WO2013101379A1 - Appareil de collecte de signaux de cathodoluminescence - Google Patents

Appareil de collecte de signaux de cathodoluminescence Download PDF

Info

Publication number
WO2013101379A1
WO2013101379A1 PCT/US2012/066770 US2012066770W WO2013101379A1 WO 2013101379 A1 WO2013101379 A1 WO 2013101379A1 US 2012066770 W US2012066770 W US 2012066770W WO 2013101379 A1 WO2013101379 A1 WO 2013101379A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
fiber optic
ellipsoid
collection
light
Prior art date
Application number
PCT/US2012/066770
Other languages
English (en)
Inventor
Simon Galloway
David J. STOWE
Richard Vince
Levi Beeching
John Blackwell
Original Assignee
Gatan, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gatan, Inc. filed Critical Gatan, Inc.
Priority to EP12813163.8A priority Critical patent/EP2786395A1/fr
Priority to JP2014544834A priority patent/JP2015503198A/ja
Priority to CN201280057308.9A priority patent/CN103999185A/zh
Priority to AU2012363007A priority patent/AU2012363007A1/en
Publication of WO2013101379A1 publication Critical patent/WO2013101379A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/226Optical arrangements for illuminating the object; optical arrangements for collecting light from the object
    • H01J37/228Optical arrangements for illuminating the object; optical arrangements for collecting light from the object whereby illumination and light collection take place in the same area of the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2445Photon detectors for X-rays, light, e.g. photomultipliers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24495Signal processing, e.g. mixing of two or more signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2803Scanning microscopes characterised by the imaging method
    • H01J2237/2808Cathodoluminescence

