LC-b组)血清 Anti-HBc水平显著高于 ALKULN 的 24例病人(LC-a组) (中位值为: 4.2 log10vs. 3.8 log10 IU/mL, p=0. 016 ); 而在乙肝原发性肝细胞癌病人中, ALT > ULN的 80例病 人( HCC-b组)血清 Ant i-HBc水平也显著高于 ALKULN的 29例病 人(HCC-a组)(中位值为: 4. 1 log10vs. 3. 8 log10 IU/mL, p=0. 006 ) 0 上述结果进一步证明了慢性乙肝感染者血清 Ant i-HBc水平与 ALT 水平及宿主免疫状态存在显著关联。
4. 6 慢性乙型肝炎病毒携带者 Ant i-HBc水平与 ALT水平的相关 性
分析在全部 488例慢性慢性乙型肝炎病毒携带者中 (包括单纯 的慢性乙肝患者、 乙肝肝硬化患者和乙肝原发性肝细胞癌患者, n=488 ), 不同 ALT分层病人的 Ant i-HBc水平, 结果如图 6D所示。 患者平均 Ant i-HBc水平在 ALT < 5 x UL 的病人中,随 ALT水平的增 强而逐渐升高( ^trend<0. 001 );当 ALT达到 5 x ULN后, Ant i-HBc 水 平达到最高值而不再继续升高(ptrend=0. 63)。 相关分析显示 (图 6E ), 在平均 Ant i-HBc水平在 ALT < 5 x ULN的病人(n=328 ) 中, Ant i-HBc 水平与 ALT 水平呈现正相关 (单因素分析: r=0. 52, p<0. 001;多因素分析: R=0. 53, p<0. 001 ),而与 HBV DNA水平( ρ=0· 25 ) 或 HBsAg水平 ( p=0. 33 )不具有相关性。 在 ALT < 5 X UL 的病人, Ant i-HBc 水平与 ALT 水平的定量相关性无论在男性患者(r=0. 53, p<0. 001)或女性(r=0. 43, p<0. 001)患者; 在感染 HBV基因型 B的患 者(r=0. 49, p<0. 001)或感染 HBV 基因型 C 的患者(r=0. 53, p<0. 001); 在 HBeAg阳性的患者 (r=0. 57, p<0. 001)或 HBeAg阴性的 患者(r=0. 50, p<0. 001)中均成立。在 ALT>5 x ULN( n=160 ), Ant i-HBc 水平与 ALT水平不具有统计显著的相关性(p=0. 43),也不与 HBV DNA 水平 ( p=0. 63 )或 HBsAg水平相关( p=0. 43 )。
5、 慢性乙型肝炎病毒携带者自然进展过程中 Ant i-HBc水平 的动态变化及其与其他指标的联系
5. 1 病人队列
本实施例中一共研究了 9例未接受 Ant i-HBV治疗的病人自然 进展的纵向观察系列血清标本,平均观察时间为 103 ± 38周( 57-168 周) , 随访 5-17次, 共计 77份血清样本。
5. 2临床检验方法
按实施例 4中 4. 2节的描述进行。
5. 3病人血清标本的 Ant i-HBc定量
按实施例 4中 4. 3节的描述进行。
5. 4统计学方法
纵向数据分析采用广义回归方程 ( Genera l ized es t imat ing equat ions , GEE ) , 其余统计分析方法按实施例 4中的描述进行。
5. 5慢性乙型肝炎病毒携带者自然进展过程中血清标志物的动 态变化和彼此间的相互联系
9例病人( A-G )在随访观察期间的 Ant i-HBc水平、 ALT水平、 HBsAg水平和血清 HBV DNA载量动态变化情况如图 7所示。 病人 A 在随访观察期间处于免疫耐受期, 其血清 HBV DM载量, HBsAg— 直处于艮高的水平, 同时 ALT水平和 Ant i-HBc水平一直处于 4艮低 的水平。 除病人 A外, 其他病人(B-G )在随访观察期间均经历了 1 次或更多的肝炎活动。通过对这些病人的观察发现, Ant i-HBc水平 的升高总是伴随着 ALT水平的升高, 亦即伴随着肝炎的发生。 多数 情况下, 肝炎急性发作时, 病人血清 Ant i-HBc水平一般比 ALT水 平晚 3-8周达到峰值(图 7, 如病人 C, 病人 D的第一时段, 病人 F 的第一时段, 病人 G和 I的情况所示); 在某些情况下, 病人血清 Ant i-HBc水平也可能早于或与 ALT同时达到峰值(图 7,如病人 B, 病人 D、 病人 F和病人 H的第二时段, 病人 E的情况所示) 。 在肝 炎恢复期, Ant i-HBc的下降比 ALT复常更为緩^ "曼, Ant i-HBc通常 在 ALT复常后 12-20周方能回到基线水平。
总体而言,多因素纵向数据分析显示血清 Ant i-HBc水平与 ALT 水平独立相关(β =0. 65, ρ<0. 001) , 而与血清 HBV DNA 载量( β =-0. 006, ρ=0. 98)和 HBsAg水平无统计显著的相关性 ( β =-0. 034, ρ=0· 45)。
6、 Ant i-HBc 定量水平能预测慢性乙型肝炎病人的抗病毒治 疗疗效
6. 1 病人队列
病人队列 A: HBeAg阳性病人 49例,所有患者均接受 adefovir dipivoxi l (阿德福韦酯, 10mg/天) , 共治疗 96周, 停药后随访 12周。
