WO2013104149A1 - 电源装置及其管理电源的方法和无线通信终端 - Google Patents

电源装置及其管理电源的方法和无线通信终端 Download PDF

Info

Publication number
WO2013104149A1
WO2013104149A1 PCT/CN2012/073510 CN2012073510W WO2013104149A1 WO 2013104149 A1 WO2013104149 A1 WO 2013104149A1 CN 2012073510 W CN2012073510 W CN 2012073510W WO 2013104149 A1 WO2013104149 A1 WO 2013104149A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
power supply
output
cpu
Prior art date
Application number
PCT/CN2012/073510
Other languages
English (en)
French (fr)
Inventor
胡东平
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2014551497A priority Critical patent/JP2015510310A/ja
Priority to US14/371,830 priority patent/US9166478B2/en
Priority to KR1020147022259A priority patent/KR20140111342A/ko
Priority to EP12864832.6A priority patent/EP2804442B1/en
Publication of WO2013104149A1 publication Critical patent/WO2013104149A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1607Supply circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/004Control by varying the supply voltage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/045Circuits with power amplifiers with means for improving efficiency

Definitions

  • the present invention relates to the field of power management, and in particular, to a power supply device, a method thereof, and a wireless communication terminal.
  • the power conversion module is the core part of the data card product and plays a decisive role in the price/performance ratio of the data card product.
  • the constant innovation of power technology and the individualized demand for power technology have long been the focus of product development engineers.
  • the traditional power supply and data management methods for data cards and data cards are shown in Figure la. The main features are as follows:
  • the data card mainly includes a baseband working unit and a radio frequency (RF) working unit.
  • the power supply of the two working units is supplied by the external input power of the data card through the single-chip DC power converter, and the appropriate power is output to the baseband and the RF working unit.
  • the above data card and its power supply method have the advantages of simple structure and low cost, but there are also several problems:
  • the traditional data card power output power can not dynamically adapt to the load change, automatically adjust the output power of the power supply device in real time, especially when powering the power amplifier (hereinafter referred to as PA) in the RF circuit, the traditional data card power supply device and The management method cannot be dynamically adjusted with the output load of the amplifier, which makes it difficult to solve the power consumption and heat dissipation of the product.
  • PA power amplifier
  • the communication between the power supply unit and the main central processing unit (CPU) is mainly implemented by the general-purpose input/output (GPIO) port of the CPU. That is, the CPU needs to use a part of the input/output (I/O) for parameter detection of the power module, and another part of the I/O to control the power module. Obviously, when the detected parameter or control amount increases, the I/O port used by the CPU also increases sharply. This method also increases the complexity of the system, occupies more CPU hardware resources, and also increases the physical space of the board, which is not convenient for miniaturization of the terminal products.
  • GPIO general-purpose input/output
  • Embodiments of the present invention provide a power supply device, a method for managing the same, and a wireless communication terminal, to solve the problem of PA power consumption and heat dissipation in a wireless communication terminal such as a data card.
  • the embodiment of the present invention provides a wireless communication terminal, including a baseband working unit and a radio frequency working unit, and a DC power converter connected to the baseband working unit and the radio frequency working unit, where the wireless communication terminal further includes: A power supply unit, a central processing unit (CPU), and an envelope detection device, wherein:
  • the power supply device is configured to receive a voltage provided by the DC power converter, provide an output voltage to a power amplifier (PA) in the RF working unit, and receive a control signal sent by the CPU, and adjust according to the control signal
  • the output voltage is such that the output voltage satisfies an envelope variation curve of an output signal of the PA
  • the envelope detecting device is connected to the radio frequency working unit, and is configured to detect an envelope signal of the PA output signal in real time, and send the envelope signal to the CPU;
  • the CPU is respectively connected to the DC power converter, the power supply device, and the envelope detecting device, and is configured to: receive a voltage provided by the DC power converter, and send the envelope detecting device
  • the envelope signal is converted to a control signal and the converted control signal is sent to the power supply unit.
  • the CPU is further arranged to convert information input through the human-machine interface of the wireless communication terminal into a control signal and to transmit the converted control signal to the power supply device.
  • the CPU is connected to the power supply device via an IIC bus.
  • the power supply device comprises a DC power conversion unit, a power input detection unit, a status monitoring and logic control unit, and a power output detection unit, wherein:
  • the DC power conversion unit is configured to receive a voltage input by the DC power converter,
  • the PA provides an output voltage, and receives a logic control signal sent by the state monitoring and logic control unit, and adjusts the output voltage according to the logic control signal;
  • the power input detecting unit is configured to detect an input signal of the DC power conversion unit, and send an input detection result to the status monitoring and logic control unit;
  • the power output detecting unit is configured to detect an output signal of the DC power conversion unit, and send an output detection result to the status monitoring and logic control unit;
  • the state monitoring and logic control unit is configured to receive a control signal sent by the CPU, compare any one of the sent detection results with the control signal, and if the two do not match, the DC power source
  • the transform unit sends a logic control signal.
  • the state monitoring and logic control unit is implemented by a state machine.
  • the embodiment of the invention further provides a power supply device, comprising: a DC power conversion unit, a power input detection unit, a state monitoring and logic control unit, and a power output detection unit, wherein: the DC power conversion unit is configured to receive a DC power supply a voltage input by the converter, providing an output voltage to the load, and receiving a logic control signal sent by the condition monitoring and logic control unit, adjusting the output voltage according to the logic control signal, such that the output voltage satisfies the load Demand
  • the power input detecting unit is configured to detect an input signal of the DC power conversion unit, and send an input detection result to the status monitoring and logic control unit;
  • the power output detecting unit is configured to detect an output signal of the DC power conversion unit, and send an output detection result to the status monitoring and logic control unit;
  • the status monitoring and logic control unit is configured to receive any one of the output detection results sent by the out-of-detection unit sent by the central processing unit (CPU) to compare with the control signal, and if the two are inconsistent, The DC power conversion unit transmits a logic control signal.
  • the state monitoring and logic control unit is implemented by a state machine.
  • the load comprises a radio frequency power amplifier.
  • the embodiment of the invention further provides a method for managing a power supply by a power supply device, the method comprising: The power management device obtains expected operating parameters;
  • the power management device obtains an output voltage supplied to the load in real time, compares the output voltage with the expected operating parameter, and if the two are consistent, continues to provide the output voltage for the load, if the two are inconsistent And adjusting the output voltage according to the expected operating parameter such that the output voltage meets a demand of the load.
  • the step of obtaining, by the power management device, the expected operating parameters includes:
  • the power management device receives an expected operating parameter converted by the central processing unit (CPU) according to the load signal or the obtained user demand information.
  • the power supply device, the method for managing the power supply thereof, and the wireless communication terminal can flexibly communicate with the CPU having powerful software and hardware resources to realize real-time detection and control of the power source, and realize various power management requirements, which can be reduced.
  • the power consumption of the untrusted communication terminal better solves the problem of heat dissipation of the untrusted communication terminal.
  • Figure la is a diagram of a conventional data card architecture and its power supply mode
  • Figure lb is a structural diagram of a data card with power supply of the IIC interface power supply device of the present invention.
  • FIG. 2 is a schematic structural view of a power supply device having an IIC interface according to the present invention.
  • FIG. 3 is a flow chart of the power supply management power supply of the present invention having an IIC interface
