WO2013105512A1 - 熱交換器およびシリコン系材料用エッチング液の除熱方法 - Google Patents

熱交換器およびシリコン系材料用エッチング液の除熱方法 Download PDF

Info

Publication number
WO2013105512A1
WO2013105512A1 PCT/JP2013/000097 JP2013000097W WO2013105512A1 WO 2013105512 A1 WO2013105512 A1 WO 2013105512A1 JP 2013000097 W JP2013000097 W JP 2013000097W WO 2013105512 A1 WO2013105512 A1 WO 2013105512A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat
heat exchanger
etching
coolant
Prior art date
Application number
PCT/JP2013/000097
Other languages
English (en)
French (fr)
Inventor
秀一 宮尾
岡田 淳一
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2013105512A1 publication Critical patent/WO2013105512A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0206Heat exchangers immersed in a large body of liquid
    • F28D1/0213Heat exchangers immersed in a large body of liquid for heating or cooling a liquid in a tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0472Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0022Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for chemical reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0077Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for tempering, e.g. with cooling or heating circuits for temperature control of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/022Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of two or more media in heat-exchange relationship being helically coiled, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • F28F2013/006Heat conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching

Definitions

  • the present invention relates to a heat exchanger and a method of removing heat from a silicon etching solution. More specifically, the present invention relates to silicon-based materials such as silicon crystals used in the manufacture of semiconductor devices, solar cells, etc., photomasks for photolithography, and silicon oxide-based substrates used in the production of molds for imprint lithography. The invention relates to a heat removal technology of a chemical solution for etching
  • Silicon-based materials include polycrystalline silicon and single crystal silicon used for manufacturing semiconductor devices, solar cells, etc., silicon wafers obtained by processing these, and photomasks for optical lithography or molds for imprint lithography It is widely used as a silicon oxide based substrate etc. used for preparation.
  • a chemical solution containing at least one of hydrofluoric acid (HF) and nitric acid (HNO 3 ) is used for etching these silicon-based materials.
  • HF hydrofluoric acid
  • HNO 3 nitric acid
  • a mixed solution of hydrofluoric acid and nitric acid having a relatively high concentration is used for etching for removing the surface layer portion having a predetermined depth on the surface of the silicon-based material.
  • etching reaction is an exothermic reaction
  • the etching rate depends on the temperature of the chemical solution (etching solution), and the etching rate becomes higher as the temperature of the etching solution becomes higher.
  • the temperature of the etching solution rises during the process of performing the etching process continuously, the amount of etching increases by that amount, and the product loss, the haze on the wafer surface, or the shape Problems such as nonconformity may occur. Therefore, in order to etch the silicon-based material with high accuracy by a chemical solution containing at least one of hydrofluoric acid and nitric acid, it is necessary to properly control the temperature of the etching solution.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-151779
  • a manufacturing method excellent in mass production stability in etching of a silicon crystal substrate using an acid etching solution and the realization of the manufacturing apparatus are desired
  • the silicon crystal substrate manufacturing equipment will be equipped with a means to detect the concentration of hydrofluoric acid in the mixed acid aqueous solution of nitric acid and hydrofluoric acid mixed, which enables continuous production stability and stability of quality by detecting the concentration of hydrofluoric acid.
  • the etching solution used in the etching tank is circulated to the heat exchanger through which the refrigerant sent from the chiller is circulated, and the temperature rise caused by the etching reaction is reduced. It is supposed to keep the temperature of the etching solution in a certain range.
  • temperature control of a chemical solution containing at least one of hydrofluoric acid and nitric acid used for etching a silicon-based material is performed by cooling by a heat exchanger through which a refrigerant sent from a chiller is circulated.
  • a pipe or the like for circulating a chemical solution containing at least one of hydrofluoric acid and nitric acid is lined with a fluorine resin or fluorine resin having high corrosion resistance such as PFA or PVDF (registered trademark). The material is used.
  • the neutralization operation of the refrigerant and the refrigerant replacement at a high frequency are required, but the processing cost generated along with such a measure becomes so high that it can not be ignored.
  • the present invention has been made in view of such problems, and the object of the present invention is to reduce the processing cost when etching a silicon-based material with a chemical solution containing at least one of hydrofluoric acid and nitric acid, and It is an object of the present invention to provide a heat exchanger capable of performing stable operation for a long time without any problem and a method of removing heat from a silicon-based material etching solution using the same.
  • the heat exchanger according to the present invention is a heat exchanger used in a system for etching a silicon-based material with a chemical solution containing at least one of hydrofluoric acid and nitric acid, and the chemical solution is introduced from the etching tank into the container.
  • the heat exchange system further includes a chemical solution circulation unit returned to the etching tank after heat removal by a refrigerant, and a flow passage unit for circulating a refrigerant coolant for removing heat from the refrigerant between the heat exchanger and the chiller.
  • the refrigerant is accommodated in a container of the vessel, and the refrigerant is heat-removed by the refrigerant coolant, and the heat-removed refrigerant is used to remove the heat of the chemical solution.
  • the heat exchanger further includes a refrigerant flow passage portion that circulates the refrigerant into the container.
  • the refrigerant flow path unit includes a pH control unit for adjusting the acidity of the refrigerant.
  • the refrigerant coolant is either an aqueous antifreeze solution containing alcohols or a salt solution of highly water-soluble salt.
  • the heat removal method according to the present invention is a heat removal method for an etching solution of a silicon-based material containing at least one of hydrofluoric acid and nitric acid, and the heat removal from the etching solution using a refrigerant coolant is performed. It is characterized in that heat removal of the etching solution is performed.
  • the refrigerant used for removing heat from the etching solution of the silicon-based material containing at least one of hydrofluoric acid and nitric acid is removed by the coolant, and the etching solution is removed by the removed coolant. It was decided to remove the heat.
  • the refrigerant is not circulated to the cooling system including the chiller, so that even if acid leakage occurs in the piping etc., the refrigerant contained in the heat exchanger container is replaced or its regeneration processing Just do it. Therefore, it is possible to reduce the cost of the etching process without significantly changing the design or specification of the chiller side equipment.
  • FIG. 1 is a block diagram for explaining a heat removal method (heat removal system) according to the present invention.
  • an etching tank for storing a chemical solution for etching a silicon-based material containing at least one of hydrofluoric acid and nitric acid. From 200, it leads in the container (shell) of heat exchanger 100 via circulation path 210a of the above-mentioned medical fluid.
  • a refrigerant for removing the heat of the chemical solution (etching solution) is contained in the container of the heat exchanger 100, and the removed chemical solution is returned to the etching tank 200 through the circulation path 210b and is again used as the etching solution.
