WO2013107065A1 - 线路基板结构及其制作方法 - Google Patents

线路基板结构及其制作方法 Download PDF

Info

Publication number
WO2013107065A1
WO2013107065A1 PCT/CN2012/071130 CN2012071130W WO2013107065A1 WO 2013107065 A1 WO2013107065 A1 WO 2013107065A1 CN 2012071130 W CN2012071130 W CN 2012071130W WO 2013107065 A1 WO2013107065 A1 WO 2013107065A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
adhesion promoting
catalyst
conductive
substrate structure
Prior art date
Application number
PCT/CN2012/071130
Other languages
English (en)
French (fr)
Inventor
江振丰
江荣泉
Original Assignee
光宏精密股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2012200243461U external-priority patent/CN202488870U/zh
Priority claimed from CN2012100164587A external-priority patent/CN103220884A/zh
Application filed by 光宏精密股份有限公司 filed Critical 光宏精密股份有限公司
Publication of WO2013107065A1 publication Critical patent/WO2013107065A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1879Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1855Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by mechanical pretreatment, e.g. grinding, sanding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1862Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
    • C23C18/1868Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2013Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by mechanical pretreatment, e.g. grinding, sanding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2026Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
    • C23C18/204Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2053Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment only one step pretreatment
    • C23C18/206Use of metal other than noble metals and tin, e.g. activation, sensitisation with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/285Sensitising or activating with tin based compound or composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus
    • H05K3/242Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus characterised by using temporary conductors on the printed circuit for electrically connecting areas which are to be electroplated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/025Abrading, e.g. grinding or sand blasting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate

Definitions

  • the present invention relates to a circuit substrate structure and a method of fabricating the same, and more particularly to a method of fabricating a circuit substrate structure on a non-conductive carrier. Background technique
  • one of the various methods for fabricating a three-dimensional circuit component is a molded interconnect component (MID_U) S, Molded Interconnect device-Laser Direct Structuring), which is to contain a catalyst.
  • the non-conductive plastic forms the component carrier by injection molding, and then activates the catalyst on the carrier with a laser to convert the catalyst into a catalyst core, and performs electroless plating reaction through the catalyst core and the pre-plated metal ions to form a metal conductive line.
  • Electroless plating is a catalytic reaction of pre-plated metal ions present in an electroless plating solution to a pre-plated metal ion by a metal catalyst attached to a surface of a circuit component on which a circuit pattern is to be formed without applying electric power. Restored to a portion of the surface of the circuit component where the circuit pattern is to be formed. Therefore, the electroless plating method can form a metal plating layer having a uniform thickness on a part of the surface of the circuit component on which the circuit pattern is to be formed.
  • an object of the present invention is to provide a circuit board structure and a manufacturing method thereof, which solve the problems of high production cost and the like in the manufacturing process of the existing three-dimensional circuit.
  • the carrier may be a non-conductive carrier, and has a material of heat conduction property, wherein the roughening treatment may be performed by a sandblasting method or a laser irradiation etching method; before the surface of the carrier is subjected to a roughening treatment step, a catalyst may be further disposed.
  • the insulating layer is on the carrier, and the carrier penetrates from the catalyst insulating layer to the surface by a roughening treatment, and an adhesion promoting portion is formed on the surface of the carrier.
  • the above catalyst may be one of titanium, iridium, silver, palladium, iron, nickel, copper, vanadium, cobalt, zinc, platinum, rhodium, ruthenium, osmium, iridium, iridium, tin or a mixture thereof or the above elements.
  • the wavelength range of the above laser irradiation may be between 248 nm and 10600 nm; wherein the laser irradiation etching method may be carbon dioxide (C0 2 _) laser, yttrium chromium (Nd: YAG) laser, doping Bismuth vanadate crystal (Nd : YV0 4 -) laser, excimer (EXCMER) laser or fiber laser (Fiber Laser).
  • C0 2 _ carbon dioxide
  • Nd yttrium chromium
  • Nd yttrium chromium
  • Nd doping Bismuth vanadate crystal
  • EXCMER excimer
  • fiber laser fiber laser
  • the above manufacturing method is suitable for a three-dimensional circuit manufacturing process of a plastic film interconnection assembly having heat conduction properties, and the carrier has heat conduction property, and a metal layer having electrical conductivity can be generated by electroplating during electroplating.
  • the negative electrode and the positive electrode of the power supply is connected with the pre-plated metal solid.
  • the pre-plated metal ions receive electrons on the metal layer as the negative electrode to reduce precipitation and pre-gold plating.
  • the metal layer forms a desired metal line; wherein the pre-plated metal includes metal which may be copper, nickel, chromium, tin, silver or gold or an alloy thereof.
  • An object of the present invention is to provide a circuit substrate structure comprising a carrier and at least one adhesion promoting portion, wherein each of the adhesion promoting portions forms a rough surface on the surface of the carrier by using a roughening treatment method. And the rough surface of each adhesion promoting portion is in an open state, and a metal layer is formed in each adhesion promoting portion, and the metal layer is formed by reacting a catalyst preset to each adhesion promoting portion with an electroless plating solution.
  • the circuit substrate structure further includes a plating layer, and an anti-plating insulating layer is further disposed on each of the conductive contacts, and a plating layer is disposed on each of the adhesion promoting portions by using an electroplating method to increase the thickness of the metal layer on each of the circuit patterns, and finally removing The anti-plating insulating layer and the metal layer on each of the conductive contacts obtain an independent circuit pattern.
  • Another object of the present invention is to provide a circuit substrate structure comprising a carrier, a catalyst insulating layer, at least one adhesion promoting portion, and a metal layer by using the method for fabricating the above-mentioned circuit substrate structure; wherein each adhesion promoting portion utilizes roughness
  • the treatment method penetrates the catalyst insulating layer and is disposed on the surface of the carrier to form a rough surface, and the rough surface of each adhesion promoting portion is in an open state, and a metal layer is disposed in each adhesion promoting portion, and the metal layer is preset to each adhesion promotion
  • the catalyst is formed by reacting with the electroless plating solution.
  • circuit board structure and the manufacturing method thereof provided by the present invention have the following advantages:
  • FIG. 2 is a schematic structural view of a circuit substrate structure according to a first embodiment of the present invention
  • FIG. 13-14 are schematic structural views showing a structure of a circuit substrate according to an eighth embodiment of the present invention.
  • Figure 20 is a schematic diagram showing the hydrophilicity of the surface of the roughened support under the microscope and the surface of the support without roughening (the left part of the figure is the adhesion promoting portion of the surface after roughening, by hydrophobic The hydrophilicity is changed to hydrophilic.
  • the water droplets may adhere to the adhesion promoting portion on the surface of the carrier;
  • the right side portion of the figure is the surface of the carrier which has not been roughened, and is still hydrophobic, and the water droplets in the figure are not easily attached to the surface of the carrier. ;
  • FIG. 1 is a schematic diagram of a first embodiment of a flow chart of a method for fabricating a circuit substrate structure according to the present invention.
  • the circuit substrate structure 1 of the present invention is suitable for use in a circuit structure.
  • the circuit substrate structure 1 includes a carrier 11 and at least one adhesion promoting portion 12, wherein each of the adhesion promoting portions 12 is roughened (this embodiment uses a lightning
  • the radiation etching method forms a rough surface 121 on the surface of the carrier 11, and the rough surface 121 of each adhesion promoting portion 12 is open. State. Thereafter, the carrier 11 is immersed in the catalyst solution tank to cause the catalyst to adhere to the adhesion promoting portion 12.
  • the circuit substrate structure 1 includes a carrier 11 and at least one adhesion promoting portion 12, wherein each of the adhesion promoting portions 12 is roughened (this embodiment adopts The laser irradiation etching method is provided on the surface of the carrier 11 to form the rough surface 121 of each of the adhesion promoting portions 12, and the rough surface 121 of each of the adhesion promoting portions 12 is in an open state, and the surface of the carrier 11 is further provided with a conductive contact 111 in the carrier 11.
  • Each of the conductive contacts 111 is connected to the edge of the carrier 11 and each of the adhesion promoting portions 12, and the metal layer 13 is formed by electroless plating through the respective conductive contacts 111 for connecting the edges of the carrier 11 and the adhesion promoting portions 12.
  • FIG. 10 it is a flow chart of a method for fabricating a circuit substrate structure according to a fifth embodiment of the present invention.
  • the step flow is the same as that of the first embodiment. The difference between the two is that a heat conducting column 16 is buried before step S2.
  • the carrier 11 forms an adhesion promoting portion 12 having a rough surface 121 by a roughening treatment on the surface of the carrier 11 corresponding to the position of the heat transfer column 16 and the periphery of the heat transfer column 16 in step S2.
  • the embedded heat conducting column is disposed on the carrier, and at least one heat conducting column 16 is embedded in the high heat source in the carrier according to the manufacturer's design product requirements to increase the heat transfer efficiency of the overall circuit substrate structure.
  • a heat conductive material may be added to the carrier.
  • the structure of the sixth embodiment is the same as that of the first embodiment (Fig. 2), and the difference is that, in the step of providing the carrier 11 in step S1, the heat conductive material 1111 has been added and uniformly mixed in the carrier 11, and thereafter The adhesion promoting portion 12 having the rough surface 121 is formed by a roughening treatment. The subsequent steps are the same as in the first embodiment.
  • 15-16 is a schematic structural view of a circuit substrate according to a ninth embodiment of the present invention, which is a modification of the fourth embodiment (FIGS. 8-9), and the difference is that the carrier 11 is provided.
  • the heat conductive material 1111 is added and uniformly mixed in the carrier 11, and the subsequent steps are the same as those in the fourth embodiment.
  • the ceramic material is formed by a combination of an oxide, a nitride, a carbide, and a boride in combination with a binder, which can be injected, extruded, etc., and after the mixture is formed, the binder is removed and then sintered.
  • the non-metallic heat conductive material used may be graphite, graphene, diamond, carbon nanotube, nano carbon sphere, nano foam, carbon sixty, carbon Nanocone, carbon nanohorn, carbon nano dropper, tree

