WO2013107129A1 - 一种冷轧电镀锌机组钢卷排序方法及系统 - Google Patents

一种冷轧电镀锌机组钢卷排序方法及系统 Download PDF

Info

Publication number
WO2013107129A1
WO2013107129A1 PCT/CN2012/074839 CN2012074839W WO2013107129A1 WO 2013107129 A1 WO2013107129 A1 WO 2013107129A1 CN 2012074839 W CN2012074839 W CN 2012074839W WO 2013107129 A1 WO2013107129 A1 WO 2013107129A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel coil
processing
steel
coil
coils
Prior art date
Application number
PCT/CN2012/074839
Other languages
English (en)
French (fr)
Inventor
唐立新
杨阳
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Priority to US13/993,622 priority Critical patent/US9181626B2/en
Publication of WO2013107129A1 publication Critical patent/WO2013107129A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention belongs to the technical field of metal material processing information, and relates to an automation technology, in particular to a steel coil sorting method and system for a cold-rolled electrogalvanizing unit.
  • the problem of steel coil sorting of electro-galvanizing units of metal materials is the main content of metallurgical enterprise production management.
  • the quality of steel coil sorting is directly related to equipment stability and operating efficiency of electrogalvanized units, product quality and production cost.
  • the raw materials used for electro-galvanized steel strips are mainly steel coils after annealing. After the acid-rolled steel coils are annealed, in order to achieve the surface characteristics of steel coils such as rust prevention and appearance, it is often necessary to apply a uniform coating on the steel coils.
  • the layer metal zinc and the electro-galvanizing unit process the steel coil by the coating, post-treatment and the like for the purpose of processing.
  • the main processing process of electro-galvanizing (as shown in Figure 1) is to open the steel coil and weld it into a continuous strip. After the surface of the strip is cleaned, it enters the galvanizing tank and is electrolyzed to form a uniform surface on the steel strip.
  • the steel strip needs to pass the post-treatment process.
  • Common post-treatment methods include passivation, phosphating, fingerprint resistance, etc. After being cleaned, oiled, trimmed, etc., it is cut into coils by slitting.
  • the production sequence of the electro-galvanizing unit coil is to make the steel coil transition as smooth as possible under the process constraints such as specification, zinc layer thickness and post-treatment method, so as to improve the unit response speed, ensure product quality and fully utilize the unit's production capacity.
  • the coil is welded into a continuous strip. The thickness of the two adjacent coils jumps and the width jumps more, which makes the strip more likely to crack, and also causes the support roll.
  • the two adjacent steel coils have different post-treatment methods, and the unit needs to replace the post-treatment liquid. If the latter steel coil is processed in accordance with the corresponding post-treatment method, After the previous coil is processed, the pulling speed of the equipment strip needs to be adjusted or even stopped. At this time, the latter coil will be stopped in the unit, and the equipment adjustment process will reduce the quality of the coil.
  • the production sequence of the electro-galvanized steel coils is manually completed. Due to the complicated constraints of electroplating zinc production process, manual production sequencing has great difficulty, and the number of steel coils involved in actual production is huge.
  • the manual production is sorted within a reasonable time. It is difficult to select the coils in the warehouse in real time and make steel coils.
  • the processing sequence ensures a smooth transition of the width and thickness of adjacent steel coils, and prepares a steel coil processing sequence that guarantees product quality, increases production capacity, ensures stable operation of the unit, and has an overall overall level.
  • the present invention provides a method and system for sorting steel coils of a cold-rolled electrogalvanizing unit, To ensure the smooth transition of the width and thickness of adjacent steel coils, to ensure product quality, increase production capacity, and ensure the stable operation of the unit.
  • a cold rolling electrogalvanizing unit steel coil sorting method comprises the following steps: Step 1: Describe the process engineering, determine the constraints of the process, and describe according to the following model:
  • Step 1-1 The steel coil production model of the electrogalvanizing unit, the objective function of the model is:
  • A represents the weight of the production switching (ie, post-processing, width, thickness) on the stability of the production system
  • A represents the weight of the steel coil selection on the stability of the production system
  • System stability defect penalty caused by switching after post-processing mode indicates system stability defect penalty caused by width switching after processing steel coil i; indicating that steel coil j is switched after thickness after steel coil i
  • indicates the current steel coil order selection of steel coils for processing the impact on the stability of the production system
  • decision variables represent the continuous electro-galvanizing process sequence, between the steel coil i and the steel coil j Adjacent relationship, when the steel coil i is processed before the steel coil j, the Xij value is 1, otherwise the Xij value is 0; the decision variable ⁇ indicates whether the continuous electrogalvanizing processing sequence selects the steel coil i for processing, when the steel coil i is selected for processing, the value is 1, otherwise it is 0
  • Constraints on the steel coil production model of the electrogalvanizing unit including feasibility constraints and their own process and operational constraints:
  • N electrogalvanized
  • the set of steel coils available in the former library, constraints (2) and (3) give the logical relationship between the decision variables Xij and ⁇ ; the constraints (4) are used to prevent the coil process from being interrupted; the constraint (5) is the decision variable 3 ⁇ 4 and The range of values of ⁇ ;
  • the electro-galvanizing unit has its own process and operating constraints when processing coils:
  • Post-processing set batch constraint including the cumulative steel coil processing weight used to determine the processing of the coil in the steel coil processing sequence after the completion of processing of any steel coil, the formula is:
  • L represents the cumulative continuous processing weight limit of the steel coil with a post-processing code of / ⁇ ; represents the post-processing mode code of the steel coil ; indicates the cumulative processing weight of the steel coil after processing the steel coil j and the post-processing method in the steel coil processing sequence; ⁇ indicates the cumulative processing weight limit of the steel coil after the post-processing code P; 1 ; Zj is the decision variable, when the steel coil j is the same as the post-treatment of the steel coil processed before the steel coil j, then 0, otherwise 1;
  • L W is the lower limit of the width jump width in the processing order of the electrogalvanized steel coil
  • i is the processing order of the electrogalvanized steel coil
  • L T is the lower limit of the thickness jump amplitude in the processing sequence of the electrogalvanized steel coil
  • U 1 is in the processing sequence of the electrogalvanized steel coil
  • the upper limit of the thickness jump; ; is the thickness of the steel coil i, which is the thickness of the steel coil j
  • Step 1-2 According to the amount of steel coil in the pre-galvanized zinc warehouse, the expected arrival of the steel coil in the galvanized former unit plan and the current The processing status of the electro-galvanizing unit, the upper and lower limits of the processing capacity of the electro-galvanizing unit in the steel coil processing plan, the upper and lower limits of the processing capacity of the processing liquid after the post-treatment method, the width jump, the thickness jump range, and the initialization of the electro-galvanizing unit steel coil Production system parameters, the formula is as follows:
  • d is the penalty for the effect of the post-treatment fluidization of the post-processing treatment on the stability of the production system.
  • is the maximum width jump allowed
  • / ⁇ is the penalty for the influence of the adjacent steel coil width switching on the stability of the production system
  • a w is the thickness of the previous processed steel coil is less than ⁇ Unit width jump penalty for cases where the width jump does not exceed;
  • « 2 W is the unit width jump penalty for the case where the thickness of the previous processed steel coil is not less than ⁇ , and the width jump is not exceeded.
  • the thickness of the previous processed steel coil is less than ⁇ the width jump is not exceeded.
  • the condition or the thickness of the previous processed steel coil is not less than the unit width jump penalty of the case where the width jump does not exceed; ⁇ the thickness boundary condition value in the penalty process for calculating the influence of the width switching on the stability of the production system; Calculate the width boundary condition value in the penalty process resulting from the effect of width switching on the stability of the production system;
  • Step 2 According to the current state of the electro-galvanizing unit, the steel coil is selected according to the current unit status and the library. For the production situation of the reserve and the former unit, select the steel coil to be processed by the electro-galvanizing unit: First, determine which post-treatment liquid fc is currently used by the unit, and calculate the cumulative processing coil volume W/ of the post-treatment liquid, and post-process according to the system setting. Liquid rated processing capacity range
  • Step 2.1 judging the current processing condition of the unit , determining the width of the last steel coil in the previous production sequence of the current production sequence, that is, the upper limit of the available width of the current processing roller W A ;
  • Step 2.2 According to the processing situation of the coiled steel unit in the coil volume of the steel and the feed line of the previous feeding line, determine the amount of steel coil available during the current production period, and classify the steel coil according to the required post-treatment method. Requires post-processing for processing, the cumulative tonnage of available steel coils with a width not greater than W A ! ⁇ , and make the following decision:
  • the steel coils with a width of not more than W A are selected for processing by post-processing.
  • the selection method is:
  • Step 2.2.1 If there is no steel coil with a width greater than or equal to W A + L W in the steel coil set, the pool is started from the narrowest steel coil until the new steel coil is added, which will result in the current planned cumulative pool volume. Exceeded ⁇ / - W k p
  • Step 2.2.2 If there is a steel coil with a width greater than or equal to W A + L W in the steel coil set, calculate the cumulative tonnage of the steel coil with a width not less than W A + L W if W ' ⁇ f / - W /, from The widest steel coil with a width of not less than W A + L W starts to be collected, until the new steel coil is added, which will result in the current planned cumulative volume of steel coils exceeding the volume, and the steel coil with a width of not less than W A + L W will be collected.
  • the narrowest steel coil in the post-treatment mode g is collected from the narrowest steel coil until the accumulated volume of the steel coil exceeds t/ stop;
  • Step 2-1 Determine the current machining condition of the unit, and determine the width of the last steel coil before the current plan is planned, that is, the upper limit of the available width of the current processing roll W A ;
  • Step 2-2 According to the processing situation of the electro-galvanized unit in the coil volume of the coiled steel and the production line of the previous feeding line, determine the amount of steel coils available during the current planning period, and classify the coils according to the required post-treatment methods. The calculation requires the post-processing method to process, the width of the available steel coils with a width not greater than W A ! ⁇ , and make the following decision:
  • Step 2-2-1 If there is no width greater than or equal to W A + L W in the steel coil set Steel coils, starting from the narrowest steel coil, until the new steel coil will lead to the current planned cumulative pool volume exceeds t/ ;
  • Step 2-2-2 If there is a steel coil with a width greater than or equal to W A + L W in the steel coil set, calculate the cumulative tonnage of the steel coil with a width not less than W A + L W if W ' ⁇ f /, from the width The widest steel coil not less than W A + L W starts to be collected until the new steel coil is added, which will result in the current planned cumulative volume of steel coils exceeding t/ ; otherwise, the steel coil with a width not less than W A + L W All pools are collected and closed from the narrowest steel coil with a width less than W A + L W until the current planned cumulative pool volume exceeds t/, stop; Step 2-2-3: If the selected steel coil total If the weight is not satisfied, the minimum volume of steel coil processing plan is selected.
  • the narrowest steel coil in the post-treatment mode g is collected from the narrowest steel coil until the accumulated volume of the steel coil exceeds t/ stop;
  • Step 3 Set the initial steel coil processing sequence of the electro-galvanizing unit: Classify the steel coils in the collection, and form a cluster with the steel coils in the post-treatment mode.
  • Step 3.1 Initialize the current post-processing mode k to be the smallest post-processing code in the pool steel coil;
  • Step 3.2 If all the post-processing steel coils have been sorted, the initial coil processing sequence has been obtained and the result is output; otherwise, skip to step 3.3;
  • Step 3.3 Sort the post-processing steel coils from wide to narrow, and classify the post-processing steel coils according to the width to form g steel coil assemblies ⁇ ⁇ , k2 , ..., kg ;
  • Step 3.4 Sorting the steel coil sets ⁇ , ..., the medium steel coils separately, forming two steel coil sorting sequences, wherein the first sequence obtaining method: sorting the thick and thin steel coils with odd numbers, For steel coils with an even number, sort from thin to thick; second sequence acquisition method: sort the thin coils from odd to thick for odd-numbered steel coils, sort from thick to thin for even-numbered steel coils, Comparing the two sequences, the order of the coils with the smallest overall stability defect is set to the initial coil order of the electrogalvanizing unit.
  • Step 4 Correct the processing sequence of the coil of the electrogalvanizing unit in real time by:
  • Step 4.1 Initialize the parameters of the system stability correction method, set the current electrogalvanizing unit coil processing order ⁇ to S 1 ; Obtain the current selected steel coil set ( ⁇ and the currently available steel coil set C4, where, ( ⁇ It is a collection of all steel coils that have been included in the current processing order of steel coils for electrogalvanizing units. C4 is all available in the warehouse or based on the processing conditions of the former units, but it is not included in the current processing order of the coils of electrogalvanized units.
  • Step 4.2 Calculate the stability evaluation index value ( ⁇ ) of the current processing order of the electroplated zinc unit coils ⁇ ;
  • Step 4.3 Determine the current candidate set for the processing order of the coils of the electrogalvanized unit ⁇ ⁇
  • the method for obtaining the order of the coils is:
  • Insert steel coil Under the premise of not infringing the production capacity limit constraint of the unit and the batch processing batch constraint, the candidate correction coil processing sequence is obtained by inserting a new steel coil in the current coil processing sequence, and the steel is newly added. Volume A should be in the steel coil processing sequence to meet the system setting process constraints (2) - (11);
  • the exchange neighborhood of the current steel coil processing sequence refers to: guaranteeing that any two steels in the steel coil processing order of the electrogalvanizing unit are exchanged without violating the system setting process constraints (2) - (11) a collection of all feasible steel coil sorting schemes obtained from the location of the volume;
  • the 2-opt neighborhood refers to: All the feasible results obtained by changing the switching mode of any two coils in the processing order of the electro-galvanizing unit coils without violating the system-set process constraints (2) - (11) a collection of steel coil sorting schemes;
  • Step 4.4 Establish a reference set of the steel coil processing sequence correction scheme, and add the former candidate correction schemes with better stability evaluation index values in the current candidate correction set P to the reference set, that is, ⁇ / ⁇ 2 ⁇ 1 , . , 1 ), and removing the candidate candidate correction scheme from the candidate correction set, and calculating a minimum distance from the current steel coil sorting scheme in the reference set for each candidate correction scheme in the current candidate correction set P;