病人队列 B : HBeAg 阳性病人 48 例, 所有患者均接受 Peginterferon alpha_2a (长效干扰素 a _2a, 180 g/week ) , 共 治疗 24周, 停药后随访 24周。
上述病人治疗前临床指征均符合 APASL慢性乙肝临床管理指南 推荐的治疗适应症: HBsAg 阳性持续 1 年以上, 均为 HBeAg 阳性 Ant i-HBe阴性, 血清 ALT水平高于 2倍 ULN; 均排除了同时伴有丙 型肝炎病毒( HCV )、人类免疫缺陷病毒( HIV )、丁型肝炎病毒( HDV )、 戊型肝炎病毒(HEV )感染的可能性, 也无同时伴有自身免疫性或 代谢性肝脏疾病的临床医学证据。
6. 2临床检验方法
按实施例 4中 4. 2节的描述进行。
6. 3病人血清标本的 Ant i-HBc定量
按实施例 4中 4. 3节的描述进行。 6. 4治疗终点的定义
主要治疗终点定义为随访终点发生 HBeAg血清学转换。
6. 5统计学方法
所有统计分析方法按实施例 4中的描述进行。
6. 6病人队列的基本特征
如表 2所示。
表 2. 接受阿德福韦酯(队列 A )和 PEG千扰素(队列 B )治疗的 HBeAg阳性的 慢性乙型肝炎病人的基线特征.
队列 A 队列 B P va lue
No 49 48 ―
Treatment s trategy ADV 96-week Pegasys 24-week ―
Age, yrs, median (range) 35 (26 - 48) 35 (15 - 57) 0. 80
Gender, males/females 44/5 35/13 0. 06
Genotype, B/C 11/38 29/19 <0. 001
ALT strata, >5 ULN/ < 5 ULN 12/37 16/32 0. 34
ALT, U/L, median (range) * 110 (44 - 402) 168 (32 - 626) 0. 008
HBV DNA, login copies/ml, median (range) 7. 58 (3. 97 - 9. 29) 7. 55 (3. 44 - 9. 59) 0. 50
HBsAg, login IU/ml, median (range) 4. 44 (2. 35 ~ 5. 47) 4. 06 (1. 53 - 5. 35) 0. 005
Ant i-HBc-IgM, S/CO value, median (range) 2. 10 (0. 31 - 12. 7) 1. 78 (0. 25 ~ 12. 2) 0. 45
Ant i-HBc, login IU/ml, median (range) 4. 29 (3. 08 - 5. 11) 3. 98 (2. 41 - 5. 36) 0. 15 注. a 全部病人均为 HBeAg阳性且在治疗前筛选阶段 ALT水平 大于 2 X ULN , 在开始治疗时, 有 11例病人(队列 A有 5例, 队列 B中有 6列)的 ATL水平下降至 2 X ULN 以下。 ADV, 阿德福韦酯; Pegasys, 聚乙二醇干扰素 a -2a; ULN, 正常值上限.
6. 7基线 Ant i-HBc水平与治疗后 HBeAg血清学转换的发生率相 关
完成治疗及随访观察后, 队列 A的 49例病人(接受阿德福韦 酯治疗)中有 9例随访终点发生 HBeAg血清学转换, 治疗有效率为 18. 4% ( 95% CI: 8. 8 32. 0%); 队列 B的 48例病人(接受长效干 扰素治疗) 中有 23例截止随访终点时发生了 HBeAg血清学转换, 治疗有效率为 47.9% ( 95% CI: 33.3 62.8%)。
分析两个队列中治疗有效的病人和无效的病人在接受治疗前 的各临床指标, 结果如表 3。 无论阿德福韦酯治疗的病人, 还是长 效干扰素治疗的病人, 治疗有效者和无效者的年龄、 男女性别比、 ALT水平、 血清 HBV DNA载量、 HBsAg水平和 Anti-HBc-IgM 水平 均无统计学显著的区别。 但治疗有效者的基线 Anti-HBc水平显著 高于治疗无效者: 队列 A中, 4·58±0·28 vs. 4·15±0·42 loglO IU/mL, p=0.005; 队列 B中, 4.32 ±0.66 vs. 3.81 ± 0.68 loglO IU/mL, p=0.011。 这一结果提示治疗前 Anti-HBc水平可能预测患 者的预期治疗疗效。 R0C分析显示,基线 Anti-HBc水平预测随访终 点 HBeAg血清学转换的 AUR0C值在队列 A中为 0.810, (95% CI: 0.675 0.948, ρ=0· 004,如图 8Α),最优 Cutoff值为 29000 IU/mL, 此时诊断灵敏度为 77.8%, 诊断特异性为 77.5%; AUR0C在队列 B 中为 0.710 (95% CI: 0.564 0.855, p=0.013, 如图 8B), 最优 Cutoff值为 9000 IU/mL, 此时诊断灵敏度为 69.6%, 诊断特异性为 60.0%。
表 3. 在接受阿德福韦酯(队列 A )和 PEG千扰素(队列 B )治疗的 HBeAg阳性的慢性乙型肝炎病人中分析基线特征对治疗