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Electrochemistry (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

公开了一种线路基板结构的制作方法及其制品。首先在载体表面以粗糙化处理法形成具有粗糙表面的附着促进部(S2),再于附着促进部表面设置触媒(S3),最后触媒以化学镀还原法反应后,从而在附着促进部上形成金属层(S4)。上述制作方法可以有效减少触媒或催化剂的使用,可以大幅降低触媒及催化剂的使用成本。

Description

线路基板结构及其制作方法 技术领域
本发明涉及一种线路基板结构及其制作方法, 特别涉及一种在非导电性载体上形成具 有线路基板结构的制作方法。 背景技术
基于目前 3C产品的多样化使得大众对于 3C产品的便利性及可携带性更加讲究, 驱使 电子产品朝向微小化、 轻量化及多功能化的方向发展, 同时促使了 IC设计及其电路设计 朝向立体 3D 设计的方向发展。 通过电路组件设计的立体化, 可以在有限体积的电路组件 上形成复杂的电路, 让电子产品在不影响其功能下, 可以缩小外观体积, 使其更加微小化 及轻量化。 换句话说, 立体化的电路组件设计, 促使电子产品在微小的体积下, 也能保有 复杂的电路, 因此电路组件的立体化设计, 确实具有让电子产品微小化、 轻量化及多功能 化的多重潜力, 具有较高的产品竞争力, 并可被广泛的应用在各种层面上, 如手机、 汽车 电路、 提款机及助听器等电子产品。
目前, 用于制作立体电路组件的多种方式中, 其中之一为模制互连组件 -雷射直接成 型法 (MID_U)S, Molded Interconnect device-Laser Direct Structuring) , 此方式是将 含有触媒的非导电性塑料经由射出成型形成组件载体, 再以雷射激光活化载体上的触媒, 使触媒转变为触媒核,通过触媒核和预镀金属离子进行化学镀反应,而形成金属导电线路。
上述立体电路制作过程中的导电线路结构的设计常是由互不相连的多个线路所组成, 通过电路组件上欲形成导电线路图样的部分表面所附着的金属触媒, 对化学镀液中存在的 预镀金属离子进行一催化反应以将预镀金属离子还原于电路组件上欲形成电路图样的部 分表面, 因此化学镀相较于电镀具有不存在电力线分布不均匀的影响及对几何形状复杂的 镀件也能获得厚度均匀的镀层的优点。 目前现有技术使用的方法多采用化学镀方式制作立 体电路组件的导电线路。
化学镀是在不施加电力的情况下, 通过电路组件上欲形成电路图样的部分表面所附着 的金属触媒, 对化学镀液中存在的预镀金属离子进行一催化反应, 以将预镀金属离子还原 于电路组件上欲形成电路图样的部分表面。 因此, 化学镀法可以在电路组件上欲形成电路 图样的部分表面形成厚度均匀的金属镀层。
由上述可见, 目前立体电路制作过程中的导电线路结构其目的是使所制成的电子产品 更加微小化、 轻量化及多功能化以及达到较高的产品竞争力, 具有广大应用潜力于 3C 电 子产品领域上, 然而, 其仍具有下述限制及缺点:
1. 现有的立体电路组件的制作方法, 虽然可以有效率的制作出立体电路制作过程中 的导电线路结构, 但却需添加入大量的触媒至非导电性塑料中, 再射出成型载体, 在模制 互连组件-雷射直接成型法 (MID-LDS)制作过程中, 参与反应的触媒也仅在表面层, 却因为 需加入一定比例的触媒在非导电性塑料中, 因此需耗费较高的触媒成本。
2. 如上所述, 因 MID-LDS 制作过程中需添加大量的触媒至非导电性塑料中, 再射出 成型形成载体, 因为触媒均匀分布在载体中, 经雷射剥除后表面的金属核在后续化学镀过 程中需较高剂量的还原剂浓度, 才能使金属核顺利的启镀。相对地, 化学铜镀液较不安定, 需耗费较多的化学镀液对整体载体表面进行化学还原反应, 在电路组件上形成所需要的立 体电路的导电线路, 然而却耗费较高的化学镀液成本。
因此, 现有立体电路的制作技术仍受限于高额生产成本, 目前仍缺乏一种导电线路结 构及其制作方法应用于 3C电子产品领域领域中。 发明内容
为解决上述现有技术中存在的问题, 本发明的目的在于提供一种线路基板结构及其制 作方法, 以解决现有立体电路制作过程中需耗费较高的生产成本等问题。
根据本发明的目的, 提出一种线路基板结构的制作方法, 适用于非导电载体的电路制 作过程, 首先提供一载体, 并在载体表面以粗糙化处理法形成具有粗糙表面的一附着促进 部, 附着促进部的性质由疏水性转换为亲水性, 再于载体的附着促进部表面设置一触媒, 最后触媒以化学镀还原法反应, 进而在附着促进部形成金属层。
优选地, 上述载体可为非导电载体, 且其具有热传导性质材料, 其中粗糙化处理法可 用喷砂加工方式或雷射照射蚀刻方式; 上述载体表面进行粗糙化处理法步骤前, 可进一步 设置触媒绝缘层于载体上, 且在载体从触媒绝缘层以粗糙化处理法贯穿至表面, 并在载体 表面形成附着促进部。
优选地, 上述非导电载体的材料可为陶瓷材料、 高分子塑料, 其中高分子塑料可为热 塑性塑料或热固性塑料, 其中陶瓷材料可为氧化物、 氮化物、 碳化物、 硼化物其中之一。 更进一步地, 陶瓷材料为氧化物、 氮化物、 碳化物、 硼化物其中之一结合黏结剂形成可以 射出、 压出等的混合物, 并于混合物成形后, 去除黏结剂再烧结成形。
优选地, 上述触媒可为钛、 锑、 银、 钯、 铁、 镍、 铜、 钒、 钴、 锌、 铂、 铱、 锇、 铑、 铼、 钌、 锡其中之一或其混合物或上述元素的化合物。
优选地, 上述非导电载体的高分子塑料可添加无机填充物; 其中无机填充物的成分可 为硅酸、 硅酸衍生物、 碳酸、 碳酸衍生物、 磷酸、 磷酸衍生物、 活性碳、 多孔碳、 碳黑、 玻璃纤维、 碳纤维或矿纤维其中之一或其组合。
