WO2013105814A2 - 전자소자용 절연재 - Google Patents

전자소자용 절연재 Download PDF

Info

Publication number
WO2013105814A2
WO2013105814A2 PCT/KR2013/000248 KR2013000248W WO2013105814A2 WO 2013105814 A2 WO2013105814 A2 WO 2013105814A2 KR 2013000248 W KR2013000248 W KR 2013000248W WO 2013105814 A2 WO2013105814 A2 WO 2013105814A2
Authority
WO
WIPO (PCT)
Prior art keywords
insulating material
electronic device
boiling point
amount
polyimide resin
Prior art date
Application number
PCT/KR2013/000248
Other languages
English (en)
French (fr)
Other versions
WO2013105814A3 (ko
Inventor
김상우
임미라
김경준
박찬효
남규현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201380003347.5A priority Critical patent/CN103890859B/zh
Priority to EP13735630.9A priority patent/EP2806428A4/en
Priority to US14/349,641 priority patent/US20140256876A1/en
Priority to JP2014540977A priority patent/JP5825652B2/ja
Publication of WO2013105814A2 publication Critical patent/WO2013105814A2/ko
Publication of WO2013105814A3 publication Critical patent/WO2013105814A3/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/38Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes condensation products of aldehydes with amines or amides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides

Definitions

  • Insulation material for electronic device is Insulation material for electronic device
  • the present invention relates to an insulating material for an electronic device that can contribute to the improvement of physical properties and reliability of the electronic device while preventing damage to the insulating material and the electronic device due to the high temperature curing process.
  • the polyimide resin has good flattening characteristics on the surface of the coating in addition to excellent electrical properties such as high heat resistance, excellent mechanical strength, low dielectric constant, and high insulation, and has a very low content of impurities that degrade the reliability of the device.
  • an insulating material such as an insulating film containing the same has recently been extended to reach a variety of electronic devices.
  • polyimide resins themselves usually exhibit low solubility in organic solvents, and N-methyl-2-pyrrolidone (NMP; boiling point: about 202 ° C.) or gammabutyrolactone (GBL; boiling point: about 204 ° C.). Some solubility can only be shown for organic solvents having a high boiling point such as).
  • NMP N-methyl-2-pyridone
  • the polyimide precursor may not be sufficiently imidized. In this case, a considerable amount of polyimide precursor may remain inside the insulating film. have. Such a residual precursor not only degrades the characteristics of the insulating film and the like, but also generates a considerable amount of out individuality as the residual precursor is imidized inside the insulating film. Due to the outgassing generated in this way, the physical properties and reliability of the electronic device can be greatly reduced.
  • the present invention does not require a high temperature curing step in the formation process, and can provide an insulating material for an electronic device that can contribute to improvement of physical properties and reliability of the electronic device while being able to suppress changes in characteristics and damage of the electronic device.
  • the present invention comprises a soluble polyimide resin comprising a repeating unit of the formula (1), and a residual solvent including a low boiling point solvent having a boiling point of about 130 to 180 ° C, after curing at a temperature of about 250 ° C or less, outgassing Occurrence of Provided is an insulation for an electronic device having less than about 4 ppm relative to the total weight of soluble polyimide resin and less than about O lppm of outgassing from water or alcohol:
  • p is an integer of 2 to 500
  • X is a tetravalent organic group
  • Y is a divalent organic group having at least one hydroxy group or carboxyl group.
  • the outgassing amount is formed on the substrate to form a resin composition containing a soluble polyimide resin and a low boiling point solvent, prebaked at about 110 to 13C C, hard-baked at about 220 to 250 ° C. Can be measured later.
  • the insulating material for an electronic device may include an amine catalyst having a boiling point of about 60 to 120 ° C. as a residual catalyst, and the amine catalyst may be ⁇ , ⁇ -diethylmethylamine, ⁇ , ⁇ -dimethylisopropylamine. ⁇ -methylpyridine ( ⁇ -
  • It may include one or more selected from the group consisting of Methylpyrrolidine, pyrrolidine, ⁇ and triethylamine.
  • the insulator for the electronic device may be about 0.5 ppm or less in outgassing amount derived from the residual catalyst.
  • the low boiling point solvent is diethylene glycol methylethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol dimethyl ether, methyl 3-methoxy propionate, ethyl 3 Epoxy Propionate, Propylene Glycol Methyl Ether Propionate, Dipropylene Glycol Dimethyl Ether, Cyclohexanone and Propylene Glycol Monomethyl Ether Acetate (PGMEA) It may include one or more selected from the group consisting of.
  • the insulating material for an electronic device may be less than about O.lppm generated outgassing derived from the residual solvent.
  • Y in Formula 1 may be at least one selected from the group consisting of:
  • X in Formula 1 may be at least one selected from the group consisting of:
  • the glass transition temperature of the soluble polyimide resin may be about 150 to 400 ° C
  • the weight average molecular weight may be about 1,000 to 500,000.
  • the insulating material for the electronic device may be formed on various substrates such as a glass substrate or a metal substrate, but may be appropriately formed even on a heat-sensitive polar substrate, and is particularly susceptible to OLED, LCD or semiconductor devices, particularly heat. It can also be preferably applied as an insulating material of an OLED element.
  • the insulating material for an electronic device according to the present invention is less than 300 ° C, for example 250 ° C. on a substrate, without the need to proceed to the high temperature curing process previously required for conversion to polyimide resin or removal of solvents or catalysts, etc. Even if only the low heat treatment process is performed at the following temperature, the low boiling point solvent and the catalyst are effectively removed by the low temperature heat treatment process, thereby minimizing the residual solvent amount and the residual catalyst amount, and thus the outgassing amount can be greatly reduced. In particular, the insulation material in water or alcohol, which greatly affects the reliability of the device The amount of outgassing derived can be minimized.
  • the present invention can contribute to the manufacture of devices having more improved characteristics and reliability. Therefore, such an insulating material can be applied very preferably as an insulating material such as an OLED element which is susceptible to heat.
  • the term "insulation material for electronic devices” may refer to any insulating material used in various electronic devices such as OLED, LCD, or semiconductor devices. Examples of such an insulating material include an insulating film, an insulating film, a photosensitive film, a photosensitive film, a substrate, or a partition wall used in various electronic devices, and not limited to any material that does not exhibit conductivity. Can be included.
  • the form of the "insulation material for electronic devices” may also take various forms, not limited to a specific form such as a thin film or a film.
  • the soluble polyimide resin comprising a repeating unit of formula 1 and a residual solvent including a low boiling point solvent having a boiling point of about 130 to 18 CTC, and after curing at a temperature of about 250 ° C or less Insulation materials for electronic devices are provided wherein the outgassing amount is less than about 4 ppm relative to the total amount of soluble polyimide resin, and the outgassing amount derived from water or alcohol is less than about O.lppm:
  • p is an integer of 2 to 500
  • X is a tetravalent organic group
  • Y is a divalent organic group having at least one hydroxy group or carboxyl group.
  • the insulating material for an electronic device described above basically includes a soluble polyimide resin having a repeating unit represented by Chemical Formula 1.
  • soluble polyimide resins contain functional groups Y having a hydroxy group or a carboxyl group in the repeating unit, and exhibit excellent solubility in a variety of organic solvents, for example, low boiling point solvents such as PGMEA (boiling point: about 145 ° C). Can be.
  • a soluble polyimide resin by using such a soluble polyimide resin, by forming a solution of the soluble polyimide resin itself on the substrate and heat treatment without the need to use a polyimide precursor solution such as a polyamic acid ester solution by easily removing the low boiling point solvent and the like It is possible to form an insulating material for an electronic device.
  • the insulating material is almost completely or substantially completely of the low boiling point solvent, even if the heat treatment or curing process is performed only at a low temperature of about 250 ° C. or less, black 230 ° C. or less, and black black or less 20 ° C. or less. It can be removed, and as a result, it is possible to minimize the residual amount of the low boiling point solvent that can be included as a residual solvent in the insulating material. Therefore, the insulating material may exhibit a low outgassing amount of about 4 ppm or less, or about 0 to 3 ppm, or about 0.1 to 2.5 ppm relative to the total weight of the soluble polyimide resin contained therein. Accordingly, the insulating material may omit the high temperature heat treatment or curing process, thereby suppressing the characteristic change or damage of the device, and minimizing the amount of outgassing, thereby reducing the adverse effect on the reliability of the device.
  • the insulating material according to the embodiment since the composition containing the soluble polyimide resin and the low boiling point solvent is directly applied to the substrate and then formed by a low temperature heat treatment or a curing process, by-products derived from the alcohol and the like may be substantially produced. There is no.
  • the insulating material of one embodiment has less than about O.lppm, or about 0 to 0.05 ppm, or about 0.01 to 0.04 ppm, or less than the detection limit, the amount of outgassing derived from water or alcohol that may adversely affect device reliability. It can be minimized and contribute to the improvement of the reliability of the electronic device.
  • the insulating material of one embodiment can omit the high temperature heat treatment or hardening process, thereby suppressing the change or damage of the characteristics of the device. It can be preferably applied to an electronic device having the same, and can be preferably applied not only to a glass substrate or a metal substrate but also to a plastic substrate having heat-sensitive properties. For example, when the high temperature process is performed, the characteristics of the electronic device may be changed or the electronic device may be damaged if the electrical property of the TFT is changed, or when the insulation material for the electronic device of the embodiment is applied. It is possible to omit the high temperature process to substantially prevent the alteration or damage of these devices.
  • the insulating material of one embodiment minimizes the amount of outgassing, in particular, the amount of outgassing derived from water or alcohol, and thus, may contribute to improving the reliability of the device. Therefore, the insulating material of one embodiment overcomes the technical limitations of the conventional polyimide insulating material, and can be very preferably applied as an insulating material of various electronic devices.
  • an embodiment of the insulating material for an electronic device, its physical properties and manufacturing method This will be described in more detail.
  • the insulating material for an electronic device of the embodiment may exhibit an imidization ratio of about 70% or more after curing at a temperature of about 25 C C or less.
  • the soluble polyimide resin of Chemical Formula 1 may be obtained by polymerizing a diamine compound having a hydroxy group or a carboxyl group and a dianhydride in the presence of a predetermined low boiling point amine catalyst. It can be provided to have a high imidization rate even under low polymerization temperature and / or curing temperature through the use of an amine catalyst and the like. Therefore, in one embodiment, the insulating material for an electronic device is heat-treated at a temperature lower than about 300 ° C, for example, about 250 ° C after forming the resin composition comprising the soluble polyimide resin and the low boiling point solvent on the substrate. Or may be provided to have a high imidization rate of at least about 70%, or at least about 80%, or at least about 90%, or about 90 to 99 0 /.
  • the insulating material for an electronic device of one embodiment when the insulating material for an electronic device of one embodiment is applied, a high temperature heat treatment or curing process for removing or imidizing a high boiling point solvent during the formation of the insulation material, for example, a high temperature heat treatment or curing process of about 300 ° C or more It may be substantially omitted, and despite the omission of this high temperature process, the insulating material may exhibit excellent physical properties according to high imidization ratio and minimized amount of residual solvent. Therefore, the insulating material for an electronic device according to the embodiment can suppress the change or damage of the characteristics of the electronic device according to the high temperature process, and is particularly preferably applied to an electronic device or a process having heat-vulnerable properties such as an OLED device and excellent physical properties. It is possible to provide an insulating material having a.
  • the above-mentioned imidization rate and outgassing amount are formed on the substrate to form a resin composition containing the soluble plyimide resin and the low boiling point solvent, prebaked at about 110 to 13C C, and It may be measured after hard baking at 220 to 25C.
  • the imidization ratio and outgassing amount is the pre-baking and from about 1 to 5 minutes a hard bake, respectively at about 120 ° C, deulseo. G., About 4 minutes and "of about 230 ° C about 0.5 to 2 hours, for example, about 1 hour Can be measured later.
  • the outgassing generation amount is measured by purging at a predetermined temperature using a Purge & Trap-GC / MSD equipment after the hard bake, and collecting the outgassing for a predetermined time at a predetermined temperature to calculate the collected amount.
  • the purge temperature, collection temperature and collection time of the outgassing may be, for example, about 240 to 260 ° C, about -30 to -50 ° C and about 1 to 1.5 hours, more specifically about Purge at a temperature of 250 ° C., collect the outgassing for about 1 hour at a temperature of about ⁇ 40 ° C., and measure and calculate the outgassing amount with the collected amount.
  • the insulating material of one embodiment is about 70% or more, Alternatively, it may have a high imidation ratio of about 80% or more, or about 90% or more, or about 90 to 99%, and may effectively remove a low boiling point solvent to minimize the amount of residual solvent.
  • the low outgassing amount as described above in particular, minimizing the outgassing amount derived from water or alcohol
  • the insulating material of the example has the characteristic that the high temperature heat treatment (or curing) process can be omitted during the formation process, and in this case, it can exhibit excellent physical properties.
  • the imidization rate can be analyzed from the IR spectrum.
  • the imidation ratio is about 1350 to 1400 cm -1 or about 1550 to 1650 of the IR spectrum after forming a resin composition comprising a soluble polyimide resin and a low boiling point solvent on a substrate and heat-treating to a temperature of about 30 C C.
  • the imidization can proceed fully through this high temperature heat treatment of about 3 ( xrc. CN hold the integrated intensity of the band on the basis of 100%, under a low temperature below about 250 ° C above the curing process (e.
  • the integrated intensity of the CN band may be measured as a ratio with respect to the integrated intensity serving as a reference, which may be used as an imidization value of one embodiment.
  • the imidization rate is about 60% • Not confirmed.
  • the imidation ratio may be about 90% even when the curing process is performed only at the low temperature described above. Therefore, when it is possible to omit the high-temperature curing process of about 300 ° C or more, it was confirmed that even if only a low temperature heat treatment or curing process, high imidation rate and excellent physical properties can be exhibited.
  • the insulating material for an electronic device of the above-described embodiment may include an amine catalyst having a boiling point of about 60 to 120 ° C, black is about 70 to 100 ° C, or about 80 to 90 ° C as a residual catalyst, such
  • the amine catalyst is, for example, ⁇ , ⁇ -diethylmethylamine, ⁇ , ⁇ -dimethylisopropylamine, ⁇ -methylpyridine ( ⁇ -
  • It may include one or more selected from the group consisting of Methylpyrrolidine, pyrrolidine, and triethylamine.
  • triethylamine having a boiling point of about 89 ° C. is used as an amine catalyst in consideration of low boiling point and effective removal of residual catalyst and catalytic activity for achieving high imidization ratio. It may include.
  • the insulating material of one embodiment may be heat treated or cured (eg, prebaked at about 110 to 13 ° C. and hard baked at about 220 to 250 ° C.) at a low temperature of about 250 ° C. or less.
  • the amount generated may be about 4 ppm or less, for example, about 0 to 3 ppm and black is only about 0.1 to 2.5 ppm based on the total weight of the soluble polyimide resin, and the amount of outgassing generated from the residual catalyst during this outgasing is about 0.5 ppm. It may be less than or equal to ppm, for example about 0-0.5 ppm, or only about 0.05-0.3 ppm.