  • Step 4.5 Using the combination method of the steel coil sorting scheme, based on the processing sequence of any pair of steel coils in the reference set R e 3 ⁇ 4, generate b(bl) new steel coil correction schemes, and improve the newly generated correction scheme, using steps 4.3 (1) - (4) Obtain a candidate steel coil sorting correction scheme with better stability;
  • the combined method of the steel coil sorting scheme is as follows: First, comparing the steel coil selection of the two coil processing sequences to obtain a common selection steel coil set; secondly, determining the processing position of the common selection steel coil, if it has The steel coils in the adjacent relationship are the selected steel coils, and the abutting relationship in the processing order of the steel coils with better system stability is adopted. If the steel coils with adjacent relationship are non-commonly selected steel coils, the non-common steel coils are The middle test is inserted into the original position, and the steel coil processing sequence with better overall evaluation is obtained;
  • Step 4.6 Update the candidate correction set ⁇ Replace the less stable solution in the candidate correction set P with the newly generated candidate steel coil sorting correction scheme with better stability;
  • Step 4.7 If the best candidate correction scheme in the candidate correction set P reaches the upper limit without the number of improvement iterations, then stop, and select the candidate correction scheme with the best evaluation value in the candidate correction set ⁇ as the current correction scheme; Otherwise, skip to step 4.4;
  • the invention relates to a steel coil sorting system for a cold-rolled electrogalvanizing unit, comprising: at least one PC, at least one cable interface or cable interface or telephone line interface and at least one router; the PC is provided with cold-rolled plating
  • the software of the zinc steel coil sorting system includes software production environment setting module, steel coil selection module, steel coil sorting module, steel coil sorting real-time correction module; wherein, the production environment setting module is used to set the electroplating unit steel coil production environment Processing parameters, describing the process engineering, determining the adjustment target and constraints of the process; the steel coil selection module selects the steel coil according to the current processing state of the electro-galvanizing unit, and determines the steel coil selection scheme; Based on the current steel coil selection, the module sorts the selected
  • the method of the invention has the following advantages:
  • the method of the present invention also considers the post-processing mode, width, and thickness variation of the steel coil selection for the entire production plan.
  • the method of the present invention utilizes the cold rolling electrogalvanizing unit steel coil sorting system to control the production order of the steel coils, and the average number of switching times is 31.51% compared with the manually determined production sequence result, thereby effectively reducing the frequent adjustment of the production equipment. Thereby improving the quality of products and improving the efficiency of enterprises.
  • the present invention combines the method of automatically optimizing the production order of the steel coil with the manual adjustment interface, and organically utilizes the speed of the computer and the experience and flexibility of the staff to maximize the work.
  • the steel coil production system of the cold-rolled electrogalvanizing unit of the present invention adopts a modular design idea and a graphic interface, and the modular design makes the system easy to modify and transplant, and the graphical interface is convenient for the user to observe and operate.
  • FIG. 1 is a process flow diagram of a steel coil sorting system for a cold-rolled electrogalvanizing unit according to the present invention
  • FIG. 2 is a structural block diagram of a steel coil sorting system of a cold-rolled electrogalvanizing unit according to the present invention
  • FIG. 3 is a flow chart of a steel coil sorting method for a cold-rolled electrogalvanizing unit according to the present invention
  • FIG. 4 is a schematic view showing the first exchange movement in the steel coil sorting method of the cold-rolled electrogalvanizing unit of the present invention
  • Figure 5 is a schematic view showing the second exchange movement in the steel coil sorting method of the cold-rolled electrogalvanizing unit of the present invention.
  • 6 is a flow chart of the operation environment setting module of the steel coil sorting system of the cold-rolled electrogalvanizing unit of the present invention
  • 7 is a flow chart of the operation of the steel coil selection module of the steel coil sorting system of the cold-rolled electrogalvanizing unit of the present invention
  • FIG. 9 is a flow chart of the operation of the steel coil sorting real-time correction module of the steel coil sorting system of the cold-rolled electrogalvanizing unit of the present invention.
  • FIG. 10 is a structural relationship diagram between the functional modules of the steel coil sorting system of the cold-rolled electrogalvanizing unit of the present invention.
  • the steel coil sorting system of the cold-rolled electrogalvanizing unit in this embodiment has a process flow as shown in FIG. 1 , and its structure is as shown in FIG. 2 , and the configuration is as follows: one PC, one cable connection and one router;
  • the PC is used to implement and operate the optimization system of the present invention, and communication devices such as routers and cable interfaces are used to realize the communication connection between the internal information management platform, the steel coil sorting system and the production site automatic control system to optimize the production process.
  • the purpose of improving product quality; the software support embedded in the PC includes the Windows operating system as a supporting platform, and the Microsoft SQL Server 2000 database system is installed to support data management and configure information transmission ports.
  • Download steel coil data information from the enterprise ERP data server including fields including steel coil number, contract number, inlet thickness, inlet width, outlet width, outlet thickness, coil weight, material group, supplement number, plating thickness, post-treatment method) , trimming mark, delivery date, steel type), set system parameters (including planned total weight upper and lower limits, post-processing mode set batch upper and lower limits, width, thickness switching amplitude upper limit, selection penalty coefficient, width, thickness switching range penalty) Coefficient), to obtain the sorting method and the operating object of the system, and at the same time, according to the steel coil inventory consumption and the previous unit feeding situation, the information of the steel coil is deleted one by one, and the steel coil information is modified and determined to be the current production.
  • the enterprise ERP data server including fields including steel coil number, contract number, inlet thickness, inlet width, outlet width, outlet thickness, coil weight, material group, supplement number, plating thickness, post-treatment method) , trimming mark, delivery date, steel type
  • set system parameters including planned total weight upper and lower limits, post-processing mode set batch
  • the automatic steel coil optimization sorting method will be used to solve the sorting problem involving 12 steel coils in the warehouse.
  • the key information of the specific steel coil is as follows Table 1 :
  • Table 1 is steel coil information
  • a steel coil sorting method for a cold-rolled electrogalvanizing unit is adopted, and the flow thereof is as shown in FIG. 3, and includes the following steps: Step 1: Using the electro-galvanizing unit steel coil production model, set the processing parameters of the electro-galvanizing unit steel coil: According to the amount of steel coils in the pre-galvanized zinc warehouse, the expected arrival of steel coils in the plan of the former electroplating unit and the current processing of electro-galvanizing units State, the upper and lower limits of the processing capacity of the electrogalvanizing unit in the steel coil processing plan [100, 120], the upper and lower limits of the processing capacity of the processing liquid after the post-treatment method [110, 200], the width jump, and the thickness jump range are respectively [0, 150] and [0, 2].
  • Step 2 Select the steel coil according to the current state of the electro-galvanizing unit
  • the steel coil to be processed by the electro-galvanizing unit is selected:
  • the following specific operation steps are performed to obtain the steel coil collecting scheme: 2.1 : Judging the current processing status of the unit, determining the width of the last steel coil before the current plan is planned, that is, the upper limit W A of the current processing roll;
  • Step 2.2 According to the processing situation of the coiled steel unit in the coil volume of the steel and the feed line of the previous supply line, determine the amount of steel coils that can be used during the current planning period, and classify the steel coils according to the required post-treatment methods. Requires post-processing for processing, the cumulative tonnage of available steel coils with a width not greater than W A ! ⁇ , and make the following decision:
  • Step 2.2.1 If there is no steel coil with a width greater than or equal to W A + L W in the steel coil assembly , starting from the narrowest steel coil, until the new steel coil will lead to the current planned cumulative pool volume exceeds t/ ;
  • Step 2.2.2 If there is a steel coil with a width greater than or equal to W A + L W in the steel coil set, calculate the cumulative tonnage of the steel coil with a width not less than W A + L W. If W ' ⁇ f /, the width is not less than The widest coil of W A + L W begins to collect, until the new steel coil will result in the current planned cumulative volume of steel coils exceeding t/ ; otherwise, the steel coil with a width of not less than W A + L W will be collected. Pool, and from the narrowest steel coil with width less than W A + L W , until the current planned cumulative pool volume exceeds t /, stop; finally select steel coil 1-8 into the current plan;
  • Step 3 Set the initial processing sequence of the steel coil of the electro-galvanizing unit, based on the steel coil of the previous step, and formulate the processing sequence of the steel coil.
  • the basic idea is as follows: Classification of the steel coils of the collection, and the formation of the steel coils with the post-treatment method A cluster, for any coil cluster, the total switching cost of the coil order in the cluster obtained by sorting the coil from thick (or thin) to thin (or thick) must be minimal. For two consecutive clusters, if the coils in the previous cluster are sorted from thin (or thick) to thick (or thin), then the latter The coils in the cluster are ordered from thick (or thin) to thin (or thick). As a result, the thickest (thin) steel coil in the next cluster will be processed after the thickest (thin) steel coil in the previous cluster is wound.
  • the specific steps of the sorting method are as follows:
  • Step 3.1 Initialize the current post-processing mode k is the smallest post-processing code in the pool steel coil
  • Step 3. 2 If all the post-processing steel coils have been sorted, the initial coil processing sequence has been obtained and the result is output; otherwise, skip to Step 3;
  • Step 3.3 Sort the post-processing steel coils from wide to narrow, and classify the post-processing steel coils according to the width to form g steel coil assemblies ⁇ ⁇ , k2 , . . . , kg ;
  • Step 3.4 Sort the steel coil collections ⁇ , ..., and the medium steel coils to form two steel coil sorting sequences, respectively:
  • the first sequence is obtained by sorting the steel coils with an odd number from thick to thin, and sorting the steel coils with an even number from thin to thick;
  • the second sequence is obtained by sorting the steel coils with an odd number from thin to thick, and sorting the steel coils with an even number from thick to thin;
  • the processing order of the steel coil with the smallest overall stability defect is set as the initial steel coil processing sequence of the electrogalvanizing machine group.
  • Step 4 Correct the processing sequence of the coil of the electrogalvanizing unit in real time by:
  • Step 4.1 Initialize the parameters of the system stability correction method, set the current electrogalvanizing unit coil processing order ⁇ to S 1 ; Obtain the current selected steel coil set ( ⁇ and the currently available steel coil set C4, where, ( ⁇ It is a collection of all steel coils that have been included in the current processing order of steel coils for electrogalvanizing units. C4 is all available in the warehouse or based on the processing conditions of the former units, but it is not included in the current processing order of the coils of electrogalvanized units.
  • Step 4.2 Calculate the current processing order of the electrogalvanized steel coil Stability evaluation index value ( ⁇ );
  • Step 4.3 Determine the candidate correction set for the current processing order of the electrogalvanized unit coils ⁇ Corrective means for obtaining the processing order of the coil include:
  • Insert steel coil Under the premise of not infringing the production capacity limit constraint of the unit and the batch processing batch constraint, the candidate correction coil processing sequence is obtained by inserting a new steel coil in the current coil processing sequence, and the steel is newly added. Volume A in steel coil plus The position in the work order should meet the system setting process constraints (2) - (11);
  • Step 4.4 Establish a reference set of the steel coil processing sequence correction scheme, and add the previous candidate candidate correction schemes with better stability evaluation index values in the current candidate correction set P to the reference set, that is, ⁇ / ⁇ 1 , .. . , 1 ), and remove the candidate candidate corrections from the candidate correction set.
  • the minimum distance from the current steel volume sorting scheme in the reference set is calculated.
  • Step 4.5 Using the combination method of the steel coil sorting scheme, based on the processing sequence of any pair of coils in the reference set R e 3 ⁇ 4, generate b(bl) new steel coil correction schemes, and improve the newly generated correction scheme to obtain stability. Better candidate steel coil sorting correction scheme.
  • Step 4.6 Update the candidate correction set ⁇ Replace the poorly stable solution in the candidate correction set P with the newly generated candidate steel coil sorting correction scheme with better stability.
  • Step 4.7 If the best candidate correction scheme in the candidate correction set P reaches the upper limit without the number of improvement iterations, the algorithm stops the algorithm, and the candidate correction scheme with the best evaluation value in the candidate correction set is selected as the current correction scheme; Otherwise, skip to step 4.4;
  • Step 5 Under the display module interface, view the results of the automatic sorting.
  • Step 6 Through the network, the steel coils are sorted and sent to the automatic control system of the production unit to guide production in real time.
  • the steel coil sorting system of the cold-rolled electrogalvanizing unit of the embodiment comprises: at least one PC, at least one cable interface or cable interface or telephone line interface and at least one router;
  • the PC is provided with software for a cold-rolled electrogalvanized steel coil sorting system, and the software includes a production environment setting module.
  • the steel coil selection module selects the steel coil according to the current processing state of the electro-galvanizing unit, and determines the steel coil selection scheme.
  • the main process is shown in FIG. 7;
  • the steel coil sorting module sorts the selected steel coils based on the current steel coil selection, obtains the processing order of various steel coils, and selects the better steel coil sorting as the current processing scheme.
  • the main process is shown in FIG. 8;
  • the steel coil sorting real-time correction module performs on-line real-time correction of the current coil processing scheme, and improves and obtains a better steel coil processing scheme.
  • the main process is shown in Figure 9;
  • the PC is connected to the front end of the automatic control system of the enterprise electro-galvanizing machine group through a network and an internal enterprise server.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • General Factory Administration (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种冷轧电镀锌机组钢卷排序方法及系统,属于金属材料加工信息技术领域,本发明方法除了考虑相邻钢卷的后处理方式、宽度、厚度等物理参数的跳跃最小化以外,还考虑了钢卷选择对整个生产计划中的后处理方式、宽度、厚度变化对生产系统稳定性所产生的影响,从而使得生产设备的调整也将变少,从而使得钢卷的生产能够平稳顺利的进行,使生产过程更加合理;将本发明方法利用冷轧电镀锌机组钢卷排序系统控制钢卷的生产顺序,与人工确定的生产顺序结果相比,平均降低切换次数31.51%,有效减少了生产设备的频繁调整,从而提高了产品的质量,提高企业效益。