H Be Ag血清学转换的预测价值
队列 A (阿德福韦酯) 队列 B (聚乙-二醇干扰素 a-2a)
Characteristics Univariate Multivariate Univariate Multivariat
SR(+) SR (-) SR(+) SR (-)
p value p value p value p value
No- 9 40 ― ― 23 25 ― ―
Age, yrs 35±4 36±6 0.87 0.80 34±11 36±10 0.54 0.80
Gender, males/females 7/2 37/3 0.45 0.26 17/6 18/7 0.88 0.85
Genotype, B/C 2/7 9/31 0.99 0.46 15/8 14/11 0.52 0.90
ALT strata, >5xULN/<5xULN 3/6 9/31 0.77 0.45 8/15 8/17 0.84 0.43
ALT, U/L 170±88 137±79 0.28 0.29 198±129 213±149 0.71 0.26
HBV DNA, log10 copies/mL 7.03±1.40 7.65±1.13 0.16 0.12 7.64±0.92 7.04±1.61 0.12 0.11
HBsAg, log10 IU /mL 4.32±0.16 4.39±0.65 0.78 0.56 4.01±0.42 3.92±1.07 0.70 0.13
Anti-HBc-lgM, S/CO value 3.13±1.39 2.51±2.49 0.47 0.88 3.38±2.85 2.72±3.43 0.47 0.75
Anti-HBc, log10 lU/mL 4.58±0.28 4.15±0.42 0.005 0.032 4.32±0.66 3.81±0.68 0.011 0.026 注. 年龄、 ALT水平、 HBVDNA
Mean±SD; SR, HBeAg 血清学转换.
6.8基线 Anti-HBc水平预测治疗后 HBeAg血清学转换的发生率 6.7 节中计算出的 Cutoff 值可用于在治疗前预测病人接受治 疗后 HBeAg血清学转换的发生率。 在队列 A中, 如图 8C所示, 基 线 Anti-HBc水平大于 29000 IU/mL的 16例病人有 7个病人发生随 访终点 HBeAg血清学转换(有效率: 43.8%) , 而基线 Anti-HBc水 平小于 29000 IU/mL的 33例病人只有 2例病人发生随访终点 HBeAg 血清学转换(有效率: 6.1%), Anti-HBc高低两组间 HBeAg血清转 换的发生率比 (Risk Ratio, RR)为 7.22 (95% CI: 1.69 30.9, p=0.006)。在队列 B中,如图 8D所示,基线 Anti-HBc水平大于 9000 IU/mL的 25例病人有 16个病人发生随访终点 HBeAg血清学转樹有 效率: 64.0%) , 而基线 Anti-HBc水平小于 9000 IU/mL的 23例病 人只有 7例病人发生随访终点 HBeAg血清学转换(有效率: 30.4%), Anti-HBc 高低两组间 HBeAg血清转换的发生率比 (Risk Ratio, RR) 为 2· 10(95% CI: 1.06 4.17, ρ=0· 006)。
进一步分析基线 Anti-HBc在不同 ALT水平的病人中预测治疗 后 HBeAg血清学转换的作用, 结果如图 8E所示, 在两个队列中无 论在基线 ALT 水平 <5 x ULN 或>5 111^ 的病人亚组中, 基线 Anti-HBc 水平高的病人治疗后血清转换的发生率均高于基线 Ant i-HBc水平低的亚组。将接受阿德福韦酯和长效干扰素治疗的病 人进行合并分析, 并按照病人基线 Anti-HBc水平分为高( > 29000 IU/mL ) 、 中 ( 9000-29000 IU/mL ) 、 低( <9000 IU/mL )三组, 分 析三组病人治疗后 HBeAg 血清学转换率, 如图 9 所示。 在基线 Anti-HBc水平 > 29000 IU/mL的病人中,接受阿德福韦酯治疗的 16 例病人治疗后有 9例发生 HBeAg血清学转换, 应答率为 43.8%, 这 一比例在接受长效干扰素治疗的 15例病人中为 66.7% (10/15) , 两者间无统计学显著的差异(p=0.82) ; 对基线 Anti-HBc水平在 9000-29000 IU/mL的病人, 接受阿德福韦酯治疗的 19例病人治疗 后仅有 2例发生 HBeAg血清学转换, 应答率为 10.5%, 而这一比例 在接受长效干扰素治疗的 10例病人中为 60.0%(6/10), 两者间具 有统计学显著的差异( p=0.018 );对基线 Anti-HBc水平 <9000 IU/mL 的病人, 接受阿德福韦酯治疗的 16例病人治疗后无 HBeAg血清学 转换发生, 而 23 例接受长效干扰素治疗的病人中尚有 7 例发生 HBeAg 血清学转换 ( 30.4%) , 两者间具有统计学显著的差异 (p<0.001) 。