  • the refrigerant Used as The refrigerant is heat-removed by the refrigerant coolant, and the heat-removed refrigerant causes heat removal of the chemical solution (etching solution).
  • etching solution chemical solution
  • symbol 220 in the figure is a circulation preparatory tank of etching liquid.
  • the refrigerant coolant contained in the heat exchanger 100 circulates with the chiller 300 via the circulation flow paths 130a and 130b, and the refrigerant coolant cooled by the chiller 300 removes heat from the refrigerant. It will be.
  • aqueous antifreeze containing alcohol salt solution of sodium sulfate, potassium sulfate, ammonium sulfate, magnesium sulfate, sodium chloride, potassium chloride, calcium chloride, sodium nitrate, potassium nitrate, potassium nitrate, ammonium nitrate, sodium carbonate
  • aqueous salt solutions in which highly water-soluble salts such as potassium carbonate, sodium thiocyanate, potassium thiocyanate, and ammonium thiocyanate are dissolved alone or in combination.
  • refrigerant flow path portions 110a and 110b for circulating the refrigerant into the container.
  • a pH control unit 120 for adjusting the acidity of the refrigerant may be provided in such a refrigerant flow passage.
  • the etching solution is not directly cooled by the chiller-cooled refrigerant as in the prior art, but the chiller is designed to remove the heat of the refrigerant coolant, and this removed heat is used to remove the etching solution. Heat removal is performed. Therefore, since the refrigerant is not circulated to the cooling system including the chiller, the time for maintenance of the device is reduced, and even if the acid leaks from the piping on the etching liquid side of the heat exchanger and the pH value of the refrigerant decreases. It is only necessary to remove and replace this refrigerant. As a result, in addition to the ease of apparatus management, the amount of waste liquid of the refrigerant can be suppressed, the processing cost of etching can be reduced, and stable operation over a long period can be performed without any problem.
  • the concentration of hydrofluoric acid in a chemical solution used for etching a material such as silicon crystal is 0.1% by mass or more and 50% by mass or less, and typically about 5% by mass.
  • the nitric acid concentration is generally 5% by mass or more and 70% by mass or less, and typically about 63% by mass.
  • the concentration of hydrofluoric acid is 0.1% by mass to 10% by mass, typically about 5% by mass, and the concentration of nitric acid is 5% by mass to 70% % Or less, typically about 60% by mass.
  • FIG. 2 is a view for explaining an outline of the configuration of the heat exchanger 100 according to the present invention.
  • An etching solution circulation pipe 20 and a refrigerant coolant circulation pipe 30 are provided in the container (shell) 10, and the etching solution circulation pipe 20 and the refrigerant coolant circulation pipe 30 are respectively the above-described chemical solutions.
  • the circulation paths 210a and 210b and the refrigerant coolant circulation flow paths 130a and 130b are connected.
  • the refrigerant 40 is accommodated in the container 10, and the refrigerant 40 is circulated into the container through the refrigerant flow path portions 110a and 110b by the operation of the liquid feed pump 115, but the refrigerant 40 is circulated in the flow path After the acidity is adjusted by the pH control unit 120 provided, it is returned into the container.
  • pure water is preferably selected as the refrigerant 40, and it is preferable to use a salt solution when managing the refrigerant coolant at a value lower than 0 ° C.
  • the metal of the silicon-based material In order to avoid the possibility of contamination, it is preferable to use an ammonia salt or an organic ammonium salt, and it can also be a buffer as described later.
  • the refrigerant is supplied from the refrigerant supply passage 410 a into the container 10 and can be discharged from the refrigerant discharge passage 410 b to the outside of the container 10.
  • the cooled object is cooled by passing the cooled object and the refrigerant across the partition wall, but in order to increase the cooling efficiency, the partition wall is subjected to heat exchange.
  • the area needs to be relatively large.
  • fluorocarbon resin with excellent corrosion resistance such as PFA or PVDF (registered trademark) is used for piping etc. of the apparatus used in the etching process of silicon material which needs to avoid metal contamination and organic substance contamination as much as possible.
  • PFA polyvinyl alcohol
  • PVDF polyvinyl ether
  • a PFA tube with a tube wall thickness of 0.8 mm was used, but when continuous circulation is performed using pure water as a refrigerant for 4 weeks, the pH of the refrigerant is up to about 3 It has fallen. For this reason, in order to prevent the apparatus corrosion, it is necessary to carry out the replacement process of the refrigerant in a period of less than 4 weeks or to carry out the neutralization process on all the large amounts of refrigerant.
  • the temperature of the refrigerant should be as low as possible.
  • the etching solution In the case where nitric acid was contained in the PFA, a phenomenon was observed in which colored organic substances thought to be produced through the nitrate ester adhere to the inner and outer surfaces of the PFA pipe. The formation of such a substance not only causes the contamination of the material to be etched with organic substances, but it is necessary to avoid the formation because the nitrate ester itself is dangerous.
  • salt precipitation may occur in the antifreeze liquid, which may damage the liquid feed pump.
  • an aqueous antifreeze solution containing alcohol, a salt aqueous solution of sodium sulfate, a salt aqueous solution of ammonium sulfate, a salt aqueous solution of sodium chloride and the like can be used as the refrigerant coolant, according to the present inventors Even when water containing an alcohol such as ethylene glycol, ethanol, or methanol was used as a refrigerant coolant, the organic matter contamination of the etching solution did not occur even when the refrigerant temperature was controlled to 0 ° C. or less.
  • fluorinated saturated hydrocarbon resin examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkylvinylether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (4, 6) Fluorinated) (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (difluorinated) (PVDF (registered trademark)), polychlorotrifluoroethylene (trifluorinated) (PCTFE), A resin group called a so-called Teflon (registered trademark) resin such as chlorotrifluoroethylene / ethylene copolymer (ECTFE) can be mentioned.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkylvinylether copolymer
  • FEP tetrafluoroethylene-he
  • the pump provided in the circulation channel of the etching solution may be selected according to the size and heat generation of the etching tank, but as in the case of a commonly used pump, the wetted part is preferably an acid resistant resin. In particular, it is preferable to select one made of Teflon (registered trademark) resin as described above.
  • a general cooling device can be used as it is in a circulation system for circulating the refrigerant coolant between the heat exchanger and the chiller.
  • it is metal piping excellent in acid resistance among the said circulation systems, and it may be lined with resin with high acid resistance.
  • water when using (operating) the refrigerant coolant at a temperature of 0 ° C. or more, and there is an advantage that maintenance is not necessary for a long time when pure water is used.
  • a refrigerant coolant at a temperature of 0 ° C. or lower to increase the cooling efficiency
  • Aqueous salt solution (so-called brine) may be used. If the refrigerant coolant circulation system is metal piping, even if the refrigerant coolant contains alcohols or sodium, the etching solution removed in the heat exchanger is contaminated by these inclusions. Can be prevented.
  • a salt solution is preferable as such a refrigerant.
  • the salt solution may be any one that can obtain the required freezing point depression, but it is preferable that it does not produce harmful substances even when it reacts with silicon contained in an etching solution containing at least one of hydrofluoric acid and nitric acid.
  • refrigerants include salt solutions such as ammonium sulfate, ammonium nitrate, ammonium chloride and the like.
  • the etchant which is the object to be cooled, flows in the tube disposed in the vessel (shell) of the heat exchanger Heat exchange is performed between the above-described etchant and the refrigerant circulating between the chiller and the heat exchanger.