Description

一种冷轧电镀锌机组钢卷排序方法及系统 技术领域
本发明属于金属材料加工信息技术领域, 涉及到自动化技术, 特别涉及一种冷轧电镀锌 机组钢卷排序方法及系统。
背景技术
金属材料的电镀锌机组钢卷排序问题是冶金企业生产管理的主要内容, 钢卷排序的质量 直接关系到电镀锌机组的设备稳定性和运行效率、 产品的质量和生产成本。
以钢厂为例: 电镀锌带钢所用的原料主要是退火后钢卷, 酸轧钢卷经过退火后, 为了达 到防锈、 美观等钢卷表面特征, 常需要在钢卷上均匀的涂上一层金属锌, 电镀锌机组以此为 加工目的通过涂镀、 后处理等工序处理钢卷的工艺。 电镀锌的主要加工过程 (如图 1 所示)为 将钢卷打开, 焊接成一个连续的带钢, 对带钢进行表面清洗处理后, 进入镀锌槽, 利用电解, 在钢带表面形成均匀、 致密、 结合良好的金属锌沉积层, 之后, 为了增强镀层或技术的抗腐 蚀性, 钢带需通过后处理工序, 常见的后处理方式包括钝化、 磷化、 耐指纹等; 最后, 经过 清洗、 涂油、 切边等处理后, 被分切卷曲成钢卷。
由于电镀锌生产工艺上的要求, 电镀锌机组生产作业中对于钢卷的生产顺序有一定的限 制, 它直接关系到设备的稳定运行、 机组产能提升以及产品的质量。 电镀锌机组钢卷的生产 顺序就是要在满足规格、 锌层厚度、 后处理方式等工艺约束条件下, 使得钢卷过渡尽可能平 滑, 以提高机组响应速度, 保障产品质量、 充分发挥机组产能。 在电镀锌加工过程中, 钢卷 被焊接成一条连续的板带, 两相邻钢卷的厚度跳跃、 宽度跳跃越大, 造成板带崩裂的可能性 就越大, 同时也会造成支撑辊的磨损更大, 这将造成生产稳定性、 机组运行效率下降; 两相 邻钢卷的后处理方式不同, 机组需更换后处理液, 那么如果为了使后一个钢卷按照相应后处 理方式进行加工, 在加工完前一个钢卷后, 需调整设备板带的拉动速度甚至进行停机, 此时, 后一钢卷将停顿在机组中, 设备调整过程将降低该钢卷的质量。
目前, 电镀锌生产实际中, 电镀锌机组钢卷的生产顺序是由人工完成的。 由于电镀锌生 产工艺约束复杂, 人工生产排序具有较大的难度, 而且实际生产中涉及到的钢卷数目巨大, 人工生产排序在合理时间内, 难以实时合理的选择在库钢卷, 制定钢卷加工顺序, 保障相邻 钢卷的宽度、 厚度的平滑过渡, 编制出保证产品质量, 提高产能, 保证机组稳定运行, 总体 水平较优的钢卷加工顺序。
发明内容
针对现有方法存在的不足, 本发明提出一种冷轧电镀锌机组钢卷排序方法及系统, 以达 到保障相邻钢卷的宽度、 厚度的平滑过渡, 保证产品质量、 提高产能、 保证机组稳定运行的 目的。
本发明的技术方案是这样实现的: 一种冷轧电镀锌机组钢卷排序方法, 包括以下步骤: 步骤 1: 描述工艺工程, 确定工艺过程的约束条件, 按以下模型来描述:
步骤 1-1: 所述的电镀锌机组钢卷生产模型, 模型的目标函数为:
Minimize x∑∑ + + c )xtj + 2 †^Pi yt (1)
;=1 j=l i=l
式中, A表示生产切换 (即后处理、 宽度、 厚度)对生产系统稳定性影响情况的权重, A表示钢 卷选取对生产系统稳定性影响情况的权重; 表示在钢卷 i之后加工钢卷 j 因后处理方式 切换所引起的系统稳定性缺损惩罚; 表示在钢卷 i之后加工钢卷 j 因宽度切换所引起的 系统稳定性缺损惩罚; 表示在钢卷 i之后加工钢卷 j 因厚度切换所引起的系统稳定性缺 损惩罚; Α·表示当前钢卷顺序选择钢卷 进行加工对生产系统稳定性的影响惩罚; 决策变量 表示连续电镀锌加工顺序中, 钢卷 i和钢卷 j之间的相邻关系, 当钢卷 i在钢卷 j紧前 进行加工, Xij取值为 1, 否则 Xij取值为 0; 决策变量 ^表示连续电镀锌加工顺序是否选择 钢卷 i进行加工, 当钢卷 i被选择进行加工, 取值为 1, 否则 取值为 0; 待加工的可用 钢卷数为
电镀锌机组钢卷生产模型的约束条件, 包括可行性约束条件和自身的工艺及运行约束条 件:
1) 可行性约束条件, 公式为:
V?eN (2)
Σ¾= jeN (3)
VS c {l,2,...,n-l,n}, 2<\S\<n (4) i≡s
•¾,y {o,i} V/ = 1,2, ...,n _l,n , j = 1,2, ...,η-Ι,η (5) 式中, N表示电镀锌前库中可用钢卷集合, 约束 (2)和 (3)给出决策变量 Xij和 ^ 的逻辑关 系; 约束 (4) 用于防止钢卷加工过程被中断; 约束 (5) 为决策变量 ¾和)^的取值范围; 除了如上系统可行性约束 (2) -(5)之外, 电镀锌机组在加工钢卷时还有自身的工艺及运行 约束条件:
2)用于保证所制定钢卷加工顺序满足钢卷累计加工量的上、下限的机组生产能力限制约 束, 公式为: L<Yjwtiyi<U Vi N (6) 式中, L表示电镀锌钢卷加工顺序制定过程中单个生产计划的最小排产量, υ表示电镀 锌钢卷加工顺序制定过程中单个生产计划的最大排产量; H¾ 为电镀锌钢卷 i 的重量;
3)后处理集批量约束, 包括用于确定钢卷加工顺序中, 完成任一钢卷的加工后同一后处 理方式的累计钢卷加工重量, 公式为:
Figure imgf000005_0001
以及保证钢卷累计加工重量满足同后处理方式连续加工钢卷重量上、 下限, 公式为:
L^z,. <W. <[/p 1z,. V?eN (8) 式中, L 表示后处理代码为/ ^的钢卷累计连续加工重量下限; 表示钢卷 的后处 理方式代码; 表示在钢卷加工顺序中, 加工钢卷 j后同后处理方式的钢卷累计加工重量; ^表示后处理代码 P;1 的钢卷累计连续加工重量上限; Zj 为决策变量, 当钢卷 j与在钢 卷 j之前加工的钢卷后处理方式相同, 则为 0, 否则为 1;
4) 保证同后处理方式的钢卷从宽到窄进行加工的宽度切换趋势约束, 公式为:
(w; -w.) ¾ >0 VI GN, jeN, p l=p (9) 式中, 表示钢卷 j 的宽度;
5)保证电镀锌加工计划中相邻两个钢卷之间的出口宽度的跳跃变化不会超过机组生产工 艺所允许的范围的宽度切换幅度约束, 公式为:
Lw <(wi-wj) xij<Uw Vi N, j G N (10) 式中, LW 为电镀锌钢卷加工顺序中宽度跳跃幅度下限; i 为电镀锌钢卷加工顺序中宽 度跳跃幅度上限;
6)保证电镀锌加工计划中相邻两个钢卷之间的出口厚度的跳跃变化不会超过机组生产工 艺所允许的范围的厚度切换幅度约束, 公式为:
LT <(ti-tj) xij<UT Vi N, j≡N (11) 其中, LT 为电镀锌钢卷加工顺序中厚度跳跃幅度下限; U1 为电镀锌钢卷加工顺序中厚 度跳跃幅度上限; ;为钢卷 i 的厚度, 为钢卷 j 的厚度; 步骤 1-2: 根据电镀锌前库库存钢卷量、 电镀锌前道机组计划内预计到达钢卷情况以及 当前的电镀锌机组加工状态, 给定钢卷加工计划内电镀锌机组的加工能力上下限, 同后处理 方式后处理液加工能力的上下限、 宽度跳跃、 厚度跳跃幅度范围, 初始化电镀锌机组钢卷生 产系统参数, 公式如下:
设置钢卷 之后加工钢卷 因后处理方式切换对生产系统稳定性的影响所产生的惩罚 , 公式为:
Figure imgf000006_0001
式中, d为加工后处理方式 的后处理液初始化对生产系统稳定性的影响所产生的惩
设置钢卷 i之后加工钢卷 j 因宽度切换对生产系统稳定性的影响所产生的惩罚 , 式为:
. O; - Wj ),如果 0≤ W; - Wj < 并且 ti < t
a . O; - Wj ),如果 0 < wi - Wj < w 并且 > t
(13) ∞,如果 wi - Wj < 0
- W ,. ),否则 式中, ^为允许最大的宽度跳跃, /Γ为相邻钢卷宽度切换对生产系统稳定性的影响所产 生的惩罚; Aw为前一加工钢卷厚度小于^ 宽度跳跃不超过 的情况的单位宽度跳跃惩罚;
«2 W为前一加工钢卷厚度不小于 ^, 宽度跳跃不超过 的情况的单位宽度跳跃惩罚; 为宽 度由宽到窄进行加工时, 不满足前一加工钢卷厚度小于^ 宽度跳跃不超过 的情况或前一 加工钢卷厚度不小于^ 宽度跳跃不超过 的情况的单位宽度跳跃惩罚; ^为计算宽度切换 对生产系统稳定性的影响所产生的惩罚过程中的厚度边界条件值; 和 为计算宽度切换 对生产系统稳定性的影响所产生的惩罚过程中的宽度边界条件值;
设置钢卷 i 之后加工钢卷 j 因厚度切换对生产系统稳定性的影响所产生的惩罚 , 公 式为:
Figure imgf000006_0002
式中, 为厚度切换导致对生产系统稳定性的影响所产生的单位惩罚; 设置选择钢卷 i排入当前钢卷顺序进行加工对生产系统稳定性的影响所产生的惩罚 Α·; 步骤 2 : 根据电镀锌机组当前状态对钢卷进行选取, 方法为: 根据当前机组状态以及库 存和前道机组生产情况, 选取电镀锌机组待加工钢卷: 首先, 判断机组当前采用哪种后处理 液 fc, 并计算该后处理液累计加工钢卷量 W/, 根据系统设置的后处理液额定加工能力范围
Wk ,uk p] , 确定该后处理液当前可加工钢卷量 β等于 -wk p 如果 f/ -wk p < u , 则钢卷选取步骤如下: 步骤 2.1 : 判断机组当前加工情况, 确定当前制定生产顺序的前一生产顺序中最后一个钢 卷的宽度, 即当前加工辊可用宽度上限 WA;
步骤 2.2: 根据电镀锌机组在库钢卷量及前道供料产线的加工情况, 确定当前生产期内, 可利用钢卷量, 并就其要求的后处理方式对钢卷进行分类, 计算要求采用后处理方式进行加 工, 宽度不大于 WA的可利用钢卷的累计吨数!^, 并进行如下判定:
如果 ≤β, 则将所有要求采用后处理方式进行加工, 宽度不大于 WA的钢卷进行收池, 记录所有相关钢卷号;
如果 > Q, 则从要求采用后处理方式进行加工, 宽度不大于 WA的钢卷进行挑选, 挑 选方法为:
步骤 2.2.1 : 若该钢卷集合中不存在宽度大于等于 WA + LW的钢卷, 则从最窄钢卷开始收 池, 直到新加入钢卷将导致当前计划累计收池钢卷量超过 ί/ - Wk p
步骤 2.2.2: 若该钢卷集合中存在宽度大于等于 WA + LW的钢卷, 计算宽度不小于 WA + LW 的钢卷累计吨数 如果 W'≥f/ - W/, 从宽度不小于 WA + LW的最宽钢卷开始进行收池, 直到新加入钢卷将导致当前计划累计收池钢卷量超过 否则,将宽度不小于 WA + LW 的钢卷全部收池, 并从宽度小于 WA + LW的最窄钢卷进行收池, 直到当前计划累计收池钢卷量 超过 ί/f 步骤 2.2.3 : 若已选钢卷总重不满足钢卷加工计划最小排产量, 选择其他后处理方式的钢 卷, 按照后处理代码递增的顺序, 从后处理方式 g = k+\ 的钢卷进行收池, 收池量上限 U' = U - (Uk p -Wk p)
( 1 ) 若后处理方式 g的可利用钢卷总量^≥ί/', 从后处理方式 g的钢卷集合中最窄的 钢卷进行收池, 直到累计收池钢卷量超过 t/停止;
