WO2013105194A1 - プリント基板の複合検査装置 - Google Patents

プリント基板の複合検査装置 Download PDF

Info

Publication number
WO2013105194A1
WO2013105194A1 PCT/JP2012/008278 JP2012008278W WO2013105194A1 WO 2013105194 A1 WO2013105194 A1 WO 2013105194A1 JP 2012008278 W JP2012008278 W JP 2012008278W WO 2013105194 A1 WO2013105194 A1 WO 2013105194A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
close
printed circuit
irradiation unit
inspection
Prior art date
Application number
PCT/JP2012/008278
Other languages
English (en)
French (fr)
Inventor
康通 伊藤
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP12864934.0A priority Critical patent/EP2803980B1/en
Priority to CN201280066396.9A priority patent/CN104081193B/zh
Priority to KR1020147018392A priority patent/KR101621255B1/ko
Priority to US14/370,054 priority patent/US9329139B2/en
Publication of WO2013105194A1 publication Critical patent/WO2013105194A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/043Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using fluoroscopic examination, with visual observation or video transmission of fluoroscopic images
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0815Controlling of component placement on the substrate during or after manufacturing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/082Integration of non-optical monitoring devices, i.e. using non-optical inspection means, e.g. electrical means, mechanical means or X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6113Specific applications or type of materials patterned objects; electronic devices printed circuit board [PCB]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Definitions