  • the refrigerant for removing heat of the etching solution is accommodated in the container of the heat exchanger, and the refrigerant coolant for removing the heat is between the heat exchanger and the chiller. Circulate with.
  • the shape of the container and piping of the heat exchanger used in the present invention is not particularly limited, but when piping made of Teflon (registered trademark) is adopted as piping disposed in the container, the heat exchange efficiency is From the viewpoint of enhancing the thickness, the thickness of the tube wall is preferably 0.5 mm to 2.0 mm. In addition, there is no particular restriction on the shape of the piping. However, according to the experiments of the present inventors, since the pipe for etching solution circulation is relatively easily deteriorated with time, from the viewpoint of maintenance of the apparatus, the operation such as replacement is relatively simple and the heat is relatively easy. It is preferable to use a spiral shape having a large exchange area and high heat removal efficiency.
  • FIGS. 3A and 3B are each a diagram for explaining a configuration example of the refrigerant coolant circulation pipe and the etching solution circulation pipe disposed in the container of the heat exchanger according to the present invention, both of which are spiral pipes It is assumed.
  • the spiral part of the etching solution circulation pipe shown in FIG. 3B is disposed in the container of the heat exchanger in a mode inserted in the spiral part of the refrigerant coolant circulation pipe shown in FIG. 3A, the heat exchange efficiency is improved. High and preferred.
  • the refrigerant coolant circulation pipe shown in FIG. 3A is configured to be fed from the top to the spiral portion and then returned from the bottom to the top, but directly from the lower portion of the spiral portion to the outside of the container It may be configured to return the liquid.
  • the etching solution circulation pipe shown in FIG. 3B is configured to be fed from above the straight body portion located at the center of the spiral portion and then sent upward from below the spiral portion and returned. However, the liquid may be fed directly to the spiral part from the lower part of the spiral part.
  • the shell size is designed such that a sufficient heat removal effect can be obtained with as little refrigerant as possible, in order to suppress the refrigerant processing cost.
  • an ion exchange resin may be provided in the shell in order to trap the leaked hydrofluoric acid or nitric acid.
  • the pH of the refrigerant may be managed by neutralization with an alkali to prevent the deterioration of the circulation system due to hydrofluoric acid or nitric acid leaking into the refrigerant.
  • the alkali used for the purpose is preferably aqueous ammonia or hydroxide of ammonium such as tetramethyl ammonium hydroxide.
  • an ion exchange resin may be used to capture the acid.
  • only the refrigerant circulated in the shell needs to be subjected to pH control, and pH control on the chiller side is unnecessary, so the maintenance of the apparatus is made efficient.
  • the temperature difference in the container of a heat exchanger does not arise as much as possible. If the container is of a vertical type, equalization of the temperature in the container by natural convection due to heat exchange between the refrigerant and the refrigerant in the container and heat exchange between the refrigerant and the etchant It becomes easy to be drawn.
  • the refrigerant in the container may be forced to circulate.
  • the circulating flow can be created by pumping the refrigerant from the top of the shell and sending it to the bottom of the shell.
  • a screw or the like for stirring the refrigerant may be installed in the shell.
  • pure water whose temperature was set to 7 ⁇ 1 ° C. by direct cooling with a chiller (not shown) was circulated as a refrigerant to remove heat from the etching solution.
  • the piping used for feeding the etching solution is a PFA tube (Ultra Pure Fluon (registered trademark) PFA P / 802UP manufactured by Asahi Glass Co., Ltd.) with a tube wall thickness of 0.8 mm, and the total piping length in the container is about It is 5m.
  • Table 1 is a table summarizing the changes in the pH of the refrigerant for each week for each of the above six repeated experiments.
  • the temperature of the etching solution removed with the refrigerant controlled at 7 ⁇ 1 ° C. was 31 ° C. at the maximum while the initial temperature was 20 ° C.
  • the pH of the refrigerant reached about 3 in 4 to 5 weeks. That is, it can be confirmed that the acid concentration in the refrigerant increases due to the long-term use of the tube due to the permeation and diffusion of the acid from the PFA tube.
  • the heat exchanger 100 has a structure shown in FIG. 2 and accommodates 100 L of refrigerant in the container 10, and a pipe (SUS 304) for the spiral refrigerant coolant of the aspect illustrated in FIG. 3A in the refrigerant.
  • PFA tube Ultra Pure Fluon (registered trademark) PFA P / 802UP, manufactured by Asahi Glass Co., Ltd.
  • the house was housed. Further, in order to improve the heat exchange efficiency by the in-container circulating flow, the refrigerant was circulated at a rate of 80 L / min from the bottom of the container 10 by a pump.
  • the refrigerant to be used was selected according to the control temperature of the refrigerant coolant (control accuracy is ⁇ 2 ° C.). Specifically, pure water was selected when the management temperature of the refrigerant coolant was higher than 0 ° C., and an ethylene glycol aqueous solution was selected when the management temperature of the refrigerant coolant was 0 ° C. or less.
  • concentration of the ethylene glycol aqueous solution is 5% by mass at a management temperature of 0 ° C, 10% by mass at -5 ° C, 20% by mass at -10 ° C, and 40% by mass at -15 ° C.
  • a buffer solution phosphoric acid or tetramethylammonium hydroxide (TMAH) containing potassium having a large atomic radius as a buffer was used.
  • TMAH tetramethylammonium hydroxide
  • 1 mole of K 2 HPO 4 and 1 mole of KH 2 PO 4 are mixed at 61.5: 38.5 and diluted by 1/15. It was.
  • the TMAH one having a concentration of 50 ppm was used.
  • the buffer solution may be prepared with TMAH and phosphoric acid in order to reduce the metal contamination level of the etching solution as much as possible.
  • organo-based IRA-400 1000 g
  • a filter is used as a suction port for circulating the refrigerant. installed.
  • Table 2 summarizes the results for each of the conditions 1 to 12.
  • the change in pH of the refrigerant is a value after 4 weeks.
  • the coolant for heat removal of the etching solution is cooled by a chiller, and heat removal with the coolant is performed to remove heat (temperature control) of the etching solution.
  • a heat removal method is employed in which the refrigerant is cooled using a refrigerant coolant, and the etchant is cooled by the cooled refrigerant.
  • the damage by the acid to a chiller unit is avoided and stable operation is attained.
  • pure water which is easy to handle, is used as the refrigerant coolant, it is possible to remove heat (temperature control) of the etching solution which is comparable to the conventional heat removal method.
  • continuous use for about four weeks is possible without adjusting the pH of the refrigerant.
  • the refrigerant used for removing heat from the etching solution of the silicon-based material containing at least one of hydrofluoric acid and nitric acid is removed by the coolant, and the removed heat is used to cool the removed coolant. It was decided to remove the heat of the etching solution by the agent. For this reason, it was set as the structure of the heat exchanger provided with the flow-path part which circulates the refrigerant
  • the refrigerant is not circulated to the cooling system including the chiller, so that even if acid leakage occurs in the piping etc., the refrigerant contained in the heat exchanger container is replaced or its regeneration processing Just do it. Therefore, it is possible to reduce the cost of the etching process without significantly changing the design or specification of the chiller side equipment.
  • the present invention reduces the processing cost when etching a silicon-based material with a chemical solution containing at least one of hydrofluoric acid and nitric acid, and further, a heat exchanger capable of performing stable operation for a long period without any trouble, and The heat removal method of the etching liquid for silicon-based materials which has