(2) 若后处理方式 g的可利用钢卷总量^ < U' , 则将后处理方式 g的所有钢卷进行收 池, 更新 fc = fc+l, U' = U' - Wg , 跳到步骤 2.2.3 ; 其中, 步骤 2.2.3 (2)所述的当前收池后处理方式 若为最大后处理代码, 则更新 为最 小后处理代码; 当前收池后处理方式 g为当前机组收池钢卷的后处理代码;
如果 ί/ - Wk p > υ , 则钢卷选取步骤如下: 步骤 2-1 : 判断机组当前加工情况, 确定当前制定计划的前计划最后一个钢卷的宽度, 即 当前加工辊可用宽度上限 WA;
步骤 2-2: 根据电镀锌机组在库钢卷量及前道供料产线的加工情况, 确定当前计划期内, 可利用钢卷量, 并就其要求的后处理方式对钢卷进行分类, 计算要求采用后处理方式进行加 工, 宽度不大于 WA的可利用钢卷的累计吨数!^, 并进行如下判定:
如果 l^≤t/, 则将所有要求采用后处理方式进行加工, 宽度不大于 WA的钢卷进行收池, 记录所有相关钢卷号;
如果 > t/, 则从要求采用后处理方式进行加工, 宽度不大于 WA的钢卷进行挑选: 步骤 2-2-1 : 若该钢卷集合中不存在宽度大于等于 WA + LW的钢卷, 则从最窄钢卷开始收 池, 直到新加入钢卷将导致当前计划累计收池钢卷量超过 t/;
步骤 2-2-2: 若该钢卷集合中存在宽度大于等于 WA + LW的钢卷,计算宽度不小于 WA + LW 的钢卷累计吨数 如果 W'≥f/, 从宽度不小于 WA + LW的最宽钢卷开始进行收池, 直到新 加入钢卷将导致当前计划累计收池钢卷量超过 t/; 否则, 将宽度不小于 WA + LW的钢卷全部收 池, 并从宽度小于 WA + LW的最窄钢卷进行收池, 直到当前计划累计收池钢卷量超过 t/,停止; 步骤 2-2-3 : 若已选钢卷总重不满足钢卷加工计划最小排产量, 选择其他后处理方式的钢 卷, 按照后处理代码递增的顺序, 从后处理方式 g = k+\ 的钢卷进行收池, 收池量上限 U' = U - Wk :
( 1 ) 若后处理方式 g的可利用钢卷总量^≥ί/', 从后处理方式 g的钢卷集合中最窄的 钢卷进行收池, 直到累计收池钢卷量超过 t/停止;
(2) 若后处理方式 g的可利用钢卷总量^ < U' , 则将后处理方式 g的所有钢卷进行收 池, 更新 fc = fc+l, U' = U' - Wg , 跳到步骤 2-2-3 ; 步骤 3: 设置电镀锌机组初始钢卷加工顺序: 对收池钢卷进行分类, 同后处理方式的钢 卷构成一个簇, 对于任一钢卷簇, 钢卷从厚 (或薄)到薄 (或厚)进行排序所获得的簇内钢卷排序 的总切换费用最小; 对于两个连续的簇, 如果前一个簇内的钢卷从薄 (或厚)到厚 (或薄)进行排 序, 那么后一个簇内的钢卷从厚 (或薄)到薄 (或厚)进行排序, 如此一来, 后一个簇中最厚 (薄) 的钢卷将在前一个簇中最厚 (薄)的钢卷紧后进行加工, 方法如下: 步骤 3.1: 初始化当前后处理方式 k为收池钢卷中最小的后处理代码;
步骤 3.2: 若所有后处理方式钢卷均已排序, 则已获得初始钢卷加工顺序, 并输出结果; 否则, 跳到步骤 3.3;
步骤 3.3: 将后处理方式钢卷从宽到窄进行排序, 并将后处理方式钢卷按照宽度进行分 类, 形成 g个钢卷集合 ΩΗk2, ..., kg;
步骤 3.4: 对钢卷集合 Ω , ..., 中钢卷分别进行排序, 形成两个钢卷排序序列, 其中, 第一序列获得方法: 对于标号为奇数的钢卷从厚到薄进行排序, 对于标号为偶数的钢 卷从薄到厚进行排序; 第二序列获得方法: 对于标号为奇数的钢卷从薄到厚进行排序, 对于 标号为偶数的钢卷从厚到薄进行排序, 对上述两种序列进行比较, 将总体稳定性缺损最小的 钢卷加工顺序设定为电镀锌机组初始钢卷加工顺序 A
步骤 4: 对电镀锌机组钢卷加工顺序进行实时修正, 方法为:
步骤 4.1: 初始化系统稳定性修正方法的参数, 将当前的电镀锌机组钢卷加工顺序 ^设定 为 S1; 获取当前选取钢卷集合 (^以及当前可利用钢卷集合 C4, 其中, (^是所有已列入当前电 镀锌机组钢卷加工顺序的钢卷集合, C4是所有在库或者基于前道机组加工情况已确定可及时 送达、 但没有列入当前电镀锌机组钢卷加工顺序的钢卷集合, 为当前选取钢卷集合 (^中 钢卷的数目, |C4|为当前可利用钢卷集合 C4中钢卷的数目; 获取当前电镀锌机组钢卷加工顺 序^对应的钢卷加工顺序 mi, m2, ..., m|cs|,其中, m为当前电镀锌机组钢卷加工顺序中第个进 行加工的钢卷, 设定稳定性评价指标值/ ), 公式为: f(S) = A1 x†±(c^ + +c )x, +A2 x Piyi (15)
;=1 j=l i=l 式中, 稳定性评价指标值/ ( 为钢卷加工顺序 S的系统稳定性惩罚值, 惩罚值越小钢卷 排序方案越稳定可行;
步骤 4.2: 计算当前电镀锌机组钢卷加工顺序 ^的稳定性评价指标值 (^);
步骤 4.3: 确定当前电镀锌机组钢卷加工顺序 ^的候选修正集合 Λ 获取钢卷加工顺序的 修正方法为:
(1)插入钢卷: 在不违反机组的生产能力限制约束及后处理集批量约束的前提下, 通过在 当前钢卷加工顺序中插入新的钢卷 获得候选修正钢卷加工顺序, 新加入钢卷 A在钢卷加 工顺序中所处位置应满足系统设定工艺约束 (2) - (11);
(2)删除钢卷: 在不违反机组的生产能力限制约束及后处理集批量约束的前提下, 通过在 当前钢卷加工顺序中删除钢卷《¾, ( = 1,2, ..., \CS\), 要求保证删除钢卷 m后, 钢卷 和钢卷 的宽度、 厚度切换幅度不违反约束 (10)、 (11), 稳定性评价指标值较低候选修正钢卷加工 顺序;
(3)调整钢卷选择方案: 在不违反机组的生产能力限制约束、 后处理集批量约束及系统设 定工艺约束 (2) - (11) 的前提下, 通过交换当前钢卷加工顺序中钢卷 中钢卷与当前可利用 钢卷集 C4中钢卷, 获得稳定性评价指标值较低候选修正钢卷加工顺序;
(4)调整钢卷加工顺序: 在不违反机组的生产能力限制约束及后处理集批量约束的前提 下, 通过当前钢卷加工顺序的交换邻域、 2-opt邻域, 调整当前钢卷加工顺序中钢卷的位置, 获得稳定性评价指标值较低候选修正钢卷加工顺序;
其中,所述的当前钢卷加工顺序的交换邻域是指:保证不违反系统设定工艺约束 (2) - (11) 的前提下, 交换电镀锌机组钢卷加工顺序中的任意两个钢卷的位置所获得的所有可行钢卷排 序方案的集合;
2-opt邻域是指: 保证不违反系统设定工艺约束 (2) - (11) 的前提下, 通过变换电镀锌机 组钢卷加工顺序中的任意两个钢卷切换方式所获得的所有可行钢卷排序方案的集合;
步骤 4.4: 建立钢卷加工顺序修正方案参考集, 把当前候选修正集合 P中稳定性评价指标 值较好的前 ^个候选修正方案加入参考集, 即^^/^^二 ^1, . . ., 1), 并将这 ^个候选修正方案 从候选修正集合 中移除, 对当前候选修正集合 P中的每一个候选修正方案, 计算它与参考集 中当前钢卷排序方案的最小距离; 把与参考集最小距离最大的钢卷加工顺序候选修正方案加 入到参考集 Re , 并把它从候选修正集合 ^中移除, 重复这一过程 b2次, 这样, 当前的参考 集 RefSet = . .., }, b = b2 + b2;
步骤 4.5 : 利用钢卷排序方案的组合方法, 基于参考集 Re ¾ 中任意一对钢卷加工顺序, 生成 b(b-l)个新钢卷修正方案, 对于新生成的修正方案进行改进, 利用步骤 4.3 (1) - (4)获得 稳定性更好的候选钢卷排序修正方案;
所述的钢卷排序方案的组合方法, 过程为: 首先, 对比两个钢卷加工顺序的钢卷选择情 况, 获取共有选择钢卷集合; 其次, 确定共有选择钢卷的加工位置, 若其具有相邻关系的钢 卷为共有选择钢卷, 采用系统稳定性较好的钢卷加工顺序中的邻接关系, 若其具有相邻关系 的钢卷为非共有选择钢卷, 则从非共有钢卷中试探插入原位置, 获得总体评价较好的钢卷加 工顺序;
步骤 4.6: 更新候选修正集合 Λ 用新生成的稳定性较好的候选钢卷排序修正方案替换候 选修正集合 P中稳定性较差的解;
步骤 4.7:若候选修正集合 P中的最好的候选修正方案连续不更新次数达到无改进迭代次 数上限, 则停止, 将候选修正集合 ^中评价值最好的候选修正方案选为当前修正方案; 否则, 跳到步骤 4.4; 本发明一种冷轧电镀锌机组钢卷排序系统, 包括: 至少一台 PC机, 至少一个电缆接口 或光缆接口或电话专线接口和至少一台路由器; 所述的 PC机内设置有冷轧电镀锌钢卷排序 系统的软件, 软件包括生产环境设定模块、 钢卷选取模块、 钢卷排序模块、 钢卷排序实时修 正模块; 其中, 生产环境设定模块用于设置电镀锌机组钢卷生产环境的加工参数, 描述工艺 工程, 确定工艺过程的调整目标及约束条件; 所述的钢卷选取模块根据电镀锌机组当前加工 状态对钢卷进行选取, 确定钢卷选取方案; 所述的钢卷排序模块基于当前钢卷选取情况, 对 已选钢卷进行排序, 获取多种钢卷加工顺序, 并从中挑选较好钢卷排序作为当前加工方案; 钢卷排序实时修正模块对当前钢卷加工方案进行在线实时修正, 改进并获取更好的钢卷加工 方案; 所述的 PC机通过网络、 企业内部服务器连接到企业电镀锌机组自动控制系统的前端。
本发明优点: 本发明方法具有下列优点:
(1)本发明方法除了考虑相邻钢卷的后处理方式、 宽度、 厚度等物理参数的跳跃最小化以 外, 还考虑了钢卷选择对整个生产计划中的后处理方式、 宽度、 厚度变化对生产系统稳定性 的影响所产生的影响, 从而使得生产设备的调整也将变少, 从而使得钢卷的生产能够平稳顺 利的进行, 使生产过程更加合理。
(2)将本发明方法利用冷轧电镀锌机组钢卷排序系统控制钢卷的生产顺序, 与人工确定的 生产顺序结果相比, 平均降低切换次数 31.51%, 有效减少了生产设备的频繁调整, 从而提高 了产品的质量, 提高企业效益。
(3)考虑到其他金属材料的电镀锌工艺与钢铁企业电镀锌过程的工艺具有相似性, 本发明 所提优化方法以及系统除可应用钢铁企业电镀锌过程外, 还可广泛应用其他金属材料的电镀 锌工艺。
(4)本发明将自动优化钢卷生产顺序的方法与人工调整接口相结合, 有机地利用了计算机 的快捷性和工作人员的经验和灵活性, 从而最大程度的完善工作。
(5)本发明的冷轧电镀锌机组钢卷生产系统采用模块设计思想与图形接口相结合, 模块化 设计使系统便于修改与移植, 而图形接口便于用户观察操作。
附图说明
图 1为本发明冷轧电镀锌机组钢卷排序系统工艺流程图;
图 2为本发明冷轧电镀锌机组钢卷排序系统结构框图;
图 3为本发明冷轧电镀锌机组钢卷排序方法流程图;
图 4为本发明冷轧电镀锌机组钢卷排序方法中的第一种交换移动示意图;
图 5为本发明冷轧电镀锌机组钢卷排序方法中的第二种交换移动示意图;
图 6为本发明冷轧电镀锌机组钢卷排序系统生产环境设定模块运行流程图; 图 7为本发明冷轧电镀锌机组钢卷排序系统钢卷选取模块运行流程图;