优选地, 上述雷射照射的波长范围可介于 248纳米至 10600纳米之间; 其中雷射照射 蚀刻方式可为二氧化碳(C02_)雷射、 铷雅铬 (Nd : YAG)雷射、 掺钕钒酸钇晶体 (Nd : YV04 -)雷 射、 准分子(EXCMER)雷射或光纤雷射(Fiber Laser)。 优选地, 上述具有热传导性质的非导电载体可将具有热传导性质材料或其衍生物材料 分散于其内; 更优选地, 具有热传导性质的材料可为金属导热材或非金属导热材; 上述金 属导热材可为铅、 铝、 金、 铜、 钨、 镁、 钼、 锌或银其中之一或其组合; 上述非金属导热 材可为石墨、 石墨烯、 钻石、 纳米碳管、 纳米碳球、 纳米泡沫、 碳六十、 碳纳米锥、 碳纳 米角、 碳纳米滴管、 树状碳微米结构、 氧化铍、 氧化铝、 氧化锆、 氮化硼、 氮化铝、 氧化 镁、 氮化硅或碳化硅其中之一或其组合。
优选地, 上述非导电载体中埋设至少一导热柱, 用以增加非导电载体的热传效率; 上 述导热柱的材料可为铅、 铝、 金、 铜、 钨、 镁、 钼、 锌、 银、 石墨、 石墨烯、 钻石、 纳米 碳管、 纳米碳球、 纳米泡沫、 碳六十、 碳纳米锥、 碳纳米角、 碳纳米滴管、 树状碳微米结 构、 氧化铍、 氧化铝、 氧化锆、 氮化硼、 氮化铝、 氧化镁、 氮化硅或碳化硅其中之一或其 组合。
进一步可利用如上所述的制作方法, 在提供载体后, 同时以粗糙化处理法在附着促进 部外设置至少一导电接点于载体上; 并通过各导电接点连接载体的边缘和各附着促进部并 形成相通的线路; 在进行化学电镀处理于附着促进部及各导电接点上设置金属层; 在各导 电接点上设置一防镀绝缘层; 进一步, 可利用通电电镀方式在附着促进部上设置电镀层以 增加金属层厚度; 最后移除设置在各导电接点上的防镀绝缘层及金属层, 得到独立的线路 图样。
优选地, 上述制作方法适用于具有热传导性质的塑膜互连组件的立体电路制作过程, 所述载体具有热传导性质, 在电镀过程中, 可通过电镀通电产生具有电导通性的金属层在 电镀过程中作为负极, 并让电源正极和预镀金属固体相接, 当载体组件浸泡于含有预镀金 属离子的电镀液时, 预镀金属离子便在作为负极的金属层上接收电子而还原析出预镀金属 于金属层, 形成所要的金属线路; 其中预电镀的金属包括可以为铜、 镍、 铬、 锡、 银或金 或其合金金属。
根据上述线路基板结构的制作方法, 可广泛适用于非导电载体、 具有热传导性质的非 导电载体或具有热传导性质的塑膜互连组件的立体电路制作过程。
本发明的一目的, 利用上述线路基板结构的制作方法制作出一种线路基板结构, 其包 含一载体、 至少一附着促进部, 其中各附着促进部利用粗糙化处理方式在载体表面形成粗 糙表面, 且各附着促进部的粗糙表面呈现开放状态, 以及在各附着促进部设置一金属层, 此金属层为预设于各附着促进部的触媒与化学镀液反应所形成。
优选地, 上述线路基板结构进一步包括至少一导电接点, 各导电接点亦随粗糙化处理 法设置于载体上, 且设置于各附着促进部外, 通过各导电接点连接载体的边缘和各附着促 进部并形成相通的线路。
上述线路基板结构进一步包括电镀层, 在各导电接点上再设置一防镀绝缘层, 利用通 电电镀方式在各附着促进部上设置电镀层, 以增加各线路图样上的金属层厚度, 最后移除 各导电接点上的防镀绝缘层及金属层, 得到独立的线路图样。
本发明的另一目的, 利用上述线路基板结构的制作方法制作出一种线路基板结构, 其 包含一载体、 一触媒绝缘层、 至少一附着促进部以及一金属层; 其中各附着促进部利用粗 糙化处理方式贯穿触媒绝缘层并设置于载体表面而形成粗糙表面, 且各附着促进部的粗糙 表面呈开放状态, 以及在各附着促进部设置一金属层, 此金属层为预设于各附着促进部的 触媒与化学镀液反应所形成。
上述线路基板结构进一步包括至少一导电接点及电镀层, 各导电接点亦随粗糙化处理 法贯穿触媒绝缘层并设置于载体表面且设置于附着促进部外, 通过各导电接点连接载体的 边缘和附着促进部并形成相通的线路, 通过各导电接点用以连接载体的边缘和附着促进部 进行化学镀形成金属层, 在各导电接点的金属层上设置一防镀绝缘层, 其用以将各导电接 点绝缘, 防止电镀析出金属, 利用通电电镀方式形成电镀层, 用以增加金属层的厚度, 最 后将各导电接点上的防镀绝缘层及金属层去除, 得到独立的线路图样。
综上所述, 本发明所提供的线路基板结构及其制作方法, 具有下列优点:
(1) 现有的立体电路制作过程中, 因在高分子塑料中需添加入大量的触媒或催化剂以 及化学镀液, 具有耗费较高的生产成本问题。 因本发明的非导电载体不含金属氧化物或催 化剂, 当以雷射照射蚀刻形成区域化粗糙表面后, 触媒可仅附着于载体表面的区域, 有效 降低于电路制作过程中高分子塑料所使用的触媒。
(2) 现有的 LDS雷射激光活化金属氧化物或催化剂产生金属核的方法, 对于化学镀铜 的反应需要较高剂量的还原剂浓度才能使金属核顺利的启镀, 相对化学铜的镀液较不稳定 且寿命较短, 镀液的管理费用增加, 需要较高的生产成本。 本发明以雷射照射蚀刻方式形 成粗糙附着部, 其可以有效吸附触媒, 以利后续金属层的形成, 而减少触媒或催化剂的使 用, 具有较低生产成本的优势, 大幅降低触媒及催化剂以及化学镀液的使用成本。 附图说明
图 1为本发明第一实施例的线路基板结构制造方法的步骤流程图;
图 2为本发明第一实施例的线路基板结构的结构示意图;
图 3为本发明第二实施例的线路基板结构制造方法的步骤流程图;
图 4-5为本发明第二实施例的线路基板结构的结构示意图;
图 6为本发明第三实施例的线路基板结构制造方法的步骤流程图;
图 7为本发明第三实施例的线路基板结构的结构示意图;
图 8-9为本发明第四实施例的线路基板结构的结构示意图; 图 10为本发明第五实施例的线路基板结构的结构示意图; 图 11为本发明第六实施例的线路基板结构的结构示意图;
图 12为本发明第七实施例的线路基板结构的结构示意图;
图 13-14为本发明第八实施例的线路基板结构的结构示意图;
图 15-16为本发明第九实施例的线路基板结构的结构示意图;