  • FIG. 4 is a specific embodiment of data card power management of a power supply device having an IIC interface according to the present invention
  • FIG. 5 is a schematic diagram of a conventional RF working unit PA operating power supply VCC
  • FIG. 6 is a schematic diagram of a P A power supply VCC for implementing data card power management of a power supply device having an II C interface according to the present invention
  • Figure 7 is a comparison of the data supply current curve of the data card PA using the apparatus of the present invention with a conventional power supply mode.
  • the embodiment of the present invention provides a wireless communication terminal, including a baseband working unit and a radio frequency working unit, and a DC power converter connected to the baseband working unit and the radio frequency working unit, where the wireless communication terminal further includes: A power supply unit, a central processing unit (CPU), and an envelope detection device, wherein:
  • the power supply device is located between the DC power converter and the RF working unit, and is configured to receive a voltage provided by the DC power converter, and provide an output voltage to a power amplifier (PA) in the RF working unit And receiving a control signal sent by the CPU, adjusting the output voltage according to the control signal, so that the output voltage satisfies an envelope variation curve of an output signal of the PA;
  • PA power amplifier
  • the envelope detecting device is connected to the radio frequency working unit, and is configured to monitor an envelope signal of the PA output signal in real time, and send the envelope signal to the CPU;
  • the CPU is respectively connected to the DC power converter, the power supply device, and the envelope detecting device, and is configured to receive a voltage provided by the DC power converter, and send the signal sent by the envelope detecting device
  • the envelope signal is converted to a control signal and sent to the power supply device.
  • the CPU is further configured to convert information input through the human-machine interface of the data card into the control signal, and send the control signal to the power supply device.
  • the CPU is connected to the power supply device via an IIC (Inter Integrated Circuit) bus.
  • IIC Inter Integrated Circuit
  • the foregoing wireless communication terminal may be a data card or other product.
  • the technical solution of the embodiment of the present invention is described in detail below by taking a data card as an example:
  • FIG. 1B it is a data card architecture diagram of the present invention having a power supply device for an IIC interface, the data card comprising: a baseband working unit 11, an RF working unit 12, a DC power converter 13, a CPU 14, and a power supply device having an IIC bus.
  • the thin black line indicates the data transmission path of the communication product
  • the thick black line indicates the power supply path
  • the thin dotted line indicates that the CPU monitors and manages the bus of each functional module.
  • the data input terminal of the baseband working unit is connected to the USB socket through the USB cable, and the output of the baseband working unit Connected to the input of the RF working unit, the output of the RF working unit is connected to the communication transmitting antenna through the antenna interface.
  • the data card 5V input power is first sent to the DC power converter, and the converted DC power is supplied to the baseband working unit, the CPU, and the power supply unit having the IIC bus.
  • the power supply device having the IIC bus supplies power to a power amplifier (hereinafter abbreviated as PA) in the RF working unit.
  • PA power amplifier
  • the main CPU establishes communication with the above power supply device through the IIC bus, and connects with the RF working unit and the baseband working unit through the monitoring and management bus, and monitors and manages the working state of the RF working unit and the baseband working power supply.
  • the power supply device with the IIC bus in the above data card specifically includes: a DC power conversion unit 151, a power input detection unit 152, a state monitoring and logic control unit 153, and a power output detection unit 154, as shown in FIG. 2, wherein:
  • the DC power conversion unit has an input end connected to the power supply, and an output end connected to the power load to convert the input power into an output power that meets the load requirement; the unit further includes a controlled input interface and is configured to receive status monitoring. And a logic control signal sent by the logic control unit; specifically, it is configured to receive a voltage input by the DC power converter, provide an output voltage to the PA, and receive a logic control signal sent by the state monitoring and logic control unit Adjusting an output voltage of the DC power conversion unit according to the logic control signal;
  • the power input detecting unit has an input end connected to an input end of the DC power conversion unit, an output end connected to the state detection and logic control unit, and configured to detect an input signal of the DC power conversion unit, and
  • the status monitoring and logic control unit sends an input detection result
  • the power output detection unit has an input end connected to an output end of the DC power conversion unit, an output port connected to the state detection and logic control unit, and configured to detect an output signal of the DC power conversion unit, and
  • the status monitoring and logic control unit sends an output detection result
  • the state monitoring and logic control unit has an input end connected to the power input detecting unit and the power output detecting unit, and an output end connected to the DC power converting unit, and configured to detect the detection result of the power input detecting unit. And detecting, by the detection result of the power output detection unit, any one of the detection results sent by the measurement unit and comparing the detection result with the control signal, if If the two do not match, the logic control signal is sent to the DC power conversion unit to implement functions such as state control of the DC power conversion unit.
  • the power management process of the above data card is as follows:
  • the power supply device supplies power to the PA of the RF working unit, and the CPU detects the envelope of the output signal of the PA in real time through the monitoring and management bus, converts the envelope signal into a control signal through a CPU software algorithm, and transmits the control signal to the above through the IIC bus.
  • the power supply device with the IIC bus interface enables the output voltage amplitude of the power supply device with the IIC bus interface to follow the envelope curve of the output signal of the PA, thereby improving the working efficiency of the PA and saving the power consumption and heat dissipation of the data card PA. effect.
  • the above power supply device with an IIC bus interface supplies power to the data card, and can adopt a combination of software and hardware, and can realize real-time dynamic interaction between the power source and the load, the power source and the end user of the product, thereby solving the power consumption and heat dissipation of the product. And other issues.
  • the IIC bus interface is used to realize the communication between the CPU and the power supply device, and the detection and control I/O can be reused, that is, only two I/O ports need to be occupied, and the detection or control amount is not used.
  • the increase and increase have better overcome the defects that the power management methods existing in the prior art mostly use hardware configuration and are not flexible enough.
  • the embodiment of the present invention further provides a power supply device, and the structure of the power supply device is the same as that of the power supply device in the data card, as shown in FIG. 2, and details are not described herein;
  • the PA in the medium RF work unit is an example of the load in Figure 2, and those skilled in the art will recognize that the load can be replaced with other devices or devices.
  • the embodiment of the invention further provides a method for managing power supply by a power supply device, the method comprising: Step 1: The power management device obtains an expected working parameter;
  • Step 2 The power management device obtains an output voltage supplied to the load in real time, compares the output voltage with the expected operating parameter, and if the two are consistent, continues to provide the output voltage to the load, if If the two are inconsistent, the output voltage is adjusted according to the expected operating parameter such that the output voltage satisfies the demand of the load.
  • FIG. 3 it is a flowchart of the power supply management power supply of the present invention having the IIC interface.
  • the left side of the figure can be understood as the CPU of the power supply device having the IIC interface.
  • the control and management flow chart is mainly realized by the software of the CPU (equivalent to the above step 1).
  • the right side of the figure can be understood as the working process of the power supply unit with the IIC interface, and its external information (including the manual setting of the user). , load parameters, etc.)
  • the interactive process is implemented using a hardware circuit of a power supply unit with an IIC interface (equivalent to step 2 above).
  • the working process of the power supply unit with IIC interface is as follows:
  • Step 301a The power device is initially powered on.
  • Step 302a by way of hardware circuit setting, the default output of the power supply is configured to be 3.6V-4.2V;