图 8为本发明冷轧电镀锌机组钢卷排序系统钢卷排序模块运行流程图;
图 9为本发明冷轧电镀锌机组钢卷排序系统钢卷排序实时修正模块运行流程图; 图 10为本发明冷轧电镀锌机组钢卷排序系统中各功能模块之间的结构关系图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
本实施例中的冷轧电镀锌机组钢卷排序系统, 其工艺流程如图 1所示, 其结构如图 2所 示, 配置如下: 一台 PC机, 一个电缆接和一台路由器; 其中, PC机用于实现和运行本发明 的优化系统, 路由器、 电缆接口等通讯设备用于实现企业内部信息管理平台、 钢卷排序系统 和生产现场自动控制系统之间的通讯连接, 达到优化生产过程, 提高产品质量的目的; 所述 的 PC机中嵌入的软件支持包括 Windows操作系统作为支撑平台, 安装 Microsoft SQL Server 2000数据库系统支持数据管理, 配置信息传送端口。
从企业 ERP数据服务器上下载钢卷数据信息 (涉及字段包括钢卷号、 合同号、 入口厚度、 入口宽度、 出口宽度、 出口厚度、 卷重、 材料组别、 补充号、 镀层厚度、 后处理方式、 切边 标记、 交货期、 钢种), 设定系统参数 (包括计划总重上下限、 后处理方式集批量上下限、 宽 度、 厚度切换幅度上限、 选择惩罚系数、 宽度、 厚度切换幅度惩罚系数), 以获得排序方法和 系统的操作对象, 同时可根据钢卷库存消耗情况以及前道机组供料情况, 逐条增加删除钢卷 信息, 以及对钢卷信息进行修改, 并确定其为当前生产计划所考虑的钢卷信息; 然后, 进入 自动钢卷优化排序阶段, 本实施例中, 自动钢卷优化排序方法将用于解决涉及 12个在库钢卷的排 序问题, 具体钢卷关键信息如下表 1 :
表 1为钢卷信息
Figure imgf000012_0001
本实施例采用一种冷轧电镀锌机组钢卷排序方法, 其流程如图 3所示, 包括以下步骤: 步骤 1 : 利用电镀锌机组钢卷生产模型, 设置电镀锌机组钢卷加工参数: 根据电镀锌前库 库存钢卷量、 电镀锌前道机组计划内预计到达钢卷情况以及当前的电镀锌机组加工状态, 给 定钢卷加工计划内电镀锌机组的加工能力上下限 [100, 120] , 同后处理方式后处理液加工能 力的上下限 [110, 200]、 宽度跳跃、 厚度跳跃幅度范围分别为 [0, 150]和 [0,2]。 初始化电镀锌 机组的钢卷优化排序系统参数。分别计算钢卷 i之后加工钢卷 j 因后处理方式切换所引起的 系统稳定性缺损惩罚 , 钢卷 i之后加工钢卷 j 因宽度切换所引起的系统稳定性缺损惩罚 , 钢卷 i之后加工钢卷 j 因厚度切换所引起的系统稳定性缺损惩罚 和前钢卷顺序选择 钢卷 i进行加工对生产系统稳定性的影响惩罚 Α·;
步骤 2: 根据电镀锌机组当前状态对钢卷进行选取;
根据当前机组状态以及库存和前道机组生产情况, 选取电镀锌机组待加工钢卷: 本实施例中, 由于 f/ -W/ > f/, 执行如下具体操作步骤获得钢卷收池方案: 步骤 2.1 : 判断机组当前加工情况, 确定当前制定计划的前计划最后一个钢卷的宽度, 即 当前加工辊可用宽度上限 WA;
步骤 2.2: 根据电镀锌机组在库钢卷量及前道供料产线的加工情况, 确定当前计划期内, 可利用钢卷量, 并就其要求的后处理方式对钢卷进行分类, 计算要求采用后处理方式进行加 工, 宽度不大于 WA的可利用钢卷的累计吨数!^, 并进行如下判定:
如果 l^≤t/, 则将所有要求采用后处理方式进行加工, 宽度不大于 WA的钢卷进行收池, 记录所有相关钢卷号;
如果 > t/, 则从要求采用后处理方式进行加工, 宽度不大于 WA的钢卷进行挑选: 步骤 2.2.1 : 若该钢卷集合中不存在宽度大于等于 WA + LW的钢卷, 则从最窄钢卷开始收 池, 直到新加入钢卷将导致当前计划累计收池钢卷量超过 t/;
步骤 2.2.2: 若该钢卷集合中存在宽度大于等于 WA + LW的钢卷, 计算宽度不小于 WA + LW 的钢卷累计吨数 如果 W'≥f/, 从宽度不小于 WA + LW的最宽钢卷开始进行收池, 直到新 加入钢卷将导致当前计划累计收池钢卷量超过 t/; 否则, 将宽度不小于 WA + LW的钢卷全部收 池, 并从宽度小于 WA + LW的最窄钢卷进行收池, 直到当前计划累计收池钢卷量超过 t/,停止; 最终选择钢卷 1-8进入当前计划;
步骤 3: 设置电镀锌机组钢卷初始加工顺序, 基于上一步骤的收池钢卷, 制定钢卷加工 顺序, 其基本思路如下: 对收池钢卷进行分类, 同后处理方式的钢卷构成一个簇, 对于任一 钢卷簇, 钢卷从厚 (或薄)到薄 (或厚)进行排序所获得的簇内钢卷排序的总切换费用一定是最小 的。 对于两个连续的簇, 如果前一个簇内的钢卷从薄 (或厚)到厚 (或薄)进行排序, 那么后一个 簇内的钢卷从厚 (或薄)到薄 (或厚)进行排序。 如此一来, 后一个簇中最厚 (薄)的钢卷将在前一 个簇中最厚 (薄)的钢卷紧后进行加工。 该排序方法的具体步骤如下:
步骤 3.1 : 初始化当前后处理方式 k为收池钢卷中最小的后处理代码;
步骤 3. 2: 若所有后处理方式钢卷均已排序, 则已获得初始钢卷加工顺序, 并输出结果; 否则跳到 Step 3 ;
步骤 3.3 : 将后处理方式钢卷从宽到窄进行排序, 并将后处理方式钢卷按照宽度进行分 类, 形成 g个钢卷集合 ΩΗk2 , . . ., kg;
步骤 3.4: 对钢卷集合 Ω , ..., 中钢卷分别进行排序, 形成两个钢卷排序序列, 分别为:
第一序列获得方法: 对于标号为奇数的钢卷从厚到薄进行排序, 对于标号为偶数的钢卷 从薄到厚进行排序;
第二序列获得方法: 对于标号为奇数的钢卷从薄到厚进行排序, 对于标号为偶数的钢卷 从厚到薄进行排序;
对如上钢卷排序序列进行比较, 将总体稳定性缺损最小的钢卷加工顺序设定为电镀锌机 组初始钢卷加工顺序 A
步骤 4: 对电镀锌机组钢卷加工顺序进行实时修正, 方法为:
步骤 4.1 : 初始化系统稳定性修正方法的参数, 将当前的电镀锌机组钢卷加工顺序 ^设定 为 S1; 获取当前选取钢卷集合 (^以及当前可利用钢卷集合 C4, 其中, (^是所有已列入当前电 镀锌机组钢卷加工顺序的钢卷集合, C4是所有在库或者基于前道机组加工情况已确定可及时 送达、 但没有列入当前电镀锌机组钢卷加工顺序的钢卷集合, 为当前选取钢卷集合 (^中 钢卷的数目, |C4|为当前可利用钢卷集合 C4中钢卷的数目; 获取当前电镀锌机组钢卷加工顺 序^对应的钢卷加工顺序 mi, m2, . .., m|cs|,其中, m为当前电镀锌机组钢卷加工顺序中第个进 行加工的钢卷。 设定稳定性评价指标值为 ^ + + C 2 x , y, (15)
;=1 j=l i=l 该评价值为钢卷加工顺序 ^的系统稳定性惩罚值, 惩罚值越小钢卷排序方案越稳定可行; 步骤 4.2: 计算当前电镀锌机组钢卷加工顺序 ^的稳定性评价指标值 (^);
步骤 4.3 : 确定当前电镀锌机组钢卷加工顺序 ^的候选修正集合 Λ 获取钢卷加工顺序的 修正手段包括:
(1)插入钢卷: 在不违反机组的生产能力限制约束及后处理集批量约束的前提下, 通过在 当前钢卷加工顺序中插入新的钢卷 获得候选修正钢卷加工顺序, 新加入钢卷 A在钢卷加 工顺序中所处位置应满足系统设定工艺约束 (2) - (11);
(2)删除钢卷: 在不违反机组的生产能力限制约束及后处理集批量约束的前提下, 通过在 当前钢卷加工顺序中删除钢卷《¾, ( = 1 , 2, . .. , \CS\), 要求保证删除钢卷 m后, 钢卷 和钢卷 的宽度、 厚度切换幅度不违反约束 (10)、 (11), 稳定性评价指标值较低候选修正钢卷加工 顺序;
(3)调整钢卷选择方案: 在不违反机组的生产能力限制约束、 后处理集批量约束及系统设 定工艺约束 (2) - (11) 的前提下, 通过交换当前钢卷加工顺序中钢卷 中钢卷与当前可利用 钢卷集 C4中钢卷, 获得稳定性评价指标值较低候选修正钢卷加工顺序;
(4)调整钢卷加工顺序: 在不违反机组的生产能力限制约束及后处理集批量约束的前提 下, 通过当前钢卷加工顺序的交换邻域 (如图 4所示)、 2-opt邻域 (如图 5所示), 调整当前钢 卷加工顺序中钢卷的位置, 获得稳定性评价指标值较低候选修正钢卷加工顺序;
步骤 4.4: 建立钢卷加工顺序修正方案参考集, 把当前候选修正集合 P中稳定性评价指标 值较好的前 ^个候选修正方案加入参考集, 即^^/^^二 ^1,..., 1), 并将这 ^个候选修正方案 从候选修正集合 中移除。 对当前候选修正集合 P中的每一个候选修正方案, 计算它与参考集 中当前钢卷排序方案的最小距离。 把与参考集最小距离最大的钢卷加工顺序候选修正方案加 入到参考集 Re , 并把它从候选修正集合 ^中移除。 重复这一过程 b2次, 这样, 当前的参考 集 RefSet = . .., }, b = b2 + b2
步骤 4.5 : 利用钢卷排序方案的组合方法, 基于参考集 Re ¾ 中任意一对钢卷加工顺序, 生成 b(b-l)个新钢卷修正方案, 对于新生成的修正方案进行改进, 获得稳定性更好的候选钢 卷排序修正方案。
步骤 4.6: 更新候选修正集合 Λ 用新生成的稳定性较好的候选钢卷排序修正方案替换候 选修正集合 P中稳定性较差的解。
步骤 4.7:若候选修正集合 P中的最好的候选修正方案连续不更新次数达到无改进迭代次 数上限, 停止算法, 将候选修正集合 ^中评价值最好的候选修正方案选为当前修正方案; 否 则, 跳到步骤 4.4;
获得电镀锌优化生产计划 8, 1, 2, 3, 4, 5, 6, 7;
步骤 5 : 在显示模块界面下, 查看自动排序的结果。
步骤 6: 通过网络, 将钢卷排序下发到生产机组自动控制系统, 实时指导生产。
本实施例的冷轧电镀锌机组钢卷排序系统, 包括: 至少一台 PC机, 至少一个电缆接口 或光缆接口或电话专线接口和至少一台路由器;
所述的 PC机内设置有冷轧电镀锌钢卷排序系统的软件, 软件包括生产环境设定模块、 钢卷选取模块、 钢卷排序模块、 钢卷排序实时修正模块; 其中, 生产环境设定模块用于设置 电镀锌机组钢卷生产环境的加工参数, 描述工艺工程, 确定工艺过程的调整目标及约束条件, 主要流程如图 6所示;
钢卷选取模块根据电镀锌机组当前加工状态对钢卷进行选取, 确定钢卷选取方案, 主要 流程如图 7所示;
钢卷排序模块基于当前钢卷选取情况, 对已选钢卷进行排序, 获取多种钢卷加工顺序, 并从中挑选较好钢卷排序作为当前加工方案, 主要流程如图 8所示;
钢卷排序实时修正模块对当前钢卷加工方案进行在线实时修正, 改进并获取更好的钢卷 加工方案, 主要流程如图 9所示;
在执行钢卷排序任务时, 系统的各功能模块通过相互之间的协同工作来完成实际任务, 其运作关系结构如图 10所示。 所述的 PC机通过网络、 企业内部服务器连接到企业电镀锌机 组自动控制系统的前端。