图 17 为电子显微镜下摄制的附着促进部 (图中圆形部分为经粗糙化处理后载体表面 的附着促进部; 经过粗糙化处理的载体表面, 其表面呈现不平整的粗糙触感);
图 18为本发明的载体经粗糙化处理后的附着促进部的 SEM表面微观图; 图 19 为显微镜下的经粗糙化处理的载体表面和未经粗糙化处理的载体表面的比较示 意图 (其中大圆部分为经粗糙化处理后在载体表面形成一具有粗糙表面的线路图样的附着 促进部; 小圆部分为未经粗糙化处理的载体表面);
图 20 为显微镜下的经粗糙化处理的载体表面和未经粗糙化处理的载体表面的亲水性 比较示意图 (图中左侧部分为经粗糙化处理后的载体表面的附着促进部, 由疏水性转为亲 水性, 图中水滴可附着于载体表面的附着促进部; 图中右侧部分为未经粗糙化处理后的载 体表面, 仍呈现疏水性, 图中水滴不易附着于载体表面);
图 21为图 18的本发明的载体进行元素分析 (EDS)后所得的数据示意图 (载体中未掺 杂任何导电性金属成分);
图 22为 LPKF-LDS技术对载体 (LPKF)表面以雷射雕刻的 SEM图(目前产业上所用的 LPKF 载体中掺杂有金属氧化物);
图 23为图 22的载体 (LPKF)进行元素分析 (EDS)后所得的数据示意图 (载体中掺杂有 导电性的金属氧化物, 其金属成分包括有铬 Cr、 铜 Cu)。 结合附图在其上标记以下附图标记:
1-线路基板结构; 11-载体; 111-导电接点; 1111-导热材料; 12-附着促进部; 121- 粗糙表面; 13-金属层; 141-防镀绝缘层; 14-触媒绝缘层; 15-电镀层; 16-导热体;
S1-S4: 流程步骤; Sla_S7a: 流程步骤; Sal_Sa5: 流程步骤。 具体实施方式
为便于了解本发明的技术特征、 内容与优点及其所能达成的功效, 现将本发明配合附 图, 并以实施例的表达形式详细说明如下, 而其中所使用的附图, 其主旨仅为示意及辅助 说明书, 未必为本发明实施后的真实比例与精准配置, 故不应就所附附图的比例与配置关 系解读、 局限本发明在实际实施上的权利范围。 为能详细了解本发明的技术特征及实用功 效, 并可依照说明书的内容来实施, 现进一步通过以下实施例, 详细说明如后。 本发明提出一种线路基板结构及其制作方法。 请参阅图 1, 其为本发明线路基板结构 制作方法的步骤流程图的第一实施例示意图。
如图 1所示, 本发明线路基板结构的制作方法主要步骤包括:
步骤 Sl, 首先提供一载体。 载体可为非导电载体。
步骤 S2, 在载体表面以粗糙化处理法形成具有粗糙表面的附着促进部。 步骤 S3,设置一触媒于附着促进部。上述触媒形成方式,是将载体浸入触媒溶液槽中, 令触媒附着在附着促进部。
步骤 S4, 最后在载体表面的触媒上进行化学镀金属化以形成金属层。
请参考图 17, 在步骤 S2的附着促进部, 由电子显微镜摄影结果呈现, 其呈现不平整 的粗糙形状。 请参考图 18, 以扫描式电子显微镜(Scanning Electron Microscopy, 简称: SEM)侦测获得, 经粗糙化处理后的载体表面的附着促进部, 其孔隙大小约 10-20 μ πι。
请参考图 19和图 20所示,在步骤 S3将载体表面干净化,清除载体表面上的油脂及污 尘等物质; 本实施例采用将载体浸到稀释好的清洁剂 (清洁剂可含有界面活性剂)中, 用以 除油使其载体表面干净化, 且将附着促进部的粗糙表面的性质由疏水性转换为亲水性, 再 以纯水清洗载体。
进一步地, 由电子显微镜捕捉水珠滴附在载体表面上的影像。参照图 20所示, 图中右 侧未经粗糙化处理后的载体表面将水珠滴附在载体表面, 水珠未呈现附着及吸附现象, 故 呈水滴状。 图中左侧为经粗糙化处理后的载体表面的附着促进部, 水珠呈现附着及扩散现 象, 故附着促进部已由疏水性转为亲水性, 表示较多的触媒可吸附且可较牢靠地附着在附 着促进部, 以利后续化学镀反应。
在步骤 S3所采用的触媒可用钛、 锑、 银、 钯、 铁、 镍、 铜、 钒、 钴、 锌、 铂、 铱、 锇、 铑、铼、 钌、锡其中之一或其混合物, 亦可包含上述元素的化合物。例如: 氯化钯 (PdCl2)、 氯化锡(SnCl2)、 硫酸钯(Π)水合物(Pal ladium Sulfate Hydrate)等, 但不以此为限。 步骤 S4 可采用铜或镍以化学还原反应在载体表面的触媒上进行化学镀上至少一层金 属层, 亦可做为非导电载体进行电镀处理前的最初导电膜, 以供后面铜、 镍、 铬的一般电 气电镀程序。 在本发明中, 金属层可为任何具有良好导电性质的金属或合金, 本实施例采 用铜与触媒反应形成金属层, 但不以此例为限。 上述步骤 S1-S4的线路基板结构的制作方 法可广泛适用于非导电载体的立体或平面电路制作过程。
请参照图 2所示, 其为上述利用图 1的步骤 S1-S4所制成的第一实施例的线路基板结 构。 如图所示, 本发明的线路基板结构 1适用于线路结构中, 线路基板结构 1包括载体 11 及至少一附着促进部 12, 其中各附着促进部 12以粗糙化处理法 (本实施例采用雷射照射 蚀刻方式) 于载体 11表面形成粗糙表面 121, 各附着促进部 12的粗糙表面 121呈开放状 态。 之后, 将载体 11浸入触媒溶液槽中, 令触媒附着在附着促进部 12。 最后, 在载体 11 表面上之触媒上进行化学镀金属化以形成金属层 13, 金属层 13包括至少一线路图样。 在本发明中, 金属层还可做为非导电载体进行电镀处理前的最初导电膜, 为能更了解 本案进一步应用在电镀处理的技术手段, 因此特于此说明于金属层上进行电镀的处理流 程。 请参见图 3所示, 本发明应用于电镀处理的步骤流程图的第二实施例示意图, 如下所 示:
步骤 Sla, 首先提供一载体, 载体可为非导电载体。
步骤 S2a, 于载体表面以粗糙化处理法形成具有粗糙表面的线路图样的附着促进部及 导电接点。
步骤 S3a, 设置一触媒于附着促进部。 上述触媒形成的方式, 是将载体浸入触媒溶液 槽中, 令触媒附着在附着促进部。