  • the power supply works in the initial default state, and the default voltage and current parameters are output; the internal parameter register of the power supply unit enters the reset state, and the value in the register is cleared; the embedded IIC bus interface initializes the IIC bus and is ready and implemented.
  • the main CPU of the power management communicates.
  • Step 303a The power input/output parameter detecting unit transmits the parameters of the real-time data collection to the status and parameter registers for real-time query by the main CPU, and the main CPU implementing the power management reads the parameters in the status and parameter registers through the IIC bus. Get the working status of the power supply;
  • Step 304a the state monitoring and logic control unit (implemented by the state machine) in the power supply device with the IIC interface, accepts the control parameters transmitted by the CPU through the IIC bus, and compares the control parameters transmitted by the CPU with the power supply device itself. Whether the state parameters of the DC/DC DC conversion unit are consistent, to determine whether the output parameters of the DC/DC DC conversion unit need to be adjusted accordingly, so as to adapt to the dynamic transformation of the load and the user parameter setting, if not required, then turn In step 302a, the DC power supply is outputted to the load according to the default mode. Otherwise, step 305a is performed, and at the same time, the state parameter of the DC conversion unit is continuously obtained.
  • Step 305a Output a DC power supply to the load according to the requirements of the CPU control parameter or the parameter manually set by the user.
  • the CPU is required to implement the power management function by software.
  • the CPU and the power supply unit establish communication links through the IIC bus.
  • the CPU manages the power supply implemented by the power supply device with the IIC bus interface by software. The process is as follows: Step 301b, the CPU turns on the power management module;
  • Step 302b the CPU power management module initializes the IIC bus, and has an IIC bus interface.
  • the power device establishes communication, and reads the power working state parameter through the IIC bus;
  • Step 303b the CPU can accept the demand information of the power user, for example, the power source is in the state of charging the battery, and the user can set, for example, the charging current size, the charging time, etc. through the human-machine interface in the data card of the present invention.
  • the parameter is set; or accepts the dynamic information of the change of the power supply load, the information mainly includes the power consumption curve of the load, the current or voltage demand curve, etc.;
  • Step 304b the CPU will work on the power supply status information, the power supply user demand information, and the power supply load change information. Wait for a comprehensive judgment, to determine whether the power output parameters need to be adjusted, if no adjustment is required, return to step 302b, if adjustment is required, perform step 305b;
  • Step 305b The CPU outputs power control parameters, and transmits the power supply device with the IIC bus interface through the IIC bus, so that the output power meets the requirements.
  • the adjustment difference of the output voltage amplitude and the detection parameter of the output voltage amplitude are registered by two 6-bit registers R[7:2].
  • the minimum output voltage of the power supply is 3.5V, and the maximum output voltage is 4.44V. That is, the maximum value of 4.44 V corresponds to the HEX number "62"; 3.5V corresponds to the HEX number "00".
  • the minimum value of the power supply output voltage corresponding to each minimum logic state of the register is 0.02V, that is, the minimum resolution of the output voltage adjustment is 0.02V.
  • an output voltage mapping table (hereinafter referred to as an output voltage mapping table) is set in the CPU to map a set of register values and an output voltage value, and the corresponding relationship is as described above, and the CPU obtains the register setting corresponding to the power output voltage by looking up the table. Value, or by reading the parameter register value in the power converter, obtain the actual output voltage value of the power supply through the lookup table.
  • the 5V power input (hereinafter referred to as VBUS) input by the USB bus interface is sent to the power supply device 401 having the IIC bus, and the output voltage (3.5V-4.4V) converted by the power supply device is outputted through the output of the DC power conversion unit.
  • SW is output to one end of the storage inductor (L0), the other end of L0 is connected to one end of R SN , the other end of R SNS is to the drain of switch Q, and the source of switch Q is connected to load PA.
  • the power supply terminal (hereinafter referred to as VCC) can also be connected to a battery with a charging function for charging.
  • the gate of the switching transistor Q is connected to the GPIO of the system CPU 402.
  • the CPU can implement an on/off function for powering the PA and the rechargeable battery through the GPIO.
  • Said RSNS is a power output current parameter detecting device, and converts an output current into a voltage and sends the voltage to the power converter for output parameter detection; a power converter IIC interface clock signal (SCL), and a bidirectional data line (SDA) connected to the system An IIC bus interface of the CPU or a normal GPIO pin; a charge state indication signal (STAT) of the power converter is connected to another GPIO port of the system CPU for monitoring a state in which the power converter charges the battery load, The power converter is in a state of charge, the signal outputs a logic high level, the charging ends, and the signal outputs a logic low level.
  • An input of the envelope detecting means 403 is connected to an output of an RF power amplifier (hereinafter referred to as PA) 404, and an output of the envelope detecting means is connected to an input terminal of a high speed analog-to-digital converter (ADC) of the system CPU .
  • PA RF power amplifier
  • ADC analog-to-digital converter
  • the current absorbed by the PA from the power supply during the operation is basically the same, even if the VCC voltage changes; if the PA outputs a higher level signal, the PA must provide the linearity. Higher VCC voltage value; If the PA supply voltage VCC remains unchanged, then the PA requires sufficient linearity so that the PA output maximum power level meets the system requirements, and the signal power amplification does not cause distortion. Therefore, the PA itself has a relatively high requirement.
  • the power supply in order to maintain the linearity of the PA without the breakthrough improvement of the performance of the PA itself, the power supply must always maintain a relatively high VCC voltage supply, as shown in Figure 5, while the demand current of the PA remains basically unchanged.
  • the PA efficiency curve shows that the higher the output power level of the PA, the higher the efficiency of the PA, and the lower the PA output power level, the lower the conversion efficiency of the PA (requires VCC to have a higher Voltage). This is extremely detrimental to the heat dissipation and power consumption of the product.
  • the VCC of the PA is connected to the power supply device with the IIC bus interface, the power supply of the PA establishes communication with the main CPU, and is controlled by the real-time of the CPU, and the envelope detection device outputs the PA in the RF working unit.
  • the signal is sampled and the sampled signal is amplitude-detected.
  • the detection output envelope signal of the envelope detection device is sent to the ADC interface of the CPU, and the ADC interface performs high-speed sampling A/D conversion on the detection signal, that is, digitally processes the envelope signal, and bite bit data storage after A/D digitization In the memory area of the CPU, the CPU converts the envelope signal into a digital bite that is slightly larger than its own data in real time.
  • the CPU writes the data in the voltage mapping table to the power supply device through the IIC bus, so that the output voltage in the power supply device is adjusted according to the amplitude of the PA output signal.
  • the waveform of the power supply VCC shown in Fig. 4 is as shown in Fig. 6. Therefore, the output voltage of the power supply unit can be automatically adjusted in real time following the amplitude of the PA output signal. In this way, the conversion efficiency between the power supply device with the IIC bus and the PA output of the RF working unit as shown in FIG. 4 can be improved, thereby reducing the power consumption of the PA itself, reducing the heat generation of the PA, and extending the power supply device. The service life.
  • the power supply unit with IIC bus can flexibly communicate with the CPU with powerful software and hardware resources to realize real-time detection and control of the power supply, realize various power management requirements, and reduce the power consumption of the data card.
  • the problem of heat dissipation of untrusted communication terminals such as data cards is well solved.
  • the power supply device, the method for managing the power supply thereof, and the wireless communication terminal can flexibly communicate with the CPU having powerful software and hardware resources to realize real-time detection and control of the power source, and realize various power management requirements, which can be reduced.
  • the power consumption of the untrusted communication terminal better solves the problem of heat dissipation of the untrusted communication terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Sources (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Transmitters (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