Claims

权利要求书
1、 一种冷轧电镀锌机组钢卷排序方法, 其特征在于: 包括以下步骤:
步骤 1 : 描述工艺工程, 确定工艺过程的约束条件;
步骤 2: 根据电镀锌机组当前状态对钢卷进行选取, 方法为: 根据当前机组状态以及库 存和前道机组生产情况, 选取电镀锌机组待加工钢卷: 首先, 判断机组当前采用哪种后处理 液 fc, 并计算该后处理液累计加工钢卷量 W/, 根据系统设置的后处理液额定加工能力范围
[Lp k ,U ] , 确定该后处理液当前可加工钢卷量 β等于 C/ - Wk p; 如果 c/ -wk p < u , 则钢卷选取步骤如下: 步骤 2.1 : 判断机组当前加工情况, 确定当前制定生产顺序的前一生产顺序中最后一个钢 卷的宽度, 即当前加工辊可用宽度上限 WA;
步骤 2.2: 根据电镀锌机组在库钢卷量及前道供料产线的加工情况, 确定当前生产期内, 可利用钢卷量, 并就其要求的后处理方式对钢卷进行分类, 计算要求采用后处理方式进行加 工, 宽度不大于 WA的可利用钢卷的累计吨数!^, 并进行如下判定:
如果 ≤β, 则将所有要求采用后处理方式进行加工, 宽度不大于 WA的钢卷进行收池, 记录所有相关钢卷号;
如果 > Q, 则从要求采用后处理方式进行加工, 宽度不大于 WA的钢卷进行挑选, 挑 选方法为:
步骤 2.2.1 : 若该钢卷集合中不存在宽度大于等于 WA + LW的钢卷, 则从最窄钢卷开始收 池, 直到新加入钢卷将导致当前计划累计收池钢卷量超过 C/ - Wk p ; 步骤 2.2.2: 若该钢卷集合中存在宽度大于等于 WA + LW的钢卷, 计算宽度不小于 WA + LW 的钢卷累计吨数 如果 W'≥C/ - W , 从宽度不小于 WA + LW的最宽钢卷开始进行收池, 直到新加入钢卷将导致当前计划累计收池钢卷量超过 否则,将宽度不小于 WA + LW 的钢卷全部收池, 并从宽度小于 WA + LW的最窄钢卷进行收池, 直到当前计划累计收池钢卷量 超过 C/f _ ; 步骤 2.2.3 : 若已选钢卷总重不满足钢卷加工计划最小排产量, 选择其他后处理方式的钢 卷, 按照后处理代码递增的顺序, 从后处理方式 g = k+\ 的钢卷进行收池, 收池量上限 U' = U - {Uk P - Wk P) (1) 若后处理方式 g的可利用钢卷总量^≥f/', 从后处理方式 g的钢卷集合中最窄的 钢卷进行收池, 直到累计收池钢卷量超过 t/停止;
(2) 若后处理方式 g的可利用钢卷总量^ <U' , 则将后处理方式 g的所有钢卷进行收 池, 更新 fc = fc+l, U' = U'-Wg, 跳到步骤 2.2.3; 其中, 步骤 2.2.3 (2)所述的当前收池后处理方式 若为最大后处理代码, 则更新 为最 小后处理代码; 当前收池后处理方式 g为当前机组收池钢卷的后处理代码;
如果 ί/ -Wk p >υ , 则钢卷选取步骤如下: 步骤 2-1: 判断机组当前加工情况, 确定当前制定计划的前计划最后一个钢卷的宽度, 即 当前加工辊可用宽度上限 WA;
步骤 2-2: 根据电镀锌机组在库钢卷量及前道供料产线的加工情况, 确定当前计划期内, 可利用钢卷量, 并就其要求的后处理方式对钢卷进行分类, 计算要求采用后处理方式进行加 工, 宽度不大于 WA的可利用钢卷的累计吨数!^, 并进行如下判定:
如果 l^≤t/, 则将所有要求采用后处理方式进行加工, 宽度不大于 WA的钢卷进行收池, 记录所有相关钢卷号;
如果 >t/, 则从要求采用后处理方式进行加工, 宽度不大于 WA的钢卷进行挑选: 步骤 2-2-1: 若该钢卷集合中不存在宽度大于等于 WA + LW的钢卷, 则从最窄钢卷开始收 池, 直到新加入钢卷将导致当前计划累计收池钢卷量超过 t/;
步骤 2-2-2: 若该钢卷集合中存在宽度大于等于 WA + LW的钢卷,计算宽度不小于 WA + LW 的钢卷累计吨数 如果 W'≥f/, 从宽度不小于 WA + LW的最宽钢卷开始进行收池, 直到新 加入钢卷将导致当前计划累计收池钢卷量超过 t/; 否则, 将宽度不小于 WA + LW的钢卷全部收 池, 并从宽度小于 WA + LW的最窄钢卷进行收池, 直到当前计划累计收池钢卷量超过 t/,停止; 步骤 2-2-3: 若已选钢卷总重不满足钢卷加工计划最小排产量, 选择其他后处理方式的钢 卷, 按照后处理代码递增的顺序, 从后处理方式 g = k+\ 的钢卷进行收池, 收池量上限 U' = U-Wk:
(1) 若后处理方式 g的可利用钢卷总量^≥ί/', 从后处理方式 g的钢卷集合中最窄的 钢卷进行收池, 直到累计收池钢卷量超过 t/停止;
(2) 若后处理方式 g的可利用钢卷总量^ <U', 则将后处理方式 g的所有钢卷进行收 池, 更新 fc = fc+l, U' = U'-Wg, 跳到步骤 2-2-3; 步骤 3 : 设置电镀锌机组初始钢卷加工顺序: 对收池钢卷进行分类, 同后处理方式的钢 卷构成一个簇, 对于任一钢卷簇, 钢卷从厚到薄或从薄到厚)进行排序所获得的簇内钢卷排序 的总切换费用最小; 对于两个连续的簇, 如果前一个簇内的钢卷从薄到厚或从厚到薄进行排 序, 那么后一个簇内的钢卷从厚到薄或从薄到厚进行排序, 如此一来, 后一个簇中最厚或薄 的钢卷将在前一个簇中最厚或薄的钢卷紧后进行加工, 方法如下:
步骤 3.1 : 初始化当前后处理方式 k为收池钢卷中最小的后处理代码;
步骤 3.2: 若所有后处理方式钢卷均已排序, 则已获得初始钢卷加工顺序, 并输出结果; 否则, 跳到步骤 3.3 ;
步骤 3.3 : 将后处理方式钢卷从宽到窄进行排序, 并将后处理方式钢卷按照宽度进行分 类, 形成 g个钢卷集合 Ω¾1, nk2 , . . ., nkg-,
步骤 3.4: 对钢卷集合 Ω¾1, Ω¾2, ..., 中钢卷分别进行排序, 形成两个钢卷排序序列, 其中, 第一序列获得方法: 对于标号为奇数的钢卷从厚到薄进行排序, 对于标号为偶数的钢 卷从薄到厚进行排序; 第二序列获得方法: 对于标号为奇数的钢卷从薄到厚进行排序, 对于 标号为偶数的钢卷从厚到薄进行排序, 对上述两种序列进行比较, 将总体稳定性缺损最小的 钢卷加工顺序设定为电镀锌机组初始钢卷加工顺序 A
步骤 4: 对电镀锌机组钢卷加工顺序进行实时修正, 方法为;
步骤 4.1 : 初始化系统稳定性修正方法的参数, 将当前的电镀锌机组钢卷加工顺序 ^设定 为 S1; 获取当前选取钢卷集合 (^以及当前可利用钢卷集合 C4, 其中, (^是所有已列入当前电 镀锌机组钢卷加工顺序的钢卷集合, C4是所有在库或者基于前道机组加工情况已确定可及时 送达、 但没有列入当前电镀锌机组钢卷加工顺序的钢卷集合, 为当前选取钢卷集合 (^中 钢卷的数目, |C4|为当前可利用钢卷集合 C4中钢卷的数目; 获取当前电镀锌机组钢卷加工顺 序^对应的钢卷加工顺序 OTl, m2, . .., m|cs|,其中, m为当前电镀锌机组钢卷加工顺序中第 进 行加工的钢卷, 设定稳定性评价指标值/ ), 公式为: f(S) = A1 , Plyl (15)
Figure imgf000019_0001
式中, 稳定性评价指标值/ ( 为钢卷加工顺序 S的系统稳定性惩罚值, 惩罚值越小钢卷 排序方案越稳定可行;
步骤 4.2: 计算当前电镀锌机组钢卷加工顺序 ^的稳定性评价指标值 (^);
步骤 4.3 : 确定当前电镀锌机组钢卷加工顺序 ^的候选修正集合 Λ 获取钢卷加工顺序的 修正方法为:
(1)插入钢卷: 在不违反机组的生产能力限制约束及后处理集批量约束的前提下, 通过在 当前钢卷加工顺序中插入新的钢卷 获得候选修正钢卷加工顺序, 新加入钢卷 在钢卷加 工顺序中所处位置应满足系统设定工艺约束 (2) - (11);
(2)删除钢卷: 在不违反机组的生产能力限制约束及后处理集批量约束的前提下, 通过在 当前钢卷加工顺序中删除钢卷《¾, ( = 1 , 2, . .. , \CS\), 要求保证删除钢卷 后, 钢卷 和钢卷 的宽度、 厚度切换幅度不违反约束 (10)、 (11), 稳定性评价指标值较低候选修正钢卷加工 顺序;
(3)调整钢卷选择方案: 在不违反机组的生产能力限制约束、 后处理集批量约束及系统设 定工艺约束 (2) - (11) 的前提下, 通过交换当前钢卷加工顺序中钢卷 中钢卷与当前可利用 钢卷集 C4中钢卷, 获得稳定性评价指标值较低候选修正钢卷加工顺序;
(4)调整钢卷加工顺序: 在不违反机组的生产能力限制约束及后处理集批量约束的前提 下, 通过当前钢卷加工顺序的交换邻域、 2-opt邻域, 调整当前钢卷加工顺序中钢卷的位置, 获得稳定性评价指标值较低候选修正钢卷加工顺序;
其中,所述的当前钢卷加工顺序的交换邻域是指:保证不违反系统设定工艺约束 (2) - (11) 的前提下, 交换电镀锌机组钢卷加工顺序中的任意两个钢卷的位置所获得的所有可行钢卷排 序方案的集合;
2-opt邻域是指: 保证不违反系统设定工艺约束 (2) - (11) 的前提下, 通过变换电镀锌机 组钢卷加工顺序中的任意两个钢卷切换方式所获得的所有可行钢卷排序方案的集合;