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Weting (AREA)

Abstract

 エッチング槽200から熱交換器100の容器内にエッチング液(薬液)を導く。熱交換器100の容器内には薬液を除熱するための冷媒が収容されており、除熱された薬液はエッチング槽200へと返送されて再度エッチング液として使用される。上記冷媒は冷媒冷却剤により除熱される。熱交換器100内に収容された冷媒冷却剤は、循環流路130a、130bを介してチラー300との間を循環し、チラー300によって冷却された冷媒冷却剤によって冷媒の除熱が行われる。このようなシステムでは、チラーで冷却した冷媒で直接エッチング液を冷却することはせず、チラーでは冷媒冷却剤の除熱を行うこととし、この除熱された冷媒によってエッチング液の除熱が行われる。その結果、処理コストが低減し、長期安定運転が可能となる。

Description

熱交換器およびシリコン系材料用エッチング液の除熱方法
 本発明は、熱交換器およびシリコンエッチング液の除熱方法に関する。より詳細には、本発明は、半導体デバイスや太陽電池等の製造に用いられるシリコン結晶、光リソグラフィ用のフォトマスク或いはインプリントリソグラフィ用のモールドの作製に用いられる酸化ケイ素系基板などのシリコン系材料をエッチングするための薬液の除熱技術に関する。
 シリコン系材料は、半導体デバイスや太陽電池等の製造に用いられる多結晶シリコンや単結晶シリコン或いはこれらを加工して得られたシリコンウェハや、光リソグラフィ用のフォトマスク或いはインプリントリソグラフィ用のモールドの作製に用いられる酸化ケイ素系基板などとして広く利用されている。これらシリコン系材料のエッチングには、一般に、フッ酸(HF)および硝酸(HNO)の少なくとも一方を含有する薬液が用いられる。例えば、シリコン系材料の表面の一定深さの表層部の除去を行うエッチングには、比較的高い濃度のフッ酸と硝酸の混合液が用いられる。
 半導体デバイスや太陽電池、或いは、フォトマスクやインプリントリソグラフィ用モールドの加工には高い精度が求められるため、その材料としてのシリコン系材料のエッチングにも高い精度が求められることとなる。
 ところで、このようなエッチングの反応は発熱反応であり、エッチング速度は薬液(エッチング液)の温度に依存し、エッチング液の温度が高くなるとエッチング速度が大きくなる。このため、連続的にエッチング処理を行う工程中にエッチング液の温度が上昇してしまうと、その分だけエッチング量が増えてしまい、製品ロスやウェハ表面の曇り(ヘイズ)、或いは、形状的な不適合等の不都合を生じる場合がある。従って、フッ酸および硝酸の少なくとも一方を含有する薬液によりシリコン系材料を高い精度でエッチングするためには、エッチング液温度の適切な制御が必要となる。
 例えば、特許文献1(特開2006-151779号公報)には、酸性エッチング液を用いたシリコン結晶基板のエッチングにおいて量産安定性に優れた製造方法およびその製造装置の実現が望まれていたという背景の下、シリコン結晶基板の製造装置に、硝酸とフッ酸を混合した混酸水溶液中のフッ酸濃度を検出する手段を備えることとし、当該フッ酸濃度検出によって連続生産安定性と品質の安定を可能とする発明が開示されており、この製造装置においては、エッチング槽で使用するエッチング液をチラーから送られる冷媒が循環される熱交換器に循環させ、エッチング反応により上昇した液温を低下させてエッチング液の温度を一定範囲に保つこととされている。
特開2006-151779号公報
 上述のように、従来から、シリコン系材料のエッチングに用いられるフッ酸および硝酸の少なくとも一方を含有する薬液の温度制御は、チラーから送られる冷媒が循環される熱交換器による冷却によって行われている。このような設備において、フッ酸および硝酸の少なくとも一方を含有する薬液を循環させるための配管等には、例えば、PFAやPVDF(登録商標)のような耐食性の高いフッ素樹脂やフッ素樹脂ライニングされた材質のものが用いられる。
 しかし、本発明者らの経験によれば、上述のような設備ではチラーを含む冷却系の劣化が早い。本発明者らがその原因について調査したところ、熱交換器に循環している冷媒にかなりの酸が溶出していることが判明した。そしてこのような酸溶出の現象は、エッチング液循環系に生じたピンホール等によるものではなく、フッ酸や硝酸が配管等に使用されている樹脂中に浸透乃至拡散することによる冷媒側への漏出であることが確認された。
 例えば、本発明者らによる実験では、比較的高い濃度のフッ酸と硝酸の混合液の冷却のための冷媒を1カ月以上連続使用すると、冷媒のpHは装置劣化を顕著に早める値であるpH=3以下となる。このため、装置劣化を防ぐためには冷媒の中和作業や高頻度での冷媒交換が必要となるが、このような対策に伴って発生する処理コストは無視できないほどに高いものとなってしまう。
 本発明はこのような問題に鑑みてなされたもので、その目的とするところは、フッ酸および硝酸の少なくとも一方を含有する薬液によりシリコン系材料をエッチングする際の処理コストを低減させ、しかも、長期間に渡る安定した運転が支障なく行える熱交換器およびこれを用いたシリコン系材料用エッチング液の除熱方法を提供することにある。
 本発明に係る熱交換器は、フッ酸および硝酸の少なくとも一方を含有する薬液によりシリコン系材料をエッチングするためのシステムに用いられる熱交換器であって、前記薬液をエッチング槽から容器内に導き冷媒による除熱後に前記エッチング槽に返送する薬液循環部と、前記冷媒を除熱するための冷媒冷却剤を前記熱交換器とチラーとの間で循環させる流路部とを備え、前記熱交換器の容器内には前記冷媒が収容されており、該冷媒が前記冷媒冷却剤により除熱され、該除熱後の冷媒により前記薬液の除熱がなされる、ことを特徴とする。
 好ましくは、前記熱交換器は、更に、前記冷媒を前記容器内に循環させる冷媒流路部を備えている。
 また、好ましくは、前記冷媒流路部は、前記冷媒の酸性度を調整するためのpH制御部を備えている。
 例えば、前記冷媒冷却剤は、アルコール類を含有する水性不凍液、又は、高水溶性塩の塩水溶液の何れかである。
 本発明に係る除熱方法は、フッ酸および硝酸の少なくとも一方を含有するシリコン系材料のエッチング液の除熱方法であって、前記エッチング液を除熱する冷媒を冷媒冷却剤により除熱しながら前記エッチング液の除熱を行う、ことを特徴とする。
 本発明では、フッ酸および硝酸の少なくとも一方を含有するシリコン系材料のエッチング液の除熱に用いる冷媒を冷媒冷却剤により除熱することとし、この除熱された冷媒冷却剤により上記エッチング液を除熱することとした。
 このため、冷媒を除熱するための冷媒冷却剤を熱交換器とチラーとの間で循環させる流路部を備える熱交換器の構成とした。