  • the soluble polyimide resin included in the insulating material of one embodiment In the presence of an amine catalyst, ie an amine catalyst having a low boiling point described above, it can be polymerized to have a high imidation ratio. Therefore, the insulating material of one embodiment obtained by applying a solution containing such a soluble polyimide resin, a low boiling point solvent and the like, and performing a heat treatment or a curing process may include such a specific amine catalyst as a residual catalyst. However, since the residual catalyst of the specific amine catalyst has a low boiling point, almost all or substantially all of the residual catalyst may be removed during the heat treatment or curing process at a low temperature of about 250 ° C. or less.
  • the insulating material of one embodiment may not only be a trace amount of the residual catalyst amount substantially below or equivalent to the detection limit, but also significantly reduce the amount of outgassing itself including the residual catalyst amount.
  • the insulating material of one embodiment may exhibit more excellent physical properties even if the high temperature heat treatment or curing process is omitted, and further reduce the deterioration of the device characteristics due to the outgassing.
  • the insulating material for an electronic device of one embodiment may include a low boiling point solvent having a boiling point of about 130 to 180 ° C, or about 140 to 160 ° C as a residual solvent, such a low boiling point solvent, for example , Diethylene glycol methyl ethyl ether Diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol dimethyl ether, methyl 3-methoxy propionate, ethyl 3-ethoxy propionate, propylene glycol methyl ether propio And one or more low boiling point polar solvents selected from the group consisting of nates, dipropylene glycol dimethyl ether, cyclonucleanone and propylene glycol monomethyl ether acetate (PGMEA).
  • a low boiling point solvent having a boiling point of about 130 to 180 ° C, or about 140 to 160 ° C as a residual solvent
  • a low boiling point solvent for example , Diethylene glycol methyl ethyl
  • propylene glycol monomethyl ether acetate having a boiling point of about 145 ° C. is used as a low boiling point solvent in consideration of low boiling point and thus effective residual solvent removal and high conversion to soluble polyimide resin. It can be used as a residual solvent.
  • the insulating material of one embodiment is heat-treated or cured at a low temperature of about 250 ° C or less (eg, prebaked at about 110 to 130 ° C, about
  • the amount of outgassing may be less than about O.lppm, for example, about 0 to 0.05 ppm, or about 0.01 to 0.03 ppm relative to the total weight of the soluble polyimide resin. In one embodiment, the residual solvent amount may fall short of the detection limit.
  • the soluble polyimide resin included in the insulating material of one embodiment may exhibit excellent solubility even in a polar solvent having a low boiling point described above, unlike the conventional polyimide resin. Accordingly, the insulating material of one embodiment may be obtained by polymerizing a soluble polyimide resin in such a low boiling point solvent, applying a resin composition containing such a polymerization solution to a substrate, and performing a heat treatment or a curing process. Therefore, the insulating material of one embodiment may include such a low boiling point solvent as the residual solvent. However, since these residual solvents have a low boiling point, almost all or substantially all of them may be removed during the heat treatment or curing process at a low temperature of about 250 ° C. or less.
  • the insulating material of one embodiment may not only have a residual amount of the residual solvent substantially below or equivalent to the detection limit, but also lower the total outgassing amount itself.
  • the insulating material of one embodiment may exhibit excellent physical properties even if the high heat treatment or curing process is omitted, and may further reduce the characteristics of the device due to the out-opening and residual solvent.
  • the soluble polyimide resin includes a repeating unit of Formula 1 as a main repeating unit, which may include a divalent functional group of Y having a hydroxy group or a carboxyl group. Due to the presence of such functional groups, the soluble polyimide resin can exhibit excellent solubility in low boiling point polar solvents, and can exhibit excellent imidization rate even at low temperature polymerization and curing under a predetermined amine catalyst.
  • Y include a divalent functional group having a phenolic hydroxy group or a carboxyl group, for example, a divalent aromatic functional group selected from the group consisting of:
  • the repeating unit of Formula 1 of the soluble polyimide resin may include a tetravalent functional group X derived from dianhydride.
  • X include a tetravalent aromatic selected from the group consisting of Or aliphatic functional groups.
  • the above-mentioned soluble polyimide resin may be a homopolymer or a co-polymer including only one or more of the repeating units of the formula (1), but may be a copolymer further comprising a repeating unit of a different kind from the formula (1). It may be.
  • the soluble polyimide resin may further include a polyimide repeating unit represented by the following Formula 1.
  • the soluble poly already taking into consideration the solubility or cured properties for the low-boiling-point solvent of the imide resin, a repeating unit represented by the above formula (1) from about 50 mole 0/0 or more, or about 60 mole 0/0 or more, or from about 70 mole% or more, or about 80 mole 0 /.
  • black may comprise about 90 mole% or more:
  • X and p are as defined in Formula 1
  • Y ' represents a divalent aliphatic or aromatic organic group having no hydroxy group or carboxyl group.
  • examples of Y ′ are well known to those skilled in the art and include, for example, one selected from the group consisting of
  • the glass transition temperature of the soluble polyimide resin may be about 150 to 400 ° C
  • the weight average molecular weight may be about 1,000 to 500,000
  • black may be about 5,000 to 100,000. have.
  • the above-described insulating material for an electronic device is applied to a resin composition containing the soluble polyimide resin, for example, a photosensitive resin composition or printing ink composition containing the soluble polyimide resin, and subjected to a heat treatment or curing process. It can be formed to proceed.
  • the insulating material is Depending on the conventional components of the photosensitive resin composition or the ink composition for printing, it may further include an additional additive or crosslinking agent.
  • the insulating material may further include a residual photoacid generator, a photoactive compound and / or a crosslinking agent, and may include a crosslinking structure derived from such a crosslinking agent and a soluble polyimide resin.
  • various additives derived from conventional components of the photosensitive resin composition or the ink composition for printing may be further included.
  • the insulating material for an electronic device described above may exhibit a low outgassing amount and a high imidization ratio, even if it is obtained in a state where the high temperature heat treatment or curing process of about 300 ° C. or more is omitted, and in particular, adversely affects the reliability of the device. It is possible to minimize the amount of outgassing derived from water or alcohol, which exerts an effect. Therefore, such an insulating material may be applied as an insulating material of various electronic devices such as OLED, LCD or semiconductor devices, and may be preferably applied to electronic devices having heat-vulnerable properties including organic materials such as OLED devices, and thus may exhibit excellent physical properties.
  • the insulating material of the embodiment can be formed not only on a glass substrate or a metal substrate, but also preferably on a relatively heat-sensitive plastic substrate, and various types of insulating materials included in electronic devices, for example, It can be suitably applied as an insulating film, an insulating film, a photosensitive film, a photosensitive film, a board
  • the insulating material for an electronic device described above polymerizes a diamine containing a hydroxy group or a carboxyl group and a dione hydride in a low boiling point solvent in the presence of a predetermined low boiling point amine catalyst to obtain the above-mentioned soluble polyimide resin
  • the solution in which the mid resin is dissolved in a low boiling point solvent may be applied onto a substrate and then heat-treated (or cured) at a low temperature of about 250 ° C. or less.
  • a soluble polyimide resin having a high imidation ratio is obtained by carrying out a polymerization process using a predetermined low boiling point amine catalyst, and then a solution thereof is applied to a substrate and a low temperature heat treatment (or curing) process is performed. By advancing, an insulating material is formed. Formation of such insulation In the process, since the soluble polyimide resin is obtained, it is applied to a substrate and subjected to a low temperature heat treatment (or curing) process to form an insulating material, thereby substantially eliminating the risk of generation of by-products derived from alcohol and the like remaining in the insulating material. . Therefore, the insulating material of one embodiment in which the total generation amount of out personality and the generation amount of outgassing derived from water or alcohol can be minimized by the above-described manufacturing process can be obtained.
  • both the amine catalyst and the solvent have a boiling point lower than the temperature of the heat treatment (or curing) process, and thus, almost all or substantially completely can be removed in such a low temperature heat treatment (or curing) process.
  • the soluble polyimide resin may exhibit a high imidation ratio of about 70% or more from immediately after polymerization to formation of an insulating material by using a specific amine catalyst.
  • the above-mentioned soluble polyimide resin is prepared by polymerizing a diamine containing a hydroxy group or a carboxyl group and a dianhydride in the presence of a predetermined low boiling point amine catalyst in a low boiling point solvent.
  • the low boiling point organic solvent has a boiling point of about 130 to 180 ° C, black is about
  • a polar organic solvent having a 140 to 16C C examples thereof include diethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol dimethyl ether, methyl 3-methoxypropionate Cypionate, ethyl 3-ethoxy propionate, propylene glycol methyl ether propionate, dipropylene glycol dimethyl ether, cyclonucleanone or propylene glycol monomethyl ether acetate (PGMEA), etc. are mentioned.
  • various polar organic compounds having the above-mentioned boiling point range A solvent may be used, and two or more mixed solvents selected from these may be used.
  • the low boiling point solvent may be used in an amount of about 20 to 2000 parts by weight, or about 100 to 1000 parts by weight, or about 200 to 400 parts by weight, based on 100 parts by weight of the total monomer including diamine and dianhydride.
  • the content of the solvent When the content of the solvent is too low, it may not be able to dissolve each monomer or soluble polyimide resin sufficiently, and when the content of the solvent is too high, the thickness is thin when applying a solution of soluble polyimide resin to the substrate after polymerization. May not form a coating film.
  • an amine catalyst having a boiling point of about 60 to 120 ° C., black to about 70 to 10 CTC, or about 80 to 90 ° C. may be used as the low boiling point amine catalyst. If the boiling point of such a catalyst is too low, a considerable amount may be evaporated during polymerization. If the boiling point of the catalyst is too high, the residual catalyst may not be properly removed in a heat treatment (or curing) process for forming an insulating material. It is not appropriate because it can cause side reactions.
  • the low boiling point amine catalyst a catalyst capable of effective imidization at a low temperature and easy removal after the reaction may be used.
  • the amine catalyst include N, N-diethylmethylamine, ⁇ , ⁇ - And a catalyst selected from the group consisting of dimethylisopropylamine, N-methylpyrralidine, pyrrolidine and triethylamine.
  • Such a catalyst may be used in an amount of about 0.5 to 30 parts by weight, or about 2 to 20 parts by weight, or about 5 to 10 parts by weight, based on 100 parts by weight of the total monomers including the diamine and dianhydride.
  • the conversion rate to the polyimide resin may drop, and when the catalyst content is too high, the residual catalyst may not be properly removed, and side reactions may occur. Can cause.
  • diamine and dianhydride for obtaining the above-mentioned soluble polyimide resin diamine having a hydroxy group or a carboxyl group, respectively, and ordinary dianhydride can be used.
  • dianhydride examples include pyromellitic anhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, butane-1,2,3,4-tetracarboxylic dianhydride 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'- diphenylethertetracarboxylic dianhydride, 3,3 ', 4,4'- Diphenylsulfontetracarboxylic dianhydride, 2,2-bis (3,4-polycarboxyphenyl) nucleofluoroisopropylidene dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic acid Dianhydrides, 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 4,4'-nuxafluoroisopropylydenyphthalic anhydride 3,3', 4,4'-
  • examples of the diamine having a hydroxy group or a carboxy group include,
  • diamines having a divalent organic group containing a phenolic hydroxyl group, a carboxyl group or a hydroxyl group such as a divalent organic group derived from 3,5-diaminobenzoic acid.
  • a soluble polyimide resin By preparing a soluble polyimide resin through polymerization of such diamine and dione hydride, it is possible to prepare a soluble polyimide resin having excellent solubility even in the low boiling point solvent and the like described above. By using it, even if only the low temperature heat treatment (or curing) process is performed after forming on the solution-ol substrate of soluble polyimide resin, the insulating material of one embodiment which shows a high imidation ratio can be formed.
  • an additional diamine is added together with the diamine having the hydroxy group or the carboxyl group.
  • the diamine which can be used is not specifically limited, Any diamine known to be usable for formation of a polyimide resin can be used.
  • diamines examples include phenylenediamine, m-phenylenediamine, 2,4,6-trimethyl-1,3-phenylenediamine, 2,3,5,6-tetramethyl-1,4-phenylenediamine , 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfide, 4,4 ' -Diaminodiphenylmethane, 3,4'-diaminodiphenylmethane ⁇ 3,3'-diaminodiphenylmethane, 4,4.-methylene-bis (2-methylaniline), 4,4.-methylene -Bis (2,6- Dimethylaniline), 4,4'-methylene-bis (2,6-diethylaniline), 4,4'-methylene-bis (2-isopropyl-6-methylaniline), 4,4
  • the polymerization of each monomer including the diamine and dianhydride described above may be carried out at a low temperature of about 120 to 200 ° C, or about 130 to 180 ° C, black is about 140 to 160 ° C.
  • the conversion to polyimide resin may be at least about 90%, for example, about 90 to 100%, and the amount of residual catalyst in the polymerized polyimide resin is total poly It may be about 0.001 to 0.1% by weight in the mid resin.
  • the soluble polyimide resin polymerized and prepared by the above-described method has a high imidization rate by itself, there is no need for further increase of the imidization rate, and the temperature is about 25 C C or less, or the temperature is about 250 ° C Or, at a temperature of about 150 to 250 ° C, or a temperature of about 23 C C or less, or a temperature of about 200 ° C or less, the curing proceeds to form an insulating material having a high imidization rate. Can be.
  • the said soluble polyimide resin can exhibit the outstanding solubility also about the low boiling point solvent etc. which were mentioned above.
  • a solution in which such a resin is dissolved in a low boiling point solvent for example, a photosensitive resin composition or an ink composition for printing in such a solution state is applied to a substrate and heat treated.
  • the curing step may be performed to form an insulating material for an electronic device.
  • the photosensitive resin composition or the ink composition for printing may further include additional additives, crosslinking agents, photoactive compounds or photoacid generators, and the kinds of these components are as well known to those skilled in the art.
  • the heat treatment or curing process temperature is less than about 250 ° C, black is about
  • Example 2 Low Temperature Polyimide Polymerization Example
  • Each polymer solution prepared in each of Examples and Comparative Examples was spin-coated on a silicon wafer, followed by prebaking at 120 ° C. for 4 minutes, and 230 ° C. for 1 hour hard baking, respectively. After the progress, the imidation ratio was measured using FT-IR for each.
  • the CN band (about 1350 to 1400 cm -1 (Examples 1 and 2 and Comparative Example 1) of the IR spectrum or 300 ° C. of each sample and the cured sample for 1 hour, or about 1550 to 1650) cm- 1 (shown in Comparative Example 2))
  • the integral value is determined based on the imidization rate of 100%, and the CN band integral value of the sample cured by the prebaking and hard bake is measured as a ratio with respect to the standard. The imidation ratio of each sample was confirmed.
  • the soluble polyimide resin is prepared by reacting diamine and dianhydride having a hydroxy group in the presence of an amine catalyst such as triethylamine as in Examples 1 and 2, It was confirmed to be prepared having a high imidation ratio of 90% or more. therefore, After applying such a solution of the soluble polyimide resin to the substrate, even if only the heat treatment or curing process at a low temperature of about 250 ° C or less, it was confirmed that the insulating material for an electronic device having a high imidation ratio can be obtained.
  • Each polymer solution prepared in Examples and Comparative Examples was spin-coated on a silicon wafer and prebaked at 120 ° C. for 4 minutes to obtain a thin film having a thickness of 2 / thickness. After curing the thin film at 230 ° C for 1 hour, purge it at a purge temperature of 250 ° C using Purge & Trap-GC / MSD equipment, collect outgasing at -40 ° C for 1 hour to quantify the outgassing and Qualitative analysis was performed. The results were as shown in Table 2 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Organic Insulating Materials (AREA)
  • Formation Of Insulating Films (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