本发明提供了一种电源装置及其管理电源的方法和无线通信终端,该无线通信终端包括基带、射频工作单元,以及与基带工作单元和射频工作单元均相连的直流电源变换器,还包括:电源装置、CPU和包络检波装置;电源装置设置成接收直流电源变换器提供的电压,向射频工作单元中的PA提供输出电压,以及接收CPU发送的控制信号,根据控制信号调整输出电压,使得输出电压满足PA的输出信号的包络变化曲线;包络检波装置设置成实时检测PA输出信号的包络信号,并向CPU发送包络信号;CPU设置成接收直流电源变换器提供的电压,将包络检波装置发送的包络信号转换为控制信号,并向电源装置发送控制信号。本发明的方案可解决PA的功耗和散热问题。

Description

电源装置及其管理电源的方法和无线通信终端 技术领域
本发明涉及电源管理领域, 尤其涉及一种电源装置及其管理电源的方法 和无线通信终端。
背景技术
电源变换模块是数据卡产品的核心部分, 对数据卡产品的性价比起决定 性的作用。 对电源技术的不断创新, 电源技术的个性化需求, 长期以来都是 产品研发工程师关注和追逐的对象。 传统的数据卡和数据卡的供电方式与电 源管理方式如图 la所示, 其主要特点体现在如下几个方面:
数据卡主要包括基带工作单元和射频(RF )工作单元, 上述两个工作单 元的供电由数据卡的外部输入电源经过单芯片直流电源变换器, 输出合适的 电源给基带和射频工作单元供电。 上述数据卡及其供电方式, 具有结构简单, 成本低廉等优点, 但同时也 存在几个方面的问题:
1、传统的数据卡电源输出功率不能动态适应负载变化, 自动实时调整电 源装置的输出功率, 特别是在对 RF电路中的功率放大器(下文简称 PA ) 的 供电时, 传统的数据卡电源装置及其管理方法, 不能随放大器的输出负载变 化进行动态调整, 从而很难解决产品的功耗和散热问题。
2、 在传统数据产品中, 供电电源装置与主中央处理单元(CPU )之间的 通信主要釆用 CPU的通用输入 /输出 (GPIO ) 口实现。 即 CPU需要使用一部 分输入 /输出 (I/O )用于电源模块的参数检测, 使用另一部分 I/O实现对电源 模块的控制。 显然, 当检测的参数或控制量增加时, CPU使用的 I/O口也会 急剧的增加。 该方式还会增加系统的复杂性, 占用比较多 CPU硬件资源, 同 时也会增加电路板的物理空间, 不便于终端产品的小型化设计。
3、 在传统数据卡产品中, 往往缺乏 CPU对系统中核心部件, 诸如电源 变换装置, 充电管理装置, 进行实时监控与集中管理, 增强系统的可靠性与 系统的灵活性。
产品研发工程师希望使用一种能通过系统 CPU对电源模块进行实时监 控与管理的装置, 并且解决上述问题的同时, 还能增强系统的灵活性与可靠 性。 但是现有的技术方案无法很好地满足上述要求。
发明内容
本发明实施例提供了一种电源装置及其管理电源的方法和无线通信终 端, 以解决目前数据卡等无线通信终端中的 PA功耗和散热问题。
本发明实施例提供了一种无线通信终端, 包括基带工作单元和射频工作 单元, 以及与所述基带工作单元和所述射频工作单元均相连的直流电源变换 器, 所述无线通信终端还包括: 电源装置、 中央处理单元(CPU )和包络检 波装置, 其中:
所述电源装置设置成接收所述直流电源变换器提供的电压, 向所述射频 工作单元中的功率放大器(PA )提供输出电压, 以及接收所述 CPU发送的控 制信号, 根据所述控制信号调整所述输出电压, 使得所述输出电压满足所述 PA的输出信号的包络变化曲线;
所述包络检波装置与所述射频工作单元相连,并设置成实时检测所述 PA 输出信号的包络信号, 以及向所述 CPU发送所述包络信号;
所述 CPU分别与所述直流电源变换器、所述电源装置和所述包络检波装 置相连, 并设置成: 接收所述直流电源变换器提供的电压, 将所述包络检波 装置发送的所述包络信号转换为控制信号, 并向所述电源装置发送转换的控 制信号。
优选地,所述 CPU还设置成将通过所述无线通信终端的人机交互界面输 入的信息转换为控制信号, 并向所述电源装置发送所转换的控制信号。
优选地, 所述 CPU通过 IIC总线与所述电源装置相连。
优选地, 所述电源装置包括直流电源变换单元、 电源输入检测单元、 状 态监测与逻辑控制单元和电源输出检测单元, 其中:
所述直流电源变换单元设置成接收所述直流电源变换器输入的电压, 向 所述 PA提供输出电压, 以及接收所述状态监测与逻辑控制单元发送的逻辑 控制信号, 根据所述逻辑控制信号调整所述输出电压;
所述电源输入检测单元设置成对所述直流电源变换单元的输入信号进行 检测, 并向所述状态监测与逻辑控制单元发送输入检测结果;
所述电源输出检测单元设置成对所述直流电源变换单元的输出信号进行 检测, 并向所述状态监测与逻辑控制单元发送输出检测结果;
所述状态监测与逻辑控制单元设置成接收所述 CPU发送的控制信号,将 送的输出检测结果中的任一检测结果与所述控制信号进行比较, 若二者不一 致, 则向所述直流电源变换单元发送逻辑控制信号。
优选地, 所述状态监测与逻辑控制单元釆用状态机实现。
本发明实施例还提供了一种电源装置, 该装置包括直流电源变换单元、 电源输入检测单元、 状态监测与逻辑控制单元和电源输出检测单元, 其中: 所述直流电源变换单元设置成接收直流电源变换器输入的电压, 向负载 提供输出电压,以及接收所述状态监测与逻辑控制单元发送的逻辑控制信号, 根据所述逻辑控制信号调整所述输出电压, 使得所述输出电压满足所述负载 的需求;
所述电源输入检测单元设置成对所述直流电源变换单元的输入信号进行 检测, 并向所述状态监测与逻辑控制单元发送输入检测结果;
所述电源输出检测单元设置成对所述直流电源变换单元的输出信号进行 检测, 并向所述状态监测与逻辑控制单元发送输出检测结果;
所述状态监测与逻辑控制单元设置成接收中央处理单元(CPU )发送的 出检测单元发送的输出检测结果中的任一检测结果与所述控制信号进行比 较, 若二者不一致, 则向所述直流电源变换单元发送逻辑控制信号。
优选地, 所述状态监测与逻辑控制单元釆用状态机实现。
优选地, 所述负载包括射频功率放大器。
本发明实施例还提供了一种电源装置管理电源的方法, 该方法包括: 所述电源管理装置获得预期的工作参数; 以及
所述电源管理装置实时获取提供给负载的输出电压, 将所述输出电压与 所述预期的工作参数进行比较, 若二者一致, 则继续为所述负载提供所述输 出电压, 若二者不一致, 则根据所述预期的工作参数调整所述输出电压, 使 得所述输出电压满足所述负载的需求。
优选地, 所述电源管理装置获得预期的工作参数的步骤包括:
所述电源管理装置接收中央处理单元(CPU )发送的根据负载的信号或 获得的用户需求信息转换成的预期的工作参数。
上述电源装置及其管理电源的方法和无线通信终端, 可以灵活地与拥有 强大的软件硬件资源的 CPU进行通信, 实现对电源的实时检测与控制, 实现 了多种多样的电源管理需求, 可以降低无信通信终端的电源功耗, 较好地解 决了无信通信终端的散热问题。
附图概述
图 la是传统数据卡架构及其供电方式图;
图 lb是本发明具有 IIC接口电源装置供电的数据卡架构图;
图 2是本发明具有 IIC接口的电源装置的结构示意图;
图 3是本发明具有 IIC接口的电源装置管理电源的流程图;
图 4是本发明具有 IIC接口的电源装置的数据卡电源管理具体实施例; 图 5是传统的 RF工作单元 PA工作电源 VCC示意图;