  • the present invention relates to a composite inspection apparatus for printed circuit boards.
  • Patent Documents 1 and 2 When inspecting a printed circuit board on which a large number of electronic components are mounted, as disclosed in Patent Documents 1 and 2, the transmission inspection using X-rays and the appearance inspection using visible light are performed with the same apparatus. There are known complex inspection devices that can be realized.
  • the combined inspection apparatus includes an X-ray imaging apparatus for transmission inspection and an optical imaging apparatus for appearance inspection.
  • Patent Document 1 discloses, as an X-ray imaging apparatus, an X-ray source and an image sensor for X-rays which can adjust an opposing distance relative to the X-ray source. Further, Patent Document 1 discloses, as an optical imaging device, a mirror movable integrally with the X-ray imaging device, and a vidicon which is fixed to the X-ray imaging device and captures an image of a portion to be inspected through the mirror. .
  • Patent Document 2 discloses, as an X-ray imaging apparatus, an X-ray source (X-ray irradiation unit) and an X-ray imaging unit (CCD camera) facing each other across an electronic component to be inspected. Further, Patent Document 2 describes, as an optical imaging device, a mirror coaxially disposed between an electronic component and an X-ray irradiation unit, and an imaging device that receives light reflected from the electronic component onto the mirror and picks up an image. Is disclosed.
  • the X-ray irradiation unit of Patent Document 2 is fixed, and the object substrate on which the electronic component to be inspected is mounted can move on a plane perpendicular to the X-ray irradiation direction irradiated from the X-ray irradiation unit. Is configured.
  • the image sensor for capturing an X-ray image is configured to be able to change the facing distance relative to the X-ray source, so changing the magnification itself is possible There is.
  • the mirror since the mirror is disposed integrally directly below the image sensor, the mirror is integrated between the image sensor and the electronic component to be inspected. The part height restriction at close-up became strict, and it was difficult to obtain the necessary magnification.
  • the X-ray irradiation unit as the X-ray source and the CCD camera as the X-ray imaging unit are fixed, and the object substrate mounted with the electronic component to be inspected is the X-ray. It was only configured to be movable on a plane perpendicular to the X-ray irradiation direction irradiated from the irradiation unit. Therefore, it was not possible to change the magnification of the X-ray image in the first place. Also in the configuration of Patent Document 2, a mirror is interposed between the X-ray irradiation unit and the CCD camera to perform coaxial imaging. Therefore, the configuration as in Patent Document 1 is temporarily added. Even if it was possible to change the magnification, the mirror still blocked, and it was not possible to obtain a close-up image with a large magnification.
  • the present invention has been made in view of the above-described problem, and an object thereof is to provide a composite inspection apparatus for a printed circuit board capable of obtaining an X-ray image close-up photographed at a required enlargement magnification.
  • a substrate table on which a printed circuit board on which a large number of electronic components are mounted is installed, and an optical image for capturing an optical image of an inspection target portion of the printed circuit board
  • An imaging device an X-ray irradiation unit for irradiating the inspection target portion with X-rays; an X-ray camera for capturing an X-ray image of the inspection target portion from X-rays transmitted through the printed circuit board; Between the close-up position where the X-ray arrival route from the X-ray camera reaches the first distance for close-up, and the non-close-up position where the arrival route is longer than the first distance
  • a unit for changing the magnification of the X-ray image by relatively displacing the unit and the X-ray camera; and the optical imaging apparatus performs inspection between the X-ray irradiation unit and the X-ray camera.
  • the optical imaging apparatus of this aspect is configured to be moved by the drive means between the imaging position and the retracted position for retracting from the imaging position.
  • the drive means is controlled by the imaging position control means to retract the optical imaging device to the retraction position.
  • the X-ray irradiation unit can be lowered to the vicinity of the printed circuit board and moved to the close-up position without being disturbed by the imaging device. Therefore, it is possible to obtain a close-up X-ray image of higher magnification which has been demanded recently.
  • an optical imaging apparatus disposed above a printed circuit board on which a large number of electronic components are mounted, including an optical system having a light receiving unit that allows transmission of X-rays, and the optical system System for capturing an optical image of an inspection target portion obtained from the system, an X-ray irradiation unit for irradiating the inspection target portion with X-rays from above, and the printed circuit board below the printed circuit board
  • An X-ray camera for receiving an X-ray to capture an X-ray image of the inspection target, a non-focusing position above the optical imaging device, and a position lower than the optical system of the optical imaging device
  • a lifting device for changing the height of the X-ray irradiation unit with respect to the printed circuit board between the close-up position and the X-ray camera from the X-ray irradiation unit at the non-close-up position
  • optical imaging device While capturing an X-ray image of the examination target in both the case where the subject is in the close-up position and the case where the optical imaging device is ,
  • optical imaging device is configured to image the optical image of said object portion.
  • both imaging of the X-ray transmission image and imaging by the optical imaging device are simultaneously performed in parallel. it can.
  • the optical imaging device can be retracted to the retraction position outside the area, so that the X-ray irradiation unit does not collide with the optical imaging device. Furthermore, even in the case of imaging an X-ray transmission image when the X-ray irradiation unit is positioned at the close-up position, imaging is performed on the same inspection target portion, so X-ray images of non-contacts in the inspection target portion with high accuracy. An examination based on three types of images, close-up X-ray image and optical image, is possible.
  • FIG. 5 is a plan view of the substrate table of FIG. 4; It is sectional drawing which shows the board
  • the direction in which the printed circuit board W to be inspected is transported is the X axis
  • the horizontal direction orthogonal to the X axis is the Y axis
  • Each part will be described based on an orthogonal coordinate system in which the vertical direction is the Z axis.
  • a large number of electronic components are mounted on the printed circuit board W, and the conductive portion is soldered.
  • the combined inspection apparatus 10 according to the present embodiment is an apparatus configured to inspect the success or failure of the printed circuit board W with each soldered portion of each electronic component as a main inspection target portion.
  • composite inspection apparatus 10 includes a housing 11 shielded by lead or the like.
  • the housing 11 is substantially cubic, and the front surface 11 a thereof is directed to one end side in the Y-axis direction.
  • a pair of substrate transport conveyors 12 and 14 for carrying the substrate W in and out are juxtaposed.
  • Each of the substrate transport conveyors 12 and 14 is composed of a pair of belt conveyors 12a, 12b, 14a and 14b.
  • One of the substrate transport conveyors 12 and 14 constitutes a substrate loading conveyor and the other constitutes a substrate unloading conveyor according to the specifications of the equipment to be installed.
  • substrate conveyance conveyor 14 of the left side is made into the delivery side.
  • the printed circuit board W carried in from the substrate loading conveyor is inspected in the housing 11 and thereafter, the combined inspection apparatus 10 is carried out to the substrate unloading conveyor.
  • a shutter mechanism is provided on each of the walls 11b and 11c where the housing 11 faces the respective substrate transport conveyors 12 and 14.
  • a printed circuit board is provided from the substrate loading / unloading ports 11d and 11e (see FIG. 2) opened and closed by the shutter mechanism. W is configured to be carried in and out.
  • a structure 20 that supports each device provided in the combined inspection apparatus 10 is configured.
  • the structure 20 is a base 21 forming the bottom of the housing 11 and a pair standing on the top of the base 21 to form a pair, and reinforcing the inner wall portions on one end side and the other end side in the X axis direction. And a pair of frame portions 24 and 25 fixed at the upper center of the gate portions 22 and 23, and a beam 30 bridged between the two frame portions 24 and 25.
  • Each part of these structures 20 is a combination of various steel materials and sheet metal members.
  • the base 21 is formed with a bottom portion 21 a which is depressed in a rectangular shape at a central portion in the X-axis direction and extends along the Y-axis direction.
  • An X-ray camera unit 40 which will be described later, is disposed in the bottom 21a (see FIG. 3).
  • shelf portions 21b extending horizontally along the Y-axis direction are integrally provided.
  • a part of the shelf 21 b protrudes to the center side along the X-axis direction.
  • Y-axis rails 26, 27 facing the gate portions 22, 23, respectively, are provided.
  • a substrate table 60 described later is placed on each of the Y-axis rails 26 and 27.
  • the substrate table 60 is configured to be reciprocally movable back and forth along the Y-axis rails 26, 27.
  • Each gate portion 22, 23 is formed in a gate shape straddling the corresponding substrate loading / unloading port 11 d, 11 e of the housing 11 and incorporates a shutter mechanism provided on the corresponding wall 11 b, 11 c of the housing 11. .
  • the lower portions of the frame portions 24 and 25 are welded to the upper portions of the corresponding gate portions 22 and 23, and the upper surface portions are welded to both end portions in the X-axis direction of the beam 30, respectively.
  • the frame parts 24 and 25 together with the gate parts 22 and 23 and the beam 30 construct a rigid frame structure.
  • the beam 30 is a structure carrying an X-ray irradiation unit as an X-ray source, which will be described later in detail (see FIGS. 7 to 9).
  • the X-ray camera unit 40 is fixedly disposed at the bottom 21 a of the base 21, and a pair of X-axis guide rails 41 extending in the X-axis direction at intervals in the Y-axis direction.
  • an X-axis slide table 43 which is guided on both X-axis guide rails 41 and 42 and moves in the X-axis direction, and provided below the X-axis slide table 43.
  • X-axis ball screw mechanism 44 which drives along a direction, and a pair of Y-axis guide rails 45 and 46 fixed to the upper part of the X-axis slide table 43 and extending along the Y-axis direction, both Y
  • a Y-axis slide table 47 which is guided by the axis guide rails 45 and 46 and moves in the Y-axis direction, is provided below the Y-axis slide table 47, and the Y-axis slide table 47 is arranged in the Y-axis direction.
  • a Y-axis ball screw mechanism 48 for driving along, and a X-ray camera 50 provided on the Y-axis slide table 47.
  • the X-axis guide rails 41, 42 are disposed somewhat backward in the central portion of the bottom 21a, and at this position, the X-axis guide rails 41, 42 reciprocably guide the X-axis slide table 43 along the X-axis direction.
  • the X-axis slide table 43 is formed in a rectangular shape in plan view extending in the Y-axis direction.
  • the X-axis ball screw mechanism 44 has an X-axis motor 44a attached to the bottom 21a, a ball screw 44b rotationally driven by the X-axis motor 44a, and a ball screw 44b.
  • a nut unit 44c fixed to the bottom is provided, and the rotation of the ball screw 44b causes the nut unit 44c to move along the X-axis direction, whereby the X-axis slide table 43 is X-shaped on the X-axis guide rails 41 and 42. It is configured to be reciprocally movable along the axial direction.
  • the Y-axis guide rails 45 and 46 are spaced along the Y-axis direction at intervals in the width direction (X-axis direction) of the X-axis slide table 43, and extend over substantially the entire length of the X-axis slide table 43.
  • Guide rails 45, 46 guide the Y-axis slide table 47 so as to be reciprocally movable back and forth along the Y-axis direction.
  • the Y-axis slide table 47 is a rectangular member whose X-axis direction is set to be slightly longer in a plan view, and carries the X-ray camera 50 on its upper surface. Accordingly, the X-ray camera 50 can freely move back and forth (left and right) (in the XY axis direction) on the bottom portion 21 a by the movement of the X-axis slide table 43 and the Y-axis slide table 47. Further, by being placed on the Y-axis slide table 47, the X-ray camera 50 protrudes somewhat upward than the shelf 21b of the base 21.
  • the Y-axis ball screw mechanism 48 is screwed into a Y-axis motor 48a attached to the rear end of the X-axis slide table 43, a ball screw 48b rotationally driven by the Y-axis motor 48a, and the ball screw 48b , And a nut unit 48c fixed to the bottom surface of the Y-axis slide table 47, and the nut unit 48c moves along the Y-axis direction by the rotation of the ball screw 48b.
  • the Y-axis slide table 47 is configured to be reciprocally movable along the Y-axis direction.
  • the X-ray camera moving means 49 is moved in both directions in the X-axis direction and Y-axis direction on a plane parallel to the printed circuit board W.
  • the substrate table 60 is provided in the frame 61 serving as the main body, the conveyor unit 70 for transporting and holding the printed substrate W on the frame 61, and the conveyor unit 70.
  • the conveyor drive mechanism 80 which drives the substrate conveyance conveyors 73 and 74 and the space
  • the composite inspection apparatus 10 according to the present embodiment is provided with a table drive mechanism 100 for driving the substrate table 60 in the X-axis direction and the Y-axis direction (FIG. 4, FIG. 7, and FIG. 8). reference).
  • the frame 61 is connected to a table drive mechanism 100 described later, and is disposed movably in the XY axis direction.
  • the frame 61 includes a pair of X-axis pieces 62 and 63 extending in the X-axis direction, and a pair of Y-axis pieces 64 provided on both end portions of the X-axis pieces 62 and 63 and extending in the Y-axis direction It is formed in the shape of a rectangular frame integrally provided with 65, and in the central portion thereof, an opening 66 for transmitting X-rays is defined.
  • Y-axis rails 67 and 68 are fixed to the upper surfaces of the Y-axis pieces 64 and 65 of the frame 61, respectively.
  • a conveyor unit 70 is mounted on both Y-axis rails 67 and 68, and the conveyor unit 70 is configured to be movable along the Y-axis direction on the Y-axis rails 67 and 68.
  • the conveyor unit 70 includes a pair of frame bodies 71 and 72 disposed in the front and back direction in the Y-axis direction, a substrate transport conveyor 73 and 74 provided on each of the frame bodies 71 and 72, and one frame body (an example of illustration In the Y-axis direction, the clamp unit 75 attached to the frame body 72 disposed on the rear side is provided.
  • the frame bodies 71 and 72 extend along the X-axis direction, and the end portions thereof are disposed on the top surfaces of the X-axis frames 71a and 72a protruding from the frame 61 and the X-axis frames 71a and 72a, and the side portions are It has pressing plates 71 b and 72 b that project to the opening 66 side.
  • the X-axis frames 71a and 72a move along the Y-axis direction with respect to the width of the printed circuit board W by the space adjustment mechanism 90 described below, whereby the distance between them changes. It is comprised so that conveyance is possible.
  • the holding plates 71 b and 72 b are configured to be vertically driven by the clamp unit 75.
  • the substrate transport conveyors 73 and 74 are constituted by a large number of rollers 74a on the surfaces facing each other, and a belt 74b wound around the rollers 74a.
  • the rollers and belts of the substrate transfer conveyor 73 on the front side are hidden, but they are set to the same specifications as the rollers 74a and the belt 74b of the substrate transfer conveyor 74 on the rear side.
  • the clamp unit 75 has an air cylinder (not shown) for advancing and retracting the rod in the Z-axis direction, and a power transmission mechanism (not shown) for raising and lowering the pressing plates 71b and 72b by advancing and retracting the rod of the air cylinder.
  • the pressing plates 71b and 72b are raised by the driving force of the cylinder, and the Y direction of the printed circuit board W is between the pressing plates 71b and 72b of the frame bodies 71 and 72 and the belt of the substrate transfer conveyor 74 (only 74b shown). Both end portions can be held vertically by being held up and down.
  • the conveyor drive mechanism 80 is attached to one end portion on the front side of the frame 61 in the X-axis direction, and a motor 81 that outputs power around the Y-axis, and X between both substrate transport conveyors 73 and 74 along the Y-axis direction.
  • a drive shaft 82 disposed on the downstream side in the axial direction and rotationally driven about the Y axis by a motor 81 and connected to the drive shaft 82 is provided for each of the substrate transport conveyors 73 and 74, and corresponding substrate transport conveyors 73 and 74.
  • an output pulley 83 (only one of the substrate transport conveyor 74 is shown) for outputting power to the belt 74b.
  • the drive shaft 82 driven by the motor 81 is formed to have a polygonal cross section, and each output pulley 83 is Y relative to the drive shaft 82 in a state where relative rotation with the drive shaft 82 is restricted. Relatively movably coupled along the axial direction.
  • the drive shaft 82 is supported in a freely rotatable manner by the bearing 84 attached to the Y-axis piece 65 of the frame 61.
  • the space adjustment mechanism 90 is disposed on both sides of both frame bodies 71 and 72 in the X-axis direction, and is provided on both screw bolts 91 extending along the Y-axis direction and on the back of the frame body 72 on the rear side.
  • a power transmission unit 92 for transmitting rotational force in the same direction to both screw bolts 91, 91, and the other end side of the frame body 72 on the rear side in the X axis direction are rotated about the Y axis with respect to the power transmission unit 92.
  • a motor 93 for outputting a force.
  • the right-handed screw and the left-handed screw are formed symmetrically with respect to the central portion in the Y-axis direction, and the double threaded bolt 91 is screwed with the nut mechanisms 94 and 95 attached to the frame bodies 71 and 72, respectively. And both screw bolt 91 cooperates with nut mechanisms 94 and 95 by rotating in one direction (for example, clockwise direction), as shown by a virtual line in FIG. As shown by the solid line in FIG. 6, the two frame bodies 71 and 72 are configured to be separated in a direction away from each other by pulling in a direction close to each other and rotating in another direction (for example, a counterclockwise direction). ing.
  • table drive mechanism 100 drives substrate table 60 along an X-axis direction
  • X-axis drive unit 110 drives substrate table 60 via Y-axis drive unit 110.
  • a Y-axis drive unit 140 (see FIG. 4) which drives in the axial direction.
  • the X-axis drive unit 110 is disposed on the lower surface of the frame 61 of the substrate table 60 at a distance from the movable frame 111 in the Y-axis direction on the movable frame 111 and along the substrate table 60 along the X-axis direction. And an X-axis ball screw mechanism 114 juxtaposed on the rear side of the rear X-axis rail 113. Similar to the frame 61, the movable frame 111 is a frame-like structure whose center is open.
  • the X-axis ball screw mechanism 114 includes a ball screw 114a extending along the X-axis direction, a nut portion (not shown) screwed with the ball screw 114a, and an X-axis motor for driving the ball screw 114a around the X axis. And 114b.
  • the nut portion is fixed to the frame 61 of the substrate table 60, and receives the rotational force of the ball screw 114a to transmit the force for moving the substrate table 60 in the X-axis direction relatively to the movable frame 111. . Therefore, when the X-axis motor 114b rotates and the ball screw 114a rotates, the substrate table 60 can reciprocate in the X-axis direction by receiving a force in the X-axis direction from the nut portion.