步骤 S4a, 在载体表面的触媒上进行化学镀金属化以形成金属层。
步骤 S5a, 在导电接点上再施以防镀绝缘层。
步骤 S6a, 可利用电镀处理在金属层上设置电镀层。
步骤 S7a, 最后将导电接点上的防镀绝缘层及金属层去除, 形成各独立的线路图样。 请参照图 4和图 5所示, 其为上述利用图 3的步骤 Sla-S7a所制成的线路基板结构。 如图 4所示, 本发明的线路基板结构 1适用于线路结构中, 线路基板结构 1包括载体 11 及至少一附着促进部 12, 其中各附着促进部 12以粗糙化处理法 (本实施例采用雷射照射 蚀刻方式) 设置于载体 11表面以形成各附着促进部 12的粗糙表面 121, 各附着促进部 12 的粗糙表面 121呈开放状态, 载体 11表面还进一步增设导电接点 111于载体 11中, 各导 电接点 111连接于载体 11的边缘和各附着促进部 12, 通过各导电接点 111用以连接载体 11的边缘和各附着促进部 12进行化学镀形成金属层 13。 如图 5所示, 于各导电接点 111 上再施以一防镀绝缘层 141, 利用通电电镀方式增加附着促进部 12的金属层 13厚度形成 一电镀层 15, 最后移除各导电接点 111上的防镀绝缘层 141及金属层 13, 形成各独立之 线路图样。
电镀过程当中, 可通过电镀通电产生具有电导通性的金属层 13 在电镀过程中作为负 极, 并让电源的正极和预镀金属固体相接, 当将载体 11 组件浸泡于含有预镀金属离子的 电镀液时, 预镀金属离子便在作为负极的金属层 13 上接收电子而还原析出预镀金属于金 属层 13, 形成所要的金属线路。 其中, 预电镀的金属可以为铜、 镍、 铬、 锡、 银或金或其 合金金属。
由于载体表面未具有活性催化层的部分, 在进行化学镀时, 可能因其材料物性易与触 媒、 化学镀液产生反应。 请参见本发明的第三实施例线路基板结构制作方法的步骤流程, 请参见图 6, 如下所示: 步骤 Sal, 首先提供一载体, 载体可为非导电载体。
步骤 Sa2, 在载体表面设置触媒绝缘层。 步骤 Sa3, 在载体以粗糙化处理法贯穿触媒绝缘层并设置于载体表面而形成各附着促 进部。
步骤 Sa4, 设置触媒于附着促进部。 上述触媒形成的方式, 是将载体浸入触媒溶液槽 中, 令触媒附着在附着促进部。
步骤 Sa5, 最后在载体表面的触媒上进行化学镀金属化以形成金属层。 简而言之, 本发明第三实施例的线路基板结构与第一实施例雷同, 两者差异处在于, 步骤 S2之前在载体 11表面设置触媒绝缘层 14 (如图 7所示)。
另外, 请参照图 8及图 9所示, 本发明的第四实施例的线路基板结构制作方法的步骤 流程与第二实施例雷同, 两者的差异处在于, 步骤 S2a之前在载体 11表面设置触媒绝缘 层 14, 且于载体以粗糙化处理法贯穿触媒绝缘层 14, 并设置于载体表面而形成各附着促 进部, 后续步骤与 S2a_S7a相同。 其中, 触媒绝缘层 14可以使用光阻剂、 油墨或涂料以印刷、 喷墨等方式加工而成, 或可以贴上绝缘胶带或干膜光阻剂作为触媒绝缘层 14, 触媒绝缘层 14可选择除去或不除 去。
上述所有实施例中, 采用将载体浸泡在触媒溶液槽内, 触媒溶液主要成分可以为氯化 钯、 氯化锡及氯化氢 (PdCl2十 SnCl2十 HC1), 这样可在附着促进部形成一层很薄而具催化作 用的触媒。 由于载体的材料表面的锡离子变成氢氧化锡 Sn (0H) 4, 因其无催化效果, 且氢 氧化锡会形成胶体减弱钯 (Pd)金属粒子的催化效果。 剥除此 「锡壳」 处理, 使载体的表面 还原出金属态的钯 (Pd)以作为后续化学镀的催化剂。 上述过程称之为速化 (Accelerator)。 进一步地, 为增加整体线路基板结构的热传效率, 可埋设一导热柱于载体中。 请参照 图 10 所示, 其为本发明第五实施例的线路基板结构制作方法的步骤流程, 其步骤流程与 第一实施例雷同, 两者差异处在于, 步骤 S2之前埋设一导热柱 16于载体 11, 在步骤 S2 中于载体 11表面对应导热柱 16位置及导热柱 16周围, 以粗糙化处理法形成具有粗糙表 面 121的附着促进部 12。 所述埋设导热柱于载体, 可依照生产者设计产品需求, 选择在载 体中的高热源处埋设至少一导热柱 16以增加整体线路基板结构的热传效率。
进一步地, 导热柱材料可为铅、 铝、 金、 铜、 钨、 镁、 钼、 锌、 银、 石墨、 石墨烯、 钻石、 纳米碳管、 纳米碳球、 纳米泡沫、 碳六十、 碳纳米锥、 碳纳米角、 碳纳米滴管、 树 状碳微米结构、 氧化铍、 氧化铝、 氧化锆、 氮化硼、 氮化铝、 氧化镁、 氮化硅或碳化硅其 中之一或其组合, 但不以此为限。 请参照图 11所示,其为本发明第六实施例的线路基板结构的示意图。与上述第五实施 例的目的相同, 同为增加整体线路基板结构的热传效率, 可添加导热材料于载体中。 第六 实施例的结构与第一实施例(图 2)雷同, 两者差异处在于, 在步骤 S1的提供载体 11步骤 时, 当中已添加导热材料 1111, 并均匀混合于载体 11中, 之后同样以粗糙化处理法形成 具有粗糙表面 121的附着促进部 12。 后续步骤均与第一实施例相同。
请参照图 12所示,其为本发明第七实施例的线路基板结构示意图,其结构与第三实施 例雷同, 两者差异处在于, 在步骤 1的提供载体 11的步骤时, 当中已添加导热材料 1111 并均匀混合于载体 11中, 之后在步骤 S2之前于载体 11表面先设置触媒绝缘层 14, 以隔 绝载体 11表面, 避免载体 11表面因其材料物性易与触媒、 化学镀液产生反应。
请参照图 13-14所示, 其为本发明第八实施例的线路基板结构示意图, 其为第二实施 例的变形样态(图 4-5), 两者差异处在于, 在步骤 S1的提供载体 11的步骤时, 添加导热 材料 1111, 并均匀混合于载体 11中。 后续步骤均与第二实施例相同。