 このような構成の熱交換器では、冷媒はチラーを含む冷却系には循環されないため、配管等に酸漏出が生じた場合でも熱交換器の容器内に収容された冷媒の交換乃至その再生処理を行うだけですむ。従って、チラー側の設備の大幅な設計乃至仕様の変更を行うことなく、エッチング処理工程のコストを低減させることができる。
本発明に係る除熱方法を説明するためのブロック図である。 本発明に係る熱交換器の構成の概略を説明するための図である。 本発明の熱交換器が備える冷媒冷却剤循環用配管の構成例を説明するための図である。 本発明の熱交換器が備えるエッチング液循環用配管の構成例を説明するための図である。
 以下に、図面を参照して、本発明に係る除熱方法および熱交換器について説明する。
 図1は、本発明に係る除熱方法(除熱システム)を説明するためのブロック図で、このシステムでは、フッ酸および硝酸の少なくとも一方を含有するシリコン系材料エッチング用の薬液を溜めるエッチング槽200から、上記薬液の循環経路210aを介して熱交換器100の容器(シェル)内に導く。熱交換器100の容器内には薬液(エッチング液)を除熱するための冷媒が収容されており、除熱された薬液は循環経路210bを介してエッチング槽200へと返送されて再度エッチング液として使用される。上記冷媒は冷媒冷却剤により除熱され、この冷媒冷却剤によって除熱された冷媒によって薬液(エッチング液)の除熱が行われる。なお、図中に符号220で示したものは、エッチング液の循環予備槽である。
 また、熱交換器100内に収容された冷媒冷却剤は、循環流路130a、130bを介してチラー300との間を循環し、チラー300によって冷却された冷媒冷却剤によって冷媒の除熱が行われる。
 上述の冷媒冷却剤としては、アルコール類を含有する水性不凍液や、硫酸ナトリウムの塩水溶液、硫酸カリウム、硫酸アンモニウム、硫酸マグネシウム、塩化ナトリウム、塩化カリウム、塩化カルシウム、硝酸ナトリウム、硝酸カリウム、硝酸アンモニウム、炭酸ナトリウム、炭酸カリウム、チオシアン酸ナトリウム、チオシアン酸カリウム、チオシアン酸アンモニウム等の高水溶性塩を単独あるいは混合して溶解した塩水溶液などを例示することができる。 
 また、熱交換器100の管理の利便性の観点から、冷媒を容器内に循環させる冷媒流路部110a、110bを備えていることが好ましい。このような冷媒流路部を設けておくと、冷媒の交換作業等が容易に行える。また、このような冷媒流路部に、冷媒の酸性度を調整するためのpH制御部120を設けるようにしてもよい。
 このようなシステムでは、従来のようにチラーで冷却した冷媒で直接エッチング液を冷却することはせず、チラーでは冷媒冷却剤の除熱を行うこととし、この除熱された冷媒によってエッチング液の除熱が行われる。このため、当該冷媒がチラーを含む冷却系には循環されないから装置のメンテナンスの手間が軽減し、仮に熱交換器のエッチング液側の配管から酸が漏出して冷媒のpH値が低下したとしてもこの冷媒を抜き取り交換するだけで済む。その結果、装置管理が容易となることに加え冷媒の廃液量も抑えることができ、エッチングの処理コストを低減させ、且つ、長期間に渡る安定した運転が支障なく行えることとなる。
 一般に、シリコン結晶等の材料のエッチングに用いられる薬液のフッ酸濃度は、0.1質量%以上50質量%以下され、典型的には5質量%程度とされる。また、硝酸濃度は、一般には5質量%以上70質量%以下、典型的には63質量%程度とされる。フッ酸と硝酸の混酸をエッチング液とする場合、フッ酸の濃度は0.1質量%以上10質量%以下、典型的には5質量%程度であり、硝酸の濃度は5質量%以上70質量%以下、典型的には60質量%程度である。
 図2は、本発明に係る熱交換器100の構成の概略を説明するための図である。
容器(シェル)10内には、エッチング液循環用配管20および冷媒冷却剤循環用配管30が設けられており、これらエッチング液循環用配管20および冷媒冷却剤循環用配管30はそれぞれ、上述した薬液循環経路210a、210bおよび冷媒冷却剤循環流路130a、130bに接続されている。また、容器10内には冷媒40が収容されており、この冷媒40は、送液ポンプ115の動作によって冷媒流路部110a、110bを介して容器内へと循環するが、当該流路内に設けられたpH制御部120により酸性度が調整された後に容器内へと返送される。なお、ここでは冷媒40として純水が好ましく選択され、更に冷媒冷却剤を0℃より低い値で管理する場合には、塩溶液を用いることが好ましいが、この場合、特に、シリコン系材料の金属汚染可能性を回避するため、アンモニア塩、あるいは有機アンモニウム塩を用いることが好ましく、また後述するように緩衝液とすることもできる。この冷媒は、冷媒供給路410aから容器10内へと供給され、冷媒排出路410bから容器10外へと排出することができる。
 通常の冷却システムで用いられる熱交換器では、被冷却体と冷媒とを隔壁を隔てて通過させて被冷却体の冷却が行われるが、冷却効率を上げるためには熱交換が行われる隔壁の面積を比較的広くする必要がある。
 一方、金属汚染や有機物汚染を極力避ける必要のあるシリコン系材料のエッチング工程で用いられる装置の配管等には、PFAやPVDF(登録商標)のような耐食性に優れたフッ素樹脂が用いられるがこのような材料を用いて隔壁面積の広い構造の熱交換器を設計すると、浸透性の高いフッ酸や硝酸の漏出を完全に抑制することは難しい。本発明者らが検討実験で用いた従来構成の装置では管壁厚が0.8mmのPFAチューブを用いたが、純水を冷媒として4週間連続循環を行うと、冷媒のpHは3程度まで下がってしまった。このため、装置腐食を防止するためには、4週間未満の期間で冷媒の交換処理を行ったり、大量の冷媒の全てを中和処理したりすることが必要となる。
 更に、熱交換器による除熱効率を上げるためには、冷媒の温度はなるべく低い方がよいが、冷媒温度を下げるために冷媒にエチレングリコールと水の混合液を不凍液として用いてみると、エッチング液に硝酸が含まれている場合には硝酸エステルを経由して生成したものと思われる着色性の有機物がPFA配管の内面および外面に付着する現象が観察された。このような物質の生成は被エッチング材料の有機物汚染の原因となるだけではなく、硝酸エステル自体が危険であるため、その生成を避ける必要がある。また、硝酸エステル生成を防止するために中和作業を行いながら長時間使用した場合には、不凍液中では塩の析出等が起こる可能性もあり、送液ポンプにダメージを与える可能性がある。
 しかし、本発明のように、チラーで冷媒冷却剤の除熱を行い、この除熱された冷媒によってエッチング液の除熱が行われる構成を採用した場合には、これらの不都合を解消することができる。このような構成であれば、使用する冷媒の量は熱交換器のシェル容量に応じたものとすることができるため、従来構成のものに比較して少なくて済む。このため、高い頻度で全量を交換したとしても、処理コストは抑制されることになる。