6.9阿德福韦酯治疗过程中及停药后病人 Anti-HBc水平的动态变化 依据阿德福韦酯治疗病人在治疗过程中及停药后血清 Anti-HBc的动态变化(图 10A), 可将整个治疗及观察过程分为三 个阶段: ( 1 )基线至治疗后 60周,在这个阶段,病人血清 Anti-HBc 平均水平随治疗的延续呈线性下降(r=0.99, p<0.001) , 每 12周 下降 0.20 ±0.05 log10 IU/mL; (2)治疗后 60周至治疗终点 (96 周) , 病人血清 Anti-HBc平均水平到达平台期, 不再随治疗的延 续而下降(ρ=0·87); (3)停药后(108周), 病人血清 Anti-HBc 平均水平相比于治疗终点( 96周)有明显反弹,平均上升 0.29 loglO IU/mL (p<0.001) 。 总体上看, 治疗过程中 Anti-HBc水平的下降 较 ALT水平、 HBV DM水平和 HBsAg水平下降的更緩曼, 前者在治 疗 60周以后到达平台期, 而后面三者治疗后 24周即达到平台期。 多因素纵向分析显示, Anti-HBc 水平与 ALT 水平独立相关(β =0.830, ρ<0.001),而与 HBV DNA水平 ( β =0.003, ρ=0· 94)或 HBsAg 水平无统计显著的相关性( β =-0.061, ρ=0.52)。
依据本实施例 6.7节划定的临床 Cutoff值,将全部接受阿德福 韦酯治疗的病人划分为 > 29000 IU/mL (n=16, HBc-High)和〈29000 IU/mL (n=33, HBc-Low) 两组, 比较两组病人在治疗过程中和停药 后血清 Anti-HBc、 HBV DM、 ALT, HBsAg 水平的动态变化差异, 结 果显示如图 10B。 HBc-High和 HBc-Low两组病人治疗前 HBV DNA 水 平(7.61士 1.15 vs. 7.50士 1.22 log10 copies/mL, ^=0.77) 和 HBsAg水平 (4.34 ±0.31 vs. 4· 38 ± 0· 69 log10 IU/mL, ^=0.83) 无 统计差异; 而 HBc-High组基线 ALT水平高于 HBc-Low组, 但差异 尚不及统计学显著水平。 在治疗过程中, 两组患者的 ALT 水平和 Ant i-HBc水平的下降曲线无论在每个监测点分析或在纵向分析中均 无显著差异, 但是停药后, HBc-Low组的 Anti-HBc向比 HBc-High 组有明显反弹(p=0.039 ), ALT 的情况也是如此, 尽管尚不及统计 学显著水平(p=0.09)。 对 HBV DNA水平来说, HBc-High组病人无 论在治疗过程中还是停药后 (除基线外)血清 HBV DNA水平均显著 低于( p<0.05 ) HBc-Low组。在随访终点时, HBc-High组病人 HBV DNA 平均水平比治疗前下降了 3.48士 2.24 log10 copies/mL; 而 HBc-Low 组病人 HBV DNA 平均水平比治疗前下降了 1.69 ± 2.051og10 copies/mL ( p=0.008 )。 两组病人的 HBsAg水平变化无明显差异。 参考文献
[1] Dienstag JL. Hepatitis B virus infection. N Engl J Med 2008; 359: 1486-1500.
[2] Li aw YF, Chu CM. Hepatitis B virus infection. Lancet 2009; 373: 582-592.
[3] Kwon H, Lok AS. Hepatitis B therapy. Nat Rev Gastroenterol Hepatol 2011; 8: 275-284.
[4] Deng LJ, Xu Y, Huang J. Developing a double-antigen sandwich EL ISA for effective detection of human hepatitis B core antibody. Comp Immunol Microbiol Infect Dis 2008; 31: 515-526.
[5] Li A, Yuan Q, Huang Z, Fan J, Guo R, Lou B, et al. Novel double-antigen sandwich immunoassay for human hepatitis B core antibody. CI in Vaccine Immunol 2010; 17: 464-469.
[6] Zlotnick A, Johnson JM, Wingf ield PW, Stahl SJ, Endres D. A theoretical model successfully identifies features of hepatitis B virus caps id assembly. Biochemistry 1999; 38: 14644-14652.
[7] WHO International Standard: First International Standard for anti-Hepatitis B core antigen. 10 November, 2008 [cited; Available from: www. nibsc. ac. uk/documents/ ifu/95-522. pdf