请参照图 15-16所示, 其为本发明第九实施例的线路基板结构示意图, 其为第四实施 例的变形样态(图 8-9), 两者差异处在于, 提供载体 11的步骤时, 当中添加导热材料 1111 并均匀混合于载体 11中, 后续步骤均与第四实施例相同。
综上所述, 本发明的第六、 七、 八、 九实施例, 均于载体 11 中添加导热材料 1111, 其所需添加量及种类可依照生产者设计产品需求而做适度调整, 目的为增加整体线路基板 结构的热传效率。
本发明中采用的非导电载体的材料可为高分子塑料或陶瓷材料。 高分子塑料可为热塑 性塑料或热固性塑料。 采用的非导电载体的材料具有热传导性质, 且非导电载体的高分子 塑料中可添加无机填充物, 其中无机填充物的成分可为硅酸、 硅酸衍生物、 碳酸、 碳酸衍 生物、 磷酸、 磷酸衍生物、 活性碳、 多孔碳、 碳黑、 玻璃纤维、 碳纤维或矿纤维其中之一 或其组合。 另外, 陶瓷材料可为氧化物、 氮化物、 碳化物、 硼化物其中之一。 更进一步地, 陶瓷材料由氧化物、 氮化物、 碳化物、 硼化物其中之一结合黏结剂形成可以射出、 压出等 的混合物, 并于混合物成形后, 去除黏结剂再烧结成形。
本发明中所采用的粗糙化处理法可采用喷砂加工方式或雷射照射蚀刻等方式将其载体 表面设置形成具有粗糙化的附着促进部, 采用的雷射照射波长范围可介于为 248 纳米至 10600纳米之间, 其中雷射照射蚀刻方式可为二氧化碳 (C02)雷射、 铷雅铬 (Nd : YAG)雷射、 掺钕钒酸钇晶体 (Nd : YV04)雷射、 准分子 (EXCMER)雷射或光纤雷射 (Fiber Laser), 但不以 此为限。
本发明中, 非导电载体分散添加具有热传导性质材料或其衍生物材料; 所采用的具有 热传导性质的材料可为金属导热材或非金属导热材; 采用的金属导热材可为铅、 铝、 金、 铜、 钨、 镁、 钼、 锌或银其中之一或其组合; 采用的非金属导热材可为石墨、 石墨烯、 钻 石、 纳米碳管、 纳米碳球、 纳米泡沫、 碳六十、 碳纳米锥、 碳纳米角、 碳纳米滴管、 树状 碳微米结构、 氧化铍、 氧化铝、 氧化锆、 氮化硼、 氮化铝、 氧化镁、 氮化硅或碳化硅其中 之一或其组合, 但不以此为限。
本实施例所采用的触媒可采用钛、 锑、 银、 钯、 铁、 镍、 铜、 钒、 钴、 锌、 铂、 铱、 锇、铑、铼、钌、锡其中之一或其混合物,还可包含上述元素的化合物。例如:氯化钯 (PdCl2)、 氯化锡(SnCl2)、 硫酸钯(Π)水合物(Palladium Sulfate Hydrate)等, 但不以此为限。 根据上述第一至第九实施例所述的线路基板结构的制造方法, 可广泛适用于各种非导 电载体, 且其可具有热传导性质的材料或具有热传导性质的塑膜互连组件的立体电路制作 过程。
请参照图 21所示, 其以图 18的本发明的载体进行元素分析 (EDS)后所得的数据, 如 数据中显示本发明的载体中并未掺杂任何金属氧化物或催化剂, 图中所呈现的金 (Au)元素 为非导电性导体于前处理过程中均需先镀上的金层, 其是为了要增加导电性, 避免表面电 子的累积, 可避免电荷累积对分辨率造成影响。
请参见图 22所示, 其为现有 LPKF-LDS技术对载体 (LPKF)表面以雷射雕刻的 SEM图, 目前产业上所用的 LPKF载体中均掺杂有金属氧化物成分; 另请参阅图 23所示, 数据当中 显示 LPKF载体中掺杂有金属氧化物, 元素分析 (EDS)图中显示具有铬 (Cr)及铜 (Cu)元素存 在于 LPKF载体中。 由上述所述, 本发明的技术特征与现有技术的不同在于, 本发明的载 体因不含任何金属氧化物, 当以粗糙化处理方式 (雷射照射蚀刻)设置形成区域化粗糙表面 后, 触媒可附着及牢附于载体表面的粗糙化区域, 可有效降低在立体或平面电路制作过程 中高分子塑料所使用的触媒量。 现有技术以 LDS雷射激光活化金属氧化物以产生金属核, 因现有 LPKF载体含有金属氧化物, 因此在化学镀铜的反应中需要较高剂量的还原剂浓度 才能使金属核顺利的启镀, 具有相对化学铜的镀液较不稳定、 寿命较短、 镀液的费用增加 及需要较高的生产成本等缺点。
综上所述, 本发明的线路基板结构及其制造方法, 通过雷射照射蚀刻使其非导电载体 形成附着促进部, 其可以有效吸附触媒并牢靠设置于附着促进部上, 以利后续金属层的形 成, 可以有效减少触媒或催化剂的使用, 具有较低生产成本的优势, 可以大幅降低触媒及 催化剂用量以及化学镀液的使用成本。 改善现有的雷射激光活化金属氧化物或催化剂产生 金属核的方法耗费较高生产成本的问题。
另外, 在此需说明的是, 在本发明的各实施例中, 各附着促进部、 触媒、 金属层、 防 镀绝缘层、 触媒绝缘层、 及电镀层等, 设置非导电载体上的其中一个单一平面上呈现。 但 本发明在实际实施时, 并不限于此, 亦可设置在非导电载体不同的平面上设置各附着促进 部、 触媒、 金属层、 防镀绝缘层、 触媒绝缘层、 及电镀层等。 换言之, 本发明的线路基板 结构及其制造方法可制作立体或平面的电路。
再者, 在本发明的各实施例中, 在各步骤要进行下一步骤前, 皆会有清洁步骤, 以避 免前一步骤污染下一步骤的制造程序, 此技术领域所熟悉的技术手段, 因此在本发明中并 未赘述。 例如: 非导电载体上以粗糙化处理法形成具有粗糙表面的附着促进部, 此时, 将 会有废料残留在非导电载体, 利用清洁步骤将废料从非导电载体表面移除。 但其中要强调 的是, 非导电载体浸入触媒溶液槽中, 令触媒附着在附着促进部, 经过清洁步骤后, 由于 附着促进部的粗糙表面, 使得触媒可附着在附着促进部, 非导电载体其余未具有附着促进 部之部分, 则会因清洁步骤, 而去除触媒, 或触媒的残留量不易与化学镀产生反应, 或其 反应不致对线路基板结构的线路质量有太大影响。 以上所述实施例仅为说明本发明之技术思想及特点, 其目的在使本领域的普通技术人 员能够了解本发明的内容并据以实施, 当不能以此限定本发明的专利范围, 即大凡依本发 明所揭示的精神所作的均等变化或修饰, 仍应涵盖在本发明的专利范围内。