 なお、冷媒冷却剤には、アルコール類を含有する水性不凍液、硫酸ナトリウムの塩水溶液、硫酸アンモニウムの塩水溶液、塩化ナトリウムの塩水溶液等を用いることができるが、本発明者が確認したところによれば、エチレングリコール、エタノール、メタノール等のアルコール類含有させた水を冷媒冷却剤として用いて冷媒温度を0℃以下に制御した場合にも、エッチング液の有機物汚染は生じることがなかった。
 上述の除熱システムにおいて、エッチング槽200から熱交換器100を経てエッチング槽200へとエッチング液を循環させる循環ライン(210a、210b)には高い耐酸性が求められるため、一部にエーテル鎖を有していてもよいフッ素化された飽和炭化水素樹脂を用いた配管等であることが好ましい。
 フッ素化された飽和炭化水素樹脂の具体例として、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(4,6フッ化)(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリビニリデンフルオライド(2フッ化)(PVDF(登録商標))、ポリクロロトリフルオロエチレン(3フッ化)(PCTFE)、クロロトリフルオロエチレン・エチレン共重合体(ECTFE)等のいわゆるテフロン(登録商標)樹脂と呼ばれる樹脂群を挙げることができる。
 エッチング液の循環流路に設けられるポンプは、エッチング槽の大きさや発熱に応じて選択すればよいが、一般に用いられるポンプのように、接液部は耐酸性の樹脂であることが好ましく、具体的には上述したようなテフロン(登録商標)樹脂製のものを選択することが好ましい。
 冷媒冷却剤を熱交換器とチラーとの間で循環させる循環系には、一般の冷却装置をそのまま使用することが可能である。なお、当該循環系のうち、熱交換器内の配管は、耐酸性に優れた金属配管であることが好ましく、耐酸性の高い樹脂でライニングされていてもよい。
 また、冷媒冷却剤を0℃以上の温度で使用(運転)する場合には水を用いることが好ましく、純水を用いた場合には長時間メンテナンスが不要となるという利点がある。冷却効率を上げるために冷媒冷却剤を0℃以下の温度で使用(運転)する場合には、エチレングリコール、エタノール、メタノールのようなアルコール類を添加した水や、硫酸ナトリウム、硫酸アンモニウム、塩化ナトリウム等の塩水溶液(いわゆるブライン)を用いてもよい。冷媒冷却剤の循環系を金属配管とした場合には、仮に冷媒冷却剤にアルコール類やナトリウム系が含まれていても、熱交換器内で除熱されるエッチング液がこれらの含有物によって汚染されることを防止できる。
 例えば冷媒冷却剤としてエチレングリコール等を加えた不凍液を用い、これを0℃未満の温度で運転する場合、エッチング液除熱用の冷媒の凍結を防止する必要がある。このような冷媒としては塩溶液が好ましい。塩溶液は必要とする凝固点降下を得られるものであればよいが、フッ酸および硝酸の少なくとも一方を含有するエッチング液中に含有された珪素と反応しても有害な物質を生成しないものが好ましい。このような冷媒としては、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム等の塩溶液を例示することができる。
 従来の除熱システムではシェルアンドチューブ型熱交換器が多用され、このタイプの熱交換器では、被冷却体であるエッチング液が熱交換器の容器(シェル)内に配置されるチューブ内を流れ、チラーと熱交換器との間で循環する冷媒と上記エッチング液との間で熱交換が行われる。これに対し、本発明の除熱システムでは、エッチング液の除熱を行う冷媒を熱交換器の容器内に収容し、冷媒を除熱するための冷媒冷却剤を熱交換器とチラーとの間で循環させる。
 本発明で用いられる熱交換器の容器や配管の形状に特別な限定はないが、容器内に配される配管としてテフロン(登録商標)製のものを採用した場合には、熱交換の効率を高める観点から、管壁の厚さは0.5mm~2.0mmとすることが好ましい。また、配管の形状にも特別な制限はない。しかし、本発明者らの実験によれば、エッチング液循環用の配管は比較的経時的劣化を起こし易いため、装置のメンテナンスの観点から、比較的シンプルで交換等の作業が容易で、しかも熱交換面積が大きく除熱効率が高い形状であるスパイラル状のものとすることが好ましい。
 図3Aおよび図3Bはそれぞれ、本発明の熱交換器の容器内に配置される冷媒冷却剤循環用配管およびエッチング液循環用配管の構成例を説明するための図で、何れもスパイラル状の配管とされている。図3Bに示したエッチング液循環用配管のスパイラル部を、図3Aに示した冷媒冷却剤循環用配管のスパイラル部内に挿入された態様で熱交換器の容器内に配置すると、熱交換の効率が高く好ましい。
 なお、図3Aに示した冷媒冷却剤循環用配管は上方からスパイラル部へと送液された後に下方から上方へと返液される構成とされているが、スパイラル部の下部から直接容器外に返液する構成としてもよい。また、図3Bに示したエッチング液循環用配管はスパイラル部の中央に位置する直胴部の上方から送液された後にスパイラル部の下方から上方へと送液されて返液される構成とされているが、スパイラル部の下部から直接スパイラル部に送液する構成としてもよい。
 エッチング液除熱用の冷媒の交換頻度が高くなる場合には、冷媒処理コストを抑制するべく、なるべく少量の冷媒で十分な除熱効果が得られるようにシェルの大きさが設計される。また、冷媒として水を用いる場合には、漏出したフッ酸乃至硝酸をトラップするために、シェル内にイオン交換樹脂を設けるようにしてもよい。
 また、図中に符号120で示したように、冷媒中に漏出したフッ酸乃至硝酸による循環系の劣化防止のため、アルカリにより中和することで冷媒のpHの管理を行ってもよい。当該目的のために用いるアルカリは、アンモニア水、或いは、テトラメチルアンモニウムヒドロキシドのようなアンモニウム類の水酸化物が好ましい。また、イオン交換樹脂を使用して酸を捕捉するようにしてもよい。本発明の除熱システムでは、シェル内に循環される冷媒のみをpH管理すればよく、チラー側でのpH管理は不要であるため、装置のメンテナンスが効率化される。
 なお、熱交換器の容器内での温度差はなるべく生じないことが好ましい。容器を縦型のものとすると、容器内での冷媒冷却剤と冷媒との間での熱交換および冷媒とエッチング液との間での熱交換に起因する自然対流による容器内温度の均一化が図られ易くなる。
 更に、熱交換効率を向上させるため、容器内の冷媒は強制循環させてもよい。この場合、例えば図2に示したように、シェル上部から冷媒をポンプで抜き、シェル底部に送ることで循環流を作ることができる。なお、シェル中に冷媒攪拌用のスクリュ等を設置することとしてもよい。