Claims

权 利 要 求
1、 定量检测乙型肝炎病毒核心蛋白抗体水平的试剂在制备用于 监控慢性乙型肝炎患者的病情发展和 /或在慢性乙型肝炎患者接受 抗乙型肝炎病毒治疗前有效预测其治疗效果的诊断剂中的用途。
2、 权利要求 1所述的用途, 其中乙型肝炎病毒核心蛋白抗体的 定量检测通过如下方法中的一种或者几种方法来实现: 酶联免疫吸 附法、 化学发光免疫检测法、 时间分辨荧光检测法、 免疫比浊法、 免疫层析法、 免疫渗滤法。
3、 权利要求 1所述的用途, 其中乙型肝炎病毒核心蛋白抗体水 平的单次检测的线性动力学范围在 1. 5个数量级以上, 亦即单次检 测准确定量的上限值高于准确定量的下限值 32倍以上。
4、 权利要求 1所述的用途, 其中乙型肝炎病毒核心蛋白抗体的 定量检测包括以下步骤:
a) 提供可与乙型肝炎病毒核心蛋白抗体特异性结合的乙型 肝炎病毒蛋白,该蛋白可以是包含乙型肝炎病毒核心蛋白的全长氨 基酸序列 (从第 1位氨基酸到第 183位氨基酸), 也可以是只包含 乙型肝炎病毒核心蛋白的主要免疫优势区的氨基酸序列 (如从第 1 位氨基酸到第 149位氨基酸) , 该蛋白被固相化于固相化载体上, 作为固相抗原,用于捕获血清样品中存在的乙型肝炎病毒核心蛋白 抗体;
b) 提供可与被捕获到固相抗原上的乙型肝炎病毒核心蛋白 抗体特异性结合的抗原标记物,该蛋白可以是包含乙型肝炎病毒核 心蛋白的全长氨基酸序列 (从第 1位氨基酸到第 183位氨基酸) , 也可以是只包含乙型肝炎病毒核心蛋白的主要免疫优势区的氨基 酸序列 (如从第 1位氨基酸到第 149位氨基酸), 所标记的信号产 生物可以是辣根过氧化物酶、 碱性磷酸酶或吖啶酯;
c) 提供用于绘制定量标准曲线的已知浓度的定量标准品,通 常为 3-6份含不同浓度的乙型肝炎病毒核心蛋白抗体的样品组成。 浓度的单位可以是 IU/mL, PEIU/mL,也可以是其他可以朔源的浓度 或滴度单位;
d) 样品(待测样品或定量标准品)与固相抗原相互接触, 使 得样品中的乙型肝炎病毒核心蛋白抗体, 如果存在的话, 被捕获, 形成固相抗原-乙型肝炎病毒核心蛋白抗体复合物;
e) 使抗原标记物与步骤 c) 的产物, 即固相抗原-乙型肝炎 病毒核心蛋白抗体复合物相互接触, 从而形成固相抗原-乙型肝炎 病毒核心蛋白抗体 -抗原标记物复合物;
f) 使底物或能激发信号产生的溶液也步骤 e)形成的固相抗 原 -乙型肝炎病毒核心蛋白抗体 -抗原标记物复合物相互接触,从而 生产可测量的信号, 并以相应的测定仪器测定所产生的信号强度; g) 将测量得到的定量标准品(通常为 3-6份)的信号, 与其 对应的浓度值进行线性回归拟合,获得由测量信号计算样品浓度的 数学公式;
h) 将待测样品测量得到的信号, 引入步骤 g)中得到的公式, 从而计算出待测样品含有的乙型肝炎病毒核心蛋白抗体浓度;
i) 如果步骤 h)中计算出的乙型肝炎病毒核心蛋白抗体浓度 高于检测方法能准确定量的量值上限, 则需对待侧样品进行稀释, 重复步骤 a)到 h), 直至测定的浓度值落在相应检测方法能准确定 量的量值上限和量值下限之间。待测样品含有的乙型肝炎病毒核心 蛋白抗体浓度由稀释后测量值 X对应稀释倍数计算获得。
5、 权利要求 1-4任一项的用途, 所述诊断剂用于在接受不同治 疗药物的慢性乙型肝炎病人中, 所述药物包括: 长效干扰素(聚乙 二醇化的干扰素, Peginterferon )、 普通干扰素 ( Interferon ) 、 拉米夫定 ( lamivudine, LMV )、 阿德福韦酉 (adefovir dipivoxi 1, ADV)、 恩替卡韦(Entecavir, ETV)、替比夫定(Telbivudine, LdT)、 替诺福韦(Tenof ov i r)或其他可用于慢性乙型肝炎治疗的药物。
6、 权利要求 1-4任一项的用途, 其中在治疗前预测病人治疗疗 效的通常准则是: 治疗前患者血清中乙型肝炎病毒核心蛋白抗体水 平高的病人治疗所获疗效(应答率)高于治疗前患者血清中乙型肝 炎病毒核心蛋白抗体水平低的病人; 治疗疗效的判定标准可以是乙 型肝炎病毒 E 抗原血清转换 (即接受治疗的慢性乙肝患者由 HBeAg (+) /Ant i_HBe (_)的状态改变为 HBeAg (-) /Ant i-HBe (+) ) , 也可以是病毒学应答(即慢性乙肝患者血清 HBV DNA载量降至 1000 Copies/mL以下) , 还可以是其他能指示病情緩解或良好预后的临 床指标。
7、 权利要求 1-4任一项的用途, 其中监控慢性乙型肝炎患者病 情进展的通常准则是: 乙型肝炎病毒核心蛋白抗体水平的异常升高 指示病人肝脏炎症反应的发生和宿主抗乙型肝炎病毒特异性免疫 应答的活化。