图 6是实施本发明具有 II C接口的电源装置的数据卡电源管理的 P A供电 电源 VCC示意图;
图 7是使用本发明装置的数据卡 PA供电电流曲线与传统供电方式的比 较图。
本发明的较佳实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 下文中将结合附图 对本发明的实施例进行详细说明。 需要说明的是, 在不冲突的情况下, 本申 请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例提供了一种无线通信终端, 包括基带工作单元和射频工作 单元, 以及与所述基带工作单元和所述射频工作单元均相连的直流电源变换 器, 所述无线通信终端还包括: 电源装置、 中央处理单元(CPU )和包络检 波装置, 其中:
所述电源装置位于所述直流电源变换器和所述射频工作单元之间, 并设 置成接收所述直流电源变换器提供的电压, 向所述射频工作单元中的功率放 大器(PA )提供输出电压, 以及接收所述 CPU发送的控制信号, 根据所述控 制信号调整所述输出电压, 使得所述输出电压满足所述 PA的输出信号的包 络变化曲线;
所述包络检波装置与所述射频工作单元相连,并设置成实时监测所述 PA 输出信号的包络信号, 并向所述 CPU发送所述包络信号;
所述 CPU分别与所述直流电源变换器、所述电源装置和所述包络检波装 置相连, 并设置成接收所述直流电源变换器提供的电压, 将所述包络检波装 置发送的所述包络信号转换为控制信号, 并向所述电源装置发送所述控制信 号。
其中,所述 CPU还设置成将通过所述数据卡的人机交互界面输入的信息 转换为所述控制信号, 并向所述电源装置发送所述控制信号。
优选地, 所述 CPU通过 IIC ( Inter Integrated Circuit )总线与所述电源装 置相连。
上述无线通信终端可以为数据卡或其他产品, 下面以数据卡为例对本发 明实施例的技术方案进行详细描述:
如图 lb所示, 是本发明具有 IIC接口电源装置供电的数据卡架构图, 该 数据卡包括:基带工作单元 11、 RF工作单元 12、直流电源变换器 13、 CPU14 和具有 IIC总线的电源装置 15。其中, 细黑线表示通信产品的数据传输路径, 粗黑线路表示供电路径, 细虚线表示 CPU监控管理各个功能模块的总线。 基 带工作单元的数据输入端通过 USB线接 USB插座, 基带工作单元的输出端 与 RF工作单元的输入端相连, RF工作单元的输出端通过天线接口连接到通 信发射天线。 数据卡 5V输入电源首先送给直流电源变换器, 经过变换后的 直流电源分别给基带工作单元、 CPU和具有 IIC总线的电源装置。 其中, 具 有 IIC总线的电源装置给 RF工作单元中的功率放大器(下文中简称 PA )供 电。 主 CPU通过 IIC总线与上述电源装置建立通信, 通过监控与管理总线与 RF工作单元和基带工作单元相连接, 进行监控与管理 RF工作单元和基带工 作供电的工作状态。
上述数据卡中的具有 IIC总线的电源装置, 具体包括: 直流电源变换单 元 151、 电源输入检测单元 152、 状态监测与逻辑控制单元 153和电源输出检 测单元 154, 如图 2所示, 其中:
上述直流电源变换单元, 其输入端与供电电源相连, 其输出端连接电源 负载, 实现将输入电源变换成满足负载要求的输出电源; 该单元还包括一个 受控输入接口,并设置成接收状态监测与逻辑控制单元发送的逻辑控制信号; 具体地, 其设置成接收所述直流电源变换器输入的电压, 向所述 PA提供输 出电压, 以及接收所述状态监测与逻辑控制单元发送的逻辑控制信号, 根据 所述逻辑控制信号调整所述直流电源变换单元的输出电压;
上述电源输入检测单元, 其输入端与所述直流电源变换单元的输入端相 连, 其输出端连接到状态检测与逻辑控制单元, 并设置成对直流电源变换单 元的输入信号进行检测, 并向所述状态监测与逻辑控制单元发送输入检测结 果;
上述电源输出检测单元, 其输入端与所述直流电源变换单元的输出端相 连, 其输出端口连接到状态检测与逻辑控制单元, 并设置成对直流电源变换 单元的输出信号进行检测, 并向所述状态监测与逻辑控制单元发送输出检测 结果;
上述状态监测与逻辑控制单元,其输入端分别与所述电源输入检测单元、 电源输出检测单元相连接, 其输出端与直流电源变换单元相连, 并设置成对 所述电源输入检测单元的检测结果和所述电源输出检测单元的检测结果进行 测单元发送的输出检测结果中的任一检测结果与所述控制信号进行比较, 若 二者不一致, 则向所述直流电源变换单元发送逻辑控制信号, 实现对直流电 源变换单元的状态控制等功能。
上述数据卡进行电源管理过程如下:
电源装置给 RF工作单元的 PA供电, CPU通过监控与管理总线实时地检 测 PA的输出信号的包络, 通过 CPU软件算法将包络信号转换为控制信号, 通过 IIC总线将该控制信号传输给上述具有 IIC总线接口的电源装置,使具有 IIC 总线接口的电源装置的输出电压幅度跟随 PA的输出信号的包络曲线变 化,从而可以提高 PA的工作效率,达到节省数据卡 PA的功耗及散热的作用。
上述具有 IIC总线接口的电源装置给数据卡供电, 可以釆用软件和硬件 结合的方式, 能真正实现电源与负载, 电源与产品最终用户之间的实时动态 交互,从而解决产品的功耗与散热等问题。另夕卜,釆用 IIC总线接口实现 CPU 与电源装置的通信,则检测与控制 I/O可实现复用,即只需要占用两个 I/O口, 且不会随着检测或控制量的增加而增加, 较好地克服了现有技术中存在的电 源管理方式大多釆用硬件配置, 不够灵活的缺陷。
另外, 本发明实施例还提供了一种电源装置, 该电源装置的结构与上述 数据卡中的电源装置的结构相同, 如图 2所示, 此处不再赘述; 需要说明的 是, 图 1中 RF工作单元中的 PA是图 2中的负载的一种实例, 本领域的技术 人员知道该负载可以替换为其他器件或设备。
本发明实施例还提供了一种电源装置管理电源的方法, 该方法包括: 步骤一、 所述电源管理装置获得预期的工作参数;
步骤二、 所述电源管理装置实时获取提供给负载的输出电压, 将所述输 出电压与所述预期的工作参数进行比较, 若二者一致, 则继续为所述负载提 供所述输出电压, 若二者不一致, 则根据所述预期的工作参数调整所述输出 电压, 使得所述输出电压满足所述负载的需求。
如图 3所示, 是本发明具有 IIC接口的电源装置管理电源的流程图, 无 特殊说明情况下, 图中左侧可以理解为 CPU的对具有 IIC接口的电源装置的 控制与管理流程图, 主要通过 CPU的软件来实现(相当于上述步骤一) , 图 中右侧可以理解为具有 IIC接口的电源装置的工作过程, 及其与外部的信息 (包括用户的手动设置, 负载参数等) 交互过程, 使用具有 IIC接口的电源 装置的硬件电路来实现(相当于上述步骤二) 。
具有 IIC接口的电源装置工作过程如下:
步骤 301a、 电源装置初始上电;
步骤 302a、 通过硬件电路设置的方式, 配置电源瞬间的电源默认输出为 3.6V-4.2V;
电源装置上电后电源工作在初始默认状态, 输出默认的电压、 电流参数; 电源装置内部参数寄存器进入复位状态, 并清空寄存器中的值; 嵌入式 IIC 总线接口, 初始化 IIC总线并准备好与实施电源管理的主 CPU进行通信。
步骤 303a、 电源输入 /输出参数检测单元将实时釆集的参数传送给状态、 参数寄存器中, 供主 CPU进行实时查询, 实施电源管理的主 CPU通过 IIC 总线读取状态与参数寄存器中的参数, 获取电源的工作状态;