  • the Y-axis drive unit 140 includes the pair of Y-axis rails 26 and 27 provided on the shelf 21 b and the inner side (X of the Y-axis rail 26 on the downstream side of the substrate transport direction in the X-axis direction).
  • a Y-axis ball screw mechanism 141 is provided parallel to the side facing the Y-axis rail 27 on the upstream side in the substrate transfer direction.
  • the Y-axis rails 26 and 27 guide the movable frame 111 so as to reciprocate in the Y-axis direction.
  • the Y-axis ball screw mechanism 141 includes a ball screw 141a extending along the Y-axis direction, a not-shown nut portion screwed to the ball screw 141a, and a Y-axis motor 141b for rotationally driving the ball screw 141a.
  • the ball screw 141a is rotatably supported on the shelf 21b by a bearing (not shown).
  • the nut portion is fixed to the lower surface of the movable frame 111, receives the rotational force of the ball screw 141a, and transmits the force for driving the substrate table 60 in the Y-axis direction via the movable frame 111.
  • the Y-axis motor 141b is fixed at an appropriate position of the shelf 21b. When the Y-axis motor 141b rotates and the ball screw 141a rotates, the substrate table 60 can reciprocate in the Y-axis direction by receiving a force in the Y-axis direction from the nut portion.
  • an X-ray irradiation unit (an example of an X-ray source) 160 for performing a transmission inspection of the printed circuit board W held by the substrate table 60 will be described.
  • the X-ray irradiation unit 160 is carried by an X-ray source support mechanism 150 which is an example of magnification changing means (lifting device) capable of changing the magnification of the X-ray image by moving the X-ray source up and down.
  • magnification changing means lifting device
  • X-ray source support mechanism 150 is a plate-like support plate 151 fixed to the back of beam 30, and is fixed to the back of support plate 151, along the Z-axis direction.
  • a pair of extending lift rails 152, 153, a lift slider 154 connected to the lift rails 152, 153, and a ball screw mechanism 155 for vertically driving the lift slider 154 are provided.
  • the support plate 151 is a sheet metal member that constitutes the structural body 20 together with the beam 30, and is firmly fixed to the beam 30 in the illustrated example.
  • the support plate 151 is provided with a stopper (not shown), and in the stroke range defined by the stopper, the elevating slider 154 is guided to be able to move up and down in the Z-axis direction.
  • the stroke range is determined based on the required magnification required for the X-ray image of the combined inspection apparatus 10.
  • the reaching path is the first distance
  • the magnification of the X-ray image is larger than equal magnification. It becomes a magnification. That is, the X-ray irradiation unit 160 is lowered to take a close-up position. Further, as shown in FIGS.
  • the reaching path is a second distance which is longer than the first distance, and imaging at the close-up position
  • This is a wide-angle, low-magnification non-close-up magnification (magnification greater than equal magnification). That is, the X-ray irradiation unit 160 ascends to assume the non-close-up photographing position.
  • the elevating rails 152 and 153 guide the elevating slider 154 so that the X-ray irradiation unit 160 moves up and down between the close-up position and the non-close-up position.
  • the combined inspection apparatus 10 is configured to irradiate the X-ray to the printed circuit board W at a predetermined elevation angle (for example, 45 °) and execute oblique imaging in which the inspection target portion is imaged obliquely. It is done.
  • the constraint conditions are set in the control unit 600, which will be described later, so that imaging is always performed at the close-up position.
  • the ball screw mechanism 155 extends in the Z-axis direction and supports a ball screw 155a supported on the back surface of the support plate 151, a nut portion (not shown) screwed to the ball screw 155a, and the ball screw 155a around the Z axis. And a belt mechanism 155c for transmitting the output of the Z-axis motor 155b to the ball screw 155a.
  • the ball screw 155a extends over substantially the entire height of the support plate 151 so that the X-ray irradiation unit 160 can move up and down in the above-described stroke range.
  • the nut portion (not shown) is fixed to the front surface of the elevation slider 154, and receives the rotational force of the ball screw 155a to transmit the vertical movement force to the elevation slider 154.
  • the Z-axis motor 155b is attached to the front surface of the support plate 151 along the Z-axis direction with the output shaft facing downward.
  • the belt mechanism 155c has an output pulley attached to the output shaft of the Z-axis motor 155b, an input pulley attached to the lower end of the ball screw 155a, and a belt wound between both pulleys. The drive force of the Z-axis motor 155b is transmitted to the ball screw 155a via the.
  • the X-ray source support mechanism 150 including the Z-axis ball screw mechanism 155 is a close-up in which the linear distance until the X-ray irradiated from the X-ray irradiation unit 160 reaches the X-ray camera 50 approaches for close-up use.
  • the X-ray irradiation unit 160 is supplied with power from the housing 161, a high voltage generation unit (not shown) housed in the housing, and the high voltage generation unit to irradiate X-rays. And an X-ray irradiator 200.
  • the X-ray irradiator 200 includes a glass tube 201 having a radiation window 201a, and a cathode 202 fixed to one end of the glass tube 201 and having a focusing cylinder 202a on the other end side of the glass tube 201. And an anode 203 fixed to the other end of the glass tube 201 and having a target (focus) 203 a facing the focusing cylinder 202 a of the cathode 202.
  • the focusing cylinder 202 a of the cathode 202 is provided with a filament 204 and faces the target 203 a of the anode 203.
  • the target 203a is made of tungsten and is inclined, for example, 45 ° with respect to the center line of the glass tube 201, so that X-rays emitted from the filament 204 can be emitted to the outside of the glass tube 201 from the radiation window 201a. ing.
  • the slopes of the target 203a are irradiated with thermal electrons, X-rays are not uniform in all directions, as indicated by Ry in FIG. 10, and a portion corresponding to the lower side of the slope of the target 203a is shaded. It is distributed in an approximate heart shape.
  • the X-ray irradiation device 200 of the X-ray irradiation unit 160 can be rotated about the Z axis to rotate the irradiation direction of the X-ray distributed substantially in a heart shape about the Z axis.
  • the oblique irradiation can be ensured in the direction from the cathode 202 to the anode 203 (for example, the upstream side in the substrate transport direction shown in FIG. 9).
  • the X-ray tilt image at this time is an image based on an X-ray at an angle intersecting with the printed circuit board W (the left elevation angle because the X-ray passes from the upper right to the lower left).
  • the substrate table 60 is moved in the X-axis direction by the table drive mechanism 100.
  • the X-ray camera 50 is controlled to move in the Y-axis direction
  • the X-ray camera 50 is controlled to move in the X-axis direction and the Y-axis direction in the X-ray camera unit 40
  • the X-ray irradiator 200 of the X-ray irradiation unit 160 operates the R-axis motor 170. Is rotated about the Z axis.
  • the R-axis motor 170 is controlled to rotate by a control unit 600 described below.
  • optical imaging apparatus 300 provided in parallel to the X-ray irradiation unit 160 will be described.
  • the optical imaging device 300 is carried by an optical drive mechanism 180 as optical system drive means.
  • optical drive mechanism 180 will be described.
  • the optical drive mechanism 180 is provided immediately below the frame portion 25 supporting one of the beams 30, and is disposed at an interval in the Z-axis direction on the back surface of the guide frame 181 extending in the X-axis direction.
  • a pair of guide rails 182 and 183 extending in parallel along the X-axis direction, a slider 184 connected to the guide rails 182 and 183 and supported so as to be movable in the X-axis direction, a slider 184 and a guide frame 181 And a ball screw mechanism 185 provided therebetween.
  • the guide frame 181 is a sheet metal member which constitutes a part of the structure 20 together with the beam 30 and the frame portion 25.
  • the guide frame 181 is provided with a stopper (not shown), and in the stroke range defined by the stopper, the slider 184 is guided to be reciprocally movable in the X-axis direction.
  • the guide rails 182 and 183 allow the optical imaging device 300 to be directly below the X-ray irradiation unit 160, As shown in FIG. 8, an imaging position that enables imaging with visible light by the optical imaging device 300 and, as shown in FIG.
  • the slider 184 is guided so that the optical imaging device 300 can move between the close-up position and the retracted position which allows the close-up position to be lowered.
  • the ball screw mechanism 185 extends in the X-axis direction and has a ball screw 185a supported on the back surface of the guide frame 181, a nut portion (not shown) screwed to the ball screw 185a, and the ball screw 185a around the X axis. And an X-axis motor 185b which is rotationally driven.
  • the ball screw 185a extends over substantially the entire length of the guide frame 181 so that the optical imaging device 300 can move in the stroke range.
  • the nut portion is fixed to the front surface of the slider 184, and receives the rotational force of the ball screw 185a to transmit a force moving along the X-axis direction to the slider 184.
  • the X-axis motor 185b is attached to an appropriate position of the structure 20 with the output axis along the X-axis direction, and the driving force of the X-axis motor 185b is transmitted to the ball screw 185a. There is. As described above, in the optical drive mechanism 180, an imaging position (see FIG.
  • a driving unit is configured to move the optical imaging apparatus 300 between a retracted position (see FIG. 8) which retracts from the imaging position so as to move relatively toward the close-up position.
  • the optical imaging apparatus 300 includes a CCD camera 301 carried by a slider 184, and an optical system 302 which is united with the CCD camera 301 and faces the substrate table 60.
  • the CCD camera 301 has a lens (not shown) oriented along the X-axis direction, and can receive light from the optical system 302.
  • the optical system 302 includes an annular hood 302 a, and a mirror 302 b disposed on the top of the hood 302 a and inclined at 45 ° and facing the side of the CCD camera 301.
  • a large number of LEDs are provided inside the hood 302a, and light can be emitted downward from these LEDs.
  • the hood 302a has a through hole at its central portion so that X-rays and reflected light from the inspection object of the printed circuit board W can pass, and the mirror 302b is an inspection object of the printed circuit board W below the hood 302a.
  • the light reflected from the unit is further reflected along the X-axis direction, and the reflected light is guided to the CCD camera 301, and the X-ray can be transmitted.
  • the hood 302a and the mirror 302b having a through hole in the center are an example of a light receiving unit which constitutes an optical imaging apparatus and through which an X-ray passes.
  • the center of the mirror is set to be located directly below the X-ray irradiation unit 160. Therefore, when the X-ray irradiation unit 160 irradiates X-rays to inspect the portion to be inspected immediately below, it becomes possible to simultaneously image the portion to be inspected at the same position in parallel with the irradiation operation. .
  • the substrate table 60 is controlled to move in the X-axis direction and the Y-axis direction by the table drive mechanism 100 for each of these imaging operations.
  • a laser inspection apparatus 400 is provided in front of the X-ray irradiation unit 160.
  • the laser inspection apparatus 400 is disposed at a position facing the printed circuit board W on the substrate table 60 from a position close to the X-ray irradiation unit 160.
  • the laser inspection apparatus 400 includes an irradiation unit that emits a laser downward and a light receiving unit that receives the laser light reflected from the inspection target unit, and the inspection target unit is based on the light received by the light receiving unit.
  • the substrate drive table 100 is used by the table drive mechanism 100 every height detection. Is controlled to move in the X axis direction and in the Y axis direction and positioned.
  • the compound inspection apparatus 10 is equipped with a control unit 600 that controls the whole.
  • the control unit 600 is an imaging position control unit that controls the optical drive mechanism 180 so that the optical imaging device 300 retracts to the retraction position in advance when the X-ray irradiation unit 160 needs to move toward the close-up position.
  • Table movement control means for moving and controlling the substrate table 60 in the X-axis direction and Y-axis direction by the mechanism 100
  • X-ray camera movement control means for moving and controlling the X-ray camera 50 in the X-axis direction and Y-axis direction
  • optical imaging device When 300 is retracted to the retracted position, the R-axis motor 17 rotates the X-ray irradiator 200 around the Z axis (upper and lower axes) to obtain X-ray tilt images of a predetermined plurality of elevation angles with a predetermined orientation. It is an example of X-ray irradiation apparatus rotation control means to control rotation.
  • the X-ray irradiation unit 160 When the optical imaging apparatus 300 is retracted to the retraction position, the X-ray irradiation unit 160 takes a close-up position. At the close-up position, the X-ray irradiation unit 160 is controlled to a height position commensurate with the desired close-up magnification.
  • a display panel 610 and a keyboard 620 are attached to the front of the combined inspection apparatus 10. Further, on the top of the combined inspection apparatus 10, a lamp 611 indicating an operating condition is provided. Furthermore, on the upstream side of the control unit 600 in the substrate transfer direction, a power supply 630 is installed.
  • the control unit 600 includes a main control unit (CPU) 601 embodied by a microprocessor or the like, and the main control unit 601 includes a storage unit 602, an X-ray image board 603, and an optical unit.
  • An image board 604, a drive system board 605, a sensor system board 606, a display board 607, an input board 608, a communication board 609, and the like are connected.
  • a storage device 602 is embodied by a ROM, a RAM, an auxiliary storage device, etc., and controls each unit of the compound inspection apparatus 10, and a program or master data necessary for executing an inspection and a print to be inspected
  • the substrate W, mounted components, inspection items such as inspection items, master data of the inspection object, and transaction data defining inspection specifications and the like for the inspection object items are stored.
  • the X-ray image board 603 is an interface for connecting the X-ray camera 50 and the main control unit 601, and through the X-ray image board 603, the main control unit 601 generates an X-ray image captured by the X-ray camera 50. On the basis of this, it is possible to carry out a transmission inspection of the inspection object.
  • the optical image board 604 is an interface for connecting the CCD camera 301 and the main control unit 601, and through the optical image board 604, the main control unit 601 selects an inspection object based on the optical image captured by the CCD camera 301. It is possible to perform visual inspection of
  • the driving system board 605 includes various motors (for example, ball screw mechanisms 44, 114, 141, 155, 185 X-axis motors 44a, 141b, 114b, 144b, 155b, 185b, etc.) provided in the combined inspection apparatus 10. And an interface for connecting the actuator of the clamp unit 75 and the like to the main control unit 601, and through the drive system board 605, the main 601 indicates the rotation direction, rotation amount, rotation speed, operation timing, etc. of various motors. Can be controlled, or the opening / closing operation of the air cylinder of the clamp unit 75 can be controlled.
  • various motors for example, ball screw mechanisms 44, 114, 141, 155, 185 X-axis motors 44a, 141b, 114b, 144b, 155b, 185b, etc.
  • a sensor system board 606 is an interface for connecting various sensors provided in the combined inspection apparatus 10 and the main control unit 601, and through the sensor system board 606, the main control unit 601 detects various sensors. Based on the detection result, it is possible to detect the operation timing of each part, the presence or absence of the printed circuit board W, and the like.
  • the display board 607 is an interface connecting the display panel 610 or the lamp 611 attached to the front of the combined inspection apparatus 10 to the main control unit 601, and the main control unit 601 displays control information through the display board 607.
  • a panel 610 can be displayed with a graphical user interface (GUI), or a lamp 611 (see FIG. 1) provided on the top of the combined inspection apparatus 10 can be blinked.
  • GUI graphical user interface
  • the input board 608 is an interface for connecting a pointing device such as a keyboard 620 attached to the front of the combined inspection apparatus 10 to the main control unit 601.
  • the main control unit 601 is operated by the user through the input board 608. Data of the keyboard 620 and the like can be received.
  • the communication board 609 is for executing communication of data with a host computer that manages a production program of equipment in which the combined inspection apparatus 10 is installed. Through the communication board 609, the main control unit 601 performs LAN and / or WAN.
  • the information processing apparatus can be connected to the host computer to obtain information on items to be inspected such as the product number of the printed circuit board W to be inspected.
  • the main control unit 601 controls each unit of the compound inspection apparatus 10 in the following procedure.
  • main control unit 601 executes a substrate receiving operation (step S1).
  • a substrate receiving operation when the printed circuit board W for which the upstream process has been completed is transported from the substrate transport conveyor 12, the shutter mechanism of the substrate loading / unloading opening 11d is opened to open the substrate loading / unloading opening 11d to receive the printed substrate W .
  • the substrate table 60 is driven by the X-axis motor 114 b of the X-axis ball screw mechanism 114 to move to the substrate loading / unloading port 11 d side to receive the printed substrate W carried in from the substrate transport conveyor 12. There is.
  • the width of the printed board W carried in is not uniform, but in this carry-in / receiving operation, the space adjustment mechanism 90 of the board table 60
  • the opposing distance between the two frame bodies 71 and 72 of the conveyor unit 70 is adjusted to a size that conforms to the width of the printed substrate W to be carried in based on the communication data previously acquired from the host computer (FIG. 14). But omitted).
  • the printed circuit board W carried in from the substrate loading / unloading port 11 d is carried onto the substrate table 60 by the conveyor drive mechanism 80 of the conveyor unit 70. After loading, the shutter mechanism on the loading side operates to close the substrate loading / unloading port 11d again so that the X-ray at the time of X-ray imaging does not leak.
  • the clamp unit 75 of the conveyor unit 70 clamps and holds the two frame bodies 71 and 72 of the conveyor unit 70 (step S2).
  • the substrate table 60 is again driven by the X-axis motor 114 b of the X-axis ball screw mechanism 114 to move to a predetermined position in the combined inspection apparatus 10.
  • the printed circuit board W is installed at the inspection position.
  • the X-axis motor 44a and the Y-axis motor 48a of the camera unit 40 operate to move the X-ray camera 50 to a preset imaging position for X-ray imaging.
  • the R-axis motor 170 of the X-ray irradiator 160 may or may not move at this timing, and this state is indicated by a broken line in FIG.
  • the main control unit 601 determines whether it is necessary to retract the optical imaging apparatus 300 for inspection (step S4).
  • the main control unit 601 is programmed with constraint conditions so as to determine that retraction of the optical imaging apparatus 300 is necessary. If it is necessary to save, the main control unit 601 executes a parallel imaging inspection subroutine (step S5). Further, when the evacuation is not necessary, the main control unit 601 executes a coaxial imaging inspection subroutine (step S6).