Definitions

  • This invention relates to the field of electron microscopy and in particular to the collection cathodoluminescence signals.
  • CL Cathodoluminescence
  • TEM has been achieved using off-axis parabolic mirrors which provide direct optical coupling through a side vacuum window.
  • the specimen is held at the focal point of these mirrors, light is then collimated and can be coupled to other transmission or detection apparatuses.
  • this approach is restricted to TEM microscopes with a wide pole piece gap (e.g. >6mm) and with an appropriate additional port to position the mirror above the specimen.
  • Cathodoluminescence can be weak in a TEM because the volume stimulated by the electron beam is small. This is because the specimen is normally thin enough to be partially transparent to electrons at the desired working accelerating voltage.
  • Cathodoluminescence is normally analyzed in terms of size of signal (panchromatic imaging), size of a specific bandpass, (monochromatic or filtered imaging), and spectroscopic mapping. It can also be analyzed as a function of time, from picoseconds resolution to evolution over some hours. The efficiency of cathodoluminescence varies very significantly depending on specimen type, temperature, thickness and injection conditions. Efficient light collection is useful and sometimes essential to perform an experiment, especially if the signal must be measured simultaneously with other analytical measurements.
  • TEM pole pieces and side entry holders provide hard restrictions on the available space to employ collection and transmission optics.
  • a side entry Transmission Electron Microscope (TEM) holder holds a specimen on a goniometer in a tightly restricted volume. The restriction is given by the need to insert through the vacuum seal of the goniometer and by the pole piece gap of the TEM. In practice this means that almost all known TEM-CL solutions utilizing some form of collection optics are restricted to wide pole piece gap instruments (upper or lower gaps >4mm). The use of a wide pole piece gaps compromises the performance of the TEM when used for other analytical techniques. It is estimated that greater than 80% of TEMs installed worldwide are unsuitable for known TEM-CL technology due to the narrow pole pieces they employ. Thus an need exists for a solution that overcomes the space restrictions when employing collection optics.
  • an apparatus for collection of cathodoluminescence from a sample under irradiation by electrons in an electron microscope includes sample carrier for a sample having a sample plane; a light collection mirror; a fiber optic transmission cable having a face.
  • the light collection mirror is a reflective ellipsoid
  • the ellipsoid surface situated to collect light from the sample.
  • the ellipsoid has a first focal point at the sample and a second focal point as the fiber optic cable face.
  • ellipsoid has an axis between the focal points, with the axis being tilted with respect to the sample plane.
  • the face of said fiber optic transmission cable is tilted to optimize collection efficiency.
  • the fiber optic transmission cable is a single silica core high numerical aperture fiber.
  • the fiber optic transmission cable has a
  • the fiber optic transmission cable has a core size of approximately .4 mm.
  • the fiber optic transmission cable is stripped to
  • the ellipsoid mirror is made of rapidly solidified
  • the ellipsoid is tilted at an angle of approximately
  • the sample is irradiated by ions instead of electrons.
  • Fig. 1 is a cross sectional drawing of an exemplary device for efficient collection of cathodoluminescence signals
  • Fig. la is an enlarged view of the device of Fig. 1.
  • Fig. 2 is a cross sectional drawing of an exemplary tilted ellipsoid for use in the device of Fig. 1 ;
  • Fig. 3 is a cross sectional drawing showing tilted ellipsoid mirrors, tilted fiber optic cables and a specimen.
  • collection mirrors 10, 20 attached to the end piece of a side entry holder 1 collect light from the region of the sample at the intersection of the holder center line 80 and the opening centerline 70 and transmit it to a suitable detection system external to the TEM via fiber optic cables 40, 50.
  • the fiber optic cables have faces 41, 51 tilted for maximum collection of light.
  • a fiber optic is a useful conduit for light in places of tight constraint, but also where thermal conductivity is important to control.
  • TEM holders very small variations in temperature can cause drift which is seen in high magnification images.
  • fiber optics can be introduced into a holder operating at LN2 temperatures without the fiber causing thermal artifacts.
  • fiber optics do not impact the thermal stability of a holder. This therefore allows imaging and analysis at high magnification with the specimen held at cryogenic temperatures.(Room temperature or high temperature versions of the holder are also possible).
  • the light collection and transmission optics are built into the side entry holder the whole system is compact and the analytical equipment used to analyze the light can be a considerable distance away from the TEM column, e.g. in a neighboring room or building.
  • the specimen can be considered to provide a plane of symmetry. In some TEMs, there is some asymmetry in the space above and below the holder. If the light output above and below the specimen were equal, then the collection efficiency can be doubled with a symmetrical design that collects light from above and below. In cases with unequal light output above and below the specimen, collection efficiency is still increased.
  • the material for the reflective elliptical mirror must be of a non-magnetic conductive metal which can be manufactured to a precise mathematical shape. This is required to correctly reflect and focus light emitted from a region of interest on the specimen into the tilted fiber.
  • rapidly solidified aluminum is used for the mirrors because this material enables precision machining of miniature light collection optics.
  • silica core fiber with a core of 0.4mm is used with a multi mode NA of 0.37.
  • a fiber of NA 0.22 is most commonly used in spectroscopy apparatus and this would be very inefficient by comparison.
  • the silica core provides good spectral response over the range of wavelengths required for CL measurements.
  • the inventors have manufactured and tested a design having a gap above the specimen of 2.25mm and below the specimen of 2mm.
  • this design similar opposing off-axis elliptical mirrors and tilted fibers collect light from above and below the specimen simultaneously.
  • the smaller gap below restricts the volume and hence solid angle captured by this mirror, but there remains symmetry in the focusing optics.
  • the fibers are stripped to achieve the required bend radii at a compound bend close proximity cross over point as shown in Fig. 1.
  • This invention provides access to the specimen with a removable mirror.
  • the access can be designed to be on the other side of the specimen boat to the mirror.
  • the mirror may be removed and re-installed with a high degree of reproducibility as the mirror component locates on the TEM holder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Selon l'invention, un support de microscope électronique en transmission (MET) à entrée latérale comprend un miroir elliptique désaxé incliné miniature pour collecter une cathodoluminescence du spécimen et la coupler efficacement dans une fibre optique inclinée intégrée dans le support. La conception est compatible avec le fonctionnement cryogénique du support. Des spécimens MET sont partiellement transparents au faisceau d'électrons et ainsi de la lumière peut être émise au-dessus et en dessous du spécimen. Le même principe de miroir désaxé et de fibre inclinée peut être utilisé pour collecter de la lumière par le dessus et le dessous du spécimen tout en rentrant encore dans l'espace très confiné requis par introduction à travers le goniomètre et pour un fonctionnement entre des pièces polaires à faible entrefer. Utilisant un système double, l'émission de lumière par le dessus du spécimen peut être comparée à celle par le dessous, ce qui permet d'améliorer la polyvalence de la technique analytique.
PCT/US2012/066770 2011-12-01 2012-11-28 Appareil de collecte de signaux de cathodoluminescence WO2013101379A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12813163.8A EP2786395A1 (fr) 2011-12-01 2012-11-28 Appareil de collecte de signaux de cathodoluminescence
JP2014544834A JP2015503198A (ja) 2011-12-01 2012-11-28 カソードルミネッセンス信号を収集するための装置
CN201280057308.9A CN103999185A (zh) 2011-12-01 2012-11-28 阴极发光信号采集装置
AU2012363007A AU2012363007A1 (en) 2011-12-01 2012-11-28 Apparatus for collection of cathodoluminescence signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/309,026 2011-12-01
US13/309,026 US20130141803A1 (en) 2011-12-01 2011-12-01 Apparatus for collection of cathodoluminescence signals