본 발명은 절연재의 고온 경화 공정에 따른 전자소자의 손상을 억제할 수 있으면서도, 전자소자의 신뢰성 향상에 기여할 수 있는 전자소자용 절연재에 관한 것이다. 이러한 전자소자용 절연재는 소정의 반복 단위를 포함한 가용성 폴리이미드 수지와, 비점이 130 내지 180℃인 저비점 용매를 포함한 잔류 용매를 포함하고, 250℃ 이하의 온도에서 경화한 후에, 아웃개싱의 발생량이 가용성 폴리이미드 수지 총 중량에 대해 4ppm 이하이고, 물 또는 알코올에서 유래한 아웃개싱 발생량이 0.1ppm 미만인 것이다.

Description

【명세서】
【발명의 명칭】
전자소자용 절연재
【기술분야】
본 발명은 절연재와 고온 경화 공정에 따른 전자소자의 손상을 억제할 수 있으면서도, 전자소자의 물성과 신뢰성 향상에 기여할 수 있는 전자소자용 절연재에 관한 것이다.
【배경기술】
최근 반도체, OLED 소자 또는 액정표시 소자 등의 전자 소자 분야에서는, 소자의 고집적화, 고밀도화, 고신뢰화, 고속화 등의 움직임이 급격히 확산됨에 따라, 가공성과 고순도화 등이 용이한 유기 재료가 갖는 장점을 이용하려는 연구가 활발히 진행되고 있다.
특히 폴리이미드 수지는 고내열성, 우수한 기계적 강도, 저유전율 및 고절연성 등의 우수한 전기특성 이외에도 코팅 표면의 평탄화 특성이 좋고, 소자의 신뢰성을 저하시키는 불순물의 함유량이 매우 낮으며, 용이하게 미세 형상으로 만들 수 있는 장점이 있어, 최근 이를 포함하는 절연막 등 절연재의 적용이 다양한 전자 소자에 이르도록 확대되고 있다.
그런데, 폴리이미드 수지 자체는 통상 유기 용매에 대한 낮은 용해도를 나타내며, N-메틸 -2-피롤리돈 (NMP; 비점: 약 202°C) 또는 감마부티로락톤 (GBL; 비점: 약 204 °C) 등과 같이 높은 비점을 갖는 유기 용매에 대해서만 일부 용해도를 나타낼 수 있을 뿐이다. 따라서, 상기 폴리이미드 수지 자체와 유기 용매를 포함하는 조성물로 절연막을 형성하는데 있어서는, 폴리이미드 수지 자체의 낮은 용해도로 인해 도포성이 떨어져 공정상 어려움이 있었고, 더 나아가 용매 제거 등을 위해 고온 공정이 필요하여 OLED 소자 등 유기물을 포함하여 열에 취약한 특성을 갖는 전자 소자에 있어서는, 상기 절연막 등을 적용하기가 어렵게 되는 단점이 있었다.
이 때문에, 상기 폴리이미드 수지를 포함하는 절연막 등을 형성함에 있어서는, 먼제 디아민과, 디언하이드라이드를 극성 유기 용매 내에서 중합하여 폴리이미드 전구체 용액 예를 들어, 폴리아믹산 에스테르 용액 등을 얻고, 이를 기관에 도포한 후 고온 열처리에 의해 폴리이미드 전구체를 이미드화 및 경화하는 방법을 적용하는 것이 일반적이었다.
그러나, 이러한 경우에도, 이미드화된 폴리이미드 수지의 낮은 용해도 등을 고려하여 상기 유기 용매로서 N-메틸 -2-피를리돈 (NMP) 등의 높은 비점을 갖는 용매를 사용할 필요가 있었다.
이 때문에, 상기 절연막 등의 형성 방법에서는, 상기 폴리이미드 전구체의 이미드화 및 고비점 용매나 촉매 등의 제거 등을 위해, 예를 들어,
300 °C 이상의 고온 경화 공정을 거쳐야 할 필요가 있었다. 이러한 고온 경화 공정의 필요성으로 인해, 상기 절연막을 포함하는 전자 소자의 특성이 변화하거나 전자 소자가 손상되는 문제점이 있었고, 특히, OLED 소자 등 열에 취약한툭성을 갖는 전자 소자에 있어서는, 상기 절연막 등을 적용하가 여전히 어렵게 되는 단점이 있었다.
그리고, 상술한 절연막 등의 형성 방법에서 상대적으로 낮은 경화 공정을 적용하게 되면, 상기 폴리이미드 전구체가 층분히 이미드화되지 못할 수 있는데, 이 경우 절연막 등의 내부에 상당량의 폴리이미드 전구체가 잔류할 수 있다. 이러한 잔류 전구체는 절연막 등의 특성 저하를 가져을 뿐 아니라, 절연막 내부에서 잔류 전구체가 이미드화되면서 상당량의 아웃개성을 발생시킬 수 있다. 이렇게 발생한 아웃개싱으로 인해, 전자 소자의 물성이나신뢰성이 크게 저하될 수 있다.
【발명의 내용】
【해결하려는 과제】
본 발명은 형성 과정에서 고온 경화 공정을 필요로 하지 않아 전자소자의 특성 변화나 손상올 억제할 수 있으면서도, 전자소자의 물성과 신뢰성 향상에 기여할 수 있는 전자소자용 절연재를 제공하는 것이다.
【과제의 해결 수단】
본 발명은 하기 화학식 1의 반복 단위를 포함한 가용성 폴리이미드 수지와, 비점이 약 130 내지 180 °C인 저비점 용매를 포함한 잔류 용매를 포함하고, 약 250°C 이하의 온도에서 경화한 후에, 아웃개싱의 발생량이 가용성 폴리이미드 수지 총 중량에 대해 약 4ppm 이하이고, 물 또는 알코을에서 유래한 아웃개싱 발생량이 약 O lppm 미만인 전자소자용 절연재를 제공한다:
[화학식 1]
Figure imgf000004_0001
상기 화학식 1 에서, p 는 2 내지 500 의 정수이고, X는 4 가의 유기기이고, Y는 하나 이상의 히드록시기 또는 카르복시기를 갖는 2 가의 유기기이다.
상기 전자소자용 절연재에서, 상기 아웃개싱 발생량은 기판 상에 가용성 폴리이미드 수지 및 저비점 용매를 포함한 수지 조성물을 형성하고, 약 110 내지 13C C에서 프리베이크하고, 약 220 내지 250°C에서 하드베이크한 후에 측정된 것으로 될 수 있다.
또, 상기 전자소자용 절연재는 비점 약 60 내지 120°C인 아민계 촉매를 잔류 촉매로서 포함할 수 있고, 이러한 아민계 촉매는 Ν,Ν- 디에틸메틸아민, Ν,Ν-디메틸이소프로필아민, Ν-메틸피를리딘 (Ν-
Methylpyrrolidine), 피를리딘 (pyrrolidine), ᅳ및 트리에틸아민으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
또한, 상기 전자소자용 절연재는 상기 잔류 촉매에서 유래한 아웃개싱 발생량이 약 0.5ppm 이하인 것으로 될 수 있다.
그리고, 상기 전자소자용 절연재에서, 상기 저비점 용매는 디에틸렌글리콜 메틸에틸에테르, 디에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디에틸에테르, 디프로필렌글리콜 디메틸에테르, 메틸 3- 메톡시 프로피오네이트, 에틸 3-에특시 프로피오네이트, 프로필렌글리콜 메틸에테르 프로피오네이트, 디프로피렌글리콜 디메틸에테르, 사이클로헥사논 및 프로필렌글리콜모노메틸에테르아세테이트 (PGMEA)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
또한 상기 전자소자용 절연재는, 상기 잔류 용매에서 유래한 아웃개싱 발생 약 O.lppm 이하인 것으로 될 수 있다.
그리고, 상기 전자소자용 절연재에서 , 상기 화학식 1의 Y는 하기 화학식들로 이루어진 군에서 선택된 1종 이상으로 될 수 있다:
Figure imgf000005_0001
또한, 상기 전자소자용 절연재에서, 상기 화학식 1의 X는 하기 화학식들로 이루어진 군에서 선택된 1종 이상으로 될 수 있다:
Figure imgf000006_0001
그리고, 상기 전자소자용 절연재에서, 상기 가용성 폴리이미드 수지의 유리전이온도는 약 150 내지 400°C로 될 수 있고, 중량평균분자량은 약 1,000 내지 500,000로 될 수 있다.
또한 상기 전자소자용 절연재는 유리 기판 또는 금속 기판 등의 다양한 기판 상에도 형성될 수 있지만, 특히, 열에 취약한 폴라스틱 기판 상에도 적절하게 형성될 수 있고, OLED, LCD 또는 반도체 소자, 특히, 열에 취약한 OLED 소자의 절연재로도 바람직하게 적용될 수 있다.
【발명의 효과】
본 발명에 따른 전자소자용 절연재는 폴리이미드 수지로의 전환이나 용매 또는 촉매 등의 제거를 위해 이전에 필요하였던 고온 경화 공정올 진행할 필요 없이, 기판 상에서 300°C 미만, 예를 들어, 250°C 이하의 온도로 낮은 열처리 공정만을 진행하더라도, 저비점 용매 및 촉매 등이 저온 열처리 공정에 의해 효과적으로 제거되어 최소화된 잔류 용매량 및 잔류 촉매량을 나타내고, 이에 따라 아웃개싱량 또한 크게 줄일 수 있다. 특히, 상기 절연재는 소자의 신뢰성에 큰 영향을 미치는 물 또는 알코을에서 유래한 아웃개싱 발생량이 극소화될 수 있다.
따라서, 본 발명의 절연재를 사용함으로서, 상기 고온 경화 공정 등이 필요 없게 되므로 이에 따른 전자소자의 전기적 특성 변화나 손상을 억제할 수 있으며, 특히, 상기 아웃개싱의 발생 등에 따른 소자의 신뢰성 저하를 억제하여, 보다 향상된 특성 및 신뢰성을 갖는 소자의 제조에 기여할 수 있다. 그러므로, 이러한 절연재를 열에 취약한 OLED 소자 등의 절연재로서 매우 바람직하게 적용할 수 있다.
【발명을 실시하기 위한 구체적인 내용】
이하, 발명의 구현예에 따른 전자소자용 절연재 및 이의 형성 방법에 대해 보다 상세히 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리범위가 한정되는 것은 아니며, 발명의 권리범위 내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다.
이하의 명세서에서, "전자소자용 절연재 "라 함은 OLED, LCD 또는 반도체 소자 등 다양한 전자소자에서 사용되는 임의의 절연성 소재를 포괄하여 지칭할 수 있다. 이러한 절연성 소재의 예에는, 다양한 전자소자에서 사용되는 절연막, 절연 필름, 감광성 필름, 감광막, 기판 또는 격벽 등을 들 수 있으며, 이에 한하지 않고 전자소자에 포함되는 소재 중 전도성을 나타내지 않는 임의의 소재를 포괄할 수 있다. 또한, 상기 "전자소자용 절연재 "의 형태 또한 박막 또는 필름 등 특정 형태에 한하지 않고 여러 가지 형태를 취할 수 있다.
발명의 일 구현예에 따르면, 하기 화학식 1의 반복 단위를 포함한 가용성 폴리이미드 수지와, 비점이 약 130 내지 18CTC인 저비점 용매를 포함한 잔류 용매를 포함하고, 약 250°C 이하의 온도에서 경화한 후에, 아웃개싱의 발생량이 가용성 폴리이미드 수지 총 증량에 대해 약 4ppm 이하이고, 물 또는 알코올에서 유래한 아웃개싱 발생량이 약 O.lppm 미만인 전자소자용 절연재가 제공된다:
[화학식 1]
Figure imgf000008_0001
상기 화학식 1 에서 , p 는 2 내지 500 의 정수이고, X는 4 가의 유기기이고, Y는 하나 이상의 히드록시기 또는 카르복시기를 갖는 2 가의 유기기이다.