8、 Ant i-HBc用于制备用来评估慢性乙型肝炎患者接受阿德福 韦酯和聚乙二醇干扰素的治疗应答情况的试剂盒的用途。
9、 Anti-HBc 用于制备用来监控慢性乙肝患者病情发展 的试剂盒的用途。
10、 Anti-HBc 用于制备用来预测乙肝患者疾病阶段的试 剂盒的用途。
PCT/CN2013/070573 2012-01-21 2013-01-17 Anti-hbc 定量检测方法及其在监控慢性乙肝患者病情发展和预测治疗疗效中的用途 WO2013107355A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US14/373,611 US9952217B2 (en) 2012-01-21 2013-01-17 Anti-HBc quantitative detection method and uses thereof in monitoring and controlling disease progression of chronic hepatitis B patient and in predicting therapeutic effect
JP2014552496A JP6283319B2 (ja) 2012-01-21 2013-01-17 抗HBc定量的検出方法、並びに慢性B型肝炎患者の疾患進行の監視及び管理並びに治療効果の予測におけるその使用
CA2861917A CA2861917C (en) 2012-01-21 2013-01-17 Method for quantitative detection of anti-hbc and use thereof in monitoring disease progression of chronic hepatitis b patients and predicting therapeutic effects
EP13738450.9A EP2805729B1 (en) 2012-01-21 2013-01-17 Anti-hbc quantitative detection in predicting therapeutic effect of chronic hepatitis b patient
BR112014017877-1A BR112014017877B1 (pt) 2012-01-21 2013-01-17 Método para prever um efeito terapêutico e uso de anti-hbc total em uma amostra de soro ou plasma
KR1020147023123A KR101739953B1 (ko) 2012-01-21 2013-01-17 항 에이치비씨의 정량적인 검출 방법 및 만성 비형 간염 환자의 질병 진행의 모니터링 및 억제 및 치료 효과의 예측에 있어서 그의 용도
AU2013211346A AU2013211346B2 (en) 2012-01-21 2013-01-17 Anti-HBc quantitative detection method and uses thereof in monitoring and controlling disease progression of chronic hepatitis B patient and in predicting therapeutic effect
ES13738450T ES2714274T3 (es) 2012-01-21 2013-01-17 Detección cuantitativa de anti-HBc para predecir el efecto terapéutico de pacientes con hepatitis B crónica
HK14112645.8A HK1198945A1 (zh) 2012-01-21 2014-12-17 定量檢測方法及其在監控慢性乙肝患者病情發展和預測治療療效中的用途
AU2018200744A AU2018200744B2 (en) 2012-01-21 2018-01-31 Anti-HBc quantitative detection method and uses thereof in monitoring and controlling disease progression of chronic hepatitis B patient and in predicting therapeutic effect