步骤 4.4: 建立钢卷加工顺序修正方案参考集, 把当前候选修正集合 P中稳定性评价指标 值较好的前 ^个候选修正方案加入参考集, 即^^/^^二 ^1, . . ., 1), 并将这 ^个候选修正方案 从候选修正集合 中移除, 对当前候选修正集合 P中的每一个候选修正方案, 计算它与参考集 中当前钢卷排序方案的最小距离; 把与参考集最小距离最大的钢卷加工顺序候选修正方案加 入到参考集 Re , 并把它从候选修正集合 ^中移除, 重复这一过程 b2次, 这样, 当前的参考 集 RefSet = . .., }, b = b2 + b2;
步骤 4.5 : 利用钢卷排序方案的组合方法, 基于参考集 Re ¾ 中任意一对钢卷加工顺序, 生成 b(b-l)个新钢卷修正方案, 对于新生成的修正方案进行改进, 利用步骤 4.3 (1) - (4)获得 稳定性更好的候选钢卷排序修正方案;
所述的钢卷排序方案的组合方法, 过程为: 首先, 对比两个钢卷加工顺序的钢卷选择情 况, 获取共有选择钢卷集合; 其次, 确定共有选择钢卷的加工位置, 若其具有相邻关系的钢 卷为共有选择钢卷, 采用系统稳定性较好的钢卷加工顺序中的邻接关系, 若其具有相邻关系 的钢卷为非共有选择钢卷, 则从非共有钢卷中试探插入原位置, 获得总体评价较好的钢卷加 工顺序; 步骤 4.6 : 更新候选修正集合 Λ 用新生成的稳定性较好的候选钢卷排序修正方案替换候 选修正集合 Ρ中稳定性较差的解;
步骤 4.7 :若候选修正集合 Ρ中的最好的候选修正方案连续不更新次数达到无改进迭代次 数上限, 则停止, 将候选修正集合 ^中评价值最好的候选修正方案选为当前修正方案; 否则, 跳到步骤 4.4。
2、根据权利要求 1所述的冷轧电镀锌机组钢卷排序方法, 其特征在于: 步骤 1所述描述 工艺工程, 通过建立电镀锌机组钢卷生产模型实现, 方法为:
步骤 1- 1 : 所述的电镀锌机组钢卷生产模型, 模型的目标函数为:
Minimize + ><∑^, (1 )
;=1 j=l i=l
式中, A表示生产切换 (即后处理、 宽度、 厚度)对生产系统稳定性影响情况的权重, Λ2表 示钢卷选取对生产系统稳定性影响情况的权重; 表示在钢卷 i之后加工钢卷 j 因后处理 方式切换所引起的系统稳定性缺损惩罚; 表示在钢卷 i之后加工钢卷 j 因宽度切换所引 起的系统稳定性缺损惩罚; 表示在钢卷 i之后加工钢卷 j 因厚度切换所引起的系统稳定 性缺损惩罚; Α·表示当前钢卷顺序选择钢卷 进行加工对生产系统稳定性的影响惩罚; 决策 变量 表示连续电镀锌加工顺序中, 钢卷 i和钢卷 j之间的相邻关系, 当钢卷 i在钢卷 j 紧前进行加工, χϋ取值为 1, 否则 Xij取值为 0 ; 决策变量 ^表示连续电镀锌加工顺序是否 选择钢卷 i进行加工, 当钢卷 i被选择进行加工, 取值为 1, 否则 取值为 0 ; 待加工的 可用钢卷数为 n;
步骤 1-2 : 根据电镀锌前库库存钢卷量、 电镀锌前道机组计划内预计到达钢卷情况以及 当前的电镀锌机组加工状态, 给定钢卷加工计划内电镀锌机组的加工能力上下限, 同后处理 方式后处理液加工能力的上下限、 宽度跳跃、 厚度跳跃幅度范围, 初始化电镀锌机组钢卷生 产系统参数, 公式如下:
设置钢卷 之后加工钢卷 因后处理方式切换对生产系统稳定性的影响所产生的惩罚 c , 公式为: 当
Figure imgf000021_0001
式中, ^ 为加工后处理方式/^的后处理液初始化对生产系统稳定性的影响所产生的惩 罚; 设置钢卷 i之后加工钢卷 j 因宽度切换对生产系统稳定性的影响所产生的惩罚 , 式为:
Figure imgf000022_0001
式中, ^为允许最大的宽度跳跃, /Γ为相邻钢卷宽度切换对生产系统稳定性的影响所产 生的惩罚; 《 为前一加工钢卷厚度小于^ 宽度跳跃不超过 的情况的单位宽度跳跃惩罚;
«2 W为前一加工钢卷厚度不小于 ^, 宽度跳跃不超过 的情况的单位宽度跳跃惩罚; a3 w为宽 度由宽到窄进行加工时, 不满足前一加工钢卷厚度小于^ 宽度跳跃不超过 的情况或前一 加工钢卷厚度不小于^ 宽度跳跃不超过 的情况的单位宽度跳跃惩罚; ^为计算宽度切换 对生产系统稳定性的影响所产生的惩罚过程中的厚度边界条件值; 和 为计算宽度切换 对生产系统稳定性的影响所产生的惩罚过程中的宽度边界条件值; 设置钢卷 之后加工钢卷 j 因厚度切换对生产系统稳定性的影响所产生的惩罚 , 公式为:
max {ί .
ς7 = a min{i. - a (14) 式中, 为厚度切换导致对生产系统稳定性的影响所产生的单位惩罚;
设置选择钢卷 i排入当前钢卷顺序进行加工对生产系统稳定性的影响所产生的惩罚 ρ,·。 3、根据权利要求 2所述的冷轧电镀锌机组钢卷排序方法, 其特征在于: 所述的电镀锌机 组钢卷生产模型, 其约束条件包括: 可行性约束条件和自身的工艺及运行约束条件:
1) 可行性约束条件, 公式为:
Figure imgf000022_0002
x{j , yi G {0,1} V/ = 1,2, ... , n _ l, n , j 1,2, ... , η - ί, η (5) 式中, N表示电镀锌前库中可用钢卷集合, 约束 (2)和 (3)给出决策变量 Xij和 ^ 的逻辑关 系; 约束 (4) 用于防止钢卷加工过程被中断; 约束 (5) 为决策变量 ¾和)^的取值范围; 除了如上系统可行性约束 (2) -(5)之外, 电镀锌机组在加工钢卷时还有自身的工艺及运行 约束条件:
2)用于保证所制定钢卷加工顺序满足钢卷累计加工量的上、下限的机组生产能力限制约 束, 公式为:
L<Yjwtiyi <U Vi N (6) 式中, L表示电镀锌钢卷加工顺序制定过程中单个生产计划的最小排产量, υ表示电镀 锌钢卷加工顺序制定过程中单个生产计划的最大排产量; Wti 为电镀锌钢卷 i 的重量;
3)后处理集批量约束, 包括用于确定钢卷加工顺序中, 完成任一钢卷的加工后同一后处 理方式的累计钢卷加工重量, 公式为:
Figure imgf000023_0001
以及保证钢卷累计加工重量满足同后处理方式连续加工钢卷重量上、 下限, 公式为:
L^z,. <W. <[/p 1z,. V?eN (8) 式中, L 表示后处理代码为/ ^的钢卷累计连续加工重量下限; 表示钢卷 的后处 理方式代码; 表示在钢卷加工顺序中, 加工钢卷 j后同后处理方式的钢卷累计加工重量; ^表示后处理代码 P;1 的钢卷累计连续加工重量上限; Zj 为决策变量, 当钢卷 j 与在钢 卷 j之前加工的钢卷后处理方式相同, 则为 0, 否则为 1;
4) 保证同后处理方式的钢卷从宽到窄进行加工的宽度切换趋势约束, 公式为:
(w; -w.) ¾ >0 VI G N, jeN, p l =p (9) 式中, 表示钢卷 j 的宽度;
5 )保证电镀锌加工计划中相邻两个钢卷之间的出口宽度的跳跃变化不会超过机组生产工 艺所允许的范围的宽度切换幅度约束, 公式为:
Lw <(wi-wj) xij <Uw Vi N, j G N (10) 式中, Lw 为电镀锌钢卷加工顺序中宽度跳跃幅度下限; i 为电镀锌钢卷加工顺序中宽 度跳跃幅度上限;
6 )保证电镀锌加工计划中相邻两个钢卷之间的出口厚度的跳跃变化不会超过机组生产工 艺所允许的范围的厚度切换幅度约束, 公式为:
LT <(ti-tj) xij <UT Vi N, j N (11) 其中, LT 为电镀锌钢卷加工顺序中厚度跳跃幅度下限; if 为电镀锌钢卷加工顺序中厚 度跳跃幅度上限; ;为钢卷 i 的厚度, 为钢卷 j 的厚度。
4、 采用权利要求 1所述的冷轧电镀锌机组钢卷排序方法的系统, 其特征在于: 包括: 至 少一台 PC机, 至少一个电缆接口或光缆接口或电话专线接口和至少一台路由器; 所述的 PC 机内设置有冷轧电镀锌钢卷排序系统的软件, 所述软件包括生产环境设定模块、 钢卷选取模 块、 钢卷排序模块、 钢卷排序实时修正模块; 其中, 生产环境设定模块用于设置电镀锌机组 钢卷生产环境的加工参数, 描述工艺工程, 确定工艺过程的调整目标及约束条件; 钢卷选取 模块根据电镀锌机组当前加工状态对钢卷进行选取, 确定钢卷选取方案; 钢卷排序模块基于 当前钢卷选取情况, 对已选钢卷进行排序, 获取多种钢卷加工顺序, 并从中挑选较好钢卷排 序作为当前加工方案; 钢卷排序实时修正模块对当前钢卷加工方案进行在线实时修正, 改进 并获取更好的钢卷加工方案; 所述的 PC机通过网络、 企业内部服务器连接到企业电镀锌机 组自动控制系统的前端。
PCT/CN2012/074839 2012-01-19 2012-04-27 一种冷轧电镀锌机组钢卷排序方法及系统 WO2013107129A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/993,622 US9181626B2 (en) 2012-01-19 2012-04-27 Coil scheduling method and system for electrogalvanizing line in steel industry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210018536.7A CN102621941B (zh) 2012-01-19 2012-01-19 一种冷轧电镀锌机组钢卷排序方法及系统
CN201210018536.7 2012-01-19