步骤 304a、 具有 IIC接口的电源装置中的状态监测与逻辑控制单元(用 状态机来实现),通过 IIC总线接受 CPU传递过来的控制参数,通过比较 CPU 传送过来的控制参数与电源装置自身检测到的 DC/DC 直流变换单元的状态 参数是否一致,来判断是否需要对 DC/DC直流变换单元的输出参数进行相应 的调整, 使之适应负载的动态变换和用户参数设置, 如果不需要, 则转向步 骤 302a, 按照默认方式输出直流电源给负载供电, 否则, 执行步骤 305a, 同 时, 继续获取直流变换单元的状态参数;
步骤 305a、按照 CPU控制参数的要求,或者用户手动设置的参数输出直 流电源给负载供电。
包含该上述电源装置的数据卡中,需要 CPU通过软件方式来实现电源管 理的功能。 其中 CPU和电源装置, 通过 IIC总线建立通信联系。 CPU通过软 件的方式对具有 IIC总线接口的电源装置实现的电源管理, 其过程如下所示: 步骤 301b、 CPU开启电源管理模块;
步骤 302b、 CPU电源管理模块初始化 IIC总线, 与具有 IIC总线接口的 电源装置建立通信, 通过 IIC总线读取电源工作状态参数;
步骤 303b、 CPU既可以接受电源用户的需求信息, 例如电源处于对电池 进行充电状态, 用户可以通过本发明所述的数据卡中的人机界面对诸如: 充 电电流大小进行设置, 对充电时间等参数进行设置; 或者接受供电负载的变 化动态信息, 这些信息主要包括负载的功耗曲线, 电流或电压需要曲线等; 步骤 304b、 CPU将电源工作状态信息、 电源用户需求信息和电源供电负 载变化信息等进行综合判断, 判断是否需要对电源输出参数进行调整, 如果 不需要调整, 返回步骤 302b, 如果需要调整, 执行步骤 305b;
步骤 305b、 CPU输出电源控制参数, 通过 IIC总线传输给具有 IIC总线 接口的电源装置, 使输出电源满足要求。
其中对输出电压幅值的调整差数和输出电压幅值的检测参数,釆两个 6bit 的寄存器 R[7:2]进行寄存。 电源最小输出电压 3.5V, 最大输出电压 4.44V。 即最大值 4.44 V对应 HEX数 "62" ; 3.5V对应 HEX数 "00" 。 寄存器的每 个最小逻辑状态对应的所述电源输出电压的最小值 0.02V, 即输出电压调整 的最小分辨率是 0.02V。 因此, 在 CPU中设置一张对应数据表格(下称输出 电压映射表)将一组寄存器值与输出电压值进行映射, 对应关系如上文所述, CPU通过查表获取电源输出电压对应的寄存器设置值, 或者通过读取电源变 换器中的参数寄存器值, 通过查找表获取电源的实际输出电压值。
为了进一步说明本发明的电源装置及包含电源装置的数据卡的结构, 下 面以一个具体实施例进行说明, 如图 4所示:
该实施例中, USB总线接口输入的 5V电源 (以下简称为 VBUS )送给 具有 IIC总线的电源装置 401 , 电源装置变换后的输出电压 (3.5V-4.4V )经 直流电源变换单元的输出端 (简称 SW )输出给储能电感 (L0 ) 的一端, L0 的另一端连接到 RSN 々一端, RSNS的另一端到开关管 Q的漏极, 开关管 Q 的源极连接到负载 PA供电的供电端 (以下简称为 VCC ) , 同时还可以连接 到带充电功能的电池进行充电。开关管 Q的栅极连接到系统 CPU402的 GPIO。 所述 CPU可以通过该 GPIO实施对 PA和充电电池供电的开 /关功能。 所述的 RSNS为电源输出电流参数检测器件, 将输出电流转换为电压送给所述电源变 换器进行输出参数检测; 电源变换器的 IIC接口时钟信号(SCL ) , 双向数据 线( SDA )连接到所述系统 CPU的 IIC总线接口或者普通 GPIO管脚; 电源 变换器的充电状态指示信号( STAT )连接到所述系统 CPU的另外一个 GPIO 口, 用于监控该电源变换器给电池负载充电的状态, 所述的电源变换器处于 充电状态, 该信号输出逻辑高电平, 充电结束, 该信号输出逻辑低电平。 包 络检波装置 403的输入端连接到 RF功率放大器(下简称 PA ) 404的输出端, 所述包络检波装置的输出端连接到所述系统 CPU的高速模数转换器 ( ADC ) 的输入端。
按照传统的电源管理设计方案, 则有: PA在工作过程中从供电电源吸收 的电流基本保持不变,即使 VCC电压发生变化;如果 PA输出更高电平信号, PA为保持线性度也必须提供更高的 VCC电压值; 如果 PA的供电电压 VCC 保持不变, 这样 PA就要求必须有足够的线性度, 使得 PA输出最大功率电平 满足系统要求, 对信号功率放大不会产生失真等。 所以对 PA本身提出比较 高的要求。然而在目前 PA本身的性能没有突破性提高的前提下要保持 PA的 线性度, 必然要电源始终都保持比较高的 VCC电压提供, 如图 5所示, 而 PA的需求电流基本保持不变。 在这种设计中 PA的效率曲线, 表现为在 PA 输出功率电平越高, PA的效率就越高, 而 PA输出功率电平越低, PA的转 换效率越低(要求 VCC有更高的电压)。 这对于产品的散热和降低功耗是极 其不利的。
而如图 4所示, 将 PA的 VCC连接到具有 IIC总线接口的电源装置上, PA的供电电源与主 CPU建立通信, 且受 CPU的实时控制, 包络检波装置将 RF工作单元中 PA输出信号进行取样, 然后将取样的信号进行幅度检波。 包 络检波装置的检波输出包络信号送给 CPU的 ADC接口, ADC接口对检波信 号进行高速釆样 A/D转换, 即对包络信号进行数字化处理, A/D数字化后的 bite位数据存储到 CPU的存储区中, CPU实时将包络信号转换成的数字 bite 略大于自己的数据。 然后, CPU将电压映射表中的该数据通过 IIC总线写入 电源装置中, 使得电源装置中的输出电压跟随 PA输出信号的幅度进行调整, 图 4所示的供电 VCC的波形如图 6所示。 因此, 电源装置的输出电压就可以 实时的跟随 PA输出信号的幅度进行自动调整了。 这样就可以提高如图 4所 示的 PA供电电源即具有 IIC总线的电源装置到 RF工作单元中 PA输出之间 的转换效率, 从而减少 PA本身的功耗, 降低 PA的发热量, 延长电源装置的 使用寿命。
总之, 具有 IIC总线的电源装置可以灵活地与拥有强大的软件硬件资源 的 CPU进行通信, 实现对电源的实时检测与控制, 实现多种多样的电源管理 需求, 可以降低数据卡的电源功耗, 较好地解决了例如数据卡等无信通信终 端的散热问题。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 上述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上实施例仅用以说明本发明的技术方案而非限制, 仅仅参照较佳实施 例对本发明进行了详细说明。 本领域的普通技术人员应当理解, 可以对本发 明的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的精神和范 围, 均应涵盖在本发明的权利要求范围当中。
工业实用性
上述电源装置及其管理电源的方法和无线通信终端, 可以灵活地与拥有 强大的软件硬件资源的 CPU进行通信, 实现对电源的实时检测与控制, 实现 了多种多样的电源管理需求, 可以降低无信通信终端的电源功耗, 较好地解 决了无信通信终端的散热问题。