Claims

权 利 要 求 书
1. 一种线路基板结构的制作方法, 适用于非导电载体的电路制作过程, 其特征在于, 包含下列步骤:
提供一载体;
以一粗糙化处理法在该载体表面形成具有粗糙表面的一附着促进部;
设置一触媒于所述附着促进部上; 以及
所述触媒以化学镀还原法反应, 进而在所述附着促进部形成一金属层。
2. 根据权利要求 1 所述的线路基板结构的制作方法, 其特征在于, 所述粗糙化处理 法可为喷砂加工方式或雷射照射蚀刻方式其中之一。
3. 根据权利要求 1 所述的线路基板结构的制作方法, 其特征在于, 在所述载体表面 进行所述粗糙化处理法步骤前, 进一步设置一触媒绝缘层于所述载体上, 且以粗糙化处理 法更进一步贯穿所述触媒绝缘层, 而在所述载体表面形成该附着促进部。
4. 根据权利要求 1 所述的线路基板结构的制作方法, 其特征在于, 所述载体由非导 电材料制成一非导电载体, 所述非导电材料包括高分子塑料或陶瓷材料其中之一。
5. 根据权利要求 1所述的线路基板结构的制作方法, 所述触媒包含钛、 锑、 银、 钯、 铁、 镍、 铜、 钒、 钴、 锌、 铂、 铱、 锇、 铑、 铼、 钌、 锡其中之一或其混合物或上述元素 的化合物。
6. 根据权利要求 4所述的线路基板结构的制作方法, 其特征在于, 所述高分子塑料 包括无机填充物。
7. 根据权利要求 4所述的线路基板结构的制作方法, 其特征在于, 所述非导电载体 将具有热传导性质材料或其衍生物材料分散其中。
8. 根据权利要求 4所述的线路基板结构的制作方法, 其特征在于, 所述具有热传导 性质的非导电载体的材料包括一金属导热材或一非金属导热材。
9. 根据权利要求 4所述的线路基板结构的制作方法, 其特征在于, 所述非导电载体 中埋设至少一导热柱。
10. 根据权利要求 1所述的线路基板结构的制作方法, 其特征在于, 进一步包括下 述步骤:
在提供所述载体后, 同时以所述粗糙化处理法在该附着促进部外设置至少一导电接点 于该载体上, 各所述导电接点连接所述载体的边缘和所述附着促进部并形成相通的线路; 进行化学电镀处理于各所述附着促进部上设置该金属层;
各所述导电接点上设置一防镀绝缘层;
利用电镀方式在各所述金属层上设置一电镀层;
移除设置于各所述导电接点上的所述防镀绝缘层及所述金属层, 得到各独立的一线路 图样。
11. 一种线路基板结构, 其特征在于, 包含:
一载体;
至少一附着促进部, 各所述附着促进部在所述载体表面形成粗糙表面, 且各所述附着 促进部的粗糙表面呈现开放状态; 以及
一金属层, 在各所述附着促进部设置所述金属层, 所述金属层为预设于各所述附着促 进部的触媒与化学镀液反应所形成。
12. 根据权利要求 11所述的线路基板结构, 其特征在于, 进一步包括至少一导电 接点, 各所述导电接点连接该载体的边缘和各该附着促进部并形成相通的线路。
13. 根据权利要求 12所述的线路基板结构, 其特征在于, 进一步在各所述导电接 点的金属层上设置一防镀绝缘层。
14. 根据权利要求 13所述的线路基板结构, 其特征在于, 所述金属层上设置一电 镀层。
15. 一种线路基板结构, 其特征在于, 包含:
一载体;
一触媒绝缘层, 其设置于所述载体表面上;
至少一附着促进部, 各所述附着促进部贯穿所述触媒绝缘层并设置于所述载体表面, 且各所述附着促进部的粗糙表面呈开放状态; 以及
一金属层, 其设置在各所述附着促进部上, 且所述金属层为预设于各附着促进部的触 媒与化学镀液反应所形成。
16. 根据权利要求 15所述的线路基板结构, 其特征在于, 进一步包括至少一导电 接点, 各所述导电接点连接该载体的边缘和各该附着促进部并形成相通的线路。
17. 根据权利要求 16所述的线路基板结构, 其特征在于, 各所述导电接点的金属 层上设置一防镀绝缘层。
18. 根据权利要求 17所述的线路基板结构, 其特征在于, 各所述金属层上设置一 电镀层。
PCT/CN2012/071130 2012-01-18 2012-02-14 线路基板结构及其制作方法 WO2013107065A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210016458.7 2012-01-18
CN2012200243461U CN202488870U (zh) 2012-01-18 2012-01-18 线路基板结构
CN2012100164587A CN103220884A (zh) 2012-01-18 2012-01-18 线路基板结构及其制作方法
CN201220024346.1 2012-01-18