Publications (1)

Publication Number Publication Date
WO2013107129A1 true WO2013107129A1 (zh) 2013-07-25

Family

ID=46561908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074839 WO2013107129A1 (zh) 2012-01-19 2012-04-27 一种冷轧电镀锌机组钢卷排序方法及系统

Country Status (3)

Country Link
US (1) US9181626B2 (zh)
CN (1) CN102621941B (zh)
WO (1) WO2013107129A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112001637A (zh) * 2020-08-25 2020-11-27 上海汽车集团股份有限公司 一种工艺流程确定方法、装置、服务器及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104376424B (zh) * 2014-11-27 2017-07-11 东北大学 一种钢铁企业冷轧区多产线钢卷协调调度方法
JP2018142217A (ja) * 2017-02-28 2018-09-13 富士通株式会社 作業計画作成プログラム、作業計画作成装置、及び作業計画作成方法
TWI637250B (zh) * 2017-03-31 2018-10-01 林器弘 智慧加工調變系統及方法
CN112947319B (zh) * 2019-12-11 2024-03-29 上海宝信软件股份有限公司 一种钢铁企业冷轧区多产线的集批排程优化方法及系统
CN114633975B (zh) * 2020-12-16 2024-01-09 宝山钢铁股份有限公司 连续波浪型鞍座的钢卷堆放方法及装置、设备、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1357484A1 (en) * 2000-12-28 2003-10-29 Amada Company, Ltd. Method of preparing estimate for sheet metal working
JP2005284328A (ja) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd ロット完結型生産方法及びロット完結型生産システム
CN101097617A (zh) * 2006-06-30 2008-01-02 东北大学 一种金属热轧优化调度方法及其系统
CN101322982A (zh) * 2008-07-24 2008-12-17 北京金自天正智能控制股份有限公司 一种多台卷取机出口运卷设备的控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177140B1 (en) * 1998-01-29 2001-01-23 Ispat Inland, Inc. Method for galvanizing and galvannealing employing a bath of zinc and aluminum
JPH11232332A (ja) * 1998-02-10 1999-08-27 Tokyo Electric Power Co Inc:The 生産ラインにおける日程計画立案方法
CN101216695B (zh) * 2007-12-26 2010-06-02 燕山大学 一种平整轧制压力设定、预报及自学习方法
CN101334660B (zh) * 2008-06-30 2011-01-26 东北大学 一种冷轧连续退火机组钢卷优化排序方法及其系统
CN101329573B (zh) * 2008-07-25 2010-07-14 东北大学 一种冷轧酸洗和轧制联合机组自动排产优化方法及系统
US20110258087A1 (en) * 2010-04-14 2011-10-20 International Business Machines Corporation Analytics for setting up strategic inventory systems to handle small lot orders in the steel industry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1357484A1 (en) * 2000-12-28 2003-10-29 Amada Company, Ltd. Method of preparing estimate for sheet metal working
JP2005284328A (ja) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd ロット完結型生産方法及びロット完結型生産システム
CN101097617A (zh) * 2006-06-30 2008-01-02 东北大学 一种金属热轧优化调度方法及其系统
CN101322982A (zh) * 2008-07-24 2008-12-17 北京金自天正智能控制股份有限公司 一种多台卷取机出口运卷设备的控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112001637A (zh) * 2020-08-25 2020-11-27 上海汽车集团股份有限公司 一种工艺流程确定方法、装置、服务器及存储介质

Also Published As

Publication number Publication date
US9181626B2 (en) 2015-11-10
CN102621941A (zh) 2012-08-01
CN102621941B (zh) 2014-08-20
US20140195034A1 (en) 2014-07-10

Similar Documents

Publication Publication Date Title
CN104376424B (zh) 一种钢铁企业冷轧区多产线钢卷协调调度方法
WO2013107129A1 (zh) 一种冷轧电镀锌机组钢卷排序方法及系统
CN106779220B (zh) 一种炼钢-连铸-热轧集成调度方法与系统
WO2017088674A1 (zh) 一种面向全流程生产的炼钢组批与排产方法
CN110955206B (zh) 一种订单排程与分配调度方法及系统
CN101329573B (zh) 一种冷轧酸洗和轧制联合机组自动排产优化方法及系统
CN101344781B (zh) 一种冷轧热镀锌机组板卷自动调度方法及系统
US20210073695A1 (en) Production scheduling system and method
CN108182518B (zh) 一种基于改进遗传算法的在制状态人员调度方法
CN104123587B (zh) Mto‑mts管理模式下钢铁生产合同计划和多级库存匹配优化方法
CN108665092B (zh) 一种基于混合萤火虫算法的全流程排产与优化方法
CN101833709A (zh) 半导体生产线生产计划的混合智能优化方法
CN108876050B (zh) 一种钢铁企业合同主制程的设定与自动转换方法
CN1661609A (zh) 钢铁生产计划中合同与库存联合优化管理方法
CN112947319A (zh) 一种钢铁企业冷轧区多产线的集批排程优化方法及系统
CN111259314A (zh) 一种分布式混凝土预制构件流水车间生产调度方法
CN109858780A (zh) 一种炼钢-连铸生产调度优化方法
CN111401616A (zh) 一种供应链环境下预制混凝土构件的双层调度方法
Ruan et al. Improved eight-process model of precast component production scheduling considering resource constraints
CN113537568A (zh) 一种钢铁热轧生产调度计划确定方法及系统
CN101403920B (zh) 一种钢铁企业冷轧精整机组产能负荷均衡方法
Tang et al. Modeling and solution for the coil sequencing problem in steel color-coating production
CN104942251A (zh) 炼钢厂连铸机的开浇时间确定方法
CN111861299B (zh) 一种钢铁企业全流程库存水平预警与控制方法
Yu et al. Supplier evaluation analysis based on AHP-entropy-TOPSIS method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13993622

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865757

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12865757

Country of ref document: EP

Kind code of ref document: A1