Claims

权 利 要 求 书
1、 一种无线通信终端, 包括基带工作单元和射频工作单元, 以及与所述 基带工作单元和所述射频工作单元均相连的直流电源变换器, 其特征在于, 所述无线通信终端还包括: 电源装置、 中央处理单元(CPU )和包络检波装 置, 其中:
所述电源装置设置成接收所述直流电源变换器提供的电压, 向所述射频 工作单元中的功率放大器(PA )提供输出电压, 以及接收所述 CPU发送的控 制信号, 根据所述控制信号调整所述输出电压, 使得所述输出电压满足所述 PA的输出信号的包络变化曲线;
所述包络检波装置与所述射频工作单元相连,并设置成实时检测所述 PA 输出信号的包络信号, 以及向所述 CPU发送所述包络信号;
所述 CPU分别与所述直流电源变换器、所述电源装置和所述包络检波装 置相连, 并设置成: 接收所述直流电源变换器提供的电压, 将所述包络检波 装置发送的所述包络信号转换为控制信号, 并向所述电源装置发送转换的控 制信号。
2、 根据权利要求 1所述的无线通信终端, 其中: 息转换为控制信号, 并向所述电源装置发送所转换的控制信号。
3、 根据权利要求 1或 2所述的无线通信终端, 其中:
所述 CPU通过 IIC总线与所述电源装置相连。
4、 根据权利要求 3所述的无线通信终端, 其中:
所述电源装置包括直流电源变换单元、 电源输入检测单元、 状态监测与 逻辑控制单元和电源输出检测单元, 其中:
所述直流电源变换单元设置成接收所述直流电源变换器输入的电压, 向 所述 PA提供输出电压, 以及接收所述状态监测与逻辑控制单元发送的逻辑 控制信号, 根据所述逻辑控制信号调整所述输出电压;
所述电源输入检测单元设置成对所述直流电源变换单元的输入信号进行 检测, 并向所述状态监测与逻辑控制单元发送输入检测结果;
所述电源输出检测单元设置成对所述直流电源变换单元的输出信号进行 检测, 并向所述状态监测与逻辑控制单元发送输出检测结果;
所述状态监测与逻辑控制单元设置成接收所述 CPU发送的控制信号,将 送的输出检测结果中的任一检测结果与所述控制信号进行比较, 若二者不一 致, 则向所述直流电源变换单元发送逻辑控制信号。
5、 根据权利要求 4所述的无线通信终端, 其中:
所述状态监测与逻辑控制单元釆用状态机实现。
6、 一种电源装置, 包括直流电源变换单元、 电源输入检测单元、 状态监 测与逻辑控制单元和电源输出检测单元, 其中:
所述直流电源变换单元设置成接收直流电源变换器输入的电压, 向负载 提供输出电压,以及接收所述状态监测与逻辑控制单元发送的逻辑控制信号, 根据所述逻辑控制信号调整所述输出电压, 使得所述输出电压满足所述负载 的需求;
所述电源输入检测单元设置成对所述直流电源变换单元的输入信号进行 检测, 并向所述状态监测与逻辑控制单元发送输入检测结果;
所述电源输出检测单元设置成对所述直流电源变换单元的输出信号进行 检测, 并向所述状态监测与逻辑控制单元发送输出检测结果;
所述状态监测与逻辑控制单元设置成接收中央处理单元(CPU )发送的 出检测单元发送的输出检测结果中的任一检测结果与所述控制信号进行比 较, 若二者不一致, 则向所述直流电源变换单元发送逻辑控制信号。
7、 根据权利要求 6所述的电源装置, 其中:
所述状态监测与逻辑控制单元釆用状态机实现。
8、 根据权利要求 6或 7所述的电源装置, 其中:
所述负载包括射频功率放大器。
9、 一种电源装置管理电源的方法, 包括:
所述电源管理装置获得预期的工作参数; 以及
所述电源管理装置实时获取提供给负载的输出电压, 将所述输出电压与 所述预期的工作参数进行比较, 若二者一致, 则继续为所述负载提供所述输 出电压, 若二者不一致, 则根据所述预期的工作参数调整所述输出电压, 使 得所述输出电压满足所述负载的需求。
10、 根据权利要求 9所述的方法, 其中:
所述电源管理装置获得预期的工作参数的步骤包括:
所述电源管理装置接收中央处理单元(CPU )发送的根据负载的信号或 获得的用户需求信息转换成的预期的工作参数。
PCT/CN2012/073510 2012-01-12 2012-04-05 电源装置及其管理电源的方法和无线通信终端 WO2013104149A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014551497A JP2015510310A (ja) 2012-01-12 2012-04-05 電源装置及びそれによる電源の管理方法並びに無線通信端末
US14/371,830 US9166478B2 (en) 2012-01-12 2012-04-05 Power supply device, method for managing power supply thereof and wireless communication terminal
KR1020147022259A KR20140111342A (ko) 2012-01-12 2012-04-05 전원장치 및 이의 전원 관리 방법과 무선통신 단말
EP12864832.6A EP2804442B1 (en) 2012-01-12 2012-04-05 Power supply device, method for managing power supply thereof and wireless communication terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210009131.7 2012-01-12
CN201210009131.7A CN102571131B (zh) 2012-01-12 2012-01-12 电源装置及其管理电源的方法和无线通信终端

Publications (1)

Publication Number Publication Date
WO2013104149A1 true WO2013104149A1 (zh) 2013-07-18

Family

ID=46415705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073510 WO2013104149A1 (zh) 2012-01-12 2012-04-05 电源装置及其管理电源的方法和无线通信终端

Country Status (6)

Country Link
US (1) US9166478B2 (zh)
EP (1) EP2804442B1 (zh)
JP (1) JP2015510310A (zh)
KR (1) KR20140111342A (zh)
CN (1) CN102571131B (zh)
WO (1) WO2013104149A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872751B (zh) * 2012-12-18 2016-12-28 中磊电子(苏州)有限公司 供电装置及无线网络通信系统
TW201526491A (zh) 2013-12-31 2015-07-01 Ibm 電源供應系統的效率調整
CN104391556A (zh) * 2014-11-13 2015-03-04 英业达科技有限公司 电源保护装置及方法
CN107196614A (zh) * 2017-05-22 2017-09-22 湖北凯乐科技股份有限公司 兼具大动态范围输出功率和高效率的射频功放装置
WO2019084743A1 (zh) * 2017-10-31 2019-05-09 骆武宁 通信控制电源
CN111800305B (zh) * 2019-04-09 2023-12-15 中兴通讯股份有限公司 一种散热测试方法及系统和发热装置
CN111817538B (zh) * 2020-07-15 2021-10-01 中国核动力研究设计院 两线制连接电荷转换器的多通道电源适配器和应用方法
CN113624345A (zh) * 2021-08-16 2021-11-09 合肥芯福传感器技术有限公司 基于事件检测的红外热成像设备及成像方法
CN115102568B (zh) * 2022-07-12 2023-10-24 东集技术股份有限公司 射频电路、控制方法、装置、射频读写设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009059459A1 (en) * 2007-11-07 2009-05-14 Texas Instruments Incorporated A power regulator system with current limit independent of duty cycle and its regulation method
CN102075149A (zh) * 2010-12-03 2011-05-25 哈尔滨工业大学深圳研究生院 多相交错并联射频功率放大器功率包络跟踪电源
CN102148563A (zh) * 2010-02-10 2011-08-10 华为技术有限公司 一种跟踪电源、电源控制方法及通信设备
CN102196336A (zh) * 2010-03-17 2011-09-21 哈曼国际工业有限公司 音频电源管理系统
CN102299567A (zh) * 2010-06-24 2011-12-28 海尔集团公司 电子装置及其无线供电系统、无线供电方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689011B2 (ja) * 1990-02-13 1997-12-10 日本電信電話株式会社 線形送信装置
JPH05267941A (ja) * 1992-03-18 1993-10-15 Sanyo Electric Co Ltd 高効率型高周波電力増幅器
JP3136382B2 (ja) * 1992-10-19 2001-02-19 京セラ株式会社 線形送信装置
JP2842267B2 (ja) * 1994-12-30 1998-12-24 日本電気株式会社 携帯無線機
JP3249418B2 (ja) * 1997-02-27 2002-01-21 三洋電機株式会社 電源装置、無線装置
JP3438126B2 (ja) * 1997-10-31 2003-08-18 富士通アクセス株式会社 Dc/dcコンバータ
US6141541A (en) * 1997-12-31 2000-10-31 Motorola, Inc. Method, device, phone and base station for providing envelope-following for variable envelope radio frequency signals
US6407634B1 (en) * 2000-06-16 2002-06-18 Motorola, Inc. Linear envelope tracking RF power amplifier with adaptive analog signal processing
US6683496B2 (en) 2001-08-20 2004-01-27 Harris Corporation System and method for minimizing dissipation in RF power amplifiers
JP2003124839A (ja) * 2001-09-28 2003-04-25 Internatl Business Mach Corp <Ibm> 送受信方法、送受信カードおよび携帯情報端末
JP2003133972A (ja) * 2001-10-29 2003-05-09 Fujitsu Ltd 無線送信機を有する電子装置
JP3838547B2 (ja) * 2001-12-11 2006-10-25 株式会社ルネサステクノロジ 高周波電力増幅回路用の電源装置
KR100553252B1 (ko) * 2002-02-01 2006-02-20 아바고테크놀로지스코리아 주식회사 휴대용 단말기의 전력 증폭 장치
JP2003235252A (ja) * 2002-02-08 2003-08-22 Toyota Motor Corp 電源回路
JP3865224B2 (ja) * 2002-03-15 2007-01-10 株式会社デンソー 電動パワーステアリング装置
US6914487B1 (en) * 2002-04-19 2005-07-05 National Semiconductor Corporation Method and system for providing power management in a radio frequency power amplifier using adaptive envelope tracking
JP2003330549A (ja) * 2002-05-10 2003-11-21 Hitachi Ltd 半導体集積回路、電源回路及び情報記録媒体
US7372333B2 (en) * 2003-02-03 2008-05-13 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Monolithic supply-modulated RF power amplifier and DC-DC power converter IC
GB2398648B (en) * 2003-02-19 2005-11-09 Nujira Ltd Power supply stage for an amplifier
US7276966B1 (en) 2003-10-28 2007-10-02 Stmicroelectronics N.V. Radio frequency envelope apparatus and method
JP2005223552A (ja) * 2004-02-04 2005-08-18 Sharp Corp 無線通信用回路、および、それを用いた無線通信装置
JP4497470B2 (ja) * 2004-09-17 2010-07-07 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 高周波電力増幅装置および送信装置
US7446514B1 (en) * 2004-10-22 2008-11-04 Marvell International Ltd. Linear regulator for use with electronic circuits
US8300372B2 (en) * 2006-04-04 2012-10-30 Cerus Industrial Corporation Apparatus, system, and/or method for protection and control of an electrical device
US20080003962A1 (en) 2006-06-30 2008-01-03 Wai Lim Ngai Method and apparatus for providing adaptive supply voltage control of a power amplifier
JP4899696B2 (ja) * 2006-07-31 2012-03-21 富士通株式会社 通信装置、中継装置、通信システム、通信方法及び通信プログラム
JP2009088620A (ja) * 2007-09-27 2009-04-23 Rohm Co Ltd 無線通信端末およびその制御方法
US20090323985A1 (en) * 2008-06-30 2009-12-31 Qualcomm Incorporated System and method of controlling power consumption in response to volume control
JP2010074407A (ja) * 2008-09-17 2010-04-02 Toshiba Corp バイアス制御装置
US7872527B2 (en) * 2009-03-31 2011-01-18 Qualcomm, Incorporated Power supply control system and method with variable post-regulation
JP5882574B2 (ja) * 2009-12-10 2016-03-09 キヤノン株式会社 高圧電源装置およびそれを備えた画像形成装置
CN102136846B (zh) * 2010-01-21 2013-11-06 天津里外科技有限公司 电源管理装置和方法
US8174313B2 (en) * 2010-05-17 2012-05-08 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Apparatus and method for controlling power amplifier
US8406706B2 (en) * 2010-05-20 2013-03-26 Lg Electronics Inc. Mobile terminal and method of controlling a driving voltage of a power amplifier therein
JP5735758B2 (ja) * 2010-05-25 2015-06-17 キヤノン株式会社 電圧トランス式高圧電源装置、高圧電源装置、及び画像形成装置
US8183917B2 (en) * 2010-06-04 2012-05-22 Quantance, Inc. RF power amplifier circuit with mismatch tolerance
CN102118516A (zh) * 2011-01-13 2011-07-06 中兴通讯股份有限公司 电源管理芯片输出电压的控制方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009059459A1 (en) * 2007-11-07 2009-05-14 Texas Instruments Incorporated A power regulator system with current limit independent of duty cycle and its regulation method
CN102148563A (zh) * 2010-02-10 2011-08-10 华为技术有限公司 一种跟踪电源、电源控制方法及通信设备
CN102196336A (zh) * 2010-03-17 2011-09-21 哈曼国际工业有限公司 音频电源管理系统
CN102299567A (zh) * 2010-06-24 2011-12-28 海尔集团公司 电子装置及其无线供电系统、无线供电方法
CN102075149A (zh) * 2010-12-03 2011-05-25 哈尔滨工业大学深圳研究生院 多相交错并联射频功率放大器功率包络跟踪电源

Also Published As

Publication number Publication date
EP2804442B1 (en) 2018-08-15
CN102571131A (zh) 2012-07-11
EP2804442A1 (en) 2014-11-19
US9166478B2 (en) 2015-10-20
EP2804442A4 (en) 2015-09-30
KR20140111342A (ko) 2014-09-18
CN102571131B (zh) 2017-02-15
JP2015510310A (ja) 2015-04-02
US20140355715A1 (en) 2014-12-04

Similar Documents

Publication Publication Date Title
WO2013104149A1 (zh) 电源装置及其管理电源的方法和无线通信终端
US9560217B2 (en) Adapters, terminal devices, USB connection devices and charging stations
US20120290761A1 (en) USB Converter and Related Method
WO2010133142A1 (zh) 控制双处理器切换的方法、装置及终端
WO2014180257A1 (zh) 一种实现快速充电的方法、适配器、终端及系统
TW201224731A (en) USB HUB and power management method thereof
WO2013091489A1 (zh) 一种能通过无线网络传输数据的安全数码卡
WO2020124571A1 (zh) 充电装置、待充电设备、充电方法及计算机存储介质
US11372470B2 (en) Control system for controlling intelligent system to reduce power consumption based on bluetooth device
WO2015078036A1 (zh) 超远距离蓝牙通信模块
CN201909987U (zh) 基于串行总线的恒流电源组网系统
CN110492569B (zh) 移动电源及其控制方法、装置
TW200427247A (en) Wireless transmission device
CN211046903U (zh) 一种数据电平传输转换电路
CN204858641U (zh) 充电数据线及充电器
WO2012167520A1 (zh) 自动功耗控制方法及系统
TWI500291B (zh) 適配器、電子裝置以及無線通信系統
CN111585454A (zh) 一种支持音视频数据互通的双Type-c口适配器
CN207869289U (zh) 一种poe网线供电机顶盒
CN105005246A (zh) 便携数据采集终端
CN104009782A (zh) 一种基于便携终端的蓝牙无线通讯传输系统及方法
CN203119894U (zh) 一种基于便携终端的蓝牙无线通讯传输系统
CN220830450U (zh) 接口转接装置
CN108984004B (zh) 一种电源外置式的无线充电鼠标
JP3223652U (ja) デュアルモード通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864832

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14371830

Country of ref document: US

Ref document number: 2012864832

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014551497

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147022259

Country of ref document: KR

Kind code of ref document: A