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210019389.5 2012-01-21
CN201210019389.5A CN103217533B (zh) 2012-01-21 2012-01-21 Anti-HBc定量检测方法及其在监控慢性乙肝患者病情发展和预测治疗疗效中的用途

Publications (1)

Publication Number Publication Date
WO2013107355A1 true WO2013107355A1 (zh) 2013-07-25

Family

ID=48798632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070573 WO2013107355A1 (zh) 2012-01-21 2013-01-17 Anti-hbc 定量检测方法及其在监控慢性乙肝患者病情发展和预测治疗疗效中的用途

Country Status (11)

Country Link
US (1) US9952217B2 (zh)
EP (1) EP2805729B1 (zh)
JP (2) JP6283319B2 (zh)
KR (1) KR101739953B1 (zh)
CN (1) CN103217533B (zh)
AU (2) AU2013211346B2 (zh)
BR (1) BR112014017877B1 (zh)
CA (1) CA2861917C (zh)
ES (1) ES2714274T3 (zh)
HK (1) HK1198945A1 (zh)
WO (1) WO2013107355A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016525523A (ja) * 2013-07-26 2016-08-25 フダン ユニバーシティ ウイルス免疫療法用の医薬組成物およびその使用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153923B (zh) * 2016-06-21 2017-12-05 北京大学第一医院 预测谷丙转氨酶小于二倍正常上限的慢性乙型病毒性肝炎患者肝脏炎症程度的系统
CN107044977A (zh) * 2016-06-30 2017-08-15 深圳市亚辉龙生物科技股份有限公司 一种酪氨酸磷酸酶抗体化学发光免疫检测试剂盒及其制备方法
CN109991411B (zh) * 2017-12-29 2023-01-20 上海索昕生物科技有限公司 一种检测待测样本中目标抗体的免疫测定方法及其应用
CN109900896A (zh) * 2019-03-12 2019-06-18 江苏伯纳德生物科技发展有限公司 一种酶联免疫法检测试剂盒及其制备方法
WO2022252745A1 (zh) * 2021-06-02 2022-12-08 重庆医科大学 一种免疫分子病毒颗粒检测试剂盒
CN117538520B (zh) * 2024-01-05 2024-04-02 山东康华生物医疗科技股份有限公司 一种HBc-IgM抗体检测试剂盒及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1694898A (zh) * 2002-09-06 2005-11-09 株式会社先端生命科学研究所 可形成颗粒的乙型肝炎病毒前核心蛋白
CN1908666A (zh) * 2006-08-14 2007-02-07 武汉大学 一种检测乙肝核心抗体的双夹心法酶联免疫诊断试剂盒及应用
CN101545906A (zh) * 2008-03-25 2009-09-30 北京科美东雅生物技术有限公司 乙肝核心抗体磁微粒化学发光免疫分析测定试剂盒及其制备方法
CN101726596A (zh) * 2009-11-04 2010-06-09 无锡中德伯尔生物技术有限公司 检测乙肝五项的荧光微球免疫层析检测卡及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382962A (ja) * 1989-08-28 1991-04-08 Tosoh Corp B型肝炎ウィルスCore抗原に対する抗体の検出方法
JP4292670B2 (ja) * 2000-02-08 2009-07-08 東ソー株式会社 抗HBc抗体の免疫測定法
CN101377496A (zh) * 2008-04-16 2009-03-04 北京科美东雅生物技术有限公司 一种检测甲状腺过氧化物酶自身抗体的化学发光免疫分析测定试剂盒

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1694898A (zh) * 2002-09-06 2005-11-09 株式会社先端生命科学研究所 可形成颗粒的乙型肝炎病毒前核心蛋白
CN1908666A (zh) * 2006-08-14 2007-02-07 武汉大学 一种检测乙肝核心抗体的双夹心法酶联免疫诊断试剂盒及应用
CN101545906A (zh) * 2008-03-25 2009-09-30 北京科美东雅生物技术有限公司 乙肝核心抗体磁微粒化学发光免疫分析测定试剂盒及其制备方法
CN101726596A (zh) * 2009-11-04 2010-06-09 无锡中德伯尔生物技术有限公司 检测乙肝五项的荧光微球免疫层析检测卡及其制备方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
DENG LJ; XU Y; HUANG J.: "Developing a double-antigen sandwich ELISA for effective detection of human hepatitis B core antibody", COMP IMMUNOL MICROBIOL INFECT DIS, vol. 31, 2008, pages 515 - 526, XP025673831, DOI: doi:10.1016/j.cimid.2007.09.001
DIENSTAG JL.: "Hepatitis B virus infection", N ENGL J MED, vol. 359, 2008, pages 1486 - 1500, XP009184344, DOI: doi:10.1056/NEJMra0801644
KWON H; LOK AS.: "Hepatitis B therapy", NAT REV GASTROENTEROL HEPATOL, vol. 8, 2011, pages 275 - 284
LI A; YUAN Q; HUANG Z; FAN J; GUO R; LOU B ET AL.: "Novel double-antigen sandwich immunoassay for human hepatitis B core antibody", CLIN VACCINE IMMUNOL, vol. 17, 2010, pages 464 - 469, XP055190201, DOI: doi:10.1128/CVI.00457-09
LIAW YF; CHU CM.: "Hepatitis B virus infection", LANCET, vol. 373, 2009, pages 582 - 592, XP025951921, DOI: doi:10.1016/S0140-6736(09)60207-5
RODELLA, A. ET AL.: "Quantitative analysis of HBsAg, IgM anti-HBc and anti-HBc avidity in acute and chronic hepatitis B", JOURNAL OF CLINICAL VIROLOGY, vol. 37, 2006, pages 206 - 212, XP028037963 *
See also references of EP2805729A4
WHO INTERNATIONAL STANDARD: FIRST INTERNATIONAL STANDARD FOR ANTI-HEPATITIS B CORE ANTIGEN, 10 November 2008 (2008-11-10), Retrieved from the Internet <URL:www.nibsc.ac.uk/documents/ ifu/95-522.pdf>
ZLOTNICK A; JOHNSON JM; WINGFIELD PW; STAHL SJ; ENDRES D.: "A theoretical model successfully identifies features of hepatitis B virus capsid assembly", BIOCHEMISTRY, vol. 38, 1999, pages 14644 - 14652