상술한 전자소자용 절연재는 기본적으로 상기 화학식 1의 반복 단위를 갖는 가용성 폴리이미드 수지를 포함하는 것이다. 이러한 가용성 폴리이미드 수지는 상기 반복 단위 중에 히드록시기 또는 카르복시기를 갖는 작용기 Y를 포함하는 것으로서, 보다 다양한 유기 용매, 예를 들어, PGMEA (비점: 약 145°C) 등의 저비점 용매에 대해서도 우수한 용해도를 나타낼 수 있다. 따라서, 이러한 가용성 폴리이미드 수지를 사용함에 따라, 폴리아믹산 에스테르 용액 등의 폴리이미드 전구체 용액을 사용할 필요 없이 가용성 폴리이미드 수지 자체의 용액을 기판 상에 형성하고 열처리하여 상기 저비점 용매 등을 용이하게 제거함으로서, 전자소자용 절연재를 형성할 수 있다.
따라서, 상기 절연재는 그 형성 과정에서 약 250°C 이하, 흑은 230 °C 이하, 흑은 약 20C C 이하의 낮은 온도에서 열처리 또는 경화 공정만을 진행하더라도, 상기 저비점 용매를 거의 모두 혹은 실질적으로 완전히 제거할 수 있으며, 그 결과 상기 절연재에 잔류 용매로서 포함될 수 있는 저비점 용매의 잔류량을 최소화할 수 있다. 그러므로, 상기 절연재는 이에 포함된 가용성 폴리이미드 수지 총 중량에 대해 약 4ppm 이하, 혹은 약 0 내지 3ppm, 혹은 약 0.1 내지 2.5ppm에 불과한 낮은 아웃개싱 발생량을 나타낼 수 있다. 이에 따라, 상기 절연재는 고온 열처리 또는 경화 공정을 생략하여 이에 따른 소자의 특성 변화나 손상을 억제하면서도, 아웃개싱 발생량을 최소화하여 소자의 신뢰성에 대한 악영향을 줄일 수 있다.
한편, 이전에 알려진 바에 따라, 폴리아믹산 에스테르 용액 등의 폴리이미드 전구체 용액을 기판에 도포한 후, 이를 열처리 또는 경화 (이미드화)하여 폴리이미드 수지를 포함한 절연재를 형성하는 경우, 상기 이미드화 과정에서 물 또는 알코올에서 유래한 부산물이 다량 생성될 수 있다. 이러한 물 또는 알코올은 추후 아웃개싱의 형태로 절연재 외부로 배출되어 소자의 신뢰성을 크게 악화시킬 수 있는 것으로 확인되었다 (후술하는 비교예 참조). 이에 비해, 일 구현예에 따른 절연재의 경우, 가용성 폴리이미드 수지 및 저비점 용매를 포함한 조성물을 직접 기판에 도포한 후 저온 열처리 또는 경화 공정을 통해 형성된 것이므로, 상기 알코을 등에서 유래한 부산물이 실질적으로 생길 우려가 없다. 따라서, 일 구현예의 절연재는 소자의 신뢰성에 악영향을 미칠 수 있는 물 또는 알코을에서 유래한 아웃개싱 발생량을 약 O.lppm 미만, 혹은 약 0 내지 0.05 ppm, 혹은 약 0.01 내지 0.04ppm, 혹은 검출 한계 미만으로 극소화할 수 있으며, 전자 소자의 신뢰성 향상에 기여할 수 있다.
상술한 특성으로 인해, 일 구현예의 절연재는 고온 열처리 또는 경화 공정의 생략이 가능하여 이에 따른 소자의 특성 변화나 손상을 억제할 수 있으므로, 특히, C>LED 소자 등 유기물을 포함하여 열에 취약한 특성을 갖는 전자소자에 바람직하게 적용될 수 있고, 유리 기판이나 금속 기판뿐 아니라 열에 취약한 특성을 갖는 플라스틱 기판 상에도 바람직하게 적용될 수 있다. 예를 들어 상기 고온 공정이 진행되는 경우, TFT의 전기적 특성이 변화하는 등 전자소자의 특성이 변화하거나, 심할 경우 전자소자가 손상될 수 있는데, 일 구현예의 전자소자용 절연재를 적용할 경우, 이러한 고온 공정의 생략이 가능하여 이러한 소자의 특성 변경 또는 손상을 실질적으로 막을 수 있다. 더구나, 일 구현예의 절연재는 아웃개싱 발생량, 특히, 물 또는 알코을 등에서 유래한 아웃개싱 발생량을 최소화하여, 소자의 신뢰성 향상에 보다 기여할 수 있다. 그러므로, 일 구현예의 절연재는 종래의 폴리이미드계 절연재가 갖는 기술적 한계를 극복하고, 보다 다양한 전자소자의 절연재로서 매우 바람직하게 적용될 수 있다. 이하, 일 구현예의 전자소자용 절연재, 이의 물성 및 제조 방법에 대해 보다 구체적으로 설명하기로 한다.
상기 일 구현예의 전자소자용 절연재는 약 25C C 이하의 온도에서 경화한 후에, 약 70% 이상의 이미드화율을 나타낼 수 있다.
이하에 더욱 상세히 설명하겠지만 상기 화학식 1의 가용성 폴리이미드 수지는 소정의 저비점 아민계 촉매의 존재 하에, 히드록시기 또는 카르복시기를 갖는 디아민 화합물과, 디언하이드라이드를 중합함으로서 얻어질 수 .있는데, 특히, 소정의 아민계 촉매의 사용 등을 통해 낮은 중합 온도 및 /또는 경화 온도 하에서도 높은 이미드화율을 갖도록 제공될 수 있다. 따라서, 일 구현예의 전자소자용 절연재는 상기 가용성 폴리이미드 수지 및 저비점 용매를 포함한 수지 조성물을 기판 상에 형성한 후, 약 300 °C 미만, 예를 들어, 약 250°C 이하의 낮은 온도로 열처리 또는 경화 공정만을 진행하더라도, 약 70% 이상, 혹은 약 80% 이상, 혹은 약 90% 이상, 혹은 약 90 내지 990/。의 높은 이미드화율을 갖도록 제공될 수 있다.
그 결과, 일 구현예의 전자소자용 절연재를 적용할 경우, 절연재 형성 과정 중의 고비점 용매의 제거 또는 이미드화를 위한 고온 열처리 또는 경화 공정, 예를 들어, 약 300°C 이상의 고온 열처리 또는 경화 공정이 실질적으로 생략될 수 있고, 이러한 고온 공정의 생략에도 불구하고 상기 절연재가 높은 이미드화율 및 최소화된 잔류 용매량에 따른 우수한 물성을 나타낼 수 있다. 그러므로, 일 구현예의 전자소자용 절연재는 상기 고온 공정에 따론 전자소자의 특성 변화나 손상 등을 억제할 수 있고, 특히, OLED 소자 등 열에 취약한 특성을 갖는 전자소자 또는 공정에 바람직하게 적용되어 우수한 물성을 갖는 절연재의 제공을 가능케 한다.
이러한 일 구현예의 전자소자용 절연재에서, 상술한 이미드화율 및 아웃개싱 발생량은 기판 상에 상기 가용성 플리이미드 수지 및 저비점 용매를 포함한 수지 조성물을 형성하고, 약 110 내지 13C C에서 프리베이크하고, 약 220 내지 25C C에서 하드베이크한 후에 측정된 것일 수 있다. 일 구체예에서, 상기 이미드화율 및 아웃개싱 발생량은 상기 프리베이크 및 하드베이크를 각각 약 120°C에서 약 1 내지 5분, 예를 들서, 약 4분 및'약 230°C에서 약 0.5 내지 2시간, 예를 들어 약 1 시간 진행한 후에 측정된 것으로 될 수 있다. 또, 상기 아웃개싱 발생량은 상기 하드베이크 후에, Purge&Trap-GC/MSD 장비 등을 이용해 소정의 온도에서 퍼지 (purge)하고, 일정 온도에서 일정 시간 동안 아웃개싱을 포집하여 포집된 양을 산출하여 측정할 수 있다. 이때, 아웃개싱의 퍼지 온도, 포집 온도 및 포집 시간은, 예를 들어, 약 240 내지 260 °C와, 약 -30 내지 -50°C 및 약 1 내지 1.5 시간으로 될 수 있고, 보다 구체적으로 약 250°C의 온도에서 퍼지하고, 약 -40°C의 온도에서 약 1 시간 동안 아웃개싱을 포집하여 그 포집된 양으로 상기 아웃개싱 발생량을 측정 및 산출할 수 있다.
상기 이미드화율 등의 확인 결과, 가용성 폴리이미드 수지 및 저비점 용매를 포함한 수지 조성물을 기판 상에 형성한 후, 이러한 낮은 온도의 열처리 또는 경화 공정만을 진행하더라도, 일 구현예의 절연재가 약 70% 이상, 혹은 약 80% 이상, 혹은 약 90% 이상, 혹은 약 90 내지 99%의 높은 이미드화율을 가질 수 있고, 저비점 용매 등을 효과적으로 제거해 잔류 용매량을 최소화할 수 있다. 또, 낮은 잔류 용매량 및 기관 상에서 이미드화가 진행되지 않음에 기인하여, 상술한 바와 같은 낮은 아웃개싱 발생량 (특히, 물 또는 알코을에서 유래한 아웃개싱 발생량의 극소화)을 나타낼 수 있으므로, 상기 일 구현예의 절연재는 형성 과정 중의 고온 열처리 (또는 경화) 공정의 생략이 가능해지는 특성을 가지며, 이러한 경우에도 우수한 물성을 나타낼 수 있다.
또한, 상기 이미드화율은 IR 스펙트럼으로부터 분석될 수 있다. 예를 들어, 상기 이미드화율은 기판 상에 가용성 폴리이미드 수지 및 저비점 용매를 포함한 수지 조성물을 형성하고 약 30C C의 온도로 열처리한 후에 IR 스펙트럼의 약 1350 내지 1400 cm-1 또는 약 1550 내지 1650 cm"1에서 나타나는 CN 밴드의 적분 강도를 기준으로 측정 및 분석될 수 있다. 즉, 당업자에게 잘 알려진 바와 같이, 이러한 약 3(xrc의. 고온 열처리를 통해 이미드화가 완전히 진행될 수 있다고 보고 이때의 CN 밴드의 적분 강도를 100%의 기준으로 잡아, 상술한 약 250°C 이하의 낮은 온도 하에서 경화 공정 (예를 들어, 각각 약 110 내지 130°C 및 약 220 내지 25C C에서의 프리베이크 및 하드베이크)을 진행한 후의 CN 밴드의 적분 강도를 하기 기준이 되는 적분 강도에 대한 비율로 측정하여, 이를 일 구현예의 이미드화율 값으로 할 수 있다.
이하의 실시예 및 비교예 등을 참고하면, 이전에 알려진 구성에 따라 폴리이미드 전구체 용액을 기판 상에 형성한 후, 상술한 낮은 은도 하에서 경화 공정을 진행하면, 이미드화율이 약 60% 내외에도 못 미치는 것으로 확인되었다. 이에 비해, 일 구현예의 절연재의 경우 가용성 폴리이미드 수지 및 저비점 용매 등을 포함하는 조성물을 기판 상에 형성한 후, 상술한 낮은 온도 하에서 경화 공정만을 진행하더라도 이미드화율이 약 90% 내외에 이를 수 있으므로, 약 300 °C 이상의 고온 경화 공정의 생략이 가능해지면, 낮은 온도의 열처리 또는 경화 공정만을 진행하더라도, 높은 이미드화율 및 우수한 물성을 나타낼 수 있음이 확인되었다.
한편, 상술한 일 구현예의 전자소자용 절연재는 비점 약 60 내지 120°C, 흑은 약 70 내지 100°C, 혹은 약 80 내지 90°C인 아민계 촉매를 잔류 촉매로서 포함할 수 있고, 이러한 아민계 촉매는, 예를 들어, Ν,Ν- 디에틸메틸아민, Ν,Ν-디메틸이소프로필아민, Ν-메틸피를리딘 (Ν-
Methylpyrrolidine), 피를리딘 (pyrrolidine), 및 트리에틸아민으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 이중에서도, 낮은 비점 및 이에 따른 효과적인 잔류 촉매 제거와, 높은 이미드화율 달성을 위한 촉매 활성 등을 고려하여, 약 89°C의 비점을 갖는 트리에틸아민 등을 아민계 촉매로 사용하여 잔류 촉매로 포함할 수 있다.
또한 상기 일 구현예의 절연재는 약 250 °C 이하의 낮은 온도에서 열처리 또는 경화 (예를 들어, 약 110 내지 13C C에서 프리베이크하고, 약 220 내지 250°C에서 하드베이크) 한 후에, 아웃개싱의 발생량이 가용성 폴리이미드 수지 총 중량에 대해 약 4ppm 이하, 예를 들어, 약 0 내지 3ppm, 흑은 약 0.1 내지 2.5ppm에 불과할 수 있고, 이러한 아웃개싱 중의 잔류 촉매에서 유래한 아웃개싱 발생량이 약 0.5ppm 이하, 예를 들어, 약 0 내지 0.5ppm, 혹은 약 0.05 내지 0.3ppm에 불과할 수 있다.
일 구현예의 절연재에 포함되는 가용성 폴리이미드 수지는 특정한 아민계 촉매, 즉, 상술한 낮은 비점을 갖는 아민계 촉매의 존재 하에, 높은 이미드화율을 갖도록 중합될 수 있다. 따라서, 이러한 가용성 폴리이미드 수지 및 저비점 용매 등을 포함하는 용액을 도포하고, 열처리 또는 경화 공정을 진행해 얻어진 일 구현예의 절연재는 이러한 특정 아민계 촉매를 잔류 촉매로서 포함할 수 있다. 그런데, 이러한 특정 아민계 촉매의 잔류 촉매는 낮은 비점을 갖기 때문에, 약 250°C 이하의 낮은 온도에서 열처리 또는 경화 공정을 진행하는 과정에서, 거의 모두 혹은 실질적으로 완전히 제거될 수 있다. 따라서, 일 구현예의 절연재는 잔류 촉매량이 실질적으로 검출 한계 미만이거나 이에 준하는 극미량으로 될 수 있을 뿐 아니라, 잔류 촉매량을 포함하는 아웃개싱 발생량 자체도 크게 낮아질 수 있다. 이러한 점에서, 일 구현예의 절연재는 고온 열처리 또는 경화 공정을 생략하더라도 더욱 우수한 물성을 나타낼 수 있고, 상기 아웃개싱에 따른 소자의 특성 저하를 보다 줄일 수 있다.
그리고, 상술한 바와 같이, 일 구현예의 전자소자용 절연재는 비점 약 130 내지 180 °C, 혹은 약 140 내지 160 °C인 저비점 용매를 잔류 용매로서 포함할 수 있고, 이러한 저비점 용매는, 예를 들어, 디에틸렌글리콜 메틸에틸에테르 디에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디에틸에테르, 디프로필렌글리콜 디메틸에테르, 메틸 3-메톡시 프로피오네이트, 에틸 3-에톡시 프로피오네이트, 프로필렌글리콜 메틸에테르 프로피오네이트, 디프로피렌글리콜 디메틸에테르, 사이클로핵사논 및 프로필렌글리콜모노메틸에테르아세테이트 (PGMEA)로 이루어진 군에서 선택된 1종 이상의 저비점 극성 용매를 포함할 수 있다. 이중에서도, 낮은 비점 및 이에 따른 효과적인 잔류 용매 제거와, 가용성 폴리이미드 수지로의 높은 전환율 달성 등을 고려하여, 약 145°C의 비점을 갖는 프로필렌글리콜모노메틸에테르아세테이트 (PGMEA) 등을 저비점 용매로 사용하여 잔류 용매로서 포함할 수 있다.
또한, 상기 일 구현예의 절연재는 약 250°C 이하의 낮은 온도에서 열처리 또는 경화 (예를 들어, 약 110 내지 130°C에서 프리베이크하고, 약
220 내지 250°C에서 하드베이크) 한 후에, 상기 잔류 용매에서 유래한 아웃개싱 발생량이 가용성 폴리이미드 수지 총 중량에 대해 약 O.lppm 이하, 예를 들어, 약 0 내지 0.05ppm, 혹은 약 0.01 내지 0.03ppm에 불과할 수 있다. 일 구체예에서, 상기 잔류 용매량은 검출 한계에 못 미칠 수 있다.
일 구현예의 절연재에 포함되는 가용성 폴리이미드 수지는 통상의 폴리이미드 수지와 달리 상술한 낮은 비점을 갖는 극성 용매에 대해서도, 우수한 용해도를 나타낼 수 있다. 따라서, 일 구현예의 절연재는 이러한 저비점 용매 내에서 가용성 폴리이미드 수지를 중합한 후, 이러한 중합 용액을 포함한 수지 조성물을 기판에 도포하고, 열처리 또는 경화 공정을 진행해 얻어질 수 있다. 따라서, 일 구현예의 절연재는 이러한 저비점 용매를 잔류 용매로서 포함할 수 있다. 그런데, 이러한 잔류 용매는 낮은 비점을 갖기 때문에, 약 250°C 이하의 낮은 온도에서 열처리 또는 경화 공정을 진행하는 과정에서, 거의 모두 혹은 실질적으로 완전히 제거될 수 있다. 따라서, 일 구현예의 절연재는 잔류 용매량이 실질적으로 검출 한계 미만이거나 이에 준하는 극미량으로 될 수 있을 뿐 아니라, 전체 아웃개싱 발생량 자체도 더욱 낮아질 수 있다. 이러한 점에서, 일 구현예의 절연재는 고은 열처리 또는 경화 공정을 생략하더라도 보다 우수한 물성을 나타낼 수 있고, 상기 아웃개성 및 잔류 용매 등에 따른 소자의 특성 저하를 더욱 즐일 수 있다.
한편, 상술한 일 구현예의 절연재에서, 상기 가용성 폴리이미드 수지는 상기 화학식 1의 반복 단위를 주된 반복 단위로 포함하는데, 이러한 반복 단위는 히드록시기 또는 카르복시기를 갖는 Y의 2가 작용기를 포함할 수 있다. 이러한 작용기의 존재 등으로 인해, 상기 가용성 폴리이미드 수지는 저비점 극성 용매에 대해 우수한 용해도를 나타낼 수 있고, 소정의 아민계 촉매 하에 저온 중합 및 경화시에도 우수한 이미드화율을 나타낼 수 있다. 이러한 Y의 예로는, 페놀성 히드록시기 또는 카르복시기를 갖는 2가 작용기, 예를 들어, 하기 화학식들로 이루어진 군에서 선택되는 2가 방향족 작용기를 들 수 있다:
Figure imgf000015_0001
또한, 상기 가용성 폴리 이미드 수지의 화학식 1의 반복 단위는 디언하이드라이드에서 유래한 4가의 작용기 X를 포함할 수 있는데, 이 러한 X의 예로는, 하기 화학식들로 이루어진 군에서 선택되는 4가 방향족 또는 지방족 작용기를 들 수 있다:
Figure imgf000016_0001
그리고, 상술한 가용성 폴리 이미드 수지는 상기 화학식 1의 반복 단위 의 1종 이상만을 포함하는 단일 중합체 또는 공증합체로 될 수도 있지만, 상기 화학식 1과 다른 종류의 반복 단위를 더 포함하는 공중합체로 될 수도 있다. 예를 들어, 상기 가용성 폴리 이 미드 수지는 하기 일반식 1의 폴리 이미드계 반복 단위를 더 포함할 수 있다. 다만, 상기 가용성 폴리 이미드 수지의 저비 점 용매에 대한 용해도나 경화 특성 등을 고려하여, 상술한 화학식 1의 반복 단위를 약 50몰0 /0 이상, 혹은 약 60몰0 /0 이상, 혹은 약 70몰 % 이상, 혹은 약 80몰0 /。 이상, 흑은 약 90몰 % 이상으로 포함할 수 있다:
[일반식 1]
Figure imgf000016_0002
상기 일반식 1 에서, X 및 p는 화학식 1 에서 정의된 바와 같으며, Y'는 히드록시기 또는 카르복시기를 갖지 않는 2 가의 지방족 또는 방향족 유기기를 나타낸다.
상기 일반식 1에서, 상기 Y'의 예들은 당업자에게 잘 알려져 있으며, 예를 들어, 하기 화학식들로 이루어진 군에서 선택된 것을 들 수 있다:
Figure imgf000017_0001
상술한 일 구현예의 전자소자용 절연재에서, 상기 가용성 폴리이미드 수지의 유리전이온도는 약 150 내지 400°C로 될 수 있고, 중량평균분자량은 약 1,000 내지 500,000, 흑은 약 5,000 내지 100,000로 될 수 있다.
또한, 상술한 전자소자용 절연재는, 상기 가용성 폴리이미드 수지를 포함한 수지 조성물, 예를 들어, 상기 가용성 폴리이미드 수지를 포함한 감광성 수지 조성물 또는 프린팅용 잉크 조성물올 기판에 도포하고, 열처리 또는 경화 공정을 진행하여 형성될 수 있다. 이에 따라, 상기 절연재는 상기 감광성 수지 조성물 또는 프린팅용 잉크 조성물의 통상적인 성분에 따라, 추가적인 첨가제 또는 가교제 등을 더 포함할 수 있다. 예를 들어, 상기 절연재는 잔류 광산 발생제, 광활성화합물 및 /또는 가교제를 더 포함할 수 있으며, 이러한 가교제와 가용성 폴리이미드 수지에서 유래한 가교 구조를 포함할 수 있다. 이외에도, 상기 감광성 수지 조성물 또는 프린팅용 잉크 조성물의 통상적인 성분에서 유래한 다양한 첨가제 등을 더 포함할 수 있음은 물론이다.
상술한 전자소자용 절연재는 실질적으로 약 300 °C 이상의 고온 열처리 또는 경화 공정이 생략된 상태에서 얻어지더라도, 낮은 아웃개싱량 및 높은 이미드화율 등을 나타낼 수 있고, 특히, 소자의 신뢰성에 악영향을 미치는 물 또는 알코올에서 유래한 아웃개싱량을 극소화할 수 있다. 따라서, 이러한 절연재는 OLED, LCD 또는 반도체 소자 등의 다양한 전자소자의 절연재로 적용될 수 있고, 특히 OLED 소자 등 유기물을 포함하여 열에 취약한 특성을 갖는 전자소자에 바람직하게 적용되어 우수한 물성을 나타낼 수 있다. 또한, 상기 일 구현예의 절연재는 유리 기판 또는 금속 기판 상에 형성될 수 있을 뿐 아니라, 상대적으로 열에 취약한 플라스틱 기판 상에도 바람직하게 형성될 수 있으며, 전자소자에 포함되는 다양한 형태의 절연재, 예를 들어, 절연막, 절연 필름, 감광성 필름, 감광막, 기판 또는 격벽 등으로서 적합하게 적용될 수 있다.
한편, 상술한 전자소자용 절연재는 저비점 용매 내에서, 소정의 저비점 아민계 촉매의 존재 하에 히드록시기 또는 카르복시기를 포함하는 디아민과, 디언하이드라이드를 중합시켜 상술한 가용성 폴리이미드 수지를 얻고, 이러한 가용성 폴리이미드 수지가 저비점 용매에 녹아 있는 용액을 기판 상에 도포한 후, 약 250 °C 이하의 낮은 온도에서 열처리 (또는 경화)함으로서 제조될 수 있다.
즉, 이러한 제조 공정에 따르면, 소정의 저비점 아민계 촉매를 사용해 중합 공정을 진행함으로서 높은 이미드화율을 갖는 가용성 폴리이미드 수지를 얻은 후, 이의 용액을 기판에 도포하고 저온 열처리 (또는 경화) 공정을 진행함으로서, 절연재를 형성하게 된다. 이러한 절연재의 형성 공정에서는, 상기 가용성 폴리이미드 수지를 얻은 후 이를 기판에 도포 및 저온 열처리 (또는 경화) 공정을 진행하여 절연재를 형성하므로, 알코올 등에서 유래한 부산물이 발생하여 절연재 내에 잔류할 우려를 실질적으로 없앨 수 있다. 따라서, 상술한 제조 공정에 의해 아웃개성의 총 발생량 및 물 또는 알코올 등에서 유래한 아웃개싱의 발생량이 극소화된 일 구현예의 절연재가 얻어질 수 있다.
더 나아가, 상기 절연재 제조 공정에세 상기 아민계 촉매 및 용매는 모두 열처리 (또는 경화) 공정의 온도보다 낮은 비점을 가지므로, 이러한 저온 열처리 (또는 경화) 공정에서 거의 모두 혹은 실질적으로 완전히 제거될 수 있고, 상기 가용성 폴리이미드 수지는 특정 아민계 촉매의 사용으로 중합 직후부터 절연재 형성시까지 약 70% 이상의 높은 이미드화율을 나타낼 수 있다. 그 결과, 약 30C C 이상의 고온 열처리 또는 경화 공정이 생략되고, 상기 가용성 폴리이미드 수지의 용액이 기판 상에 도포된 후 약 250°C 이하의 저온 열처리 또는 경화 공정만이 진행되더라도, 높은 이미드화율, 낮은 잔류 용매량 및 낮은 잔류 촉매량 등과 이에 따른 우수한 물성을 나타내는 전자소자용 절연재가 얻어질 수 있는 것으로 확인되었다.