Publications (1)

Publication Number Publication Date
WO2013101379A1 true WO2013101379A1 (fr) 2013-07-04

Family

ID=47522895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/066770 WO2013101379A1 (fr) 2011-12-01 2012-11-28 Appareil de collecte de signaux de cathodoluminescence

Country Status (6)

Country Link
US (1) US20130141803A1 (fr)
EP (1) EP2786395A1 (fr)
JP (1) JP2015503198A (fr)
CN (1) CN103999185A (fr)
AU (1) AU2012363007A1 (fr)
WO (1) WO2013101379A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016037198A1 (fr) * 2014-09-12 2016-03-17 Technische Universität Wien Dispositif et système de transfert et de mesure de lumière produite par cathodoluminescence dans un microscope électronique à transmission
EP2908328A4 (fr) * 2012-10-04 2016-06-15 Univ Seoul Nat R & Db Found Dispositif de support pour microscope électronique

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981411B (zh) * 2017-05-03 2018-02-13 中国地质大学(北京) 一种聚光系统及其聚光方法
JP7141874B2 (ja) * 2017-09-29 2022-09-26 株式会社堀場製作所 ルミネッセンス採光装置
EP3462475A3 (fr) 2017-09-29 2019-11-20 Horiba, Ltd. Dispositif collecteur de luminescence
CN111261478B (zh) * 2018-11-30 2021-10-26 浙江大学 具有光纤的多自由度样品杆
EP3823004A3 (fr) * 2019-10-23 2021-07-07 Gatan Inc. Système et procédé pour l'alignement d'optique à cathodoluminescence
EP4133516A1 (fr) 2020-04-07 2023-02-15 Gatan, Inc. Appareil de cathodoluminescence de microscopie électronique à transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2617985A1 (fr) * 1987-07-10 1989-01-13 Centre Nat Rech Scient Dispositif optique de collection de lumiere formant objectif a miroir de grande ouverture numerique
JP2002162350A (ja) * 2000-11-22 2002-06-07 Hitachi Ltd 蛍光測定装置
US20080181567A1 (en) * 2007-01-31 2008-07-31 Dana Craig Bookbinder High numerical aperture fiber
WO2011030156A2 (fr) * 2009-09-10 2011-03-17 University Of Sheffield Collecte de rayonnement électromagnétique émis par des échantillons irradiés par des particules

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885445B2 (en) * 1998-05-09 2005-04-26 Renishaw Plc Electron microscope and spectroscopy system
US20060060189A1 (en) * 2004-08-30 2006-03-23 Liu Yong Y Optical reflector and optical collection system
US7589322B2 (en) * 2005-06-29 2009-09-15 Horiba, Ltd. Sample measuring device
US8025445B2 (en) * 2009-05-29 2011-09-27 Baker Hughes Incorporated Method of deployment for real time casing imaging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2617985A1 (fr) * 1987-07-10 1989-01-13 Centre Nat Rech Scient Dispositif optique de collection de lumiere formant objectif a miroir de grande ouverture numerique
JP2002162350A (ja) * 2000-11-22 2002-06-07 Hitachi Ltd 蛍光測定装置
US20080181567A1 (en) * 2007-01-31 2008-07-31 Dana Craig Bookbinder High numerical aperture fiber
WO2011030156A2 (fr) * 2009-09-10 2011-03-17 University Of Sheffield Collecte de rayonnement électromagnétique émis par des échantillons irradiés par des particules

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CARLSSON L ET AL: "An efficient apparatus for studying cathodoluminescence in the scanning electron microscope", JOURNAL OF PHYSICS E. SCIENTIFIC INSTRUMENTS, IOP PUBLISHING, BRISTOL, GB, vol. 7, no. 2, 1 January 1974 (1974-01-01), pages 98 - 100, XP002409517, ISSN: 0022-3735, DOI: 10.1088/0022-3735/7/2/009 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2908328A4 (fr) * 2012-10-04 2016-06-15 Univ Seoul Nat R & Db Found Dispositif de support pour microscope électronique
US10312050B2 (en) 2012-10-04 2019-06-04 Snu R&Db Foundation Holder device for electron microscope
WO2016037198A1 (fr) * 2014-09-12 2016-03-17 Technische Universität Wien Dispositif et système de transfert et de mesure de lumière produite par cathodoluminescence dans un microscope électronique à transmission

Also Published As

Publication number Publication date
CN103999185A (zh) 2014-08-20
JP2015503198A (ja) 2015-01-29
AU2012363007A1 (en) 2014-06-26
EP2786395A1 (fr) 2014-10-08
US20130141803A1 (en) 2013-06-06

Similar Documents

Publication Publication Date Title
US20130141803A1 (en) Apparatus for collection of cathodoluminescence signals
JP5534646B2 (ja) 粒子ビーム及び光を用いる顕微鏡で試料を観察する装置
JP5354850B2 (ja) 表面分析用分光装置と分析方法
US8497487B2 (en) Sample holder with optical features
EP1956633A2 (fr) Appareil optique corpusculaire pour l'observation simultanée d'un échantillon avec des particules et des photons
JP5095587B2 (ja) 標本の光学的分析を行うためのアダプタ
JP6047592B2 (ja) 相関光学及び荷電粒子顕微鏡
US20190187174A1 (en) Miniature device for ultra high sensitivity and stability probing in vacuum
EP1956632A1 (fr) Appareil optique corpusculaire pour l'observation simultanée d'un échantillon avec des particules et des photons
JP2015141899A5 (fr)
CN112368570A (zh) 用于波长分辨角度分辨阴极发光的设备
JP7444481B2 (ja) カソードルミネッセンス電子顕微鏡
US20060104419A1 (en) Superconducting X-ray analyzer
CN110491755B (zh) 阴极发光光学集线器
EP2524260A1 (fr) Microscope à fond ultrasombre
JPH05113418A (ja) 表面分析装置
US5506414A (en) Charged-particle analyzer
JP2010190595A (ja) レーザー分光分析装置およびそれを用いたレーザー分光分析方法
JP5341900B2 (ja) 荷電粒子エネルギー分析計
CN109187723A (zh) 后置分光瞳差动共焦拉曼光谱-质谱显微成像方法与装置
CN114910457A (zh) 一种阴极荧光共聚焦显微光谱成像系统和方法
JP6326341B2 (ja) 試料ホルダー、および電子顕微鏡
JP5347559B2 (ja) X線分析装置
JP2007309649A (ja) X線分光装置
JP2007271528A (ja) 同軸小型蛍光分光分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12813163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544834

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012363007

Country of ref document: AU

Date of ref document: 20121128

Kind code of ref document: A