  • the parallel imaging inspection subroutine will be described later. Further, in the coaxial imaging inspection subroutine, the mirror 302 b of the optical system 302 of the optical imaging apparatus 300 is coaxially disposed between the inspection target portion of the printed circuit board W and the X-ray irradiation unit 160 and imaged by the X-ray camera 50 This inspection mode simultaneously performs the transmission inspection based on the X-ray image and the appearance inspection based on the optical image captured by the CCD camera 301 and is substantially the same as the prior art, so the description thereof will be omitted. Do. The parallel imaging inspection subroutine and the coaxial imaging inspection subroutine are both executed for each area in units of fields of view that can be imaged by the X-ray camera 50 and the CCD camera 301 at one time.
  • step S7 the main control unit 601 determines whether imaging in all areas is completed. If an unimaged area remains, the main control unit 601 proceeds to step S3 and repeats the above-described processing. In the present embodiment, it may be necessary to execute both wide-angle X-ray imaging at the non-close-up position and close-up X-ray imaging at the close-up position on the same inspection target portion. In the determination of step S7, the main control unit 601 proceeds to step S3 as described above, assuming that an unimaged area remains even in the same area until all necessary imaging inspections are completed. Repeat the process.
  • the main control unit 601 executes a process of moving the printed circuit board W after the inspection to the unloading position (step S8).
  • the X-axis drive unit 110 of the table driving mechanism 100 operates again to move the substrate table 60 along the X-axis direction toward the downstream side of the substrate transfer direction (in the illustrated example, a direction approaching the substrate loading / unloading port 11e. (See FIG. 2 etc.).
  • the clamping of the substrate table 60 is released this time (step S9), and the unloading operation is performed (step S10). ).
  • the shutter mechanism on the unloading side operates to open the substrate loading / unloading port 11e.
  • the conveyor drive mechanism 80 operates the substrate transport conveyors 73 and 74 to carry out the inspected printed circuit board W to the substrate transport conveyor 14 on the unloading side.
  • the shutter mechanism is operated to close the substrate loading / unloading port 11e, and the X-axis drive unit 110 of the table driving mechanism 100 operates again to shift to the next operation, and the substrate table 60 is moved in the X-axis direction.
  • the substrate transport direction in the example shown, in the direction approaching the substrate loading / unloading port 11d; see FIG. 2 etc.).
  • the main control unit 601 determines whether the inspection of all the printed circuit boards W is completed (step S11). If there is an unprocessed printed circuit board W, the main control unit 601 proceeds to step S1 to repeat the above-described process, and ends the process when all the printed circuit boards W have been inspected.
  • the optical imaging device 300 when the optical imaging device 300 is at the imaging position, the optical imaging device 300 is retracted by the optical drive mechanism 180 and the X-ray irradiation unit 160 is brought close to the printed substrate W (Step S501).
  • the main control unit 601 drives the X-axis motor 185b that constitutes the ball screw mechanism 185 of the optical drive mechanism 180, and the slider 184 carrying the optical imaging device 300 is shown in FIG. It moves from the position to the position shown in FIG. As a result, the optical imaging apparatus 300 moves from the imaging position shown in FIG. 9 to the retracted position shown in FIG.
  • the main control unit 601 drives the Z-axis motor 155b constituting the ball screw mechanism 155 incorporated in the X-ray source support mechanism 150 to lower the elevation slider 154 from the position shown in FIG. 9 to the position shown in FIG. (Step S502).
  • the X-ray irradiation unit 160 carried by the elevation slider 154 is lowered from the non-close-up position shown in FIG. 9 to the close-up position shown in FIG.
  • the X-ray irradiation unit 160 faces the downstream side of the optical imaging apparatus 300 in the X-axis direction.
  • the main control unit 601 operates the X-ray camera 50 to capture a close-up image of X-rays (step S503).
  • the main control unit 601 operates the X-ray camera 50 to capture a close-up image of X-rays (step S503).
  • the main control unit 601 acquires an X-ray image of a close-up X-ray image by X-rays from above the printed circuit board W from above and X-ray inclined image by X-rays of a predetermined orientation and a predetermined elevation angle. It is determined whether or not imaging (oblique imaging) is required (step S504). If it is necessary to execute oblique imaging etc., the main control unit 601 acquires an X-ray tilt image by X-rays of a predetermined orientation and a predetermined elevation angle for a predetermined portion of the printed circuit board W based on the inspection program.
  • Step S505 To change the position of the X-ray irradiator 200 about the Z-axis by stopping or operating the R-axis motor 170 so that the main controller 601 controls the X-axis of the X-ray camera unit 40
  • the X-axis motors 44a and 48a of the ball screw mechanism 44 and the Y-axis ball screw mechanism 48 are operated to change the imaging position of the X-ray camera 50, for example, as shown in FIG.
  • the table 60 is moved and positioned in the X axis direction and the Y axis direction. (Step S505).
  • the main control unit 601 operates the X-ray camera 50 to capture a close-up X-ray image by X-rays from above the printed circuit board W from above and from an oblique X-ray image. Then, the transmission inspection is performed (step S506). The inspection result is stored in the auxiliary storage device of the storage device 602. If there are a plurality of predetermined regions (areas) of the printed circuit board W, or a plurality of predetermined azimuths and predetermined elevation angles, steps S505 and S506 are repeated by the number of combinations thereof.
  • the efficiency of inspection processing is achieved using the following method.
  • the optical imaging device 300 is retracted to the retraction position shown in FIG.
  • a predetermined inspection target portion of the printed circuit board W that is, an inspection target portion (area), or a printed circuit board with close-up and / or non-close-up for all combinations of predetermined azimuth and predetermined elevation angle.
  • the appearance inspection is performed at a position at which the optical imaging apparatus 300 is retracted to the retraction position.
  • the main control unit 601 determines the necessity of the appearance inspection (step S507), drives the table driving mechanism 100 to move the substrate table 60 when the appearance inspection is necessary, and the substrate table 60 is moved.
  • the inspection target portion of the printed circuit board W held on the substrate table 60 is moved immediately below the optical system 302 of the optical imaging apparatus 300 retracted to the retraction position (step S508).
  • the X-ray irradiation unit 160 is moved to the non-close-up photographing position at this timing.
  • the optical imaging device 300 is operated this time to capture an optical image, and an appearance inspection of the inspection target portion is performed based on the optical image (step S509).
  • the LED of the hood 302a of the optical system illuminates the portion to be inspected, the reflected light is reflected by the mirror 302b and guided to the CCD camera 301, and the reflected light causes an optical image of the portion to be inspected.
  • the image is taken by the CCD camera 301.
  • the control of the main control unit 601 returns to the main routine.
  • the height inspection can be performed at a fixed position regardless of the movement of the X-ray imaging apparatus and the optical imaging apparatus 300, and thus the appearance inspection in the parallel imaging inspection subroutine (step S5) Similarly, by moving the substrate table 60, it is possible to carry out the necessary inspection as appropriate.
  • the optical drive mechanism 180 when inspecting the printed circuit board W on which a large number of electronic components are mounted, the optical drive mechanism 180 as a drive means when the X-ray irradiation unit is in the non-close-up shooting position.
  • the optical imaging device 300 can be brought to the imaging position by the image display, and the appearance inspection based on the image with the visible light captured by the optical imaging device 300 for the same printed circuit board W as in the prior art And the transmission inspection based on the X-ray image captured can be realized simultaneously in parallel.
  • the optical imaging apparatus 300 of the present embodiment is configured to be able to move between the imaging position and the retracted position retracted from the imaging position by the optical drive mechanism 180 as a drive unit.
  • the control unit as imaging position control means Since the optical drive mechanism 180 is controlled so that the optical imaging device 300 retracts to the retracted position by 600, the X-ray irradiation unit 160 is close to the print substrate W without being blocked by the optical imaging device 300. It is possible to move to Therefore, it is possible to obtain a close-up X-ray image of high magnification, which has recently been requested.
  • both imaging of an X-ray transmission image and imaging by the optical imaging device 300 with the X-ray irradiation unit 160 positioned at the non-close-up position can be performed simultaneously and in parallel.
  • the X-ray irradiation unit 160 is in the close-up position, the X-ray irradiation unit 160 does not collide with the optical imaging apparatus 300.
  • the table drive mechanism 100 moves the substrate table 60 on a plane parallel to the substrate table 60 so that the inspection target unit can pick up an image by the optical imaging device 300 in the retracted position, and the position
  • the control unit 600 further includes a control unit 600 as table movement control means for controlling the table drive mechanism 100 so as to position the inspection target below the optical imaging apparatus 300, specifically, below the mirror 302b. For this reason, in the present embodiment, when the optical imaging device 300 is retracted to the retraction position, the printed circuit board W is transported to a position where the optical imaging device 300 at the retraction position can capture the inspection target portion. it can.
  • the printed circuit board W is positioned in a region from the X-ray irradiation apparatus 200 to the X-ray camera 50, and the X-ray camera 50 captures a transmission image at the close-up position.
  • the substrate table 60 holding the printed circuit board W is provided in both directions in the direction parallel to the substrate table 60 and in the direction (Y-axis direction) orthogonal to the predetermined direction (X-axis direction) and the predetermined direction.
  • the table drive mechanism 100 which moves is provided.
  • the table drive mechanism 100 moves a plurality of inspection target portions of the printed circuit board W into areas from the X-ray irradiation device 200 of the X-ray irradiation unit 160 to the X-ray camera 50 for each preset area.
  • the X-ray camera 50 picks up an X-ray image of the portion to be inspected, both when the X-ray irradiation unit 160 is in the non-close-up position and in the close-up position.
  • the optical imaging apparatus 300 captures an optical image of the inspection target at the imaging position.
  • the “preset area” is appropriately set according to the imaging condition. For example, when imaging an X-ray image at a certain magnification, the printed circuit board W is divided according to the field of view of the X-ray camera 50 at that magnification, and the divided range is one area.
  • the substrate table 60 may be moved to be imaged.
  • the inspection target portion is an individual solder ball or the like of the electronic component, a plurality of inspection target portions are included in one area. Further, in the appearance inspection or the like, the inspection target portion may be a partial area of the printed circuit board W. In such a case, the substrate table 60 may be moved for each area, that is, each inspection target unit.
  • non-close-up imaging is performed for each of the plurality of inspection target portions.
  • parallel imaging a close-up X-ray image may be captured for each examination target portion.
  • the X-ray camera moving means 49 is provided which moves the X-ray camera 50 in both the X-axis direction and the Y-axis direction on a plane parallel to the printed circuit board W. Therefore, the X-ray camera moving means 49 facilitates so-called imaging of a perspective image.
  • the X-ray transmission direction, (R, ⁇ ) is set, and X-ray imaging is performed along the set transmission direction ⁇ (R, ⁇ ).
  • the azimuth R is defined as, for example, an angle when it is rotated in the counterclockwise direction, with the reference axis Xo in the X-axis direction passing through the inspection target portion W1 as the origin as 0 °.
  • the imaging position control means retracts the optical imaging device 300 to the retraction position in advance.
  • the X-ray camera moving means 49 positions the X-ray camera 50 on the extension of the X-ray along the transmission direction ⁇ (R, ⁇ ) from the X-ray source
  • the substrate table 60 may be positioned by the table driving mechanism 100 so that X-rays along the transmission direction ⁇ (R, ⁇ ) transmit the inspection object part W1.
  • the X-ray irradiation unit 160 is positioned at the non-close-up shooting position to capture a non-close-up X-ray image
  • the X-ray radiation unit 160 is positioned at the close-up position to capture a close-up X-ray image.
  • the X-ray irradiation unit 160 includes the R-axis motor 170 which rotates the X-ray irradiation apparatus 200 for irradiating X-rays around the Z axis (upper and lower axes).
  • the X-ray irradiator 200 emits X-rays in the predetermined transmission direction ⁇ (R, ⁇ ) so that a perspective image of the predetermined transmission direction ⁇ (R, ⁇ ) can be captured with respect to the portion to be inspected.
  • the R-axis motor 170 is controlled to rotate along the portion to be inspected and to reach the X-ray camera 50.
  • the directivity is set to the transmission direction ⁇ (R, ⁇ by rotating the X-ray irradiation apparatus 200 about the Z axis.
  • the transmission direction can be set in a wider setting range for each of the plurality of inspection target parts, and oblique imaging can be performed.
  • the X-ray camera 50 is disposed below the substrate table 60, and the X-ray irradiation unit 160 is disposed above the substrate table 60.
  • the X-ray camera 50 is disposed above the substrate table 60
  • the X-ray irradiation unit 160 may be arranged below the substrate table 60.
  • the X-ray irradiation unit 160 is moved up and down by the X-ray source support mechanism 150.
  • the X-ray irradiation unit 160 is fixed at a fixed position and the X-ray camera 50 is in the Z axis direction. It may be configured to be able to drive.
  • the substrate table 60 is configured to be movable in the XY axis direction in order to allow the optical imaging device 300 in the retracted position to face the inspection target portion. It may be configured to be movable within the area.
  • a substrate table on which a printed circuit board on which a large number of electronic components are mounted is installed, and an optical imaging apparatus for capturing an optical image of an inspection object of the printed circuit board installed on the substrate table.
  • An X-ray irradiation unit for irradiating the inspection target portion with X-rays; an X-ray camera for capturing an X-ray image of the inspection target portion from X-rays transmitted through the printed circuit board; Between the close-up position where the arrival path of the X-ray reaching the X-ray camera is a first distance for close-up, and the non-close-up position where the arrival path is longer than the first distance
  • the optical imaging apparatus performs the inspection between the X-ray irradiation unit and the X-ray camera, and a magnification changing unit that relatively displaces the X-ray camera and changes the magnification of the X-ray image.
  • An integrated inspection apparatus for printed circuit boards comprising: imaging position control means for controlling.
  • a table drive mechanism for moving the substrate table on a plane parallel to the substrate table so that the inspection object can be imaged by the optical imaging device at the retracted position;
  • a table movement control unit configured to control the table drive mechanism so as to capture an image of the inspection target at the retraction position when the optical imaging device is retracted to the retraction position.
  • an optical imaging apparatus disposed above a printed circuit board on which a large number of electronic components are mounted, including an optical system having a light receiving unit that allows transmission of X-rays, and the optical system System for capturing an optical image of an inspection target portion obtained from the system, an X-ray irradiation unit for irradiating the inspection target portion with X-rays from above, and the printed circuit board below the printed circuit board
  • An X-ray camera for receiving an X-ray to capture an X-ray image of the inspection target, a non-focusing position above the optical imaging device, and a position lower than the optical system of the optical imaging device
  • a lifting device for changing the height of the X-ray irradiation unit with respect to the printed circuit board between the close-up position and the X-ray camera from the X-ray irradiation unit at the non-close-up position
  • optical imaging device While capturing an X-ray image of the examination target in both the case where the subject is in the close-up position and the case where the optical imaging device is , When the X-ray irradiation unit is in the non-close-up position, said by the imaging position optical imaging device is configured to image the optical image of said object portion.
  • the printed circuit board has a plurality of inspection target parts, and a substrate table for holding the printed circuit board, and the substrate table in a predetermined direction on a plane parallel to the substrate table. And a table drive mechanism that moves in both directions orthogonal to a predetermined direction, the table drive mechanism positioning the plurality of inspection target units in the area for each preset area.
  • the X-ray irradiation unit captures an X-ray image of the examination target portion in the area, in both the non-close-up position and the close-up position.
  • the optical imaging device may be configured such that the X-ray irradiation unit is at the non-close-up shooting position at the imaging position.
  • An optical image of said object portion which is in the region was set to be respectively imaged.
  • the printed circuit board complex inspection apparatus further comprises: an X-ray camera moving means for moving the X-ray camera in both directions on a plane parallel to the printed circuit board;
  • an X-ray camera moving means for moving the X-ray camera in both directions on a plane parallel to the printed circuit board;
  • the imaging position control means controls the drive means in advance so that the optical imaging device retracts to the retraction position, and the table mechanism transmits X-rays along the transmission direction along the inspection target portion
  • the X-ray camera moving means sets the X-ray irradiation unit to the close-up position or the close-up position.
  • the X-ray camera can capture an oblique X-ray image in a wide range around the vertical axis.
  • the X-ray irradiation unit is positioned at the non-close-up photographing position, and the X-ray irradiation unit is positioned at the close-up imaging position by capturing the oblique view image of high magnification with a relatively small elevation angle (tilt angle). It is also possible to capture the oblique image with higher magnification with a large elevation angle (tilt angle).
  • the X-ray irradiation unit includes an R-axis motor that rotates an X-ray irradiation apparatus that irradiates X-rays around a vertical axis, and a motor control unit performs the oblique image
  • a control means is provided for controlling the rotation of the R-axis motor such that the directivity of the X-ray irradiator conforms to the transmission direction of the oblique image when imaging.
  • the directivity can be adapted to the transmission direction by rotating the X-ray irradiation apparatus around the vertical axis. it can. Therefore, with regard to the transmission direction, the degree of freedom in setting becomes high, and the transmission direction can be set in a wider setting range for each of the plurality of inspection target parts, and oblique imaging can be performed.
  • the present invention is suitable for X-ray inspection of a produced printed circuit board in equipment for producing the printed circuit board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Multimedia (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