 [予備実験]:耐酸性樹脂配管からのHF/HNOの漏出の確認
 50質量%のHF水溶液と70質量%のHNO水溶液を体積比で1:9とした混合液をエッチング液として用いた。このエッチング液をエッチング槽200に118L、循環予備槽220に70L入れ、ポンプにより、毎分40Lの流速で熱交換器100とエッチング槽200との間で循環させた。
 熱交換器100には、チラー(不図示)で直接冷却して7±1℃に温度設定した純水を冷媒として循環させ、エッチング液の除熱を行った。なお、エッチング液の送液に用いた配管は管壁厚が0.8mmのPFAチューブ(旭硝子株式会社製 Ultra Pure Fluon (登録商標) PFA P/802UP)であり、容器内での配管全長は約5mである。
 上記の条件の下で、1日600kgの金属級シリコンをエッチングし、エッチング液の温度および冷媒のpH変化を計測した。なお、冷媒としての純水を冷却するチラーの腐食防止のため、冷媒のpHが約3となった段階で全量交換した。このような実験を6回繰り返した。
 表1は、上述の6回の繰り返し実験のそれぞれについて、1週間毎の冷媒のpH変化を纏めた表である。なお、7±1℃で管理された冷媒で除熱したエッチング液の温度は、初期温度が20℃であるのに対し、最高時の温度は31℃であった。
Figure JPOXMLDOC01-appb-T000001
 この表に示したとおり、冷媒のpHは4乃至5週間で約3となった。つまり、PFAチューブからの酸の浸透・拡散により、長時間のチューブ使用により冷媒中の酸濃度が増加することが確認できる。
 念のため、温度が0℃に管理された純水を冷媒とし、金属級シリコンの処理量を1日660kgとして同様の実験を行った結果、エッチング液の初期温度が15℃であるのに対し、最高時温度が26℃となったが、冷媒のpH変化に関しては、表1に示した結果と実質的な差異は認められなかった。
 [実施例]
 上記の予備実験と同様、50質量%のHF水溶液と70質量%のHNO水溶液を体積比で1:9とした混合液をエッチング液として用い、このエッチング液をエッチング槽200に118L、循環予備槽220に70L入れ、ポンプにより、毎分40Lの流速で熱交換器100とエッチング槽200との間で循環させた。
 熱交換器100は、図2に示した構造のものを用い、容器10内に100Lの冷媒を収容し、当該冷媒中に図3Aに図示した態様のスパイラル状の冷媒冷却剤用の配管(SUS304製、配管全長約5m)を浸漬させ、さらにその内側に図3Bに図示した態様のスパイラル状のエッチング液用配管であるPFAチューブ(旭硝子株式会社製 Ultra Pure Fluon (登録商標) PFA P/802UP)を収容させた。また、容器内循環流により熱交換効率を向上させるため、容器10の底部より上部へ毎分80Lで冷媒をポンプで循環させた。
 用いる冷媒は、冷媒冷却剤の管理温度(管理精度は±2℃)に応じて選定した。具体的には、冷媒冷却剤の管理温度が0℃より高い場合には純水を選択し、冷媒冷却剤の管理温度が0℃以下の場合にはエチレングリコール水溶液を選択した。エチレングリコール水溶液の濃度は、管理温度0℃で5質量%、-5℃で10質量%、-10℃で20質量%、-15℃で40質量%である。
 更に、冷媒として緩衝液を使う場合、および、イオン交換樹脂を用いて中和を行う場合についても検討した。
 緩衝液としては原子半径の大きいカリウムを緩衝剤として含有するリン酸若しくはテトラメチルアンモニウムヒドロキシド(TMAH)を用いた。具体的には、リン酸緩衝液としては、1モルのKHPOと1モルのKHPOを61.5:38.5で混合し、これを15分の1に希釈して用いた。また、TMAHとしては50ppmの濃度のものを用いた。なお、エッチング液の金属汚染レベルを極力下げることを目的として、TMAHとリン酸で緩衝液を調製してもよい。
 なお、緩衝液を用いた場合には、モル凝固点降下の作用により、冷媒冷却剤の温度を-15℃で管理したとしても冷媒の凍結は認められなかった。また、イオン交換樹脂を用いて中和を行う際には、強塩基性陰イオン交換樹脂であるオルガノ製IRA-400(1000g)を冷媒中に分散させ、冷媒の循環用吸引口にはフィルタを設置した。
 表2に条件1~12毎の結果をまとめた。なお、冷媒のpH変化は4週間後の値である。
Figure JPOXMLDOC01-appb-T000002
 従来の除熱方法では、エッチング液除熱用の冷媒をチラーにより冷却し、この冷媒との熱交換によりエッチング液の除熱(温度管理)を行っていた。これに対し、本発明では、冷媒冷却剤を用いて冷媒を冷却し、この冷却された冷媒によりエッチング液を冷却する除熱方法を採用する。このような除熱方法では、チラーユニットへの酸によるダメージが回避され、安定的な運転が可能となる。また、冷媒冷却剤として取り扱いの容易な純水を用いた場合でも、従来の除熱方法と遜色のないエッチング液の除熱(温度管理)が行える。しかも、冷媒のpH調整を行わなくても、4週間程度の連続使用が可能である。
 また、冷媒として塩溶液を用いた場合には、冷媒冷却剤の温度を0℃未満の低い温度で管理しても冷媒凍結が回避できるため、エッチング液の冷却効率を高めることができる。このため、シリコン系材料のエッチング処理量が増量された場合でも、エッチング液の温度上昇抑制効率を高めることができる。
 以上説明したように、本発明では、フッ酸および硝酸の少なくとも一方を含有するシリコン系材料のエッチング液の除熱に用いる冷媒を冷媒冷却剤により除熱することとし、この除熱された冷媒冷却剤により上記エッチング液を除熱することとした。このため、冷媒を除熱するための冷媒冷却剤を熱交換器とチラーとの間で循環させる流路部を備える熱交換器の構成とした。
 このような構成の熱交換器では、冷媒はチラーを含む冷却系には循環されないため、配管等に酸漏出が生じた場合でも熱交換器の容器内に収容された冷媒の交換乃至その再生処理を行うだけですむ。従って、チラー側の設備の大幅な設計乃至仕様の変更を行うことなく、エッチング処理工程のコストを低減させることができる。
 本発明は、フッ酸および硝酸の少なくとも一方を含有する薬液によりシリコン系材料をエッチングする際の処理コストを低減させ、しかも、長期間に渡る安定した運転が支障なく行える熱交換器およびこれを用いたシリコン系材料用エッチング液の除熱方法を提供する。
10 容器(シェル)
20 エッチング液循環用配管
30 冷媒冷却剤循環用配管
40 冷媒
100 熱交換器
110a、110b 冷媒流路部
115 送液ポンプ
120 pH制御部
130a、130b 冷媒冷却剤の循環流路
200 エッチング槽
210a、210b 薬液の循環経路
220 エッチング液の循環予備槽
300 チラー
410a 冷媒供給路
410b 冷媒排出路

Claims (5)

  1.  フッ酸および硝酸の少なくとも一方を含有する薬液によりシリコン系材料をエッチングするためのシステムに用いられる熱交換器であって、
     前記熱交換器は、
     前記薬液をエッチング槽から容器内に導き冷媒による除熱後に前記エッチング槽に返送する薬液循環部と、
     前記冷媒を除熱するための冷媒冷却剤を前記熱交換器とチラーとの間で循環させる流路部とを備え、
     前記熱交換器の容器内には前記冷媒が収容されており、
     該冷媒が前記冷媒冷却剤により除熱され、
     該除熱後の冷媒により前記薬液の除熱がなされる、
    ことを特徴とする熱交換器。
  2.  前記熱交換器は、更に、前記冷媒を前記容器内に循環させる冷媒流路部を備えている、請求項1に記載の熱交換器。
  3.  前記冷媒流路部は、前記冷媒の酸性度を調整するためのpH制御部を備えている、請求項2に記載の熱交換器。
  4.  前記冷媒冷却剤は、アルコール類を含有する水性不凍液、又は、高水溶性塩の塩水溶液の何れかである、請求項1乃至3の何れか1項に記載の熱交換器。
  5.  フッ酸および硝酸の少なくとも一方を含有するシリコン系材料のエッチング液の除熱方法であって、
     前記エッチング液を除熱する冷媒を冷媒冷却剤により除熱しながら前記エッチング液の除熱を行う、ことを特徴とするシリコン系材料用エッチング液の除熱方法。
PCT/JP2013/000097 2012-01-12 2013-01-11 熱交換器およびシリコン系材料用エッチング液の除熱方法 WO2013105512A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-004282 2012-01-12
JP2012004282A JP5816562B2 (ja) 2012-01-12 2012-01-12 熱交換器およびシリコン系材料用エッチング液の除熱方法

Publications (1)

Publication Number Publication Date
WO2013105512A1 true WO2013105512A1 (ja) 2013-07-18

Family

ID=48781461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000097 WO2013105512A1 (ja) 2012-01-12 2013-01-11 熱交換器およびシリコン系材料用エッチング液の除熱方法

Country Status (2)

Country Link
JP (1) JP5816562B2 (ja)
WO (1) WO2013105512A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017157533A1 (de) * 2016-03-16 2017-09-21 Linde Aktiengesellschaft Sicherheitswärmeübertrager zur temperatureinstellung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6329920B2 (ja) * 2015-04-14 2018-05-23 信越化学工業株式会社 多結晶シリコン塊の評価方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117619A (ja) * 1994-10-19 1996-05-14 Miura Co Ltd 恒温装置
JPH09327669A (ja) * 1996-06-11 1997-12-22 Ibiden Co Ltd 蒸気洗浄装置
JP2000124184A (ja) * 1998-10-14 2000-04-28 Sony Corp 薬液用冷却水恒温装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292040A (ja) * 1999-04-06 2000-10-20 Hitachi Building Systems Co Ltd アンモニア漏洩の危害を防止する方法、および、同危害防止装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117619A (ja) * 1994-10-19 1996-05-14 Miura Co Ltd 恒温装置
JPH09327669A (ja) * 1996-06-11 1997-12-22 Ibiden Co Ltd 蒸気洗浄装置
JP2000124184A (ja) * 1998-10-14 2000-04-28 Sony Corp 薬液用冷却水恒温装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017157533A1 (de) * 2016-03-16 2017-09-21 Linde Aktiengesellschaft Sicherheitswärmeübertrager zur temperatureinstellung

Also Published As

Publication number Publication date
JP5816562B2 (ja) 2015-11-18
JP2013143549A (ja) 2013-07-22

Similar Documents

Publication Publication Date Title
CN102356454B (zh) 蚀刻液的处理装置以及处理方法
US8999069B2 (en) Method for producing cleaning water for an electronic material
US20160293447A1 (en) Substrate processing apparatus and substrate processing method
WO2019225541A1 (ja) 次亜塩素酸第4級アルキルアンモニウム溶液、その製造方法および半導体ウエハの洗浄方法
KR101551049B1 (ko) 황산 전해 장치 및 황산 전해 방법
WO2013105512A1 (ja) 熱交換器およびシリコン系材料用エッチング液の除熱方法
US20140076355A1 (en) Treatment apparatus, method for manufacturing treatment liquid, and method for manufacturing electronic device
TW201222173A (en) Method for removal of photoresist
WO2013054576A1 (ja) 加工廃液処理装置及び加工廃液処理方法
CN109153047A (zh) 超纯水制造装置的启动方法
WO2012150719A1 (ja) 電子機器用カバーガラスのガラス基板の製造方法及びその製造装置並びにフッ化アルミン酸アルカリ塩の除去方法及びその装置
TW202204305A (zh) 鹵素含氧酸溶液之製造方法及製造裝置
JP5859287B2 (ja) 超純水中の微量過酸化水素の濃度測定方法
CN112530790B (zh) 晶圆清洗装置和晶圆清洗方法
Haake et al. Requirements for long-life microchannel coolers for direct diode laser systems
JP4789017B2 (ja) フッ素含有排水の処理方法及び装置
CN111809244A (zh) 用于硅系材料蚀刻处理的除热装置及除热装置的工作方法
JP6433730B2 (ja) 半導体装置の製造方法及び半導体製造装置
US8263030B1 (en) Controlled in-situ dissolution of an alkali metal
JP7031073B1 (ja) ハロゲン酸素酸溶液の製造方法
TWI593829B (zh) 循環水系統的清洗組成物及其用於清洗表面的方法
JP6545691B2 (ja) 半導体装置の製造方法
US11721567B2 (en) System and method for operating the same
KR102653077B1 (ko) 기판 처리 장치, 및, 기판 처리 방법
JP2000334465A (ja) 廃水中の窒素及びリンの除去装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13736447

Country of ref document: EP

Kind code of ref document: A1