이하, 이러한 제조 방법을 각 단계별로 보다 구체적으로 설명하기로 한다.
먼제 상기 제조 방법에서는, 저비점 용매 내에서, 소정의 저비점 아민계 촉매의 존재 하에, 히드록시기 또는 카르복시기를 포함하는 디아민과, 디언하이드라이드를 중합시켜 상술한 가용성 폴리이미드 수지를 제조한다. 이때, 상기 저비점 유기 용매는 비점 약 130 내지 180°C, 흑은 약
140 내지 16C C을 갖는 극성 유기 용매를 사용할 수 있으며, 이의 예로는 디에틸렌글리콜 메틸에틸에테르, 디에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디에틸에테르, ,디프로필렌글리콜 디메틸에테르, 메틸 3- 메톡시 프로피오네이트, 에틸 3-에톡시 프로피오네이트, 프로필렌글리콜 메틸에테르 프로피오네이트, 디프로피렌글리콜 디메틸에테르, 사이클로핵사논 또는 프로필렌글리콜모노메틸에테르아세테이트 (PGMEA) 등을 들 수 있다. 이외에도, 상술한 비점 범위를 갖는 다양한 극성 유기 용매를 사용할 수 있고, 이들 중에서 선택된 2종 이상의 흔합 용매를 사용할 수도 있다.
만일, 상기 유기 용매의 비점이 약 130°C 미만인 경우 폴리이미드를 만드는데 층분한 에너지가 되지 않아 전환율이 떨어질 수 있으며, 또한, 용매의 비점이 약 180°C를 초과하는 경우 절연재의 형성을 위한 열처리 (또는 경화) 공정에서 잔류 용매가 제대로 제거되지 못할 수 있다. 또한, 상기 저비점 용매는 디아민과 디언하이드라이드를 포함하는 총 단량체 100 중량부에 대하여 약 20 내지 2000 중량부, 혹은 약 100 내지 1000 중량부, 혹은 약 200 내지 400 중량부로 사용될 수 있다. 상기 용매의 함량이 지나치게 낮을 경우, 각 단량체나 가용성 폴리이미드 수지를 층분히 용해시키지 못할 수 있고, 용매의 함량이 지나치게 높을 경우, 중합 후 가용성 폴리이미드 수지의 용액을 기판에 도포할 때 층분한 두께의 도막을 형성하지 못할 수 있다.
그리고「상기 저비점 아민계 촉매로는, 비점이 약 60 내지 120°C, 흑은 약 70 내지 10CTC, 혹은 약 80 내지 90°C인 아민계 촉매를 사용할 수 있다. 이러한 촉매의 비점이 지나치게 낮은 경우, 중합 도중 상당량이 증발될 수 있어 .적절하지 않으며, 촉매의 비점이 지나치게 높은 경우, 절연재의 형성을 위한 열처리 (또는 경화) 공정에서 잔류 촉매가 제대로 제거되지 못하고, 부반웅을 일으킬 수 있어 적절하지 않다.
상기 저비점 아민계 촉매로는, 낮은 온도에서 효과적인 이미드화가 가능하면서도 반응 후 제거가 용이한 촉매를 사용할 수 있는데, 이러한 아민계 촉매의 예로는, N, N-디에틸메틸아민, Ν,Ν-디메틸이소프로필아민, Ν- 메틸피를리딘 (N-Methylpyrralidine), 피롤리딘 (pyrrolidine) 및 트리에틸아민으로 이루어진 그룹으로부터 선택되는 촉매를 들 수 있다.
이러한 촉매는 상기 디아민과 디언하이드라이드를 포함하는 총 단량체 100 중량부에 대하여 약 0.5 내지 30 중량부, 혹은 약 2 내지 20 중량부, 혹은 약 5 내지 10 중량부로 사용될 수 있다. 상기 촉매의 함량이 지나치게 낮을 경우, 폴리이미드 수지로의 전환율이 떨어질 수 있고, 촉매 함량이 지나치게 높을 경우, 잔류 촉매가 제대로 제거되지 못하고, 부반응을 일으킬 수 있다.
한편, 상술한 가용성 폴리 이미드 수지를 얻기 위한 디아민 및 디 언하이드라이드의 단량체로는 각각 히드록시기 또는 카르복시 기를 갖는 디아민과, 통상적 인 디 언하이드라이드를 사용할 수 있다.
상기 디 언하이드라이드의 예로는, 무수 피로멜리트산, 3,3',4,4'- 비페닐테트라카르복실산 이무수물, 부탄 -1,2,3,4-테트라카르복실산 이무수물ᅳ 3,3',4,4'-벤조페논테트라카르복실산 이무수물, 3,3',4,4'- 디페닐에 테르테트라카르복실산 이무수물, 3,3',4,4'- 디페닐술폰테트라카르복실산 이무수물, 2,2-비스 (3,4- 다카르복시페닐)핵사플루오로이소프로필리 덴 이무수물, 3,3',4,4'- 비페닐테트라카르복실산 이무수물, 3,3',4,4'-벤조페논테트 라카르복실산 이무수물, 4,4'-핵사플루오로이소프로필리 덴디프탈산 무수물 3,3',4,4'- 디페닐술폰테트라카르복실산 이무수물, 1 ,2,3,4-시클로부탄테트라카르복실산 이무수물, 1 ,2-디 메틸 -1 ,2,3,4-시클로부탄테트라카르복실산 이무수물, 1 ,2,3,4- 테트라메틸 -1 ,2,3,4-시클로부탄테트라카르복실산 이무수물, 1 ,2,3,4- 시클로펜탄테트라카르복실산 이무수물, 1 ,2,4,5-시클로핵산테트라카르복실산 이무수물, 3,4-디카르복시 -1 ,2,3,4-테트라히드로 -1-나프탈렌 숙신산 이무수물, 5-(2ᅳ5-디옥소테트라히드로푸릴) -3-메틸 -3-시클로핵센 -1 ,2-디카르복실산 이무수물, 2,3,5-트리카르복시 -2-시클로펜탄 아세트산 이무수물, 비시클로 [2.2.2]옥토 -7-엔 -2,3,5ᅳ 6-테트라카르복실산 이무수물, 2,3,4,5- 테트라히드로푸란테트라카르복실산 이무수물 및 3,5,6-트리카르복시 -2- 노르보르난 아세트산 이무수물로 이루어진 그룹으로부터 선택되는 1종 이상의 산무수물이나 이들의 유도체를 들 수 있다.
또한, 상기 히드록시 기 또는 카르복시 기를 갖는 디 아민의 예로는,
Figure imgf000022_0001
및 3,5-디아미노벤조산으로부터 유래되는 2가의 유기기 등 페놀성 수산기, 카르복실기 또는 수산기를 포함하는 2가의 유기기를 갖는 디아민을 들 수 있다. 이러한 디아민과, 디언하이드라이드의 중합을 통해 가용성 폴리이미드 수지를 제조함으로서, 상술한 저비점 용매 등에 대해서도 우수한 용해도를 갖는 가용성 폴리이미드 수지의 제조가 가능해지며, 특히, 이러한 중합에 있어 저비점 아민계 촉매를 사용함으로서, 가용성 폴리이미드 수지의 용액올 기판 상에 형성한 후 저온 열처리 (또는 경화) 공정만을 진행하더라도, 높은 이미드화율을 나타내는 일 구현예의 절연재를 형성할수 있게 된다. 부가하여, 추가적인 반복 단위, 예를 들어, 상술한 일반식 1의 반복 단위를 더 포함하는 공중합체 형태로 가용성 폴리이미드 수지를 얻고자 하는 경우, 상기 히드록시기 또는 카르복시기를 갖는 디아민과 함께, 추가적인 디아민을 사용하여 디언하이드라이드와 공중합할 수 있다. 이때, 사용할 수 있는 디아민은 특히 한정되지 않으며, 폴리이미드 수지의 형성을 위해 사용 가능한 것으로 알려진 임의의 디아민을 사용할 수 있다.
이러한 디아민의 예로는, 페닐렌디아민, m-페닐렌디아민, 2,4,6- 트리메틸 -1,3-페닐렌디아민, 2,3,5,6-테트라메틸 -1,4-페닐렌디아민, 4,4'- 디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐에테르, 4,4'-디아미노디페닐설피드, 4,4'-디아미노디페닐메탄, 3,4'-디아미노디페닐메탄ᅳ 3,3'-디아미노디페닐메탄, 4,4·-메틸렌 -비스 (2-메틸아닐린), 4,4·-메틸렌 -비스 (2,6- 디메틸아닐린), 4,4'-메틸렌 -비스 (2,6-디에틸아닐린), 4,4'-메틸렌 -비스 (2- 이소프로필 -6-메틸아닐린), 4,4'-메틸렌 -비스 (2,6-디이소프로필아닐린), 4,4'- 디아미노디페닐술폰, 3,3'-디아미노디페닐술폰, 벤지딘, 0-를리딘, m-를리딘, 3,3',5,5'-테트라메틸벤지딘, 2,2'-비스 (트리플루오로메틸)벤지딘, 1,4-비스 (4- 아미노페녹시)벤젠, 1,3-비스 (4-아미노페녹시)벤젠, 1,3-비스(3- 아미노페녹시)벤젠, 비스 [4-(4-아미노페녹시)페닐]술폰, 비스 [4-(3- 아미노페녹시)페닐]술폰, 2,2-비스 [4-(4-아미노페녹시)페닐]프로판, 및 2,2- 비스 [4-(3-아미노페녹시)페닐]프로판으로 이루어진 그룹으로부터 선택된 1종 이상의 방향족 디아민; 또는 1,6-핵산디아민, 1,4-시클로핵산디아민, 1,3- 시클로핵산디아민, 1,4-비스 (아미노메틸)시클로핵산, 1,3- 비스 (아미노메틸)시클로핵산, 4,4'-디아미노디시클로핵실메탄, 및 4,4'- 디아미노 -3,3'-디메틸디시클로핵실메탄 4,4'-디아미노 -3,3'- 디메틸디시클로핵실메탄, 1,2-비스 -(2-아미노에록시)에탄, 비스 (3- 아미노프로필)에테르, 1,4-비스 (3-아미노프로필)피페라진, 3,9-비스 (3- 아미노프로필 )-2,4,8,10-테트라옥사스피로 [5.5]-운데칸, 1,3-비스 (3- 아미노프로필)테트라메틸디실록산으로 이루어진 그룹으로부터 선택된 1종 이상의 지방족 디아민을 들 수 있다.
한편, 상술한 디아민 및 디언하이드라이드를 포함하는 각 단량체의 중합은 약 120 내지 200°C, 혹은 약 130 내지 180°C, 흑은 약 140 내지 160°C의 낮은 온도에서 수행될 수 있다. 이러한 조건 하에, 가용성 폴리이미드 수지를 제조하는 경우, 폴리이미드 수지로의 전환율은 약 90% 이상, 예를 들어, 약 90 내지 100%에 이를 수 있으며, 중합된 폴리이미드 수지 내의 잔류 촉매량은 총 폴리이미드 수지 중 약 0.001~0.1중량%로 될 수 있다.
상술한 방법으로 중합 및 제조된 가용성 폴리이미드 수지는 그 자체로 높은 이미드화율을 가지므로, 추가적 이미드화율 증가의 필요성이 크지 않고, 약 25C C 이하의 온도, 혹은 약 250°C 이하의 온도, 혹은 약 150 내지 250 °C의 온도, 혹은 약 23C C 이하의 온도, 혹은 약 200°C 이하의 온도에서 저은 경화가 진행되어 높은 이미드화율을 갖는 절연재로 형성될 수 있다. 그 결과, 기판 상에서 이미드 율을 추가적으로 증가시킬 필요성이 거의 없어지기 때문에, 절연재 내에 알코올 등의 부산물이 발생하여 잔류할 우려를 실질적으로 극소화하거나 없앨 수 있고, 물 또는 알코을에서 유래한 아웃개싱 발생량을 극소화할 수 있다. 또, 상기 가용성 폴리이미드 수지는 상술한 저비점 용매 등에 대해서도 우수한 용해도를 나타낼 수 있다.
따라서, 종래 약 300°C 이상의 고온에서 경화 또는 열처리 공정을 진행하야 하는 공정상 어려움이나, 열에 취약한 공정에는 사용할 수 없는 단점이나, 혹은 고온 경화를 거치더라도 최종 형성된 절연재 등의 이미드화율이 낮아 물성이 저하되는 문제점 등을 해결할 수 있다. 또한, 상기 저온 경화를 진행하는 과정에서, 저비점 용매나 저비점 촉매 또한 거의 모두 혹은 실질적으로 완전히 제거될 수 있으므로, 저온 열처리 또는 경화 공정만을 진행하더라도, 우수한 물성을 갖는 절연재가 제공될 수있다.
한편, 상술한 중합 공정을 통해 가용성 폴리이미드 수지를 얻은 후에는, 이러한 수지가 저비점 용매에 용해된 용액, 예를 들어, 이러한 용액 상태의 감광성 수지 조성물 또는 프린팅용 잉크 조성물을 기판에 도포하고, 열처리 또는 경화 공정올 진행하여 전자소자용 절연재를 형성할 수 있다. 이때, 상기 감광성 수지 조성물 또는 프린팅용 잉크 조성물은 추가적인 첨가제나 가교제, 광활성화합물 또는 광산 발생제 등을 더 포함할 수 있고, 이들 각 성분의 종류는 당업자에게 잘 알려진 바와 같다.
또한, 상기 열처리 또는 경화 공정은 약 250°C 이하의 온도, 흑은 약
150 내지 25C C의 온도, 혹은 약 23( C 이하의 온도, 혹은 약 200°C 이하의 온도에서 진행할 수 있고, 이러한 저온 열처리 또는 경화 공정을 진행하더라도, 높은 이미드화율 및 낮은 아웃개싱 발생량 등을 갖는 절연재가 제조될 수 있음은 이미 상술한 바와 같다. 또한, 이러한 저온 열처리 공정 등에 의해 저비점 용매 등이 효과적으로 제거되어 잔류 용매량 또한 최소화될 수 있다. 일 구체예에서, 상기 열처리 또는 경화 공정은 프리베이크 공정 및 하드베이크 공정의 2 단계로 진행될 수 있고, 이들 프리베이크 공정 및 하드베이크 공정은 각각 약 110 내지 130°C 및 약 220 내지 250°C에서 진행될 수 있다. 이하, 발명의 이해를 돕기 위하여 몇 가지 실시예를 제시하나, 하기 실시예는 발명을 예시하는 것일 뿐 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 실시예 1: 저온 폴리이미드 중합예
100ml 등근바닥 플라스크에 2,2-비스 (3-아미노 -4- 하이드록시페닐)핵사플루오로프로판 12 lg과 프로필렌글리콜모노메틸에테르아세테이트 (PGMEA; 비점: 약 145°C) 60g을 순차적으로 투입하고 천천히 교반하여 완전히 용해시킨 후, 상기 플라스크를 물중탕하여 실온으로 유지하면서 3,3',4,4'-디페닐에테르테트라카르복실산 이무수물 10.2g을 천천히 첨가하였다. 상기 흔합용액에 11g의 를루엔과 4g의 트리에틸아민 (비점: 약 89°C)을 넣고 딘 -스탁 증류장치 (dean-stark distillation)를 통하여 물을 제거할 수 있도록 설치한 후 150°C에서 5시간 동안 환류시켰다. 딘 -스탁 증류장치의 물을 제거한 후 촉매의 제거를 위하여 2시간 추가 환류시킨 후 상온 냉각하여 가용성 폴리이미드 수지 용액을 얻을 수 있었다.
IR을 통하여 폴리이미드 생성 피크를 확인 하였고, GPC를 통하여 측정된 상기 폴리이미드 수지의 중량평균분자량이 40,000이고, 다분산지수 (p y disperse index, P이)는 1.5로 확인되었다. 실시예 2: 저온 폴리이미드 중합예
100ml 둥근바닥 플라스크에 2,2-비스 (3-아미노 -4- 하이드록시페닐)핵사플루오로프로판 12.1g과 프로필렌글리콜모노메틸에테르아세테이트 (PGMEA; 비점: 약 145°C) 60g을 순차적으로 투입하고 천천히 교반하여 완전히 용해시킨 후, 상기 플라스크를 물중탕하여 실온으로 유지하면서 부탄 -1,2,3,4-테트라카르본산 이무수물 6.5g을 천천히 첨가하였다. 상기 흔합용액에, 11g의 를루엔과 4g의 트리에틸아민 (비점: 약 89°C)을 넣고 딘 -스탁 증류장치 (dean-stark distillation)를 통하여 물을 제거할 수 있도록 설치 한 후 15C C에서 5시간 동안 환류시켰다. 딘 -스탁 증류장치의 물을 제거한 후 촉매의 제거를 위하여 2시간 추가 환류시 킨 후 상온 넁각하여 가용성 폴리 이미드 수지 용액올 얻을 수 있었다.
IR을 통하여 폴리 이미드 생성 피크를 확인 하였고, GPC를 통하여 측정된 상기 폴리 이미드 수지의 중량평균분자량이 35,000이고, 다분산지수 (poly disperse index, P이)는 1.7로 확인되 었다. 비교예 1 : 폴리아믹산에스테르 (폴리 이 미드 전구체) 중합예
100ml 등근바닥 플라스크에 2,2-비스 (3-아미노 -4- 하이드록시페닐)핵사플루오로프로판 12.1g과 감마부티로락톤 (비 점 : 약 204 °C ) 30g을 순차적으로 투입하고 천천히 교반하여 완전히 용해시 켰다. 반응기 의 자켓온도를 10°C로 유지하며, 30g의 감마부티로락톤에 용해시 킨 4,4'-옥시 비스 [2- (클로로카보닐)]메틸벤조에 이트 13.6g을 천천히 첨가하며 교반시 켰다. 상기 혼합용액을 2 시간 동안 충분히 반응시 킨 후 20 시간 동안 실온에서 더 교반하여 폴리아믹산에스테르를 제조하였다. 반응 생성물을 물에 부어 침 전시 킨 후 걸러진 고체 생성물을 진공조건 50 °C에서 건조시 켰다. 건조된 고체 생성물을 감마부티로락톤 50g에 용해시켜 폴리 아믹산에스테르 용액을 제조하였다.
IR을 통하여 폴리아믹산에스테르 생성 피크를 확인 하였고, GPC를 통하여 측정된 상기 폴리아믹산에스테르의 중량평균분자량이 44,000이고, 다분산지수 (poly disperse index, PDI)는 1.7로 확인되 었다. 비교예 2: 폴리 벤족사졸 전구체 (폴리 이 미드 전구체) 중합예
100ml 둥근바닥 플라스크에 2,2-비스 (3-아미노 -4- 하이드록시페닐)핵사플루오로프로판 12.1g과 N-메틸 -2-피를리돈 (비 점 : 약 202 °C ) 30g을 순차적으로 투입하고 천천히 교반하여 완전히 용해시 켰다. 반응기의 자켓온도를 5 °C로 유지하며 , 6.7g의 테레프탈로일 클로라이드를
30g의 N-메틸 -2-피를리돈에 용해하여 천천히 첨가하며 교반시 켰다. 상기 흔합용액을 1 시간 동안 교반하여 층분히 반응시킨 후 촉매량의 피리딘을 투입한 후 4 시간 동안 실온에서 더 교반하여 폴리벤족사졸 전구체를 제조하였다.
IR을 통하여 폴리벤족사졸 전구체의 생성 피크를 확인 하였고, GPC를 통하여 측정된 상기 폴리벤족사졸 전구체의 중량평균분자량이 35,000이고, 다분산지수 (pdy disperse index, P이)는 1.6으로 확인되었다. 실험예 1: 이미드화율 평가
- 각 실시예 및 비교예에서 제조된 각 중합체 용액을 실리콘 웨이퍼 상에 스핀코팅하고, 120°C, 4분간 프리베이크와, 230 °C, 1시간 하드베이크를 각각 진행하였다. 진행 후, 각각에 대한 FT-IR 을 이용하여 이미드화율을 측정하였다.
- 이미드화율의 측정에 있어서는, 각 시료의 300°C, 1시간 경화 시료의 CN band(IR 스펙트럼의 약 1350 내지 1400 cm-1 (실시예 1, 2 및 비교예 1) 또는 약 1550 내지 1650 cm-1 (비교예 2)에서 나타남) 적분값을 이미드화율 100%로 보아 기준으로 잡고, 상기 프리베이크 및 하드베이크 진행에 의해 경화한 시료의 CN band 적분값을 기준에 대한 비율로 측정하여 각 시료의 이미드화율을 확인하였다.
[표 1]
Figure imgf000027_0001
상기 표 1을 참고하면, 실시예 1 및 2와 같이 트리에틸아민과 같은 아민계 촉매의 존재 하에, 히드록시기를 갖는 디아민 및 디언하이드라이드를 반웅시켜 가용성 폴리이미드 수지를 제조하는 경우, 중합시부터 약 90% 이상의 높은 이미드화율을 갖게 제조되는 것으로 확인되었다. 따라서, 이러한 가용성 폴리이미드 수지의 용액을 기판에 도포한 후, 약 250°C 이하의 낮은 온도에서 열처리 또는 경화 공정만을 진행하더라도, 높은 이미드화율을 갖는 전자소자용 절연재가 얻어질 수 있음이 확인되었다.
이에 비해, 비교예 1 및 2와 같이, 트리에틸아민 등의 촉매를 사용하지 않고 폴리이미드 수지 전구체를 중합한 후, 이의 용액을 기판에 도포하고 저온 열처리 또는 경화를 진행하여 절연재를 형성하는 경우, 이미드화율이 최대 61%에 불과함이 확인되었고, 이로 인해 실시예에 비해 절연재의 물성이 열악하게 됨이 확인되었다. 또, 비교예 1 및 2에 따라 높은 이미드화율 및 우수한 물성을 갖는 절연재를 얻기 위해서는, 약 300 °C 이상의 높은 온도에서 별도 경화 공정이 필수적으로 필요함이 확인되었다. 실험예 2: 아웃개성량분석
실시예 및 비교예에서 제조된 각 중합체 용액을 실리콘 웨이퍼 상에 스핀코팅하고, 120°C, 4분간 프리베이크를 진행하여 2/ 두께의 박막을 얻었다. 이러한 박막을 230°C, 1시간 경화한후, Purge&Trap-GC/MSD 장비를 이용해 퍼지 온도 250°C에서 퍼지하고, -40°C의 온도에서 1 시간 동안 아웃개싱을 포집하여 아웃개싱의 정량 및 정성 분석을 진행하였다. 그 결과는 하기 표 2와 같았다.
[표 2]
Figure imgf000028_0001
상기 표 2를 참조하면, 실시예 1 및 2에서 형성된 절연재의 경우, 약 250 °C 이하에서 저온 경화 공정을 진행하여 형성되었음에도, 전체 아웃개싱량이 낮을 뿐 아니라, 소자의 신뢰성에 악영향을 미치는 물 /메탄을에서 유래한 아웃개싱량이 실질적으로 없는 것으로 확인되었다. 또한, 상기 실시예의 절연재는 잔류 촉매 또는 잔류 용매에서 기인한 아웃개싱량 자체도 매우 낮은 것으로 확인되었다.
이는 실시예 1 및 2에서 높은 이미드화율을 갖는 가용성 폴리이미드 수지를 중합 후 이를 기판 상에 형성하여 절연재를 형성함에 따라, 절연재 내에서 물 또는 알코올의 부산물이 발생할 우려가 실질적으로 없고, 또한, 저비점 용매 및 촉매가 사용됨에 따라, 저온 경화 공정에서 잔류 촉매 및 잔류 용매가 거의 모두 제거되었기 때문으로 보인다. 이 때문에, 절연재에 잔류하는 물 /알코올, 촉매 및 용매가 극소화되며, 각각에서 유래한 아웃개싱 발생량 및 총 아웃개싱 발생량이 최소화되어 소자의 신뢰성을 보다 향상시킬 수 있는 것으로 보인다.
이에 비해, 비교예 1 및 2의 절연재의 경우, 저온 경화 공정을 통해서는 잔류 용매 및 촉매가 제대로 제거되지 않아 상당량의 아웃개싱이 발생하고, 이중 상당 부분이 잔류 촉매 또는 잔류 용매에 기인한 것으로 확인되었다. 더구나, 비교예 1의 경우, 기판 상의 이미드화 과정에서 메탄올 등의 부산물이 발생 및 잔류하고, 이로부터 유래한 아웃개싱이 다량 발생하여 소자의 신뢰성에 악영향을 미칠 수 있는 것으로 확인되었다.