 本発明は、X線カメラ50とX線照射ユニット160との間で検査対象部に臨む光学撮像装置300を備えた複合検査装置において、接写ポジションと非接写ポジションとの間でX線照射ユニット160とX線カメラ50とを相対変位させて、X線画像の倍率を変更する倍率変更手段155を設ける。この倍率変更手段155は、接写ポジションでは、X線照射ユニット160からX線カメラ50に到達するX線の到達経路が接写用に短くなる。非接写ポジションでは、上記到達経路が接写ポジションでの距離よりも長くなる。X線照射ユニットとX線カメラとの少なくとも何れか一歩が接写ポジションに向かって移動する必要がある場合には、X線照射ユニットとX線カメラとが相対的に接写ポジションに向かって移動できるように事前に光学撮像装置300を退避させる。

Description

プリント基板の複合検査装置
 本発明は、プリント基板の複合検査装置に関する。
 多数の電子部品が実装されたプリント基板を検査するに当たり、特許文献1、2に開示されているように、X線を利用した透過検査と、可視光を利用した外観検査とを同一の装置で実現することのできる複合検査装置が知られている。
 複合検査装置は、透過検査用のX線撮像装置と、外観検査用の光学撮像装置とを備えている。
 例えば、特許文献1は、X線撮像装置として、X線源と、このX線源に対して相対的に対向間隔を調整可能なX線用のイメージセンサとを開示している。また、特許文献1は、光学撮像装置として、X線撮像装置と一体的に移動可能なミラーと、X線撮像装置に固着されミラーを通して検査対象部の画像を撮像するビジコンとを開示している。
 また、特許文献2は、X線撮像装置として、検査対象となる電子部品を挟んで対向するX線源(X線照射ユニット)及びX線撮像部(CCDカメラ)を開示している。また、特許文献2は、光学撮像装置として、電子部品とX線照射ユニットとの間に、同軸状に配置されたミラーと、電子部品からミラーに反射された光を受けて撮像する撮像装置とを開示している。特許文献2のX線照射ユニットは固定的であり、検査対象となる電子部品が搭載された被写体基板が、X線照射ユニットから照射されるX線照射方向に対し、直角な平面上を移動可能に構成されている。
 特許文献1、2の装置によれば、検査対象部を透過するX線の経路上にミラーを介在させ、X線による透過検査と光学カメラによる外観検査とを同時に実行することができるので、検査効率が向上するという利点がある。
特開平2-52246号公報 特開2004-340631号公報
 しかしながら、近年のプリント基板は、極めて小型に集積された電子部品が高密度に実装されており、その検査対象箇所も飛躍的に微小化している。そのため、特許文献1、2の構成で全ての検査項目を処理しようとしても、近年要請されている倍率で接写されたX線画像を得ることができなかった。
 まず、特許文献1の構成では、X線画像を撮像するイメージセンサがX線源に対して相対的に対向間隔を変更可能に構成されているので、倍率の変更そのものは、可能にはなっている。しかしながら、特許文献1の構成では、イメージセンサの直下にミラーが配置されたまま一体的に移動する構成になっているので、ミラーがイメージセンサと検査対象となる電子部品との間に介在する分、接写時の部品高さ制限が厳しくなり、必要な拡大倍率を得ることが困難であった。
 一方、特許文献2の構成では、X線源としてのX線照射ユニットおよびX線撮像部としてのCCDカメラは、固定的であり、検査対象となる電子部品が搭載された被写体基板が、X線照射ユニットから照射されるX線照射方向に対し、直角な平面上を移動可能に構成されているにすぎなかった。そのため、そもそもX線画像の倍率変更は、できなかった。また、特許文献2の構成においても、X線照射ユニットとCCDカメラとの間に、ミラーを介在させ、同軸撮像を実行する構成となっているので、仮に、特許文献1のような構成を加えて、倍率変更を可能にしたとしても、依然、ミラーがじゃまになり、倍率の大きな接写画像を得ることができなかった。
 本発明は、上述した課題に鑑みてなされたものであり、所要の拡大倍率で接写されたX線画像を得ることのできるプリント基板の複合検査装置を提供することを課題としている。
 上記課題を解決するために、本発明は、多数の電子部品が実装されたプリント基板を設置する基板テーブルと、前記基板テーブルに設置された前記プリント基板の検査対象部の光学画像を撮像する光学撮像装置と、前記検査対象部にX線を照射するX線照射ユニットと、前記プリント基板を透過したX線から当該検査対象部のX線画像を撮像するX線カメラと、前記X線照射ユニットから前記X線カメラに到達するX線の到達経路が接写用の第1距離となる接写ポジションと、前記到達経路が前記第1距離よりも長くなる非接写ポジションとの間で、前記X線照射ユニットと前記X線カメラとを相対的に変位して、当該X線画像の倍率を変更する倍率変更手段と、前記X線照射ユニットと前記X線カメラとの間で前記光学撮像装置が前記検査対象部に臨む撮像ポジションと、前記X線照射ユニットと前記X線カメラとが相対的に前記接写ポジションに向かって移動できるように前記光学撮像装置が前記撮像ポジションから退避する退避ポジションとの間で前記光学撮像装置を移動させる駆動手段と、前記X線照射ユニットまたは前記X線カメラの少なくとも一方が移動する必要がある場合に、事前に前記光学撮像装置が前記退避ポジションに退避するように前記駆動手段を制御する撮像ポジション制御手段とを備えていることを特徴とするプリント基板の複合検査装置である。この態様では、多数の電子部品を搭載したプリント基板を検査するに当たり、光学撮像装置が撮像ポジションにあるときは、従来技術と同様に、同一のプリント基板に対し、光学撮像装置が撮像した可視光での画像に基づく外観検査と、前記X線カメラが撮像したX線画像に基づく透過検査とを並行して実現することができる。しかも、本態様では、倍率変更手段によって、X線画像の倍率を切り換えることができるので、近年要請されている種々の撮像要求に応じることが可能となる。加えて、本態様の光学撮像装置は、駆動手段によって撮像ポジションと、この撮像ポジションから退避する退避ポジションとの間で移動されるように構成されている。そして、X線照射ユニットと前記X線カメラが接写ポジションに移動する必要がある場合には、撮像ポジション制御手段によって、光学撮像装置が退避ポジションに退避するように駆動手段が制御されるので、光学撮像装置に妨げられることなく、X線照射ユニットをプリント基板近くまで下降させて、接写ポジションに移動することが可能となる。従って、近年要請されているより一層高い倍率の接写X線画像を得ることができる。
 本発明の別の態様は、多数の電子部品が実装されたプリント基板の上方に配置される光学撮像装置であって、X線の透過を許容する受光部を有する光学系を含み、且つ前記光学系から得られた検査対象部の光学画像を撮像する前記光学撮像装置と、前記検査対象部に上方からX線を照射するX線照射ユニットと、前記プリント基板の下方において、前記プリント基板を透過したX線を受けて前記検査対象部のX線画像を撮像するX線カメラと、前記光学撮像装置より上方の位置である非接写ポジションと前記光学撮像装置の前記光学系よりも下方に位置する接写ポジションとの間で前記プリント基板に対する前記X線照射ユニットの高さを可変とする昇降装置と、前記非接写ポジションにある前記X線照射ユニットから前記X線カメラに至る領域の中で前記受光部が前記X線照射ユニットからのX線を透過させる位置に前記光学撮像装置が配置される撮像ポジションと、前記光学撮像装置が前記領域の外に退避した退避ポジションとの間で前記光学撮像装置を移動させる駆動手段と、前記昇降装置により、前記接写ポジションと前記非接写ポジションとの間で前記X線照射ユニットを昇降移動させる場合に、事前に前記光学撮像装置が前記退避ポジションに退避するように前記駆動手段を制御する撮像ポジション制御手段とを備え、前記領域内に配置された前記プリント基板に対し、前記X線カメラは、前記X線照射ユニットが前記非接写ポジションにある場合と前記接写ポジションにある場合の両方において前記検査対象部のX線画像をそれぞれ撮像する一方、前記光学撮像装置は、前記X線照射ユニットが前記非接写ポジションにある場合に、前記撮像ポジションで前記光学撮像装置が前記検査対象部の光学画像を撮像するようにしている。この態様では、プリント基板を一定の位置に保持したまま、X線照射ユニットを非接写ポジションに位置させた場合に、X線透過画像の撮像と光学撮像装置による撮像の両方を同時並行的に実施できる。一方、前記X線照射ユニットを接写ポジションにする際、光学撮像装置を領域の外にある退避ポジションに退避させることができるので、X線照射ユニットが前記光学撮像装置に衝突することがない。さらに前記X線照射ユニットを接写ポジションに位置させた場合のX線透過画像の撮像においても、同じ前記検査対象部に対して撮像するので、高い精度で前記検査対象部における非接写のX線画像、接写のX線画像及び光学画像の3種の画像に基づく検査が可能となる。
 以上説明したように、本発明によれば、光学撮像装置による可視光を利用した外観検査と、X線撮像装置によるX線透過検査とを同一の装置で実現するに当たり、所要の拡大倍率で接写されたX線画像を得ることができるという顕著な効果を奏する。
 本発明のさらなる特徴、目的、構成、並びに作用効果は、添付図面と併せて読むべき以下の詳細な説明から容易に理解できるであろう。
本発明の実施の一形態に係る複合検査装置の外観を示す斜視図である。 図1の複合検査装置の構造体を示す斜視図である。 図1の複合検査装置に採用されているX線カメラユニットの概略構成を示す斜視図である。 図1の複合検査装置に採用されている基板テーブル等の概略構成を示す斜視図である。 図4の基板テーブルを拡大して示す斜視図である。 図4の基板テーブルの平面図である。 図1の複合検査装置の基板搬送方向下流側を示す断面図である。 図1の複合検査装置の裏面側を示す断面図である。 図1の複合検査装置の裏面側を示す断面図である。 図1の複合検査装置において採用可能なX線照射装置の一例を示す概略構成図である。 図1の複合検査装置の制御ユニットを示すブロック図である。 図1の複合検査装置の検査動作を示すフローチャートである。 図12における並行撮像検査サブルーチンを示すフローチャートである。 図12及び図13の動作シーケンスを示すタイミングチャートである。 図1の複合検査装置に採用されているX線カメラユニットによるX線画像の倍率の変化についての接写ポジションの到達経路を示す説明図である。 図1の複合検査装置に採用されているX線カメラユニットによるX線画像の倍率の変化についての非接写ポジションの到達経路を示す説明図である。 透過方向についての説明図である。
 以下、添付図面を参照して、本発明を実施するための最良の形態について説明する。なお、以下の説明では、本発明の実施の形態に係る複合検査装置10に対し、検査対象となるプリント基板Wが搬送される方向をX軸とし、このX軸に直交する水平方向をY軸とし、上下方向をZ軸とする直交座標系に基づいて、各部を説明する。プリント基板Wには、多数の電子部品が実装されており、通電部部分がはんだ付けされている。本実施形態に係る複合検査装置10は、各電子部品の各はんだ付け部分を主な検査対象部として、プリント基板Wの合否を検査するように構成されている装置である。
 図1を参照して、複合検査装置10は、鉛等でシールドされたハウジング11を備えている。ハウジング11は、略立方体であり、その正面11aがY軸方向の一端側に向いている。ハウジング11の両側部には、基板Wを搬出入する一対の基板搬送コンベア12、14が併設されている。基板搬送コンベア12、14は、何れもベルトコンベア対12a、12b、14a、14bで構成されている。基板搬送コンベア12、14は、設置される設備の仕様に応じて、一方が基板搬入コンベアを構成し、他方が基板搬出コンベアを構成する。図示の例では、図1の右側の基板搬送コンベア12を搬入側、左側の基板搬送コンベア14を搬出側としている。複合検査装置10が設置される設備では、基板搬入コンベアから搬入されたプリント基板Wがハウジング11内で検査され、その後、複合検査装置10から基板搬出コンベアに搬出される構成になっている。ハウジング11が各基板搬送コンベア12、14と対向する壁11b、11cには、シャッタ機構がそれぞれ設けられており、このシャッタ機構によって開閉される基板搬出入口11d、11e(図2参照)からプリント基板Wが搬出入されるように構成されている。
 図2を参照して、ハウジング11内には、複合検査装置10に設けられる各装置を支持する構造体20が構成されている。構造体20は、ハウジング11の底部を構成する基台21と、基台21の上部に立設されて対をなし、それぞれ、X軸方向の一端側と他端側の内壁部分を補強する一対のゲート部22、23と、各ゲート部22、23の上部中央に固定された一対のフレーム部24、25と、両フレーム部24、25間に掛け渡された梁30とを含んでいる。これら構造体20の各部は、何れも種々の鋼材や板金部材を組み合わせたものである。
 基台21には、X軸方向の中央部分が、矩形に窪んでY軸方向に沿って延びる底部21aが形成されている。底部21a内には、後述するX線カメラユニット40が配置される(図3参照)。基台21の底部21aのX軸方向両側には、Y軸方向に沿って水平に延びる棚部21bが一体に設けられている。棚部21bは、その一部がX軸方向に沿って中央側に突出している。棚部21bの上面には、それぞれゲート部22、23と対向するY軸レール26、27が設けられている。各Y軸レール26、27には、後述する基板テーブル60が載置される。基板テーブル60は、このY軸レール26、27に沿って、前後に往復移動できるように構成されている。
 各ゲート部22、23は、ハウジング11の対応する基板搬出入口11d、11eを跨ぐゲート型に形成されており、それぞれハウジング11の対応する壁11b、11cに設けられたシャッタ機構を内蔵している。
 各フレーム部24、25は、その下部が、対応するゲート部22、23の上部に溶接されているとともに、その上面部が、上記梁30のX軸方向両端部にそれぞれ溶接されている。そして、フレーム部24、25は、これらゲート部22、23、梁30とともに、堅固なフレーム構造を構築している。
 梁30は、詳しくは後述する、X線源としてのX線照射ユニットを担持する構造体である(図7~図9参照)。
 次に、図3を参照して、X線カメラユニット40は、基台21の底部21aに固定配置され、Y軸方向に間隔を隔ててそれぞれがX軸方向に延びる一対のX軸ガイドレール41、42と、両X軸ガイドレール41、42上にガイドされてX軸方向に移動するX軸スライドテーブル43と、X軸スライドテーブル43の下部に設けられ、当該X軸スライドテーブル43をX軸方向に沿って駆動するX軸ボールねじ機構44と、X軸スライドテーブル43の上部に固定されて対をなし、それぞれY軸方向に沿って延びる一対のY軸ガイドレール45、46と、両Y軸ガイドレール45、46にガイドされてY軸方向に移動するY軸スライドテーブル47と、Y軸スライドテーブル47の下部に設けられ、当該Y軸スライドテーブル47をY軸方向に沿って駆動するY軸ボールねじ機構48と、Y軸スライドテーブル47上に設けられたX線カメラ50とを備えている。
 X軸ガイドレール41、42は、底部21aの中央部分において、幾分後方寄りに配設され、この位置で、X軸スライドテーブル43をX軸方向に沿って往復移動可能にガイドしている。
 X軸スライドテーブル43は、Y軸方向に長く延びる平面視長方形に形成されている。
 X軸ボールねじ機構44は、底部21aに取り付けられるX軸モータ44aと、このX軸モータ44aによって回転駆動されるボールねじ44bと、ボールねじ44bに螺合し、且つ、X軸スライドテーブル43の底面に固定されるナットユニット44cを備えており、ボールねじ44bの回転によってナットユニット44cがX軸方向に沿って移動することにより、X軸ガイドレール41、42上でX軸スライドテーブル43をX軸方向に沿って往復移動可能に構成されている。
 Y軸ガイドレール45、46は、X軸スライドテーブル43の幅方向(X軸方向)に間隔を隔ててY軸方向に沿い、X軸スライドテーブル43の略全長にわたって延びており、これら両Y軸ガイドレール45、46がY軸スライドテーブル47をY軸方向に沿って前後に往復移動可能にガイドしている。
 Y軸スライドテーブル47は、平面で見て、X軸方向が僅かに長く設定された長方形の部材であり、その上面に、X線カメラ50を担持している。従って、X線カメラ50は、X軸スライドテーブル43とY軸スライドテーブル47の移動によって、底部21a上で前後左右(XY軸方向)に自在移動することが可能になっている。また、Y軸スライドテーブル47上に載置されることにより、X線カメラ50は、基台21の棚部21bよりも幾分上方に突出している。
 Y軸ボールねじ機構48は、X軸スライドテーブル43の後端部に取り付けられるY軸モータ48aと、このY軸モータ48aによって回転駆動されるボールねじ48bと、ボールねじ48bに螺合し、且つ、Y軸スライドテーブル47の底面に固定されるナットユニット48cを備えており、ボールねじ48bの回転によってナットユニット48cがY軸方向に沿って移動することにより、Y軸ガイドレール45、46上でY軸スライドテーブル47をY軸方向に沿って往復移動可能に構成されている。すなわち、X軸ガイドレール41、42、X軸スライドテーブル43、X軸ボールねじ機構44、Y軸ガイドレール45、46、Y軸スライドテーブル47、およびY軸ボールねじ機構48は、X線カメラ50をプリント基板Wと平行な平面上でX軸方向Y軸方向の両方向に移動するX線カメラ移動手段49を構成する。
 次に、図4~図6を参照して、基板テーブル60は、本体部分となる枠体61と、枠体61上でプリント基板Wを搬送・保持するコンベアユニット70と、コンベアユニット70に設けられた基板搬送コンベア73、74を駆動するコンベア駆動機構80と、コンベアユニット70の対向間隔を変更する間隔調整機構90とを備えている。また、本実施形態に係る複合検査装置10には、基板テーブル60をX軸方向とY軸方向とに駆動するためのテーブル駆動機構100が設けられている(図4、図7、及び図8参照)。
 枠体61は、後述するテーブル駆動機構100に連結されて、XY軸方向に移動可能に配置されている。図示の通り、枠体61は、X軸方向に延びる一対のX軸片62、63と、このX軸片62、63の両端部分に設けられてY軸方向に延びる一対のY軸片64、65とを一体に備えた四角形の枠状に形成されており、その中央部分には、X線を透過させる開口66を区画している。
 枠体61のY軸片64、65の上面には、それぞれY軸レール67、68が固定されている。両Y軸レール67、68には、コンベアユニット70が搭載されており、コンベアユニット70は、Y軸レール67、68上で、Y軸方向に沿って移動可能に構成されている。
 コンベアユニット70は、Y軸方向において、前後に配置される一対のフレーム体71、72と、各フレーム体71、72に設けられた基板搬送コンベア73、74と、一方のフレーム体(図示の例では、Y軸方向において、後側に配置されるフレーム体)72に付設されるクランプユニット75とを備えている。
 各フレーム体71、72は、それぞれ、X軸方向に沿って延び、端部が枠体61から突出するX軸フレーム71a、72aと、X軸フレーム71a、72aの上面に配置され、側部が開口66側に突出する抑えプレート71b、72bを備えている。各X軸フレーム71a、72aは、下記する間隔調整機構90によりプリント基板W幅に対応して互いにY軸方向に沿って移動することにより両者間の距離が変化し、各種幅のプリント基板Wを搬送可能なように構成されている。また、抑えプレート71b、72bは、クランプユニット75によって上下に駆動される構成になっている。
 基板搬送コンベア73、74は、各フレーム体71、72が、互いに対向する面に配設された多数のローラ74aと、各ローラ74aに巻回されたベルト74bとによって構成されている。図5では、手前側の基板搬送コンベア73のローラ、およびベルトは、隠れているが、これらは、後ろ側の基板搬送コンベア74のローラ74a、ベルト74bと同一仕様に設定されたものである。
 クランプユニット75は、Z軸方向にロッドを進退させる図略のエアシリンダと、このエアシリンダのロッドの進退によって抑えプレート71b、72bを昇降する図略の動力伝達機構とを有しており、エアシリンダの駆動力によって抑えプレート71b、72bが上昇し、各フレーム体71、72の各抑えプレート71b、72bと基板搬送コンベア74のベルト(74bのみ図示)との間でプリント基板WのY方向の両端部をそれぞれ上下に挟持し保持することができるようになっている。
 コンベア駆動機構80は、枠体61の手前側のX軸方向一端部分に取り付けられ、Y軸回りの動力を出力するモータ81と、Y軸方向に沿って両基板搬送コンベア73、74間のX軸方向下流側に配置され、モータ81によってY軸回りに回転駆動される駆動シャフト82と、駆動シャフト82に連結されて基板搬送コンベア73、74毎に設けられ、対応する基板搬送コンベア73、74のベルト74bに動力を出力する出力プーリ83(基板搬送コンベア74のもののみ図示)とを備えている。モータ81に駆動される駆動シャフト82は、断面が多角形に形成されており、各出力プーリ83は、駆動シャフト82との相対的な回転が規制された状態で、駆動シャフト82に対し、Y軸方向に沿って相対的に移動可能に連結されている。図示の例では、枠体61のY軸片65に取り付けられた軸受84により、駆動シャフト82が滑らかに回転自在に支持されている。
 間隔調整機構90は、両フレーム体71、72のX軸方向両側に配設され、それぞれY軸方向に沿って延びる両ねじボルト91と、後ろ側のフレーム体72の背面に設けられ、双方の両ねじボルト91、91に同一方向の回転力を伝達する動力伝達ユニット92と、後ろ側のフレーム体72のX軸方向他端側に取り付けられ、動力伝達ユニット92に対し、Y軸回りの回転力を出力するモータ93とを備えている。両ねじボルト91は、Y軸方向中央部を境に右ねじと左ねじとが対称に形成されており、それぞれフレーム体71、72に取り付けられたナット機構94、95に螺合している。そして、両ねじボルト91は、一方向(例えば、時計回り方向)に回転することによって、ナット機構94、95と協働し、図6の仮想線で示すように、両フレーム体71、72が互いに近接する方向に引き寄せるとともに、他方向(例えば、反時計回り方向)に回転することによって、図6の実線で示すように、両フレーム体71、72が互いに離反する方向に引き離すように構成されている。
 次に、図7を参照して、テーブル駆動機構100は、基板テーブル60をX軸方向に沿って駆動するX軸駆動ユニット110と、このX軸駆動ユニット110を介して、基板テーブル60をY軸方向に駆動するY軸駆動ユニット140(図4参照)とを備えている。
 X軸駆動ユニット110は、基板テーブル60の枠体61の下面に配置される可動フレーム111と、可動フレーム111上にY軸方向に間隔を隔てて配置され、基板テーブル60をX軸方向に沿ってガイドする一対のX軸レール112、113と、後方のX軸レール113の後ろ側に並設されたX軸ボールねじ機構114とを備えている。可動フレーム111は、枠体61と同様に、中央が開口している枠状の構造体である。X軸ボールねじ機構114は、X軸方向に沿って延びるボールねじ114aと、このボールねじ114aに螺合するナット部(図示せず)と、ボールねじ114aをX軸回りに駆動するX軸モータ114bとを備えている。ナット部は、基板テーブル60の枠体61に固定されており、ボールねじ114aの回転力を受けて、可動フレーム111に対し、相対的に基板テーブル60をX軸方向に移動する力を伝達する。従って、X軸モータ114bが回転し、ボールねじ114aが回転すると、ナット部からX軸方向の力を受けて、基板テーブル60は、X軸方向に往復移動することができるようになっている。