Publications (1)

Publication Number Publication Date
WO2013107065A1 true WO2013107065A1 (zh) 2013-07-25

Family

ID=48779201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071130 WO2013107065A1 (zh) 2012-01-18 2012-02-14 线路基板结构及其制作方法

Country Status (2)

Country Link
US (1) US20130180773A1 (zh)
WO (1) WO2013107065A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI544847B (zh) * 2013-10-22 2016-08-01 鴻騰精密科技股份有限公司 化學鍍產品及其成型方法
TWI552659B (zh) * 2014-09-04 2016-10-01 啟碁科技股份有限公司 金屬圖案製造方法與具金屬圖案之基板結構
US10426043B2 (en) * 2016-08-19 2019-09-24 Honeywell Federal Manufacturing & Technologies, Llc Method of thin film adhesion pretreatment
JP7058412B2 (ja) * 2017-12-27 2022-04-22 株式会社松尾製作所 3次元樹脂成形回路部品の製造方法
US11877404B2 (en) 2020-02-13 2024-01-16 Averatek Corporation Catalyzed metal foil and uses thereof
WO2021163440A1 (en) * 2020-02-13 2021-08-19 Averatek Corporation Catalyzed metal foil and uses thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184076A (ja) * 1995-12-27 1997-07-15 Aichi Steel Works Ltd 窒化アルミニウムメタライズ基板の製造方法
JP2002094218A (ja) * 2000-09-18 2002-03-29 Sankyo Kasei Co Ltd 成形回路部品の製造方法
WO2011004802A1 (ja) * 2009-07-10 2011-01-13 三共化成株式会社 成形回路部品の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140968A (en) * 1978-04-25 1979-11-01 Hitachi Ltd Method of forming circuit
US4522626A (en) * 1980-06-26 1985-06-11 Mobil Oil Corporation Process for treating high-sulfur caking coals to inactivate the sulfur and eliminate caking tendencies thereof
US4440801A (en) * 1982-07-09 1984-04-03 International Business Machines Corporation Method for depositing a metal layer on polyesters
US4552626A (en) * 1984-11-19 1985-11-12 Michael Landney, Jr. Metal plating of polyamide thermoplastics
US4615907A (en) * 1984-11-23 1986-10-07 Phillips Petroleum Company Plating poly(arylene sulfide) surfaces
US5837609A (en) * 1997-01-16 1998-11-17 Ford Motor Company Fully additive method of applying a circuit pattern to a three-dimensional, nonconductive part
EP1282175A3 (en) * 2001-08-03 2007-03-14 FUJIFILM Corporation Conductive pattern material and method for forming conductive pattern
US7291380B2 (en) * 2004-07-09 2007-11-06 Hewlett-Packard Development Company, L.P. Laser enhanced plating for forming wiring patterns
US7416975B2 (en) * 2005-09-21 2008-08-26 Novellus Systems, Inc. Method of forming contact layers on substrates
US20100307799A1 (en) * 2009-06-06 2010-12-09 Chiang Cheng-Feng Carrier Structure for Electronic Components and Fabrication Method of the same
US8101962B2 (en) * 2009-10-06 2012-01-24 Kuang Hong Precision Co., Ltd. Carrying structure of semiconductor
TWI445474B (zh) * 2011-11-18 2014-07-11 Chuan Ling Hu Manufacturing method of plastic metallized three - dimensional line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184076A (ja) * 1995-12-27 1997-07-15 Aichi Steel Works Ltd 窒化アルミニウムメタライズ基板の製造方法
JP2002094218A (ja) * 2000-09-18 2002-03-29 Sankyo Kasei Co Ltd 成形回路部品の製造方法
WO2011004802A1 (ja) * 2009-07-10 2011-01-13 三共化成株式会社 成形回路部品の製造方法

Also Published As

Publication number Publication date
US20130180773A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
TWI423750B (zh) 非導電性載體形成電路結構之製造方法
WO2013107065A1 (zh) 线路基板结构及其制作方法
JP4697156B2 (ja) 回路基板の製造方法
JP4485508B2 (ja) 導電性粒子の製造方法及びこれを使用した異方導電性フィルム
CN103220884A (zh) 线路基板结构及其制作方法
TWI425888B (zh) 線路基板結構及其製作方法
TW201101947A (en) Substrate for printed wiring board, printed wiring board and method for manufacturing the same
TWI627885B (zh) Method for producing three-dimensional conductive pattern structure and material for three-dimensional molding used there
TWI278264B (en) Wiring board manufacturing method
CN110528034A (zh) 一种塑胶制品表面局部镀方法
CN103025060B (zh) 一种三维连接器件的制备方法
WO2016039314A1 (ja) プリント配線板用基材、プリント配線板及びプリント配線板用基材の製造方法
Zhang et al. Fabrication of flexible copper patterns by electroless plating with copper nanoparticles as seeds
CN104742438A (zh) 积层板及其制作方法
JP2016199779A (ja) 修飾金属ナノ粒子,その製造方法,修飾金属ナノインク及び配線層形成方法
CN202488870U (zh) 线路基板结构
JP2015115393A (ja) 立体配線基板の製造方法
KR101520412B1 (ko) 레이저와 인쇄방식이 하이브리드된 플렉서블 기판 및 이의 제조 방법
JP6484026B2 (ja) プリント配線板用基板及びプリント配線板並びにプリント配線板用基板の製造方法
JP2016058545A (ja) プリント配線板用基板、プリント配線板及びプリント配線板用基板の製造方法
Wu et al. Fabrication of polyetheretherketone (PEEK)-based 3D electronics with fine resolution by a hydrophobic treatment assisted hybrid additive manufacturing method
KR101416579B1 (ko) 도금층을 구비한 도전성 페이스트 인쇄회로기판 및 이의 제조방법
TWI417013B (zh) 立體電路元件及其製作方法
CN115023059B (zh) 一种介质材料表面共形导电线路的制造方法
JP2013189661A (ja) 積層体の製造方法および積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865891

Country of ref document: EP

Kind code of ref document: A1