Claims

【특허청구범위】 【청구항 1】 하기 화학식 1의 반복 단위를 포함한 가용성 폴리이미드 수지와, 비점이 130 내지 180 °C인 저비점 용매를 포함한 잔류 용매를 포함하고, 250 °C 이하의 온도에서 경화한 후에, 아웃개싱의 발생량이 가용성 폴리이미드 수지 총 중량에 대해 4ppm 이하이고, 물 또는 알코올에서 유래한 아웃개싱 발생량이 O.lppm 미만인 전자소자용 절연재:
[화학식 1]
Figure imgf000030_0001
상기 화학식 1 에서, p 는 2 내지 500 의 정수이고, X는 4 가의 유기기이고, Y는 하나 이상의 히드록시기 또는 카르복시기를 갖는 2 가의 유기기이다.
【청구항 2】
제 1 항에 있어서, 상기 아웃개싱 발생량은 기판 상에 가용성 폴리이미드 수지 및 저비점 용매를 포함한 수지 조성물을 형성하고, 110 내지 13C C에서 프리베이크하고, 220 내지 250°C에서 하드베이크한 후에, 퍼지 온도 240 내지 260°C에서 퍼지하고, -30 내지 -50 °C의 온도에서 1 내지 1.5 시간 동안 포집된 아웃개싱의 양으로 측정된 것인 전자소자용 절연재.
【청구항 3】
제 1 항에 있어서, 저비점 용매는 디에틸렌글리콜 메틸에틸에테르, 디에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디에틸에테르, 디프로필렌글리콜 디메틸에테르, 메틸 3-메톡시 프로피오네이트, 에틸 3- 에톡시 프로피오네이트, 프로필렌글리콜 메틸에테르 프로피오네이트, 디프로피렌글리콜 디메틸에테르, 사이클로핵사논 및 프로필렌글리콜모노메틸에테르아세테이트 (PGMEA)로 이루어진 군에서 선택된 1종 이상을 포함하는 전자소자용 절연재.
【청구항 4】
제 1 항에 있어서, 상기 잔류 용매에서 유래한 아웃개성 발생량이 0.1 ppm 이하인 전자소자용 절연재.
【청구항 5]
제 1 항에 있어서, 비점 60 내지 12CTC인 아민계 촉매를 잔류 촉매로서 포함하는 전자소자용 절연재.
【청구항 6】
제 5 항에 있어서, 아민계 촉매는 Ν,Ν-디에틸메틸아민, Ν,Ν- 디메틸이소프로필아민 Ν-메틸피롤리딘 (N-Methylpyrrolidine), 피롤리딘 (pyrralidine), 및 트리에틸아민으로 이루어진 군에서 선택된 1종 이상을 포함하는 전자소자용 절연재.
【청구항 7】
제 5항에 있어서, 상기 잔류 촉매에서 유래한 아웃개싱 발생량이
0.5ppm 이하인 전자소자용 절연재.
【청구항 8】
제 1 항에 있어서, 상기 화학식 1의 Y는 하기 화학식들로 이루어진 군에서 선택된 1종 이상인 전자소자용 절연재:
Figure imgf000031_0001
Figure imgf000032_0001
【청구항 9】
제 1 항에 있어서, 상기 화학식 1의 X는 하기 화학식들로 이루어진 군에서 선택된 1종 이상인 전자소자용 절연재:
Figure imgf000033_0001
【청구항 10】
제 1 항에 있어서, 상기 가용성 폴리이미드 수지의 유리전이온도는 150 내지 4CK C인 전자소자용 절연재.
【청구항 11】
제 1 항에 있어서, 상기 가용성 폴리이미드 수지의 중량평균분자량은 1,000 내지 500,000 인 전자소자용 절연재.
【청구항 12]
제 1 항에 있어서, 플라스틱 기판 상에 형성되는 전자소자용 절연재. 【청구항 13]
제 1 항에 있어서, OLED, LCD 또는 반도체 소자에 사용되는 전자소자용 절연재.
PCT/KR2013/000248 2012-01-13 2013-01-11 전자소자용 절연재 WO2013105814A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380003347.5A CN103890859B (zh) 2012-01-13 2013-01-11 用于电子器件的绝缘材料
EP13735630.9A EP2806428A4 (en) 2012-01-13 2013-01-11 INSULATING MATERIAL FOR AN ELECTRONIC DEVICE
US14/349,641 US20140256876A1 (en) 2012-01-13 2013-01-11 Insulation material for electronic device
JP2014540977A JP5825652B2 (ja) 2012-01-13 2013-01-11 電子素子用絶縁材

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120004389 2012-01-13
KR10-2012-0004389 2012-01-13
KR1020130003202A KR101363203B1 (ko) 2012-01-13 2013-01-11 전자소자용 절연재
KR10-2013-0003202 2013-01-11

Publications (2)

Publication Number Publication Date
WO2013105814A2 true WO2013105814A2 (ko) 2013-07-18
WO2013105814A3 WO2013105814A3 (ko) 2013-09-19

Family

ID=48994708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000248 WO2013105814A2 (ko) 2012-01-13 2013-01-11 전자소자용 절연재

Country Status (7)

Country Link
US (1) US20140256876A1 (ko)
EP (1) EP2806428A4 (ko)
JP (1) JP5825652B2 (ko)
KR (1) KR101363203B1 (ko)
CN (1) CN103890859B (ko)
TW (1) TWI473837B (ko)
WO (1) WO2013105814A2 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016076481A (ja) * 2014-10-02 2016-05-12 セントラル硝子株式会社 有機エレクトロルミネッセンス用基板およびそれを用いた有機エレクトロルミネッセンスディスプレイ
SG11201708251VA (en) * 2015-04-15 2017-11-29 Toray Industries Heat-resistant resin composition, method for manufacturing heat-resistant resin film, method for manufacturing interlayer insulation film or surface protective film, and method for manufacturing electronic component or semiconductor component
KR102429886B1 (ko) * 2017-11-30 2022-08-04 엘지디스플레이 주식회사 유기발광 표시장치
JP7052384B2 (ja) * 2018-01-31 2022-04-12 東レ株式会社 仮保護膜用樹脂組成物、およびこれを用いた半導体電子部品の製造方法
KR20210021420A (ko) 2019-08-16 2021-02-26 삼성전자주식회사 저유전체 물질 층을 포함하는 반도체 소자 형성 방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927736A (en) * 1987-07-21 1990-05-22 Hoechst Celanese Corporation Hydroxy polyimides and high temperature positive photoresists therefrom
US5527862A (en) * 1993-08-25 1996-06-18 Dow Corning Asia, Ltd. Diorganopolysiloxane-rigid aromatic polymer compositions and preparation thereof
JPH09272739A (ja) * 1996-04-04 1997-10-21 Sumitomo Bakelite Co Ltd ポリイミド樹脂
EP1260538B1 (en) * 1999-10-06 2010-12-01 Kaneka Corporation Process for producing polyimide resin
US6451955B1 (en) * 2000-09-28 2002-09-17 Sumitomo Bakelite Company Limited Method of making a polyimide in a low-boiling solvent
EP1469037B1 (en) * 2002-01-15 2008-08-06 PI R & D Co., Ltd. Solvent-soluble block copolyimide composition and process for producing the same
KR101252875B1 (ko) * 2005-01-21 2013-04-09 미츠비시 가스 가가쿠 가부시키가이샤 폴리이미드 수지, 폴리이미드 필름 및 폴리이미드 적층체
JP5212596B2 (ja) * 2006-05-24 2013-06-19 日産化学工業株式会社 有機トランジスタ
KR100963376B1 (ko) * 2007-02-09 2010-06-14 주식회사 엘지화학 폴리이미드 제조방법 및 이에 의하여 제조된 폴리이미드
KR101588364B1 (ko) * 2007-12-14 2016-01-25 닛산 가가쿠 고교 가부시키 가이샤 폴리히드록시이미드의 제조방법 및 그 제조방법으로부터 얻어진 폴리히드록시이미드를 함유하는 포지티브형 감광성 수지 조성물
JP5796712B2 (ja) * 2009-04-23 2015-10-21 日産化学工業株式会社 ポリヒドロキシイミドの製造方法
JP2011052064A (ja) * 2009-08-31 2011-03-17 Toyobo Co Ltd ポリイミドおよびその製造方法
JP2011148955A (ja) * 2010-01-25 2011-08-04 Kaneka Corp ポリイミドフィルムの製造方法及び該製造方法により得られたポリイミドフィルム
WO2011126076A1 (ja) * 2010-04-09 2011-10-13 大日本印刷株式会社 薄膜トランジスタ基板
CN102336910B (zh) * 2010-07-14 2015-04-08 株式会社Lg化学 可低温固化的聚酰亚胺树脂及其制备方法
US8729178B2 (en) * 2011-11-01 2014-05-20 Chi Mei Corporation Polysiloxane-grafted polyimide resin composition and applications thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
JP2015501065A (ja) 2015-01-08
TWI473837B (zh) 2015-02-21
EP2806428A4 (en) 2015-08-12
EP2806428A2 (en) 2014-11-26
KR101363203B1 (ko) 2014-02-13
TW201341430A (zh) 2013-10-16
WO2013105814A3 (ko) 2013-09-19
CN103890859B (zh) 2017-02-22
US20140256876A1 (en) 2014-09-11
CN103890859A (zh) 2014-06-25
JP5825652B2 (ja) 2015-12-02
KR20130083854A (ko) 2013-07-23

Similar Documents

Publication Publication Date Title
US9133353B2 (en) Low temperature curable polyimide resin and method of preparing the same
KR101299651B1 (ko) 저온 경화가 가능한 폴리이미드 수지 및 이의 제조 방법
CN107533260B (zh) 液晶取向剂、液晶取向膜及液晶表示元件
JP7375545B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
KR101363203B1 (ko) 전자소자용 절연재
CN111386493B (zh) 液晶取向剂、液晶取向膜、液晶取向膜的制造方法和液晶表示元件
TWI657297B (zh) 液晶配向劑、液晶配向膜、及液晶顯示元件
KR101362518B1 (ko) 전자소자용 절연재
JP7300504B2 (ja) ポリイミド前駆体及びポリイミド樹脂組成物
JP6319581B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
KR102003772B1 (ko) 폴리이미드계 필름 형성용 조성물 및 이를 이용하여 제조된 투명 폴리이미드계 필름
KR100552990B1 (ko) 전유기 박막트랜지스터 절연체용 저온경화형 감광성폴리이미드 수지
JP7375766B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
CN103843073B (zh) 用于电子器件的绝缘材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13735630

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014540977

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013735630

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013735630

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14349641

Country of ref document: US