 図4を参照して、Y軸駆動ユニット140は、棚部21bに設けられた前記一対のY軸レール26、27と、X軸方向において基板搬送方向下流側のY軸レール26の内側(X軸方向において、基板搬送方向上流側のY軸レール27に対向する側)に並設されたY軸ボールねじ機構141とを備えている。Y軸レール26、27は、それぞれ可動フレーム111をY軸方向に往復移動可能にガイドしている。Y軸ボールねじ機構141は、Y軸方向に沿って延びるボールねじ141aと、このボールねじ141aに螺合する図略のナット部と、ボールねじ141aを回転駆動するY軸モータ141bとを備えている。ボールねじ141aは、図略の軸受によって、棚部21b上で回転自在に支持されている。ナット部は、可動フレーム111の下面に固定され、ボールねじ141aの回転力を受けて、可動フレーム111を介し、基板テーブル60をY軸方向に駆動する力を伝達するものである。Y軸モータ141bは、棚部21bの適所に固定されている。Y軸モータ141bが回転し、ボールねじ141aが回転すると、ナット部からY軸方向の力を受けて、基板テーブル60は、Y軸方向に往復移動することができるようになっている。
 次に、基板テーブル60に保持されたプリント基板Wを透過検査するためのX線照射ユニット(X線源の一例)160について説明する。X線照射ユニット160は、X線源を昇降することでX線画像の倍率を変更可能とする倍率変更手段(昇降装置)の一例であるX線源支持機構150に担持されている。そこで、このX線源支持機構150について、先に説明する。
 図8及び図9を参照して、X線源支持機構150は、梁30の背面に固定された板状の支持プレート151と、この支持プレート151の背面に固定され、Z軸方向に沿って延びる一対の昇降レール152、153と、昇降レール152、153に連結された昇降スライダ154と、昇降スライダ154を上下駆動するボールねじ機構155とを備えている。支持プレート151は、梁30とともに構造体20を構成する板金部材であり、図示の例では、梁30に対し、堅固に固定されている。支持プレート151には、図略のストッパが設けられており、このストッパで規定されるストローク範囲において、昇降スライダ154は、Z軸方向に昇降可能にガイドされている。上記ストローク範囲は、複合検査装置10のX線画像に要請される所要の倍率に基づいて決定される。
 図15A、図15Bを参照して、この昇降スライダ154は、X線照射ユニット160を直接担持しており、この昇降スライダ154が、昇降レール152、153に沿って上下に移動することによって、図15A、図15Bにおいて点状のX線源すなわち点X線源として示すX線照射ユニット160から基板テーブル60に保持されたプリント基板Wまでの距離L1を変化させ、これによりプリント基板WからX線カメラユニット40まで距離L0が一定であっても、X線照射ユニット160からプリント基板Wを透過してX線カメラユニット40に到達するX線の到達経路の距離L2(=L0+L1)が変化するようになっている。これらの距離L1,L2を変更することにより、X線カメラユニット40で撮像されるX線画像の倍率L2/L1(=1+(L0/L1))が変化する。図8及び図15Aに示すように、X線照射ユニット160が降下しているときは、上記到達経路が第1の距離になり、X線画像の倍率は、等倍よりもより一層大きくなる接写倍率となる。すなわちX線照射ユニット160は下降して接写ポジションをとる。また、図9及び図15Bに示すように、X線照射ユニット160が上昇しているときは、上記到達経路が、第1の距離よりも長くなる第2の距離になり、接写ポジションでの撮像よりも広角の低倍率の非接写倍率(等倍よりは大きい倍率)となる。すなわちX線照射ユニット160は上昇して非接写ポジションをとる。そして、昇降レール152、153は、この接写ポジションと非接写ポジションとの間で、X線照射ユニット160が昇降するように、昇降スライダ154をガイドしている。
 また、本実施形態の複合検査装置10は、X線をプリント基板Wに対して所定の仰角(例えば、45°)で照射し、斜めから検査対象部を撮像した斜視撮像を実行するように構成されている。この斜視撮像においては、必ず、接写ポジションで撮像するように制約条件が後述する制御ユニット600に設定されている。
 ボールねじ機構155は、Z軸方向に延びて、支持プレート151の背面に軸支されるボールねじ155aと、このボールねじ155aに螺合する図略のナット部と、ボールねじ155aをZ軸回りに回転駆動するZ軸モータ155bと、Z軸モータ155bの出力をボールねじ155aに伝達するベルト機構155cとを備えている。ボールねじ155aは、上記ストローク範囲でX線照射ユニット160が昇降できるように、支持プレート151の概ね全高にわたって延びている。上記図略のナット部は、昇降スライダ154の前面に固定されており、ボールねじ155aの回転力を受けて昇降スライダ154に対し、上下方向に移動する力を伝達するものである。上記Z軸モータ155bは、出力軸を下方に向けてZ軸方向に沿って支持プレート151の前面に取り付けられている。前記ベルト機構155cは、Z軸モータ155bの出力軸に取り付ける出力プーリと、前記ボールねじ155aの下端に取り付けられる入力プーリと、両プーリ間に巻回されるベルトとを有し、これらプーリ、ベルトを介して、Z軸モータ155bの駆動力をボールねじ155aに伝達するように構成されている。このように、Z軸ボールねじ機構155を含むX線源支持機構150は、X線照射ユニット160から照射されるX線がX線カメラ50に到達するまでの直線距離が接写用に近接する接写ポジション(図8参照)とX線照射ユニット160から照射されるX線がX線カメラ50に到達するまでの直線距離が接写ポジションでの距離よりも長くなる非接写ポジション(図9参照)との間で、X線照射ユニット160を変位して、当該X線画像の倍率を変更する倍率変更手段、すなわち昇降装置を構成している。
 次に、図示の例において、X線照射ユニット160は、ハウジング161と、このハウジング内に収容されている図略の高電圧発生ユニットと、この高電圧発生ユニットから給電されてX線を照射するX線照射装置200とを備えている。
 図10を参照して、X線照射装置200は、放射窓201aを有するガラス管201と、ガラス管201の一端部に固定され、ガラス管201の他端側に集束筒202aを有する陰極202と、ガラス管201の他端側に固定され、陰極202の集束筒202aに対向するターゲット(焦点)203aを有する陽極203とを備えている。陰極202の集束筒202aには、フィラメント204が設けられており、陽極203のターゲット203aに臨んでいる。ターゲット203aは、タングステン製で、ガラス管201の中心線に対して例えば、45°傾斜しており、フィラメント204から放射されたX線を放射窓201aからガラス管201の外側に放射できるようになっている。ここで、ターゲット203aの斜面に熱電子を照射した場合、X線は、図10のRyで示すように、全方位にわたって均等にはならず、ターゲット203aの傾斜下側に対応する部位が影になって、略ハート形に分布する。そこで、X線照射ユニット160の例えば、X線照射装置200をZ軸回りに回動させて、略ハート形に分布するX線の照射方向をZ軸回りに回転することができ、図10の陰極202から陽極203に向かう方向(例えば図9に示す基板搬送方向上流側)に斜めの照射が確保できる。これにより、X線カメラユニット40においてX線カメラ50を図9の左方移動させることで、左下方に照射されるX線を使った基板WのX線傾斜画像を得ることができる。この時のX線傾斜画像は、プリント基板Wに対して交差する角度(右方上方から左下方にX線が抜けるので左仰角)のX線による画像である。
 図8及び図9に示すように、プリント基板W上の各部位に対して全方位の所定の複数の仰角のX線傾斜画像を得るために、テーブル駆動機構100により基板テーブル60がX軸方向、Y軸方向に移動制御され、X線カメラユニット40においてX線カメラ50がX軸方向、Y軸方向に移動制御され、X線照射ユニット160のX線照射装置200がR軸モータ170の作動によってZ軸回りに回動移動される。R軸モータ170は下記する制御ユニット600により回転制御される。
 次に、このX線照射ユニット160に並設された光学撮像装置300について説明する。光学撮像装置300は、光学系駆動手段としての光学駆動機構180に担持されている。そこで、まず、この光学駆動機構180について説明する。
 光学駆動機構180は、梁30の一方を支持するフレーム部25の直下に設けられ、X軸方向に延びるガイドフレーム181と、このガイドフレーム181の背面にZ軸方向に間隔を隔てて配置され、それぞれX軸方向に沿って平行に延びる一対のガイドレール182、183と、このガイドレール182、183に連結されて、X軸方向に移動可能に支持されるスライダ184と、スライダ184とガイドフレーム181との間に設けられたボールねじ機構185とを備えている。ガイドフレーム181は、梁30やフレーム部25とともに、構造体20の一部を構成する板金部材である。ガイドフレーム181には、図略のストッパが設けられており、このストッパで規定されるストローク範囲において、スライダ184は、X軸方向に往復移動可能にガイドされている。このストローク範囲において、ガイドレール182、183は、図9に示すように、X線照射ユニット160が非接写ポジションにあるときに、光学撮像装置300をX線照射ユニット160の直下に臨ませて、この光学撮像装置300による可視光での撮像を可能とする撮像ポジションと、図8に示すように、この撮像ポジションから光学撮像装置300をX軸方向に待避させて、X線照射ユニット160が非接写ポジションから接写ポジションに降下するのを許容する退避ポジションとの間で、光学撮像装置300が移動できるように、スライダ184をガイドしている。ボールねじ機構185は、X軸方向に延びて、ガイドフレーム181の背面に軸支されるボールねじ185aと、このボールねじ185aに螺合する図略のナット部と、ボールねじ185aをX軸回りに回転駆動するX軸モータ185bとを備えている。ボールねじ185aは、上記ストローク範囲で光学撮像装置300が移動できるように、ガイドフレーム181の概ね全長にわたって延びている。上記ナット部は、スライダ184の前面に固定されており、ボールねじ185aの回転力を受けてスライダ184に対し、X軸方向に沿って移動する力を伝達するものである。上記X軸モータ185bは、出力軸をX軸方向に沿わせた状態で構造体20の適所に取り付けられており、このX軸モータ185bの駆動力がボールねじ185aに伝達するように構成されている。このように、光学駆動機構180は、X線照射ユニット160とX線カメラ50との間で検査対象部に臨む撮像ポジション(図9参照)と、X線照射ユニット160とX線カメラ50とが相対的に接写ポジションに向かって移動できるように撮像ポジションから退避する退避ポジション(図8参照)との間で光学撮像装置300を移動させる駆動手段を構成している。
 次に、光学撮像装置300は、スライダ184に担持されるCCDカメラ301と、このCCDカメラ301とユニット化され、基板テーブル60の上方に臨む光学系302とを備えている。CCDカメラ301は、図略のレンズをX軸方向に沿って向けており、光学系302からの光を受光できるようになっている。光学系302は、環状のフード302aと、このフード302aの上部に配置され、45°に傾斜してCCDカメラ301の側部に臨むミラー302bとを備えている。フード302aの内部には、多数のLEDが設けられており、これらのLEDから下方に光を照射することができるようになっている。また、フード302aは中央部に貫通穴が空けられてX線、およびプリント基板Wの検査対象部からの反射光が通過可能とされ、ミラー302bは、フード302aの下方でプリント基板Wの検査対象部から反射された光をさらにX軸方向に沿って反射させ、当該反射光をCCDカメラ301に導くとともに、X線が透過可能となるように構成されている。本実施形態において、中央部に貫通穴が空けられたフード302a並びにミラー302bは、光学撮像装置を構成するとともにX線が通過する受光部の一例である。ここで、図示の実施形態においては、光学撮像装置300が撮像ポジションにあるとき、このミラーの中心が、X線照射ユニット160の直下に位置するように設定されている。そのため、X線照射ユニット160が、直下の検査対象部を検査するためにX線を照射する際には、この照射動作と並行して同一位置の検査対象部を同時に撮像することが可能となる。なお、この非接写ポジションのX線照射ユニット160によるプリント基板Wの垂直上方からのX線によるX線画像の撮像と、ミラー302bを介した垂直上方からの可視光による撮像は、プリント基板W上の各部位に対して実施され、このためにこれらの撮像ごとにテーブル駆動機構100により基板テーブル60がX軸方向、Y軸方向に移動制御される。
 さらに、図7を参照して、X線照射ユニット160の前方には、レーザ検査装置400が設けられている。レーザ検査装置400は、当該X線照射ユニット160に近接した位置から、基板テーブル60上のプリント基板Wに臨む位置に配置されている。また、レーザ検査装置400は、下方にレーザを照射する照射部と検査対象部から反射されたレーザ光を受光する受光部とを備えており、受光部が受けた光に基づいて、検査対象部の高さを検出するためのものである。この高さ検出は、プリント基板W上の所定の各部位に対して、X線撮像および光学撮像と同時並行あるいは独立に実施され、このために高さ検出ごとにテーブル駆動機構100により基板テーブル60がX軸方向、Y軸方向に移動制御されて位置決めされる。
 次に、図1を参照して、複合検査装置10には、全体を制御する制御ユニット600が装備されている。制御ユニット600は、X線照射ユニット160が接写ポジションに向かって移動する必要がある場合に予め光学撮像装置300が退避ポジションに退避するように光学駆動機構180を制御する撮像ポジション制御手段、テーブル駆動機構100により基板テーブル60をX軸方向、Y軸方向に移動制御するテーブル移動制御手段、X線カメラ50をX軸方向、Y軸方向に移動制御するX線カメラ移動制御手段、並びに光学撮像装置300が退避ポジションに退避している場合に、所定の方位の所定の複数の仰角のX線傾斜画像を得るために、R軸モータ17によりX線照射装置200をZ軸(上下軸)回りに回動制御するX線照射装置回動制御手段の一例である。なお、光学撮像装置300が退避ポジションに退避している場合に、X線照射ユニット160は接写ポジションをとる。X線照射ユニット160は、接写ポジションにおいて、所望の接写倍率に見合った高さ位置に制御される。プリント基板Wの垂直上方からのX線による接写のX線画像の撮像、プリント基板Wに対して所定の方位および所定の仰角のX線によるX線傾斜画像の撮像が、基板テーブル60の位置、X線カメラ50位置、およびX線照射装置200のZ軸回り位置が変えられることにより、プリント基板Wの所定の部位について実行される。本実施形態において、複合検査装置10の正面には、表示パネル610や、キーボード620が取り付けられている。また、複合検査装置10の頂部には、動作状況を示すランプ611が立設されている。さらに、制御ユニット600の基板搬送方向上流側には、電源装置630が設置されている。
 図11を参照して、制御ユニット600は、マイクロプロセッサ等で具体化される主制御部(CPU)601を備えており、この主制御部601に、記憶装置602、X線画像ボード603、光学画像ボード604、駆動系ボード605、センサ系ボード606、表示ボード607、入力ボード608、通信ボード609等が接続されている。
 記憶装置602は、ROM、RAM、補助記憶装置等によって具体化されるものであり、複合検査装置10の各部を制御し、検査を実行するために必要なプログラムやマスターデータ、検査対象となるプリント基板W並びに実装部品、検査項目等、検査対象品のマスターデータ、並びに検査対象項目に対する検査仕様等を定めたトランザクションデータ等が記憶されている。
 X線画像ボード603は、X線カメラ50と主制御部601を接続するためのインターフェースであり、このX線画像ボード603を通して、主制御部601は、X線カメラ50が撮像したX線画像に基づき、検査対象品の透過検査を実行することができるようになっている。
 光学画像ボード604は、CCDカメラ301と主制御部601を接続するためのインターフェースであり、この光学画像ボード604を通して、主制御部601は、CCDカメラ301が撮像した光学画像に基づき、検査対象品の外観検査を実行することができるようなっている。
 駆動系ボード605は、複合検査装置10に設けられている各種モータ類(例えば、ボールねじ機構44、114、141、155、185の各X軸モータ44a、141b、114b、144b、155b、185b等)や、クランプユニット75のアクチュエータ等と主制御部601を接続するためのインターフェースであり、この駆動系ボード605を通して、主601は、各種モータ類の回転方向、回転量、回転速度、動作タイミング等を制御したり、或いは、クランプユニット75のエアシリンダの開閉動作を制御することができるようになっている。
 センサ系ボード606は、複合検査装置10に設けられている各種のセンサ類と主制御部601とを接続するインターフェースであり、このセンサ系ボード606を通して主制御部601は、各種のセンサ類が検出した検出結果に基づき、各部の動作タイミングやプリント基板Wの有無等を検出することができるようになっている。
 表示ボード607は、複合検査装置10の正面に取り付けられた表示パネル610やランプ611と主制御部601とを接続するインターフェースであり、この表示ボード607を通して、主制御部601は、制御情報を表示パネル610にグラフィカルユーザインタフェース(GUI)で表示したり、或いは、複合検査装置10の頂部に設けたランプ611(図1参照)を点滅したりすることができるようになっている。
 入力ボード608は、複合検査装置10の正面に取り付けられたキーボード620等のポインティングディバイスと主制御部601とを接続するインターフェースであり、この入力ボード608を通して、主制御部601は、ユーザが操作したキーボード620等のデータを受け付けることができるようになっている。
 通信ボード609は、複合検査装置10が設置される設備の生産プログラムを管理するホストコンピュータとデータの通信を実行するためものであり、この通信ボード609を通して主制御部601は、LAN及び/またはWANでホストコンピュータと接続され、検査対象となるプリント基板Wの品番等、検査対象項目に関する情報を取得することができるようになっている。
 記憶装置602に記憶されているプログラム等に基づき、主制御部601は、複合検査装置10の各部を以下の手順で制御する。
 図1、図12、並びに図14を参照して、まず、主制御部601は、基板受入動作を実行する(ステップS1)。この基板受入動作は、上流工程を終了したプリント基板Wが基板搬送コンベア12から搬送されてくると、基板搬出入口11dのシャッタ機構が開き、基板搬出入口11dを開放して、プリント基板Wを受け入れる。このとき、基板テーブル60は、X軸ボールねじ機構114のX軸モータ114bに駆動されて、基板搬出入口11d側に移動し、基板搬送コンベア12から搬入されたプリント基板Wを受け入れるようになっている。多品種少量生産の環境で、本複合検査装置10が使用される場合には、搬入されるプリント基板Wの幅がまちまちであるが、この搬入受入動作では、基板テーブル60の間隔調整機構90が作動し、事前にホストコンピュータから取得した通信データに基づき、搬入されるプリント基板Wの幅に適合する寸法に、コンベアユニット70の両フレーム体71、72の対向間隔を調整している(図14では省略)。基板搬出入口11dから搬入されたプリント基板Wは、コンベアユニット70のコンベア駆動機構80によって基板テーブル60上に搬入される。搬入後は、X線撮像時のX線が漏洩しないように、搬入側のシャッタ機構が作動して、基板搬出入口11dを再び閉じる。
 搬入されたプリント基板Wは、所定位置に移動したところで、コンベアユニット70のクランプユニット75により、コンベアユニット70の両フレーム体71、72間にクランプされ、保持される(ステップS2)。
 プリント基板Wがクランプされると、基板テーブル60は、再びX軸ボールねじ機構114のX軸モータ114bに駆動されて、複合検査装置10内の所定位置に移動する。これにより、プリント基板Wは、当該検査位置に設置されることになる。この基板テーブル60の移動と並行して、X線撮像のために、カメラユニット40のX軸モータ44a、Y軸モータ48aがそれぞれ作動し、X線カメラ50を予め設定された撮像位置に移動する。なお、X線照射装置160のR軸モータ170は、このタイミングで移動する場合と移動しない場合があるので、その状態を図14に破線で示している。
 次に、主制御部601は、検査のために、光学撮像装置300の退避が必要であるか否かを判定する(ステップS4)。ここで、仮にプリント基板Wの垂直上方からのX線による接写のX線画像の撮像や、所定の方位および所定の仰角のX線によるX線傾斜画像の撮像(斜視撮像)が必要である場合、主制御部601は、光学撮像装置300の退避が必要と判定するように、制約条件がプログラムされている。仮に退避が必要な場合、主制御部601は、並行撮像検査サブルーチン(ステップS5)を実行する。また、退避が不要な場合、主制御部601は、同軸撮像検査サブルーチン(ステップS6)を実行する。並行撮像検査サブルーチンについては、後述する。また、同軸撮像検査サブルーチンは、プリント基板Wの検査対象部とX線照射ユニット160との間に、光学撮像装置300の光学系302のミラー302bを同軸に配置し、X線カメラ50で撮像したX線画像に基づく透過検査と、CCDカメラ301で撮像した光学画像に基づく外観検査とを同時に実行する検査態様であり、実質的に従来技術と同様であるので、その詳細については、説明を省略する。なお、並行撮像検査サブルーチンと、同軸撮像検査サブルーチンは、何れもX線カメラ50およびCCDカメラ301が一回に撮像することのできる視野を単位とするエリア毎に実行される。
 並行撮像検査サブルーチン(ステップS5)または、同軸撮像検査サブルーチン(ステップS6)を実行した後、主制御部601は、全てのエリアでの撮像が終了したか否かを判定する(ステップS7)。仮に未撮像のエリアが残っている場合、主制御部601は、ステップS3に移行して上述した処理を繰り返す。なお、本実施形態では、同一の検査対象部に対し、非接写ポジションでの広角でのX線撮像と接写ポジションでの接写X線撮像の双方を実行しなければならない場合があるので、このステップS7の判定においては、同一エリアであっても、必要な撮像検査の全てが終了するまでは、未撮像のエリアが残っているものとして、主制御部601は、ステップS3に移行して上述した処理を繰り返す。