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016525523A (ja) * 2013-07-26 2016-08-25 フダン ユニバーシティ ウイルス免疫療法用の医薬組成物およびその使用

Also Published As

Publication number Publication date
EP2805729A4 (en) 2015-11-11
CN103217533B (zh) 2016-01-06
US20150118674A1 (en) 2015-04-30
JP2018036268A (ja) 2018-03-08
KR101739953B1 (ko) 2017-05-25
CA2861917A1 (en) 2013-07-25
AU2013211346B2 (en) 2017-11-30
CN103217533A (zh) 2013-07-24
HK1198945A1 (zh) 2015-06-19
BR112014017877A8 (pt) 2017-07-11
AU2018200744B2 (en) 2019-08-08
AU2018200744A1 (en) 2018-02-22
KR20140117575A (ko) 2014-10-07
JP6283319B2 (ja) 2018-02-21
JP2015505371A (ja) 2015-02-19
BR112014017877B1 (pt) 2022-01-25
US9952217B2 (en) 2018-04-24
ES2714274T3 (es) 2019-05-28
BR112014017877A2 (zh) 2017-06-20
AU2013211346A1 (en) 2014-08-28
EP2805729B1 (en) 2019-01-09
CA2861917C (en) 2021-03-23
EP2805729A1 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
WO2013107355A1 (zh) Anti-hbc 定量检测方法及其在监控慢性乙肝患者病情发展和预测治疗疗效中的用途
Hosaka et al. HBcrAg is a predictor of post‐treatment recurrence of hepatocellular carcinoma during antiviral therapy
Yang et al. The Lumipulse G HBsAg-Quant assay for screening and quantification of the hepatitis B surface antigen
Seto et al. Evidence of serologic activity in chronic hepatitis B after surface antigen (HBsAg) seroclearance documented by conventional HBsAg assay
WO2021227364A1 (zh) 一种诊断标志物及其在covid-19诊断及冠状病毒既往感染检测中的应用
Guillou et al. Evaluation of an enzyme‐linked immunosorbent assay for detection and quantification of hepatitis B virus PreS1 envelope antigen in serum samples: comparison with two commercial assays for monitoring hepatitis B virus DNA
Thibault et al. Performance of HBsAg quantification assays for detection of Hepatitis B virus genotypes and diagnostic escape-variants in clinical samples
JP2015505371A5 (zh)
Minekawa et al. Development of a highly sensitive bioluminescent enzyme immunoassay for hepatitis B virus surface antigen capable of detecting divergent mutants
Liang et al. Dual-labeled time-resolved immunofluorometric assay for the simultaneous quantitative detection of hepatitis B virus antigens in human serum
US20070166702A1 (en) Methods for predicting the efficacy or outcome of hcv therapy
Liu et al. Steadily decline of HBV DNA load under NAs in lymphoma patients and higher level of qAnti-HBc predict HBV reactivation
Saussakova et al. Management of Chronic Hepatitis B patients: HBsAg Kinetics
Liu et al. Comparison of two immunoassays for quantification of hepatitis B surface antigen in Chinese patients with concomitant hepatitis B surface antigen and hepatitis B surface antibodies
CN113156118B (zh) 一种诊断标志物及其在covid-19诊断及冠状病毒既往感染检测中的应用
RU2800845C2 (ru) Способ и средство для быстрого обнаружения инфекций вируса гепатита d
EP4019974A1 (en) In vitro method for predicting mortality in covid-19 patients
Coffin et al. New and Old Biomarkers for Diagnosis and Management of Chronic HBV Infection
Ghafour et al. Study the Seroclearance of HBs Antigen in Patients with Confirmed Hepatitis B Infection During Receiving nucleotide Analougue in Comparison with No Treatment
YUAN et al. Patent 2861917 Summary
Kunkal et al. HIV-HBV Co-infections in Central India: Prevalence, Clearance Rates, and Long-term Outcomes from a Decade of Experience at a Tertiary Care Center.
JP2023073582A (ja) SARS-CoV-2感染症の予後判定補助方法
Rigamonti Development of a quantitative chemiluminescent immunoassay for the hepatitis B. antigen detection
Ibrahim et al. Value of HCV Core Antigen Testing in Detection of HCV Antibody Negative HCV Infection in Patients with Asymptomatic Elevation of Liver Transaminases of Unknown Etiology
Gray et al. Laboratory techniques in the diagnosis and assessment of hepatitis B virus infection.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2861917

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014552496

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013738450

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147023123

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014017877

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2013211346

Country of ref document: AU

Date of ref document: 20130117

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14373611

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112014017877

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140721