 また、全てのエリアでの撮像が終了した場合、主制御部601は、検査後のプリント基板Wを搬出位置に移動する処理を実行する(ステップS8)。この搬出移動動作では、テーブル駆動機構100のX軸駆動ユニット110が再び作動し、基板テーブル60をX軸方向に沿って基板搬送方向下流側(図示の例では、基板搬出入口11eに近づく方向。図2等参照)に駆動する。そして、基板テーブル60が搬出側の基板搬出入口11eに臨み、基板テーブル60の移動が停止すると、今度は、基板テーブル60のクランプが解除され(ステップS9)、搬出動作が実行される(ステップS10)。この搬出動作では、搬出側のシャッタ機構が作動して、基板搬出入口11eを開く。その後、コンベア駆動機構80が基板搬送コンベア73、74を作動させ、検査済のプリント基板Wを搬出側の基板搬送コンベア14に搬出する。搬出後は、シャッタ機構を作動させて、基板搬出入口11eを閉じるとともに、次の動作に移行するために、テーブル駆動機構100のX軸駆動ユニット110が再び作動し、基板テーブル60をX軸方向に沿って基板搬送方向上流側(図示の例では、基板搬出入口11dに近づく方向。図2等参照)に駆動する。
 主制御部601は、搬出動作S10の後、全てのプリント基板Wの検査が終了したか否かを判定する(ステップS11)。仮に未処理のプリント基板Wがある場合、主制御部601は、ステップS1に移行して上述した処理を繰り返し、全てのプリント基板Wの検査を終了した場合には、処理を終了する。
 次に、図7、図8、図13、及び図14を参照して、並行撮像検査の詳細について説明する。
 近年、プリント基板Wの高集積化に伴い、プリント基板Wに実装される電子部品も相当小さくなっているので、X線照射ユニット160をプリント基板Wに近接し、検査対象部を接写する必要が多くなっている。かかる接写を実現するため、本実施形態では、光学撮像装置300が撮像ポジションにある場合に、光学撮像装置300を光学駆動機構180によって退避させ、X線照射ユニット160をプリント基板Wに近接させるようにしている(ステップS501)。
 具体的には、まず、主制御部601は、光学駆動機構180のボールねじ機構185を構成するX軸モータ185bを駆動させて、光学撮像装置300を担持しているスライダ184を図9に示す位置から図8に示す位置に移動する。これにより、光学撮像装置300は、図9に示す撮像ポジションから図8に示す退避ポジションに移動する。
 次いで、主制御部601は、X線源支持機構150に組み込まれたボールねじ機構155を構成するZ軸モータ155bを駆動させて、昇降スライダ154を図9示す位置から図8に示す位置に降下させる(ステップS502)。これにより、昇降スライダ154に担持されているX線照射ユニット160は、図9に示す非接写ポジションから、図8に示す接写ポジションにまで降下する。図示の例では、この接写ポジションにおいて、X線照射ユニット160は、X軸方向において、光学撮像装置300の下流側に臨んでいる。
 この状態で、主制御部601は、X線カメラ50を作動させ、X線の接写画像を撮像する(ステップS503)。これにより、近年、要請されている大倍率のX線(透過)画像を得ることができる。
 次いで、主制御部601は、X線画像の撮像に際し、プリント基板Wの垂直上方からのX線による接写のX線画像の撮像や、所定の方位および所定の仰角のX線によるX線傾斜画像の撮像(斜視撮像)が必要であるか否かを判定する(ステップS504)。仮に、斜視撮像等を実行する必要がある場合、主制御部601は、検査プログラムに基づき、プリント基板Wの所定の部位について、所定の方位および所定の仰角のX線によるX線傾斜画像の撮像が得られるように、R軸モータ170を停止のままとするか作動させてX線照射装置200のZ軸回り位置を変え、これとともに、主制御部601は、X線カメラユニット40のX軸ボールねじ機構44、Y軸ボールねじ機構48の各X軸モータ44a、48aをそれぞれ作動させて、例えば図7に示すように、X線カメラ50の撮像位置を変更し、テーブル駆動機構100により基板テーブル60をX軸方向、Y軸方向に移動し位置決めする。(ステップS505)。
 この状態で、主制御部601は、X線カメラ50を作動させ、プリント基板Wの垂直上方からのX線による接写のX線画像の撮像や、斜視X線画像を撮像し、撮像画像に基づいて、透過検査を実行する(ステップS506)。検査結果は、記憶装置602の補助記憶装置に記憶される。なお、プリント基板Wの所定の部位(エリア)、あるいは及び所定の方位および所定の仰角が複数ある場合は、これらの組み合わせの数だけステップS505およびステップS506が繰り返される。
 ここで、本実施形態においては、以下のような手法を用いて、検査処理の効率化を図っている。
 図7及び図8を参照して、X線カメラ50が接写を実行している間は、光学撮像装置300は、図8に示す退避ポジションに退避しているのであるが、X線カメラ50によるプリント基板Wの所定の検査対象の部位すなわち検査対象部(エリア)、あるいは及び所定の方位および所定の仰角がそれぞれ複数ある場合は、これらの組み合わせの全てについての接写あるいは及び非接写の、プリント基板Wの垂直方向のX線画像や斜視画像の撮像後に、撮像ポジション下方位置から退避ポジション下方位置へ基板テーブル60を移動させることにより、光学撮像装置300を退避ポジションに退避させたまま、外観検査を実行することができる場合がある。
 そこで、本実施形態においては、X線カメラ50が接写撮像等を実行した後、光学撮像装置300を退避ポジションに退避させている位置で外観検査を実行するようにしている。
 具体的には、主制御部601は、外観検査の要否を判定し(ステップS507)、外観検査が必要な場合には、テーブル駆動機構100を駆動させて、基板テーブル60を移動し、当該基板テーブル60上に保持されているプリント基板Wの検査対象部を退避ポジションに退避している光学撮像装置300の光学系302の直下に移動する(ステップS508)。なお、本実施形態では、このタイミングで、X線照射ユニット160を非接写ポジションに移動させることにしている。
 そして、基板テーブル60の移動が終了すると、今度は、光学撮像装置300を作動させて、光学画像を撮像し、この光学画像に基づいて、検査対象部の外観検査を実行する(ステップS509)。具体的には、光学系のフード302aのLEDによって、検査対象部を照明し、その反射光をミラー302bで反射させて、CCDカメラ301に導き、この反射光によって、検査対象部の光学画像をCCDカメラ301で撮像する。なお、プリント基板Wの検査対象部(エリア)が複数ある場合は、この数だけステップS508およびステップS509が繰り返される。
 光学撮像動作が終了した場合、または、ステップS507において、外観検査が不要であった場合、主制御部601の制御は、メインルーチンに復帰する。なお、レーザ検査装置400については、X線撮像装置や光学撮像装置300の移動に拘わらず、定位置で高さ検査を実行することができることから、並行撮像検査サブルーチン(ステップS5)における外観検査と同様に、基板テーブル60の移動によって、適宜必要な検査を実行することができる。
 以上説明したように、本実施形態によれば、多数の電子部品を搭載したプリント基板Wを検査するに当たり、前記X線照射ユニットが非接写ポジションにある場合に、駆動手段としての光学駆動機構180によって光学撮像装置300を撮像ポジションにすることができ、従来技術と同様に、同一のプリント基板Wに対し、光学撮像装置300が撮像した可視光での画像に基づく外観検査と、X線カメラ50が撮像したX線画像に基づく透過検査とを同時的に並行して実現することができる。しかも、本実施形態では、駆動手段としての光学駆動機構180によって光学撮像装置300を退避ポジションにすることで、倍率変更手段(昇降装置)としてのZ軸ボールねじ機構155によって、X線画像の倍率を切り換えることができるので、近年要請されている種々の撮像要求に応じることが可能となる。すなわち、本実施形態の光学撮像装置300は、駆動手段としての光学駆動機構180によって撮像ポジションと、この撮像ポジションから退避する退避ポジションとの間で移動できるように構成されている。そして、X線照射ユニット160とX線カメラ50の少なくとも何れか一方(本実施形態では、X線照射ユニット160)が接写ポジションに移動する必要がある場合には、撮像ポジション制御手段としての制御ユニット600によって、光学撮像装置300が退避ポジションに退避するように光学駆動機構180が制御されるので、X線照射ユニット160は、光学撮像装置300に妨げられることなくプリント基板Wに近接した、接写ポジションに移動することが可能となる。従って、近年要請されている高い倍率の接写X線画像を得ることができる。また、プリント基板Wを一定の位置に保持したまま、X線照射ユニット160を非接写ポジションに位置させてのX線透過画像の撮像と光学撮像装置300による撮像の両方を同時並行的に実行できる。また、X線照射ユニット160を接写ポジションにする際、X線照射ユニット160が光学撮像装置300に衝突することがない。さらにX線照射ユニット160を接写ポジションにしてのX線透過画像の撮像においても、同じ位置の検査対象部に対して撮像するので、高い精度で検査対象部における非接写のX線画像、接写のX線画像及び光学画像の3種の画像に基づく検査が可能となる。
 また本実施形態では、退避ポジションにある光学撮像装置300によって検査対象部が撮像できるように、基板テーブル60を当該基板テーブル60と平行な平面上で移動するテーブル駆動機構100と、退避ポジションに位置する光学撮像装置300の下方、具体的にはミラー302bの下方に検査対象部を位置させるべく、テーブル駆動機構100を制御するテーブル移動制御手段としての制御ユニット600とをさらに備えている。このため本実施形態では、光学撮像装置300が退避ポジションに退避している場合に、退避ポジションにある光学撮像装置300によって検査対象部を撮像することができる位置にプリント基板Wを搬送することができる。よって、プリント基板WをX線照射装置200からX線カメラ50に至る領域の中に位置させてX線カメラ50が接写ポジションにて透過画像を撮像するとともに、透過画像の撮像後に、プリント基板Wを前記領域の外にある退避ポジションに位置する光学撮像装置300の下方に位置させ、この状態でこの光学撮像装置300を作動させ、プリント基板Wの外観検査を実行することができる。このため、光学撮像装置300自身の移動が不要となり、光学撮像装置300の稼働率が上昇し、検査時間の短縮に寄与することが可能となる。
 また本実施形態では、プリント基板Wを保持する基板テーブル60を、基板テーブル60と平行な平面上で所定の方向(X軸方向)と所定の方向と直交する方向(Y軸方向)の両方向に移動するテーブル駆動機構100を備えている。テーブル駆動機構100は、プリント基板Wの複数の検査対象部を予め設定されたエリアごとに、X線照射ユニット160のX線照射装置200からX線カメラ50に至る領域内に移動させる。X線照射ユニット160が非接写ポジションにある場合と接写ポジションにある場合の両方において、X線カメラ50は、検査対象部のX線画像をそれぞれ撮像する。一方、光学撮像装置300は、X線照射ユニット160が非接写ポジションにある場合に、撮像ポジションで検査対象部の光学画像を撮像する。これにより、検査対象部が複数あっても、それぞれの検査対象部の非接写のX線画像、接写のX線画像、および光学画像を得ることができる。上記「予め設定されたエリア」は、撮像条件によって適宜設定されるものである。例えば、ある倍率でX線画像を撮像する場合、当該倍率でのX線カメラ50の視野に応じてプリント基板Wを分割し、その分割された範囲をひとつのエリアとして、全てのエリアが順番に撮像されるように基板テーブル60を移動するようにしてもよい。また、光学撮像装置300で撮像する場合についても同様である。検査対象部が電子部品の個々のはんだボール等である場合、ひとつのエリア内に複数の検査対象部が含まれることになる。また、外観検査等において、検査対象部がプリント基板Wの部分的な領域である場合もある。そのような場合には、当該領域ごと、つまり、検査対象部ごとに基板テーブル60を移動するようにしてもよい。
 なお、複数の検査対象部について、非接写のX線画像の撮像と接写のX線画像の撮像と光学画像の撮像とを撮像する場合には、まず、複数の検査対象部のそれぞれについて非接写のX線画像の撮像と光学画像の撮像とを並行して実行(以下、「並行撮像」という)した後、各検査対象部について、接写のX線画像を撮像すればよい。並行撮像を実行する際は、X線照射ユニット160を非接写ポジションに、光学撮像装置300を撮像ポジションにそれぞれ位置させる。そして、必要に応じて予め設定されたエリアごとに基板テーブル60を移動させつつ複数の検査対象部についてそれぞれ並行撮像を実行する。その後、接写のX線画像を撮像する際には、光学撮像装置300を退避ポジションに移動させ、X線照射ユニット160を接写ポジションに位置させる。そして、必要に応じて予め設定されたエリアごとに基板テーブル60を移動させつつ複数の検査対象部についてそれぞれ接写のX線画像の撮像を実施する。これにより撮像を効率化することができる。
 また本実施形態では、X線カメラ50をプリント基板Wと平行な平面上でX軸方向及びY軸方向の両方向に移動するX線カメラ移動手段49を備えている。そのため、このX線カメラ移動手段49により、いわゆる斜視画像の撮像も容易になる。斜視画像を撮像する例としては、図16に示すように、検査対象部W1を原点とする垂直軸V回りに選別された方位Rと、前記垂直軸Vとなす傾斜角度(仰角)θとによってX線の透過方向ψ(R,θ)を設定し、設定された透過方向ψ(R,θ)に沿ってX線撮像が実行される。方位Rは、例えば、原点としての検査対象部W1を通るX軸方向の基準軸Xoを0°として、反時計回り方向に回動したときの角度として定義される。前記透過方向ψ(R,θ)に沿って斜視画像を撮像する場合、本実施形態では、撮像ポジション制御手段(制御ユニット600)により、事前に光学撮像装置300が前記退避ポジションに退避するように駆動手段(光学駆動機構180)を制御する一方、X線カメラ移動手段49により、前記X線源から前記透過方向ψ(R,θ)に沿うX線の延長上にX線カメラ50を位置させるとともに、テーブル駆動機構100により、前記透過方向ψ(R,θ)に沿うX線が検査対象部W1を透過するように、基板テーブル60を位置させればよい。
 この状態でX線照射ユニット160を非接写ポジションに位置させて非接写X線画像を撮像し、X線照射ユニット160を接写ポジションに位置させて接写X線画像を撮像する。これらを複数の検査対象部のそれぞれに対し実施する。これにより、光学撮像装置300が障害となることなく、それぞれの複数の検査対象部W1に対し予め設定される透過方向ψ(R,θ)で、それぞれの検査対象部における上下軸回りに所定の方向の斜視画像を撮像することができる。
 また本実施形態では、X線照射ユニット160は、X線を照射するX線照射装置200をZ軸(上下軸)回りに回動するR軸モータ170を備え、前記X線カメラ50が所定の検査対象部に対し所定の透過方向ψ(R,θ)の斜視画像を撮像可能なように、前記X線照射装置200から照射されるX線が前記所定の透過方向ψ(R,θ)に沿って検査対象部を通り前記X線カメラ50に到達するように、R軸モータ170が回転制御される。
 従って、X線の照射方向に指向性のあるX線照射装置200であっても、X線照射装置200をZ軸回りに回動させることによって、当該指向性を前記透過方向ψ(R,θ)に適合させることができる。よって、透過方向について、設定の自由度が高くなり、複数の検査対象部のそれぞれに対し、より一層広い設定範囲で透過方向を設定し、斜視撮像を実行することができる。
 本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることはいうまでもない。
 例えば、本実施形態では、X線カメラ50を基板テーブル60の下方に配置し、X線照射ユニット160を基板テーブル60の上方に配置しているが、X線カメラ50を基板テーブル60の上方に配置し、X線照射ユニット160を基板テーブル60の下方に配置してもよい。
 また、本実施形態では、X線照射ユニット160をX線源支持機構150で昇降する構成を採用しているが、X線照射ユニット160を定位置に固定し、X線カメラ50をZ軸方向に駆動できるように構成してもよい。
 さらに、本実施形態では、退避ポジションにある光学撮像装置300に検査対象部を臨ませるために、基板テーブル60をXY軸方向に移動可能に構成しているが、光学撮像装置300が退避ポジションのエリア内で移動可能に構成されていてもよい。
 以上説明したように、本発明は、多数の電子部品が実装されたプリント基板を設置する基板テーブルと、前記基板テーブルに設置された前記プリント基板の検査対象部の光学画像を撮像する光学撮像装置と、前記検査対象部にX線を照射するX線照射ユニットと、前記プリント基板を透過したX線から当該検査対象部のX線画像を撮像するX線カメラと、前記X線照射ユニットから前記X線カメラに到達するX線の到達経路が接写用の第1距離となる接写ポジションと、前記到達経路が前記第1距離よりも長くなる非接写ポジションとの間で、前記X線照射ユニットと前記X線カメラとを相対的に変位して、当該X線画像の倍率を変更する倍率変更手段と、前記X線照射ユニットと前記X線カメラとの間で前記光学撮像装置が前記検査対象部に臨む撮像ポジションと、前記X線照射ユニットと前記X線カメラとが相対的に前記接写ポジションに向かって移動できるように前記光学撮像装置が前記撮像ポジションから退避する退避ポジションとの間で前記光学撮像装置を移動させる駆動手段と、前記X線照射ユニットまたは前記X線カメラの少なくとも一方が移動する必要がある場合に、事前に前記光学撮像装置が前記退避ポジションに退避するように前記駆動手段を制御する撮像ポジション制御手段とを備えていることを特徴とするプリント基板の複合検査装置である。
 好ましい態様におけるプリント基板の複合検査装置において、前記退避ポジションにある光学撮像装置によって前記検査対象部が撮像できるように、前記基板テーブルを当該基板テーブルと平行な平面上で移動するテーブル駆動機構と、前記光学撮像装置が前記退避ポジションに退避している場合に、この退避ポジションで前記検査対象部を撮像するように、前記テーブル駆動機構を制御するテーブル移動制御手段とをさらに備えている。この態様では、前記X線カメラが接写ポジションにて透過画像を撮像するために、光学撮像装置が退避ポジションに移動している間に、この光学撮像装置を作動させ、プリント基板の外観検査を実行することができる。このため、光学撮像装置の稼働率が上昇し、検査時間の短縮に寄与することが可能となる。
 本発明の別の態様は、多数の電子部品が実装されたプリント基板の上方に配置される光学撮像装置であって、X線の透過を許容する受光部を有する光学系を含み、且つ前記光学系から得られた検査対象部の光学画像を撮像する前記光学撮像装置と、前記検査対象部に上方からX線を照射するX線照射ユニットと、前記プリント基板の下方において、前記プリント基板を透過したX線を受けて前記検査対象部のX線画像を撮像するX線カメラと、前記光学撮像装置より上方の位置である非接写ポジションと前記光学撮像装置の前記光学系よりも下方に位置する接写ポジションとの間で前記プリント基板に対する前記X線照射ユニットの高さを可変とする昇降装置と、前記非接写ポジションにある前記X線照射ユニットから前記X線カメラに至る領域の中で前記受光部が前記X線照射ユニットからのX線を透過させる位置に前記光学撮像装置が配置される撮像ポジションと、前記光学撮像装置が前記領域の外に退避した退避ポジションとの間で前記光学撮像装置を移動させる駆動手段と、前記昇降装置により、前記接写ポジションと前記非接写ポジションとの間で前記X線照射ユニットを昇降移動させる場合に、事前に前記光学撮像装置が前記退避ポジションに退避するように前記駆動手段を制御する撮像ポジション制御手段とを備え、前記領域内に配置された前記プリント基板に対し、前記X線カメラは、前記X線照射ユニットが前記非接写ポジションにある場合と前記接写ポジションにある場合の両方において前記検査対象部のX線画像をそれぞれ撮像する一方、前記光学撮像装置は、前記X線照射ユニットが前記非接写ポジションにある場合に、前記撮像ポジションで前記光学撮像装置が前記検査対象部の光学画像を撮像するようにしている。
 好ましい態様におけるプリント基板の複合検査装置において、前記プリント基板が複数の検査対象部を有し、前記プリント基板を保持する基板テーブルと、この基板テーブルを当該基板テーブルと平行な平面上で所定の方向と所定の方向と直交する方向の両方向に移動するテーブル駆動機構とをさらに備え、前記テーブル駆動機構は、前記複数の検査対象部を予め設定されたエリアごとに前記領域内に位置させるものであり、前記X線照射ユニットは、前記非接写ポジションにある場合と前記接写ポジションにある場合の両方において、前記X線カメラが前記領域内にある前記検査対象部のX線画像をそれぞれ撮像する一方、前記光学撮像装置は、前記X線照射ユニットが前記非接写ポジションにある場合に、前記撮像ポジションにて前記領域内にある前記検査対象部の光学画像をそれぞれ撮像するようにした。この態様では、検査対象部が複数あっても、それぞれの検査対象部の非接写のX線画像、接写のX線画像、および光学画像を得ることができる。
 好ましい態様におけるプリント基板の複合検査装置において、前記X線カメラを前記プリント基板と平行な平面上で前記両方向に移動するX線カメラ移動手段とをさらに備え、各検査対象部を原点とする垂直軸回りに予め設定された方位と、前記垂直軸となす傾斜角度とにより決定される検査対象部ごとの透過方向に沿って当該検査対象部にX線を透過させる斜視画像を撮像する場合には、前記撮像ポジション制御手段は、事前に前記光学撮像装置が前記退避ポジションに退避するように前記駆動手段を制御するとともに、前記テーブル機構は、X線が前記検査対象部を前記透過方向に沿って透過するように当該基板テーブルを位置させ、前記X線カメラ移動手段は、前記X線照射ユニットを前記非接写ポジションか前記接写ポジションのいずれかに位置させた状態で、X線が前記検査対象部を前記透過方向に沿って透過するように前記X線カメラを位置させるものである。この態様では、プリント基板上の1つ以上の検査対象部において、前記X線カメラにより上下軸回りに広い範囲で斜視のX線画像を撮像することができる。また、前記X線照射ユニットを前記非接写ポジションに位置させ、仰角(傾斜角度)が比較的小さな高い倍率の前記斜視画像を撮像することも、前記X線照射ユニットを前記接写ポジションに位置させ、仰角(傾斜角度)が大きなより一層高い倍率の前記斜視画像を撮像することもできる。
 好ましい態様におけるプリント基板の複合検査装置において、前記X線照射ユニットは、X線を照射するX線照射装置を上下軸回りに回動するR軸モータを備え、モータ制御手段は、前記斜視画像を撮像する際に、当該斜視画像の前記透過方向に対し前記X線照射装置の指向性が適合するように前記R軸モータを回転制御する制御手段を設けている。この態様では、X線の照射方向に指向性のあるX線照射装置であっても、X線照射装置を上下軸回りに回動させることによって、当該指向性を前記透過方向に適合させることができる。よって、透過方向について、設定の自由度が高くなり、複数の検査対象部のそれぞれに対し、より一層広い設定範囲で透過方向を設定し、斜視撮像を実行することができる。
 本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることはいうまでもない。
 本発明は、プリント基板を製造する設備等において、生産されたプリント基板をX線検査するのに好適である。

Claims (6)

  1.  多数の電子部品が実装されたプリント基板を設置する基板テーブルと、
     前記基板テーブルに設置された前記プリント基板の検査対象部の光学画像を撮像する光学撮像装置と、
     前記検査対象部にX線を照射するX線照射ユニットと、
     前記プリント基板を透過したX線から当該検査対象部のX線画像を撮像するX線カメラと、
     前記X線照射ユニットから前記X線カメラに到達するX線の到達経路が接写用の第1距離となる接写ポジションと、前記到達経路が前記第1距離よりも長くなる非接写ポジションとの間で、前記X線照射ユニットと前記X線カメラとを相対的に変位して、当該X線画像の倍率を変更する倍率変更手段と、
     前記X線照射ユニットと前記X線カメラとの間で前記光学撮像装置が前記検査対象部に臨む撮像ポジションと、前記X線照射ユニットと前記X線カメラとが相対的に前記接写ポジションに向かって移動できるように前記光学撮像装置が前記撮像ポジションから退避する退避ポジションとの間で前記光学撮像装置を移動させる駆動手段と、
     前記X線照射ユニットまたは前記X線カメラの少なくとも一方が移動する必要がある場合に、事前に前記光学撮像装置が前記退避ポジションに退避するように前記駆動手段を制御する撮像ポジション制御手段と
     を備えていることを特徴とするプリント基板の複合検査装置。
  2.  請求項1記載のプリント基板の複合検査装置において、
     前記退避ポジションにある光学撮像装置によって前記検査対象部が撮像できるように、前記基板テーブルを当該基板テーブルと平行な平面上で移動するテーブル駆動機構と、
     前記光学撮像装置が前記退避ポジションに退避している場合に、この退避ポジションで前記検査対象部を撮像するように、前記テーブル駆動機構を制御するテーブル移動制御手段と
     をさらに備えていることを特徴とするプリント基板の複合検査装置。
  3.  多数の電子部品が実装されたプリント基板の上方に配置される光学撮像装置であって、X線の透過を許容する受光部を有する光学系を含み、且つ前記光学系から得られた検査対象部の光学画像を撮像する前記光学撮像装置と、
     前記検査対象部に上方からX線を照射するX線照射ユニットと、
     前記プリント基板の下方において、前記プリント基板を透過したX線を受けて前記検査対象部のX線画像を撮像するX線カメラと、
     前記光学撮像装置より上方の位置である非接写ポジションと前記光学撮像装置の前記光学系よりも下方に位置する接写ポジションとの間で前記プリント基板に対する前記X線照射ユニットの高さを可変とする昇降装置と、
     前記非接写ポジションにある前記X線照射ユニットから前記X線カメラに至る領域の中で前記受光部が前記X線照射ユニットからのX線を透過させる位置に前記光学撮像装置が配置される撮像ポジションと、前記光学撮像装置が前記領域の外に退避した退避ポジションとの間で前記光学撮像装置を移動させる駆動手段と、
     前記昇降装置により、前記接写ポジションと前記非接写ポジションとの間で前記X線照射ユニットを昇降移動させる場合に、事前に前記光学撮像装置が前記退避ポジションに退避するように前記駆動手段を制御する撮像ポジション制御手段とを備え、
     前記領域内に配置された前記プリント基板に対し、前記X線カメラは、前記X線照射ユニットが前記非接写ポジションにある場合と前記接写ポジションにある場合の両方において前記検査対象部のX線画像をそれぞれ撮像する一方、前記光学撮像装置は、前記X線照射ユニットが前記非接写ポジションにある場合に、前記撮像ポジションで前記光学撮像装置が前記検査対象部の光学画像を撮像するようにしたことを特徴とするプリント基板の複合検査装置。
  4. 請求項3記載のプリント基板の複合検査装置において、
     前記プリント基板が複数の検査対象部を有し、
     前記プリント基板を保持する基板テーブルと、
     この基板テーブルを当該基板テーブルと平行な平面上で所定の方向と所定の方向と直交する方向の両方向に移動するテーブル駆動機構と
     をさらに備え、
     前記テーブル駆動機構は、前記複数の検査対象部を予め設定されたエリアごとに前記領域内に位置させるものであり、
     前記X線照射ユニットは、前記非接写ポジションにある場合と前記接写ポジションにある場合の両方において、前記X線カメラが前記領域内にある前記検査対象部のX線画像をそれぞれ撮像する一方、
     前記光学撮像装置は、前記X線照射ユニットが前記非接写ポジションにある場合に、前記撮像ポジションにて前記領域内にある前記検査対象部の光学画像をそれぞれ撮像するようにしたことを特徴とするプリント基板の複合検査装置。
  5.  請求項4に記載のプリント基板の複合検査装置において、
     前記X線カメラを前記プリント基板と平行な平面上で前記両方向に移動するX線カメラ移動手段とをさらに備え、
     各検査対象部を原点とする垂直軸回りに予め設定された方位と、前記垂直軸となす傾斜角度とにより決定される検査対象部ごとの透過方向に沿って当該検査対象部にX線を透過させる斜視画像を撮像する場合には、
     前記撮像ポジション制御手段は、事前に前記光学撮像装置が前記退避ポジションに退避するように前記駆動手段を制御するとともに、
     前記テーブル機構は、X線が前記検査対象部を前記透過方向に沿って透過するように当該基板テーブルを位置させ、
     前記X線カメラ移動手段は、前記X線照射ユニットを前記非接写ポジションか前記接写ポジションのいずれかに位置させた状態で、X線が前記検査対象部を前記透過方向に沿って透過するように前記X線カメラを位置させることを特徴とするプリント基板の複合検査装置。
  6.  請求項5に記載のプリント基板の複合検査装置において、
     前記X線照射ユニットは、X線を照射するX線照射装置を上下軸回りに回動するR軸モータを備え、前記斜視画像を撮像する際に、当該斜視画像の前記透過方向に対し前記X線照射装置の指向性が適合するように前記R軸モータを回転制御する制御手段を設けたことを特徴とするプリント基板の複合検査装置。
PCT/JP2012/008278 2012-01-12 2012-12-25 プリント基板の複合検査装置 WO2013105194A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12864934.0A EP2803980B1 (en) 2012-01-12 2012-12-25 Complex inspection device for printed-circuit board
CN201280066396.9A CN104081193B (zh) 2012-01-12 2012-12-25 印刷基板的复合检查装置
KR1020147018392A KR101621255B1 (ko) 2012-01-12 2012-12-25 프린트 기판의 복합 검사 장치
US14/370,054 US9329139B2 (en) 2012-01-12 2012-12-25 Complex inspection device for printed-substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-004381 2012-01-12
JP2012004381A JP5912553B2 (ja) 2012-01-12 2012-01-12 プリント基板の複合検査装置

Publications (1)

Publication Number Publication Date
WO2013105194A1 true WO2013105194A1 (ja) 2013-07-18

Family

ID=48781173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008278 WO2013105194A1 (ja) 2012-01-12 2012-12-25 プリント基板の複合検査装置

Country Status (6)

Country Link
US (1) US9329139B2 (ja)
EP (1) EP2803980B1 (ja)
JP (1) JP5912553B2 (ja)
KR (1) KR101621255B1 (ja)
CN (1) CN104081193B (ja)
WO (1) WO2013105194A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111203389A (zh) * 2020-01-15 2020-05-29 厦门瑞固科技有限公司 一种视觉检测装置以及检测方法
US20220037175A1 (en) * 2018-10-15 2022-02-03 Koh Young Technology Inc. Apparatus, method and recording medium storing command for inspection
CN114088742A (zh) * 2021-11-18 2022-02-25 吉林大学 一种变矩器的铸造叶片塌陷位置检测装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181478A1 (ja) * 2013-05-10 2014-11-13 株式会社ニコン X線装置及び構造物の製造方法
WO2015134277A1 (en) 2014-03-05 2015-09-11 Faxitron Bioptics, Llc System and method for multi-axis imaging of specimens
KR101657982B1 (ko) * 2014-09-15 2016-09-30 (주)자비스 엘이디 패키지의 엑스레이 검사 장치
CN104406995A (zh) * 2014-11-26 2015-03-11 无锡日联科技有限公司 扁平构件的ct检测设备
US20160173741A1 (en) * 2014-12-16 2016-06-16 Daniel Wolfenbarger Mooring system for underwater camera
CN104730079B (zh) * 2015-03-10 2018-09-07 盐城市圣泰阀门有限公司 缺陷检测系统
CN104730092B (zh) * 2015-03-10 2018-09-07 盐城市圣泰阀门有限公司 缺陷检测方法
JP6535755B2 (ja) * 2015-04-15 2019-06-26 エクスロン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングYxlon International Gmbh 電子部品を試験する方法
WO2017040977A1 (en) 2015-09-04 2017-03-09 Faxitron Bioptics, Llc Multi-axis specimen imaging device with embedded orientation markers
DE112015007025T5 (de) * 2015-10-15 2018-07-12 Yamaha Hatsudoki Kabushiki Kaisha Bauteilmontagevorrichtung
US11029263B2 (en) * 2015-12-09 2021-06-08 Integrated-X, Inc. Systems and methods for inspection using electromagnetic radiation
WO2018085719A1 (en) 2016-11-04 2018-05-11 Hologic, Inc. Specimen radiography system
WO2019051496A1 (en) 2017-09-11 2019-03-14 Faxitron Bioptics, Llc IMAGING SYSTEM WITH ADAPTIVE OBJECT MAGNIFICATION
WO2020004792A1 (ko) * 2018-06-29 2020-01-02 주식회사 고영테크놀러지 플리퍼 장치 및 이를 이용한 대상물 검사방법
CN109225921B (zh) * 2018-10-26 2023-08-01 苏州富强科技有限公司 顶升检测位装置及生产线高度检测系统
ES2939882T3 (es) 2018-12-26 2023-04-27 Hologic Inc Obtención de imágenes de tejido en presencia de líquido durante procedimiento de biopsia
US11867595B2 (en) 2019-10-14 2024-01-09 Industrial Technology Research Institute X-ray reflectometry apparatus and method thereof for measuring three dimensional nanostructures on flat substrate
CN113533208A (zh) * 2021-07-29 2021-10-22 昆山世纪三友测量技术有限公司 一种可拼接式一键测量仪
CN114143974B (zh) * 2022-01-30 2022-05-10 深圳市浩创盛科技有限公司 一种pcb板图像对位检测装置及对位检测方法
TWI814579B (zh) * 2022-09-13 2023-09-01 財團法人工業技術研究院 用以量測平整基板上之三維奈米結構的x射線反射儀設備及方法
CN116500050B (zh) * 2023-06-28 2024-01-12 四川托璞勒科技有限公司 一种pcb板视觉检测系统
KR102635148B1 (ko) * 2023-09-25 2024-02-08 테크밸리 주식회사 비전캠 융합형 엑스레이 검사장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252246A (ja) 1988-08-15 1990-02-21 Tokyo Electron Ltd X線検査装置
JPH11295242A (ja) * 1998-04-10 1999-10-29 Matsushita Electric Ind Co Ltd X線基板検査装置とx線用可視光反射膜
JP2004340631A (ja) 2003-05-13 2004-12-02 Sony Corp 基板検査装置
WO2009078415A1 (ja) * 2007-12-17 2009-06-25 Uni-Hite System Corporation X線検査装置および方法
JP2010085251A (ja) * 2008-09-30 2010-04-15 Toshiba It & Control Systems Corp 円錐軌道断層撮影装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541856A (en) * 1993-11-08 1996-07-30 Imaging Systems International X-ray inspection system
EP0776151A4 (en) * 1994-08-08 1999-08-11 Kobe Steel Ltd METHOD AND DEVICE FOR SOLDERING TESTING A CIRCUIT BOARD
US6314201B1 (en) 1998-10-16 2001-11-06 Agilent Technologies, Inc. Automatic X-ray determination of solder joint and view delta Z values from a laser mapped reference surface for circuit board inspection using X-ray laminography
JP4320132B2 (ja) * 2001-05-24 2009-08-26 レーザーテック株式会社 欠陥観察方法及び欠陥観察装置
WO2010074030A1 (ja) * 2008-12-22 2010-07-01 オムロン株式会社 X線検査方法およびx線検査装置
CN101706458A (zh) * 2009-11-30 2010-05-12 中北大学 高分辨率印刷电路板自动检测系统及检测方法
US9314218B2 (en) * 2011-06-20 2016-04-19 Caliper Life Sciences, Inc. Integrated microtomography and optical imaging systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252246A (ja) 1988-08-15 1990-02-21 Tokyo Electron Ltd X線検査装置
JPH11295242A (ja) * 1998-04-10 1999-10-29 Matsushita Electric Ind Co Ltd X線基板検査装置とx線用可視光反射膜
JP2004340631A (ja) 2003-05-13 2004-12-02 Sony Corp 基板検査装置
WO2009078415A1 (ja) * 2007-12-17 2009-06-25 Uni-Hite System Corporation X線検査装置および方法
JP2010085251A (ja) * 2008-09-30 2010-04-15 Toshiba It & Control Systems Corp 円錐軌道断層撮影装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220037175A1 (en) * 2018-10-15 2022-02-03 Koh Young Technology Inc. Apparatus, method and recording medium storing command for inspection
US11694916B2 (en) * 2018-10-15 2023-07-04 Koh Young Technology Inc. Apparatus, method and recording medium storing command for inspection
CN111203389A (zh) * 2020-01-15 2020-05-29 厦门瑞固科技有限公司 一种视觉检测装置以及检测方法
CN114088742A (zh) * 2021-11-18 2022-02-25 吉林大学 一种变矩器的铸造叶片塌陷位置检测装置

Also Published As

Publication number Publication date
EP2803980A1 (en) 2014-11-19
JP5912553B2 (ja) 2016-04-27
EP2803980B1 (en) 2018-10-17
EP2803980A4 (en) 2016-03-23
US9329139B2 (en) 2016-05-03
JP2013142678A (ja) 2013-07-22
KR101621255B1 (ko) 2016-05-16
CN104081193B (zh) 2017-09-26
CN104081193A (zh) 2014-10-01
KR20140089616A (ko) 2014-07-15
US20150204801A1 (en) 2015-07-23

Similar Documents

Publication Publication Date Title
WO2013105194A1 (ja) プリント基板の複合検査装置
JP5912552B2 (ja) X線検査装置
US9869903B2 (en) Polarized light irradiating apparatus and method of irradiating polarized light for photo alignment
CN112889119B (zh) 无损自动检查系统
JP5432804B2 (ja) リペア装置
EP2615447B1 (en) X-ray inspection apparatus
JP2021050992A (ja) 非破壊検査装置
JP6609998B2 (ja) 光照射装置および光照射方法
CN114414572A (zh) 一种产品外观检测装置
JP2004342855A (ja) 基板接合装置および基板接合方法
KR20150017222A (ko) 개량된 이송구조를 갖는 패널의 외관 검사시스템
JP6456726B2 (ja) 検査装置、検査方法および検査プログラム
CN217212280U (zh) 一种产品外观检测装置
CN219253310U (zh) 一种检测装置
JP2013251346A (ja) 電子部品実装装置
KR20220086879A (ko) 공정효율성을 높인 비전검사장치
KR20230067199A (ko) 메탈 마스크 검사기
CN114384093A (zh) 面板检测装置以及面板检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864934

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012864934

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14370054

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020147018392

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE