WO2013100653A1 - 리튬 이차전지 및 그 제조방법 - Google Patents

리튬 이차전지 및 그 제조방법 Download PDF

Info

Publication number
WO2013100653A1
WO2013100653A1 PCT/KR2012/011622 KR2012011622W WO2013100653A1 WO 2013100653 A1 WO2013100653 A1 WO 2013100653A1 KR 2012011622 W KR2012011622 W KR 2012011622W WO 2013100653 A1 WO2013100653 A1 WO 2013100653A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
secondary battery
lithium secondary
inorganic particles
capsule
Prior art date
Application number
PCT/KR2012/011622
Other languages
English (en)
French (fr)
Inventor
이철행
양두경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2014550019A priority Critical patent/JP5978314B2/ja
Priority to EP12863830.1A priority patent/EP2800196B1/en
Priority to CN201280064649.9A priority patent/CN104011925A/zh
Priority to PL12863830T priority patent/PL2800196T3/pl
Publication of WO2013100653A1 publication Critical patent/WO2013100653A1/ko
Priority to US13/958,956 priority patent/US8999554B2/en
Priority to US14/657,361 priority patent/US9711821B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • H01M50/682Containers for storing liquids; Delivery conduits therefor accommodated in battery or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a lithium secondary battery and a method of manufacturing the same. More specifically, the present invention relates to a lithium secondary battery and a method of manufacturing the same, which can be easily manufactured by enhancing the mechanical properties of the separator and omitting the injection process of the nonaqueous electrolyte.
  • a typical method of manufacturing a lithium secondary battery uses a method of injecting an electrode assembly having electrodes on both sides of a separator in a battery container and then injecting a nonaqueous electrolyte into the battery container.
  • an object of the present invention is to provide a lithium secondary battery and a method of manufacturing the same, which can easily inject a nonaqueous electrolyte and prevent a short circuit between a positive electrode and a negative electrode even when a battery malfunctions.
  • the inorganic particles are preferably inorganic particles selected from the group consisting of inorganic particles having a dielectric constant of 5 or more, inorganic particles having lithium ion transfer ability, and mixtures thereof.
  • the binder polymer is polyethylene, polystyrene, polyvinylidene fluoride-hexafluoropropylene (polyvinylidene fluoride-co-hexafluoropropylene), polyvinylidene fluoride-trichloroethylene (polyvinylidene fluoride-co -trichloroethylene), polyethyleneglycol diacrylate, polyethyleneglycol phosphate diacrylate, polyacrylate, polymethylmethacrylate, polyisobutyl methylmethacrylate polyisobutylmethylmethacrylate, polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyvinyl alcohol, polyvinyl alchol, ethylene vinyl acetate copolymer -co-viny acetate, polyethylene oxide, polyarylate, polytetrahydrofuran, polymethacrylic acid lithium, polyacrylic acid lithium, poly
  • the capsule stores a nonaqueous electrolyte solution before being broken.
  • the capsule may be applied to both the separator, the positive electrode and the negative electrode.
  • the non-aqueous electrolyte is automatically supplied uniformly to the entire area of the electrode assembly by heating and compressing the electrode assembly using the capsule containing the non-aqueous electrolyte, so that the wetting of the electrolyte is improved.
  • a separate injection process of the nonaqueous electrolyte solution as in the related art is not required, thereby simplifying a battery manufacturing process.
  • an electrochemically more stable electrolyte can be realized. It can be applied to implement an electrolyte that minimizes decomposition when driving the battery.
  • the lithium secondary battery of the present invention since the coating material of the capsule is a polymer in which inorganic particles are dispersed, the broken capsule enhances the mechanical properties of the separator and prevents short circuit between the positive electrode and the negative electrode during battery malfunction, thereby improving the safety of the battery. I can strengthen it.
  • Figure 3 is a SEM photograph of the surface of the negative electrode before the thermocompression bonding according to an embodiment of the present invention.
  • Example 5 is a graph showing the change in thickness after storage of the batteries of Example 1 and Comparative Example 1 at high temperature 85 °C, 4 hours.
  • Example 6 is a graph showing a 1C discharge voltage profile of a lithium secondary battery according to Example 1 and Comparative Example of the present invention.
  • FIG. 1 schematically shows an embodiment of a unit electrode assembly according to the present invention.
  • the configuration described in the embodiments and drawings described below are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, which can be replaced at the time of the present application It should be understood that there may be various equivalents and variations.
  • an electrode assembly of the present invention having a positive electrode 20, a negative electrode 30, and a separator 10 is provided.
  • the separator 10 has a plurality of broken capsules 51 dispersed in a portion where the separator 10 and the anode 20 contact or a portion where the separator 10 and the cathode 30 contact or both of the portions.
  • Layer 50 may be further provided.
  • FIG. 1 illustrates a case in which the separator 10 has a layer 50 in which broken capsules 51 are dispersed in both the contact portions of the anode 20 and the cathode 30.
  • the capsules 51 form a layer on at least one surface of the separator in contact with the electrode while storing the nonaqueous electrolyte therein before being destroyed.
  • Heat and pressure are applied to the electrode assembly during fabrication of the battery, thereby destroying the capsule 51 storing the nonaqueous electrolyte, thereby storing the stored nonaqueous electrolyte (not shown) at least one electrode of the positive electrode and the negative electrode.
  • Impregnated in, and only the coating portion of the capsule remains on at least one surface of the separator in contact with at least one of the positive electrode and the negative electrode to form a layer 50.
  • the coating film of the capsule according to the present invention is formed of inorganic particles and a binder polymer, and after breaking by thermal compression, a binding between the binder polymer and the separator of the capsule film is formed by thermal compression to reinforce the mechanical properties of the separator.
  • Particles serve as a kind of spacer that can maintain the physical shape of the broken capsule layer 50 to suppress the thermal shrinkage of the porous substrate when the electrochemical device is overheated or to prevent the short circuit of both electrodes during thermal runaway.
  • an interstitial volume exists between the inorganic particles to form fine pores. That is, the broken capsule layer 50 is attached to each other (that is, the binder polymer is connected and fixed between the inorganic particles) so that the binder polymer can keep the inorganic particles bound to each other, and the broken capsule layer ( 50) is bound to the porous substrate by the binder polymer.
  • the inorganic particles of the broken capsule layer 50 are present in the closest packed structure substantially in contact with each other, and the interstitial volume generated when the inorganic particles are in contact with each other becomes pores of the porous coating layer.
  • the inorganic particles preferably include high dielectric constant inorganic particles having a dielectric constant of 5 or more, preferably 10 or more.
  • inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT, 0 ⁇ x ⁇ 1 , 0 ⁇ y ⁇ 1), Pb (Mg 1/3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3 , SiC, TiO 2, or mixtures thereof.
  • the inorganic particles may be inorganic particles having lithium ion transfer capability, that is, inorganic particles containing lithium elements but having a function of transferring lithium ions without storing lithium.
  • inorganic particles having a lithium ion transfer capacity include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), Lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 (LiAlTiP) x O y series glass such as O 5 (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanum titanate (Li x La y TiO 3 , 0 ⁇ x ), lithium lanthan
  • the weight ratio of the inorganic particles to the binder polymer may be 1: 1 to 10: 1, or 1.2: 1 to 9: 1.
  • the weight ratio of the inorganic particles to the binder polymer satisfies this range, while maintaining the dispersibility of the inorganic particles in the capsule for storing the non-aqueous electrolyte solution, the mechanical strength of the capsule film can be improved.
  • organic solvent included in the electrolyte solution those conventionally used in the lithium secondary battery electrolyte may be used without limitation, and typically propylene carbonate (PC), ethylene carbonate (ethylene carbonate) , EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), methylpropyl carbonate, dipropyl carbonate, dimethylsulfuroxide, acetonitrile, dimethoxyethane, die Any one or a mixture of two or more thereof selected from the group consisting of oxyethane, vinylene carbonate, sulfolane, gamma-butyrolactone, propylene sulfite, and tetrahydrofuran may be representatively used.
  • PC propylene carbonate
  • ethylene carbonate ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethylmethyl carbonate
  • methylpropyl carbonate dipropy
  • microcapsules may be manufactured using a material capable of forming a bubble form by dispersion using micelles or colloids having hydrophilic and non-hydrophilic properties.
  • the encapsulation technology used in the drug delivery system may be applied.
  • a film formed of a polymer such as a high density polyethylene, a linear low density polyethylene, a low density polyethylene, a polyethylene such as ultra high molecular weight polyethylene, polypropylene, polybutylene, polypentene, or the like, or a mixture of these polymers.
  • a polymer such as a high density polyethylene, a linear low density polyethylene, a low density polyethylene, a polyethylene such as ultra high molecular weight polyethylene, polypropylene, polybutylene, polypentene, or the like, or a mixture of these polymers.
  • nonwoven fabrics such as a high density polyethylene, a linear low density polyethylene, a low density polyethylene, a polyethylene such as ultra high molecular weight polyethylene, polypropylene, polybutylene, polypentene, or the like, or a mixture of these polymers.
  • the positive electrode and / or the negative electrode may include a binder, and the binder may include vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile ( Various kinds of binder polymers such as polyacrylonitrile) and polymethylmethacrylate may be used.
  • PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • polyacrylonitrile polyacrylonitrile
  • Various kinds of binder polymers such as polyacrylonitrile
  • polymethylmethacrylate may be used.
  • the electrode assembly is impregnated with the stored nonaqueous electrolyte solution by thermocompressing the electrode assembly and destroying the capsule before the step of accommodating the manufactured electrode assembly in an electric container.
  • the electrode assembly is impregnated with the stored nonaqueous electrolyte by thermally compressing the electric container and breaking the capsule after the electrode assembly is accommodated in the electric container.
  • the negative electrode is N-methyl-2-pyrrolidone (NMP) which is a solvent containing 93% by weight of a carbon active material (MCMB10-28 from Osaka Gas) and 7% by weight of polyvinylidene difluoride (PVDF, Kynar 761 from Elf Atochem) ) was mixed for 2 hours in a mixer (mixer manufactured by Ika), coated on a copper foil current collector, and dried at 130 ° C.
  • the positive electrode was prepared by mixing 91% by weight of LiCoO 2 , 3% by weight of PVDF (Kynar 761) and 6% by weight of conductive carbon (KS-6 from Lonza) in a solvent, N-methyl-2-pyrrolidone (NMP).
  • the capsule containing the previously prepared electrolyte was applied to the cathode surface using a coater (blade) in a predetermined amount. After application, room temperature vacuum drying to remove heptane was performed for 2 hours. The dried cathode, anode, and separator were placed in an aluminum pouch to form a monocell.
  • the first press was carried out for 10 minutes so that the interval between the upper plate and the lower plate was maintained at 60 ° C. at a temperature controlled pressure and a pressure control unit at a temperature of 30 ⁇ m. This is to induce the destruction of the capsule first at room temperature so that the non-aqueous electrolyte stored in the capsule soaks well in the electrode and the separator.
  • the secondary press was carried out while the temperature was raised to 80 ° C. for 20 minutes, at which time the final temperature and pressure were 80 ° C., and the pressure was adjusted to 10 kgf / cm 2 . Using the monocell thus prepared, cell evaluation was performed at full charge activation at 0.1C.
  • Example 2 The battery of Example 2 thus prepared and Example 1 using polyethylene glycol diacrylate as the binder polymer were evaluated for 10C high rate discharge, and the results are shown in FIG. 7.
  • Example 2 employing a binder polymer having a functional group having a phosphate (PO 4 ) structure, it was found that the high rate discharge characteristics were improved more than in Example 1. It is possible to freely introduce a suitable functional group for the negative electrode (reduction) or the positive electrode (oxidation) to the binder polymer during the capsule manufacturing, it can be seen that it can improve the battery performance.
  • a suitable functional group for the negative electrode (reduction) or the positive electrode (oxidation) to the binder polymer during the capsule manufacturing, it can be seen that it can improve the battery performance.

Abstract

본 발명은 리튬 이차전지 및 그 제조방법에 관한 것이다. 보다 상세하게는, 본 발명은 양극, 음극, 상기 양극과 음극 사이에 개재된 세퍼레이터를 구비한 전극 조립체 및 상기 전극 조립체에 함침된 비수 전해액을 구비하며, 상기 세퍼레이터는 양극 및 음극과 접촉하는 적어도 일면에 복수의 파괴된 캡슐들이 분산된 층을 더 구비하고, 상기 캡슐의 피막은 무기물 입자가 분산된 바인더 고분자로 형성된 리튬 이차전지를 제공한다. 본 발명의 리튬 이차전지는 비수 전해액의 별도의 주입 공정이 필요 없으며, 세퍼레이터의 기계적 물성 및 전지의 안전성이 개선된다.

Description

리튬 이차전지 및 그 제조방법
본 발명은 리튬 이차전지 및 그 제조방법에 관한 것이다. 더욱 상세하게는, 세퍼레이터의 기계적 물성이 강화되고 비수 전해액의 주입 공정을 생략되어 간단하게 제조될 수 있는 리튬 이차전지 및 그 제조방법에 관한 것이다.
본 출원은 2011년 12월 27일에 출원된 한국특허출원 제10-2011-0143839호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
또한, 본 출원은 2012년 12월 27일에 출원된 한국특허출원 제10-2012-0154703호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용 분야가 확대되면서, 이러한 전자 기기의 전원으로 사용되는 전지의 고에너지 밀도화에 대한 요구가 높아지고 있다. 리튬 이차전지는 이러한 요구를 가장 잘 충족시킬 수 있는 전지로서, 현재 이에 대한 연구가 활발히 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는 리튬이온을 흡장 및 방출할 수 있는 탄소재 등의 음극, 리튬 함유 산화물 등으로 된 양극 및 혼합 유기용매에 리튬염이 적당량 용해된 비수 전해액이 전지 케이스 내에 구비되는 것으로 제조된다.
통상적인 리튬 이차전지의 제조방법은 세퍼레이터 양면에 전극이 구비된 전극 조립체를 전지 용기에 수납한 후, 비수 전해액을 상기 전지 용기 내로 주입하는 방법을 사용한다.
그런데, 이와 같은 방법으로 비수 전해액을 주입하기 위해서는 전지 용기를 일부 절개한 후에 비수 전해액을 주입하고, 다시 전지 용기를 밀폐시켜야 하는 번거로운 공정이 필요하고, 전지 용기 재료의 손실이 불가피한 문제점이 있으나, 현재로서 이를 해결할 수 있는 효과적인 해결책이 제시된 바는 없다.
한편, 리튬 이차전지가 과열되어 열폭주가 일어나거나 세퍼레이터가 관통될 경우에는 폭발을 일으키게 될 우려가 크다. 특히, 리튬 이차전지의 세퍼레이터로서 통상적으로 사용되는 폴리올레핀계 다공성 기재는 재료적 특성과 연신을 포함하는 제조공정 상의 특성으로 인하여 100도 이상의 온도에서 극심한 열 수축 거동을 보임으로서, 양극과 음극 사이의 단락을 일으키는 문제점이 있다.
따라서, 전지의 오작동 시에도 양극과 음극 사이의 단락을 방지할 수 있는 다양한 연구가 이뤄지고 있다.
따라서 본 발명이 해결하고자 하는 과제는, 비수 전해액의 주입이 간편하고 전지의 오작동 시에도 양극과 음극 사이의 단락을 방지할 수 있는 리튬 이차전지 및 그 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 양극, 음극, 상기 양극과 음극 사이에 개재된 세퍼레이터를 구비한 전극 조립체 및 상기 전극 조립체에 함침된 비수 전해액을 구비하며, 상기 세퍼레이터는 양극 및 음극과 접촉하는 적어도 일면에 복수의 파괴된 캡슐들이 분산된 층을 더 구비하고, 상기 캡슐의 피막은 무기물 입자가 분산된 바인더 고분자로 형성된 리튬 이차전지를 제공한다.
본 발명의 리튬 이차전지에 있어서, 상기 무기물 입자는 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 및 이들의 혼합물로 이루어진 군에서 선택된 무기물 입자인 것이 바람직하다.
본 발명의 리튬 이차전지에 있어서, 상기 바인더 고분자는 폴리에틸렌, 폴리스티렌, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리에틸렌글리콜 디아크릴레이트(polyethyleneglycol diacrylate), 폴리에틸렌 글리콜포스페이트디아크릴레이트(polyethyleneglycol phosphate diacrylate), 폴리아크릴레이트(polyacrylate), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리이소부틸 메틸메타크릴레이트(polyisobutylmethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐아세테이트(polyvinylacetate), 폴리비닐알콜(polyvinyl alchol), 에틸렌 비닐 아세테이트 공중합체(polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드(polyethylene oxide), 폴리아릴레이트(polyarylate), 폴리테트라하이드로푸란(polytetrahydrofuran), 폴리메타아크릴산리튬(polymethacrylic acid lithium), 폴리아크릴산 리튬(polyacrylic acid lithium), 폴리말레익산 리튬(polymaleic acid lithium), 폴리비닐술폰산 리튬(polyvinyl sulfonic acid lithium), 폴리비닐인산 리튬(polyvinyl phosphonic acid lithium), 셀룰로오스 아세테이트(cellulose acetate), 셀룰로오스 아세테이트 부틸레이트(cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate), 시아노에틸플루란(cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스(cyanoethylcellulose), 시아노에틸수크로오스(cyanoethylsucrose), 풀루란(pullulan) 및 카르복실 메틸 셀룰로오스(carboxyl methyl cellulose)로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 블렌드일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 리튬 이차전지에 있어서, 상기 무기물 입자 대 바인더 고분자의 중량비는 1:1 내지 10:1일 수 있다.
본 발명의 리튬 이차전지에 있어서, 상기 캡슐은 파괴되기 전에는 비수 전해액을 저장하고 있다.
또한, 상기 과제를 해결하기 위하여, 본 발명은 세퍼레이터의 적어도 일면 또는 양극 및 음극 중 1종 이상의 세퍼레이터와 접촉하는 면에 무기물 입자가 분산된 바인더 고분자로 형성된 피막을 구비하고 비수전해액을 저장한 복수의 캡슐을 분산매와 함께 도포하는 단계; 상기 양극과 음극 사이에 상기 세퍼레이터를 개재하여 전극 조립체를 제조하는 단계; 및 상기 전극 조립체를 전지 용기에 수납하는 단계를 포함하고, 상기 전극 조립체를 전지 용기에 수납하는 단계 이전, 이후 또는 이전과 이후 모두에 전극 조립체를 열압착하여, 상기 캡슐을 파괴함으로써 저장된 비수 전해액을 전극 조립체에 함침시키는 단계를 더 포함하는 리튬 이차전지의 제조방법을 제공한다.
또한, 본 발명의 리튬 이차전지의 제조방법에 있어서, 상기 캡슐은 세퍼레이터, 양극 및 음극 모두에 도포될 수 있다.
본 발명의 리튬 이차전지는 비수 전해액을 함유한 캡슐을 사용하여 전극 조립체의 가열압착 과정에서 비수 전해액이 자동적으로 전극 조립체에 전체면적에 균일하게 공급되므로 전해액의 전극에 대한 젖음성(wetting)이 개선되고, 종래와 같은 비수 전해액의 별도 주입과정이 필요 없게 되어 전지의 제조 공정을 간소화할 수 있다.
또한 양극 표면에는 항산화 물질이 포함된 캡슐 도포, 음극 표면에는 항환원 물질이 포함된 캡슐을 도포하여 전기 화학적으로 보다 안정한 전해질을 구현할 수 있으며, 분리막을 사용시에도 양극의 계면, 음극의 계면에도 선택적으로 도포하여 전지 구동시 분해가 최소화되는 전해질을 구현할 수 있다.
또한, 본 발명의 리튬 이차전지는 캡슐의 피막 소재가 무기물 입자가 분산된 고분자이므로, 파괴된 캡슐이 세퍼레이터의 기계적 물성을 강화하고 전지의 오작동 시에 양극과 음극의 단락을 방지하여 전지의 안전성을 강화할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 리튬 이차전지의 단위 전극 조립체의 개략적인 단면도이다.
도 2는 본 발명의 일 실시예에 따른 캡슐을 관찰한 SEM 사진이다.
도 3은 본 발명의 일 실시예에 따른 열압착 공정 전의 음극 표면의 SEM 사진이다.
도 4는 본 발명의 일 실시예에 따른 열압착 공정 후의 음극 표면의 SEM 사진이다.
도 5는 실시예 1 및 비교예 1의 전지를 만충전한 후 고온 85℃, 4 시간 저장 후에 두께 변화를 나타낸 그래프이다.
도 6은 본 발명의 실시예 1 및 비교예에 따른 리튬 이차전지의 1C 방전 전압 프로파일을 나타낸 그래프이다.
도 7은 본 발명의 실시예 1 및 2에 따른 리튬 이차전지의 10C 고율 방전 평가 결과를 나타낸 그래프이다.
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
도 1에는 본 발명에 따른 단위 전극 조립체의 일 실시예가 개략적으로 도시되어 있다. 하지만, 이하 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1을 참조하면, 양극(20), 음극(30) 및 세퍼레이터(10)가 구비된 본 발명의 전극 조립체가 제공된다. 또한 상기 세퍼레이터(10)는 세퍼레이터(10)와 양극(20)이 접촉하는 부분 또는 세퍼레이터(10)와 음극(30)이 접촉하는 부분 또는 상기 두 부분 모두에 복수의 파괴된 캡슐(51)들이 분산된 층(50)을 더 구비할 수 있다. 도 1에는 세퍼레이터(10)에 양극(20)과 음극(30)이 접촉하는 부분 모두에 파괴된 캡슐(51)들이 분산된 층(50)을 구비한 경우를 도시하였다.
본 발명의 리튬 이차전지에 있어서 캡슐(51)들은 파괴되기 전에는 그 내부에 비수 전해액을 저장한 채로 전극과 접촉하는 세퍼레이터의 적어도 일면에 층을 이루고 있게 된다. 전지의 제조 과정 중에 전극 조립체에 열 및 압력이 가해지고, 그에 따라 비수 전해액을 저장하고 있는 캡슐(51)이 파괴되어, 저장되었던 비수 전해액(미도시)은 세퍼레이터 및 양극과 음극 중 1종 이상의 전극에 함침되며, 캡슐의 피막 부분만 양극과 음극 중 1종 이상의 전극과 접촉하는 세퍼레이터의 적어도 일면에 잔류하게 되어 층(50)을 형성한다.
본 발명에 따른 캡슐의 피막은 무기물 입자와 바인더 고분자로 형성되는데, 열 압착으로 파괴된 후에는 열 압착에 의해 캡슐 피막의 바인더 고분자와 세퍼레이터 간의 결착이 형성되어 세퍼레이터의 기계적 물성을 보강하며, 상기 무기물 입자는 파괴된 캡슐층(50)의 물리적 형태를 유지할 수 있는 일종의 스페이서(spacer) 역할을 함으로서 전기화학소자 과열시 다공성 기재가 열 수축되는 것을 억제하거나 열 폭주시 양 전극의 단락을 방지하게 된다.
또한, 무기물 입자들 사이에는 빈 공간(interstitial volume)이 존재하여 미세 기공을 형성한다. 즉, 파괴된 캡슐층(50)은 바인더 고분자가 무기물 입자들이 서로 결착된 상태를 유지할 수 있도록 이들을 서로 부착(즉, 바인더 고분자가 무기물 입자 사이를 연결 및 고정)시키고 있으며, 또한 파괴된 캡슐층(50)은 바인더 고분자에 의해 다공성 기재와 결착된 상태를 유지한다. 파괴된 캡슐층(50)의 무기물 입자들은 실질적으로 서로 접촉한 상태로 최밀 충전된 구조로 존재하며, 무기물 입자들이 접촉된 상태에서 생기는 틈새 공간(interstitial volume)이 다공성 코팅층의 기공이 된다.
또한, 파괴된 캡슐들은 연속적으로 하나의 층을 형성하는 것이 아니라 복수개의 캡슐들이 분산되어 하나의 층을 형성하므로 파괴된 캡슐(51)들 사이의 틈새 공간(interstitial volume)도 파괴된 캡슐층(50)의 기공이 될 수 있다.
본 발명의 리튬 이차전지에 있어서, 캡슐의 피막을 형성하는 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전기화학소자의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 무기물 입자로서 유전율이 높은 무기물 입자를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
전술한 이유들로 인해, 상기 무기물 입자는 유전율 상수가 5 이상, 바람직하게는 10 이상인 고유전율 무기물 입자를 포함하는 것이 바람직하다. 유전율 상수가 5 이상인 무기물 입자의 비제한적인 예로는 BaTiO3, Pb(Zr,Ti)O3(PZT), Pb1-xLaxZr1-yTiyO3(PLZT, 0<x<1, 0<y<1), Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, SiO2, Y2O3, Al2O3, SiC 및 TiO2 또는 이들의 혼합체 등이 있다.
또한, 무기물 입자로는 리튬 이온 전달 능력을 갖는 무기물 입자, 즉 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 사용할 수 있다. 리튬 이온 전달 능력을 갖는 무기물 입자의 비제한적인 예로는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), 14Li2O-9Al2O3-38TiO2-39P2O5 등과 같은 (LiAlTiP)xOy 계열 glass (0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), Li3.25Ge0.25P0.75S4 등과 같은 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), Li3N 등과 같은 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 글래스(glass)(LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4), LiI-Li2S-P2S5 등과 같은 P2S5 계열 글래스(LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 또는 이들의 혼합물 등이 있다.
또한, 본 발명에 따른 캡슐의 바인더 고분자는 유리 전이 온도(glass transition temperature, Tg)가 -200 내지 200 ℃인 고분자를 사용하는 것이 바람직한데, 이는 최종적으로 형성되는 코팅층의 유연성 및 탄성 등과 같은 기계적 물성을 향상시킬 수 있기 때문이다.
또한, 바인더 고분자는 이온 전도 능력을 반드시 가질 필요는 없으나, 이온 전도 능력을 갖는 고분자를 사용할 경우 전기화학소자의 성능을 더욱 향상시킬 수 있다. 따라서, 바인더 고분자는 가능한 유전율 상수가 높은 것이 바람직하다. 실제로 전해액에서 염의 해리도는 전해액 용매의 유전율 상수에 의존하기 때문에, 바인더 고분자의 유전율 상수가 높을수록 전해질에서의 염 해리도를 향상시킬 수 있다. 이러한 바인더 고분자의 유전율 상수는 1.0 내지 100 (측정 주파수 = 1 kHz) 범위가 사용 가능하며, 특히 10 이상인 것이 바람직하다.
이러한 바인더 고분자의 비제한적인 예로는 폴리에틸렌, 폴리스티렌, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리에틸렌글리콜 디아크릴레이트(polyethyleneglycol diacrylate), 폴리에틸렌 글리콜포스페이트 디아크릴레이트(polyethyleneglycolphosphate diacrylate) (폴리에틸렌글리콜 디아크릴레이트와 비스[2-아크릴로옥시에틸] 포스페이트의 공중합체), 폴리아크릴레이트(polyacrylate), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리이소부틸 메틸메타크릴레이트(polyisobutylmethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐아세테이트(polyvinylacetate), 폴리비닐알콜(polyvinyl alchol), 에틸렌 비닐 아세테이트 공중합체(polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드(polyethylene oxide), 폴리아릴레이트(polyarylate), 폴리테트라하이드로푸란(polytetrahydrofuran), 폴리메타아크릴산리튬(polymethacrylic acid lithium), 폴리아크릴산 리튬(polyacrylic acid lithium), 폴리말레익산 리튬(polymaleic acid lithium), 폴리비닐술폰산 리튬(polyvinyl sulfonic acid lithium), 폴리비닐인산 리튬(polyvinyl phosphonic acid lithium), 셀룰로오스 아세테이트(cellulose acetate), 셀룰로오스 아세테이트 부틸레이트(cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate), 시아노에틸플루란(cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스(cyanoethylcellulose), 시아노에틸수크로오스(cyanoethylsucrose), 풀루란(pullulan) 및 카르복실 메틸 셀룰로오스(carboxyl methyl cellulose), 및 이들의 블렌드 등을 들 수 있다.
상기 무기물 입자 대 바인더 고분자의 중량비는 1:1 내지 10:1, 또는 1.2:1 내지 9:1일 수 있다. 상기 무기물 입자 대 바인더 고분자의 중량비가 이러한 범위를 만족하는 경우, 비수 전해액을 저장하는 캡슐 내의 무기물 입자의 분산성이 유지되면서, 캡슐의 피막의 기계적 강도가 개선될 수 있다.
본 발명에 따라 캡슐에 저장되는 비수 전해액으로는 당 분야의 비수 전해액이 제한 없이 사용될 수 있다.
본 발명에서 사용되는 비수 전해액에 있어서, 전해질로서 포함될 수 있는 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명에서 사용되는 비수 전해액에 있어서, 전해액에 포함되는 유기 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 대표적으로 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸 카보네이트(diethyl carbonate, DEC), 디메틸 카보네이트(dimethyl carbonate, DMC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트, 디프로필 카보네이트, 디메틸설퍼옥사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌 카보네이트, 설포란, 감마-부티로락톤, 프로필렌 설파이트 및 테트라하이드로푸란으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있다. 특히, 상기 카보네이트계 유기용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다
비수 전해액을 저장하는 캡슐을 제조하는 방법은 당 분야에 알려진 다양한 방법을 제한없이 사용할 수 있다. 예를 들면, 용매 증발법(solvent evaporation), 상분리법(coacervation), 계면 축중합법(interfacial polycondensation), 인-시튜 중합법(in-situ polymerization), 마이크로 반응법(micro-reaction process) 압전 프로세스(piezoelectric process), 분무 건조법 등으로 제조될 수 있다.
구체적으로, 캡슐을 제조하는 일 방법으로는, 셀룰로오스계 화합물을 케톤류 또는 에스테르류 용매에 녹여 유상용액을 만든 후, 상기 유상용액에 전해액을 첨가, 분산시켜 혼합용액을 만들고, 이 혼합용액을 폴리비닐알코올과 같은 수용성 고분자용액과 혼합하고, 고속으로 회전시켜 유상용액을 퍼지게 한 다음, 에멀젼을 만들고, 에멀젼을 이용해 마이크로 캡슐을 제조하는 방식이 있을 수 있다.
다른 방법으로는, 셀룰로오스계 화합물, 폴리에틸렌, 폴리스티렌, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 등과 같이 전해액을 함유할 수 있는 고분자 용액에 전해액을 섞어 골고루 분포되도록 한 다음, 전해액이 분포된 고분자 용액을 분사법(spray)을 이용하여 분사시키고 반응용기 안에는 적당한 압력과 온도를 유지해서 마이크로비드(microbead) 형태의 캡슐을 만드는 방법이다.
이 외에도 친수성과 비친수성의 성질을 갖는 미셀(micelle)이나 콜로이드(colloid)를 이용하여 분산에 의해 기포(bubble) 형태를 만들 수 있는 물질을 이용해서 마이크로 캡슐을 제조할 수 있다. 혹은 의약 전달체계(drug delivery system)에서 사용하는 캡슐화 기술을 응용할 수도 있다.
상기 캡슐의 제조방법들은 예시에 불과하므로, 본 발명이 캡슐의 제조방법이 이에 한정되는 것은 아니다. 또한, 본 발명의 캡슐은 무기물 입자를 포함하는 바, 무기물 입자는 상기 제조방법에 있어서, 캡슐 피막용 고분자 용액에 첨가 혼합하여 캡슐로 제조된다.
제조되는 캡슐의 크기는 일반적으로 수 ㎛ 내지 수십 ㎛ 정도로서 마이크로 캡슐의 크기를 가질 수 있으나, 저장되는 비수 전해액 양이나 캡슐 피막의 재료의 종류에 따라 다양한 크기를 가질 수 있다. 또한, 원하는 구체적인 용도와 제조 공정에 따라 크기와 형태가 달라질 수 있다.
본 발명에 따른 상기 캡슐을 이용한 리튬 이차전지의 제조방법의 일 실시예를 이하에서 설명한다. 그러나, 하기 제조방법은 예시에 불과하므로, 이에 본 발명의 범위가 제한되는 것은 아니다.
본 발명에 따른 비수 전해액을 함유한 캡슐이 준비되면 이를 적당한 분산매에 분산시킨 후, 세퍼레이터의 적어도 일면 또는 전극의 세퍼레이터와 접촉하는 면에 도포한다. 이 경우 세퍼레이터와 전극 양쪽에 모두 도포할 수도 있다.
본 발명에서 사용되는 세퍼레이터로는 당 분야에서 통상적으로 세퍼레이터로 사용되는 고분자 다공성 기재가 제한없이 사용될 수 있다. 예를 들면, 폴리올레핀계 다공성 기재; 또는 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이트, 폴리에틸렌나프탈렌으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물로 형성된 다공성 기재인 것이 바람직하다. 상기 폴리올레핀계 다공성 기재는 통상적으로 사용되는 폴리올레핀계 다공성 기재라면 모두 사용가능하다. 보다 구체적으로는 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독으로 또는 이들을 혼합한 고분자로 형성한 막(membrane)이나 부직포를 들 수 있다.
또한, 본 발명에 따른 양극 및 음극은 리튬 이차전지 제조에 통상적으로 사용되던 것들이 모두 사용될 수 있다.
본 발명의 리튬 이차전지에 있어서, 양극 활물질로는 리튬함유 전이금속 산화물이 바람직하게 사용될 수 있으며, 예를 들면 LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1-yCoyO2(0.5<x<1.3, 0<y<1), LixCo1-yMnyO2(0.5<x<1.3, 0≤y<1), LixNi1-yMnyO2(0.5<x<1.3, O≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2-zNizO4(0.5<x<1.3, 0<z<2), LixMn2-zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으며, 상기 리튬함유 전이금속 산화물은 알루미늄(Al) 등의 금속이나 금속산화물로 코팅될 수도 있다. 또한, 상기 리튬함유 전이금속 산화물(oxide) 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등도 사용될 수 있다.
바람직하게는, LixCoO2(0.5<x<1.3)와 Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1)의 혼합물이나 알루미늄이 코팅된 LixCoO2(0.5<x<1.3)이 양극활물질로 사용될 수 있다. 특히, Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1)은 고전압 조건에서 높은 출력 특성을 발휘할 수 있는 점에서 바람직하다.
음극 활물질로는 통상적으로 리튬이온이 흡장 및 방출될 수 있는 탄소재, 리튬금속, 규소 또는 주석 등을 사용할 수 있으며, 리튬에 대한 전위가 2V 미만인 TiO2, SnO2와 같은 금속 산화물도 가능하다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연(Kish graphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
양극 및/또는 음극은 결착제를 포함할 수 있으며, 결착제로는 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 등, 다양한 종류의 바인더 고분자가 사용될 수 있다.
캡슐의 도포가 완료되면, 양극과 음극 사이에 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 전지 용기에 수납하는 단계를 거친다.
이때, 상기 캡슐을 파괴하여 저장된 비수 전해액을 전극 조립체에 함침시키는 단계를 더 포함하는데, 이러한 캡슐의 파괴 및 전극 조립체의 함침 단계는 캡슐을 파괴하는 열압착 공정이 전극 조립체를 전기 용기에 수납하는 단계 이전에 이루어지는지, 전지 용기에 수납하는 단계 이후에 이루어지는지, 또는 전기 용기에 수납하는 단계 이전 및 이후 모두에 이루어지는지 여부에 따라 3가지 방법으로 나뉠 수 있다.
첫번째의 경우는, 제조된 전극 조립체를 전기 용기에 수납하는 단계 이전에 전극 조립체를 열압착하여 상기 캡슐을 파괴함으로써 저장된 비수 전해액을 전극 조립체에 함침시키는 단계이다.
비수 전해액을 함유한 캡슐의 파괴는 통상적인 전극 조립체의 열압착 조건에서도 수행될 수 있으며, 구체적인 캡슐의 피막 형성 재료의 종류에 따라 다양한 범위로 수행될 수 있다.
캡슐이 파괴되면 저장되었던 비수 전해액이 유출되어 세퍼레이터와 전극을 함침시키게 되므로, 별도의 비수 전해액 주입공정은 필요 없게 된다.
이와 같이 열압착 공정이 끝나면 상기 전극 조립체를 전지 용기에 수납하여 전지를 제조한다. 본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
두번째의 경우는, 상기 전극 조립체를 전기 용기에 수납한 후에 상기 전기 용기를 열압착하여 상기 캡슐을 파괴함으로써 저장된 비수 전해액을 전극 조립체에 함침시키는 단계이다.
이때 전기 용기를 열압착하는 공정은 80 ℃, 10 kgf/cm2의 조건으로 실시될 수 있으나, 사용되는 물질의 유리전이온도와 끓는점에 따라서 적절하게 변경될 수 있다. 이때도 전극 조립체를 압착하는 경우와 마찬가지로 캡슐이 파괴되면 저장되었던 비수 전해액이 유출되어 세퍼레이터와 전극을 함침시키게 되므로, 별도의 비수 전해액 주입공정은 필요 없게 된다.
또한, 세번째의 경우는, 캡슐을 파괴하는 열압착 공정이 전극 조립체를 전기 용기에 수납하는 단계 이전 및 이후 모두에 이루어지는 단계이다. 이 경우에는 전극 조립체를 전기 용기에 수납하는 단계 이전에 전극 조립체를 열압착하여 전극 조립체 내에 구비된 캡슐의 일부를 파괴하고, 이후 열압착된 전극 조립체를 전지 용기에 수납한 이후에 상기 전기 용기를 다시 열압착하여 나머지 파괴되지 않은 캡슐을 모두 파괴하여 캡슐에 저장된 비수 전해액을 전극 조립체에 함침시키게 된다.
전극 조립체를 직접 열압착하는 경우, 이론상 전극 내의 전해액의 우수한 함침도를 보일 수 있으나, 압착 후 기화되는 전해액 용매 성분을 정량화하기 어렵기 때문에, 전지 용기에 전극 조립체를 수납하고, 밀봉한 이후 열압착하는 것이 공정의 균일성 유지에 유리하다. 또한, 여러 전극 조립체를 스태킹(stacking)할 경우 바이셀(bicell) 형태로 전극 조립체를 미리 열압착한 상태에서 전극 조립체 전체를 스태킹하고, 전지 용기에 전체 전극 조립체를 넣고 추가로 열압착하는 방법이 보다 효율적이다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1
(전해액을 저장하고 있는 캡슐 및 이를 포함하는 코팅액의 제조)
상분리법과 UV 경화를 통한 코팅액 제조 방법을 이용하였다. 우선 전해액으로 구성된 제1 상(phase 1)에는 에틸렌 카보네이트와 에틸메틸 카보네이트(부피비 5:5)로 구성되고, LiPF6가 1 mol/L 농도로 녹아있는 용액에 바인더 고분자로서 PEGDA_700(polyethylene glycol diacrylate, Mn: 700)을 중량비 1:1로 용해시켰다. 이후, 비수 전해액을 저장하는 캡슐의 피막의 기계적인 강도를 높이기 위해, 무기물 입자인 Al2O3 를 바인더 고분자 함량과의 중량비가 1.2:1(Al2O3 : 바인더 고분자)가 되도록 상기 제1 상에 첨가한 후 교반하여 분산시켰다.
헵탄이 주용매로 구성된 제2 상(phase 2)은 헵탄 100 중량부에 비이온성 계면활성제(Sorbitance monooleate, Span 80)를 5.9 중량부 투입하고 광개시제 MBF(benzene acetic acid)를 0.8 중량부 투입하여 제조 하였다. 제1 상과 제2 상을 중량비 40:100으로 혼합한 후, 1,000 rpm 이상으로 30 분간 교반한 후에 UV를 UVA 영역 365 nm로 조사하였다. 조사 후에 헵탄을 증발 시켜서 캡슐을 제조하였다, 제조된 캡슐을 관찰한 SEM 분석 이미지를 도 2에 나타내었다.
(전지의 제조)
음극은 93 중량%의 탄소 활물질(오사카 가스사의 MCMB10-28)과 7 중량%의 폴리비닐리덴 디플루오라이드 (PVDF, Elf Atochem 사의 Kynar 761)를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 혼합기(Ika 사의 Mixer)에서 2 시간 동안 혼합한 후, 구리 호일 집전체에 코팅하고, 130℃에서 건조하여 제조하였다. 양극은 91 중량%의 LiCoO2, 3 중량%의 PVDF (Kynar 761) 및 6 중량%의 도전성 탄소(Lonza 사의 KS-6)를 용매인 N-메틸-2-피롤리돈(NMP)에 혼합하여 혼합기(Ika 사의 Mixer)에서 2 시간 동안 혼합한 후, 알루미늄 호일 집전체에 코팅하고, 130℃에서 건조하여 제조하였다. 세퍼레이터의 베어 필름으로 폴리프로필렌 계열의 분리막(Celgard TM 2400)을 사용하였다.
앞서 제조된 전해액을 저장하고 있는 캡슐을, 음극 표면에 코터기(blade)를 이용하여 일정량 도포 하였다. 도포한 후에 헵탄을 제거를 위한 상온 진공 건조를 2 시간 실시하였다. 건조된 음극과 양극, 그리고 세퍼레이터를 알루미늄 파우치(pouch)에 넣어 모노셀로 구성하였다. 온도와 압력이 조절되는 압착기에서 60 ℃ 온도로 상판과 하판의 간격이 30 ㎛가 유지될 정도로만 10 분 동안 1차 프레스를 실시하였다. 이는 상온에서 우선 캡슐의 파괴를 유도하여 캡슐에 저장된 비수 전해액이 전극 및 세퍼레이터에 잘 젖게 하려는 목적이다. 20 분 동안 80 ℃로 승온하면서 2차 프레스를 실시하고 이때, 최종 온도 및 압력은 80 ℃이고, 압력은 10 kgf/cm2 로 조절하였다. 이렇게 제조된 모노셀을 이용하여 0.1C로 만충전 활성화여 셀 평가를 진행하였다.
실시예 2
바인더 고분자로서 PEGDA_700과 Bis[2-(acryloyloxy)ethyl] phosphate를 중량비 1:1로 혼용하여 UV 중합하여 제조된 폴리에틸렌글리콜포스페이트 디아크릴레이트를 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 비수 전해액을 저장한 캡슐 및 이를 이용한 전지를 제조하였다.
비교예 1
무기물 입자인 Al2O3를 사용하지 않은 점을 제외하고는 실시예 1과 동일한 방법으로 비수 전해액을 저정한 캡슐 및 이를 이용한 전지를 제조하였다.
(필름 형태의 전해질 관찰)
상기 실시예 1에 따른 전지에서, 양극과 음극 사이에서 열압착으로 구형입자 구조의 전해질이 필름형태의 전해질로 잘 변형되는지를 SEM 이미지 분석으로 확인하였다. 모노셀 형태의 전지 표면에 쉘 구조의 구형입자 전해질 용액을 코터기로 균일하게 도포하고, 80 ℃, 10 kgf/cm2의 조건으로 열압착 공정 전/후의 음극 표면의 상태를 도 3 및 4에서 각각 비교하였다. 이때, 도 3은 열압착 공정 전의 음극 표면의 SEM 사진을 도시하는 것이고, 도 4는 열압착 공정 후의 음극 표면의 SEM 사진을 도시하는 것이다. 상기 도 3 및 4를 참조하면, 열압착 공정 후의 음극 표면에 균일한 필름 형태의 전해질이 형성된 것을 확인할 수 있다.
(무기물 입자의 효과 평가)
실시예 1 및 비교예 1의 전지를 만충전한 후 고온 85℃, 4 시간 저장 후에 두께를 관찰하였고, 이를 도 5에 나타내었다. 도 5를 참조하면, 캡슐에 무기물 입자인 Al2O3가 포함된 실시예 1의 경우에는 양극과 음극 사이에 형성된 전해질층의 기계적인 강도가 증가되어 전지를 고온 저장시 전지 두께 팽창 억제 효과가 있음을 알 수 있다.
또한, 비수 전해액을 담지한 캡슐을 열 압착으로 파괴한 후의 1C 방전 전압 프로파일(profile)을 관찰하여 도 6에 나타내었고, 이로부터 무기 입자의 유무에 상관없이 전지 구동에는 문제 없음을 알 수 있었다.
(바인더 고분자가 전지 성능에 미치는 영향 평가)
다양한 바인더 고분자가 전지 성능에 미치는 영향을 관찰하기 위해서, 전술한 실시예 2에서와 같이, 음극 표면에서 저항을 감소시키는 포스페이트(phosphate, PO4) 구조의 관능기를 갖는 비스[2-아크릴로옥시에틸] 포스페이트와 폴리에틸렌글리콜 디 아크릴레이트의 공중합체인 폴리에틸렌글리콜포스페이트 디아크릴레이트를 바인더 고분자로 사용하여 비수 전해액이 저장된 캡슐을 제조하고, 이를 음극 표면에 균일하게 도포하고, 열압착 공정을 통해서 파괴된 캡슐의 분산된 층을 구비한 전지를 제조하였다.
이와 같이 제조된 실시예 2와, 폴리에틸렌글리콜 디아크릴레이트를 바인더 고분자로 사용한 실시예 1의 전지를 10C 고율 방전 평가를 하였고, 그 결과를 도 7에 나타내었다. 포스페이트(phosphate, PO4) 구조의 관능기를 갖는 바인더 고분자를 채용한 실시예 2의 경우에, 실시예 1 보다 고율 방전 특성이 더 개선된 것을 알 수 있었다. 이는 캡슐 제조시에 바인더 고분자에 음극(환원) 또는 양극(산화)에 맞는 적절한 관능기를 자유롭게 도입하는 것이 가능하며, 이를 통해 전지 성능을 향상시킬 수 있음을 확인할 수 있다.

Claims (10)

  1. 양극, 음극, 상기 양극과 음극 사이에 개재된 세퍼레이터를 구비한 전극 조립체 및 상기 전극 조립체에 함침된 비수 전해액을 구비하며,
    상기 세퍼레이터는 상기 양극 및 음극과 접촉하는 적어도 일면에 복수의 파괴된 캡슐들이 분산된 층을 더 구비하고,
    상기 캡슐의 피막은 무기물 입자가 분산된 바인더 고분자로 형성된 리튬 이차전지.
  2. 제1항에 있어서,
    상기 무기물 입자는 유전율 상수가 5 이상인 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 및 이들의 혼합물로 이루어진 군에서 선택된 무기물 입자인 것을 특징으로 하는 리튬 이차전지.
  3. 제2항에 있어서,
    상기 유전율 상수가 5 이상인 무기물 입자는 BaTiO3, Pb(Zr,Ti)O3(PZT), Pb1-xLaxZr1-yTiyO3(PLZT, 0<x<1, 0<y<1), Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, SiO2, Y2O3, Al2O3, SiC 및 TiO2로 이루어진 군으로부터 선택된 어느 하나의 무기물 입자 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지.
  4. 제2항에 있어서,
    상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), (LiAlTiP)xOy 계열 글래스(glass)(0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), SiS2 (LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4) 계열 글래스 및 P2S5 (LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 계열 글래스로 이루어진 군으로부터 선택된 어느 하나의 무기물 입자 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지.
  5. 제1항에 있어서,
    상기 바인더 고분자는 1.0 내지 100 (측정 주파수 = 1 kHz)의 유전율 상수를 갖는 것을 특징으로 하는 리튬 이차전지.
  6. 제1항에 있어서,
    상기 바인더 고분자는 폴리에틸렌, 폴리스티렌, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌(polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌(polyvinylidene fluoride-co-trichloroethylene), 폴리에틸렌글리콜 디아크릴레이트(polyethyleneglycol diacrylate), 폴리에틸렌 글리콜포스페이트 디아크릴레이트(polyethyleneglycolphosphate diacrylate), 폴리아크릴레이트(polyacrylate), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리이소부틸 메틸메타크릴레이트(polyisobutylmethylmethacrylate), 폴리부틸아크릴레이트(polybutylacrylate), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐아세테이트(polyvinylacetate), 폴리비닐알콜(polyvinyl alchol), 에틸렌 비닐 아세테이트 공중합체(polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드(polyethylene oxide), 폴리아릴레이트(polyarylate), 폴리테트라하이드로푸란(polytetrahydrofuran), 폴리메타아크릴산리튬(polymethacrylic acid lithium), 폴리아크릴산 리튬(polyacrylic acid lithium), 폴리말레익산 리튬(polymaleic acid lithium), 폴리비닐술폰산 리튬(polyvinyl sulfonic acid lithium), 폴리비닐인산 리튬(polyvinyl phosphonic acid lithium), 셀룰로오스 아세테이트(cellulose acetate), 셀룰로오스 아세테이트 부틸레이트(cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate), 시아노에틸플루란(cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스(cyanoethylcellulose), 시아노에틸수크로오스(cyanoethylsucrose), 풀루란(pullulan) 및 카르복실 메틸 셀룰로오스(carboxyl methyl cellulose)로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 블렌드인 것을 특징으로 하는 리튬 이차전지.
  7. 제1항에 있어서,
    상기 무기물 입자 대 바인더 고분자의 중량비는 1:1 내지 10:1인 것을 특징으로 하는 리튬 이차전지.
  8. 제1항에 있어서,
    상기 캡슐은 파괴되기 전에는 비수 전해액을 저장하고 있는 것을 특징으로 하는 리튬 이차전지.
  9. 세퍼레이터의 적어도 일면 또는 양극 및 음극 중 1종 이상의 세퍼레이터와 접촉하는 면에 무기물 입자가 분산된 바인더 고분자로 형성된 피막을 구비하고 비수전해액을 저장한 복수의 캡슐을 분산매와 함께 도포하는 단계;
    상기 양극과 음극 사이에 상기 세퍼레이터를 개재하여 전극 조립체를 제조하는 단계; 및
    상기 전극 조립체를 전지 용기에 수납하는 단계를 포함하고,
    상기 전극 조립체를 전지 용기에 수납하는 단계 이전, 이후 또는 이전과 이후 모두에 전극 조립체를 열압착하여, 상기 캡슐을 파괴함으로써 저장된 비수 전해액을 전극 조립체에 함침시키는 단계를 더 포함하는 리튬 이차전지의 제조방법.
  10. 제9항에 있어서,
    상기 캡슐이 세퍼레이터, 양극 및 음극 모두에 도포되는 것을 특징으로 하는 리튬 이차전지의 제조방법.
PCT/KR2012/011622 2011-12-27 2012-12-27 리튬 이차전지 및 그 제조방법 WO2013100653A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014550019A JP5978314B2 (ja) 2011-12-27 2012-12-27 リチウム二次電池及びその製造方法
EP12863830.1A EP2800196B1 (en) 2011-12-27 2012-12-27 Lithium secondary battery and preparation thereof
CN201280064649.9A CN104011925A (zh) 2011-12-27 2012-12-27 锂二次电池及其制备方法
PL12863830T PL2800196T3 (pl) 2011-12-27 2012-12-27 Litowa bateria akumulatorowa i sposób jej wytwarzania
US13/958,956 US8999554B2 (en) 2011-12-27 2013-08-05 Lithium secondary battery and preparation thereof
US14/657,361 US9711821B2 (en) 2011-12-27 2015-03-13 Lithium secondary battery and preparation thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0143839 2011-12-27
KR20110143839 2011-12-27
KR10-2012-0154703 2012-12-27
KR1020120154703A KR101502501B1 (ko) 2011-12-27 2012-12-27 리튬 이차전지 및 그 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/958,956 Continuation US8999554B2 (en) 2011-12-27 2013-08-05 Lithium secondary battery and preparation thereof

Publications (1)

Publication Number Publication Date
WO2013100653A1 true WO2013100653A1 (ko) 2013-07-04

Family

ID=48989499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011622 WO2013100653A1 (ko) 2011-12-27 2012-12-27 리튬 이차전지 및 그 제조방법

Country Status (7)

Country Link
US (2) US8999554B2 (ko)
EP (1) EP2800196B1 (ko)
JP (1) JP5978314B2 (ko)
KR (2) KR101502501B1 (ko)
CN (1) CN104011925A (ko)
PL (1) PL2800196T3 (ko)
WO (1) WO2013100653A1 (ko)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054320A1 (en) 2011-10-11 2013-04-18 Tel Hashomer Medical Research Infrastructure And Services Ltd. Antibodies to carcinoembryonic antigen-related cell adhesion molecule (ceacam)
EP2833900B1 (en) 2012-04-01 2018-09-19 Technion Research & Development Foundation Limited Extracellular matrix metalloproteinase inducer (emmprin) peptides and binding antibodies
DE102014203750A1 (de) * 2014-02-28 2015-09-03 Wacker Chemie Ag Polymerzusammensetzung als Bindersystem für Lithiumionenbatterien
US20170174764A1 (en) 2014-03-27 2017-06-22 Yeda Research And Development Co. Ltd. T-cell receptor cdr3 peptides and antibodies
CR20160534A (es) 2014-04-27 2017-04-25 Ccam Biotherapeutics Ltd Anticuerpos humanizados contra la molécula de adhesión celular relacionada al antígeno carcinoembriónico 1 (ceacam1)
US20180111989A1 (en) 2015-04-01 2018-04-26 Hadasit Medical Research Services And Development Ltd. Inhibitors of neuroligin 4 - neurexin 1-beta protein-protein interaction for treatment of liver disorders
US10008738B2 (en) 2015-05-27 2018-06-26 Ut-Battelle, Llc Nanoconfined electrolytes and their use in batteries
JP6861418B2 (ja) 2015-09-02 2021-04-28 イッサム リサーチ デベロップメント カンパニー オブ ザ ヘブリュー ユニバーシティー オブ エルサレム リミテッド ヒトt細胞免疫グロブリン及びitimドメイン(tigit)に特異的な抗体
RU2756275C2 (ru) 2016-03-01 2021-09-29 Юссум Рисёрч Девелопмент Компани Оф Зэ Хибру Юниверсити Оф Иерусалим Лтд. Антитела, специфические к рецептору полиовируса (pvr) человека
KR102101009B1 (ko) * 2016-03-03 2020-04-14 주식회사 엘지화학 분리막과 음극의 계면 접착력이 향상된 전극 조립체
KR20170113333A (ko) * 2016-03-31 2017-10-12 주식회사 엘지화학 이차전지의 제조방법
KR101896758B1 (ko) * 2016-05-04 2018-09-07 현대자동차주식회사 전고체전지 및 그 제조방법
JP2018152236A (ja) * 2017-03-13 2018-09-27 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG 袋詰正極板、積層電極体及び蓄電素子
KR102132878B1 (ko) 2017-10-20 2020-07-10 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
AU2020207664A1 (en) 2019-01-13 2021-07-22 University Of Rijeka Faculty Of Medicine Antibodies specific to human Nectin-2
DE102019201686A1 (de) * 2019-02-08 2020-08-13 Volkswagen Aktiengesellschaft Verfahren zur Herstellung einer Batteriezelle, Batterie und Kraftfahrzeug
DE102019121765A1 (de) * 2019-08-13 2021-02-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Lithium-Ionen-Batteriezelle sowie Verfahren zum Betreiben einer solchen Batteriezelle
US20230183342A1 (en) 2020-04-06 2023-06-15 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Antibodies to nkp46 and constructs thereof for treatment of cancers and infections
WO2022044010A1 (en) 2020-08-26 2022-03-03 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Anti-t-cell immunoglobulin and itim domain (tigit) antibodies for the treatment of fungal infections
CA3206413A1 (en) 2021-02-11 2022-08-18 Pinchas TSUKERMAN Antibodies against cd112r and uses thereof
CN113346131B (zh) * 2021-05-12 2022-08-30 北京理工大学 一种复合聚合物凝胶固态电解质、其制备方法及锂金属电池应用
CN114094182A (zh) * 2021-11-03 2022-02-25 珠海冠宇电池股份有限公司 一种二次电池
WO2023105528A1 (en) 2021-12-12 2023-06-15 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Antibodies specific to ceacam1
CN114388983A (zh) * 2022-01-07 2022-04-22 湖南立方新能源科技有限责任公司 一种复合隔膜及其制备方法、二次电池以及制备方法
WO2023148707A1 (en) 2022-02-07 2023-08-10 Yeda Research And Development Co. Ltd. Humanized anti quiescin suefhydrye oxidase 1 (qsox1) antibodies and uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185219A (ja) * 1999-12-22 2001-07-06 Toyota Motor Corp リチウムイオン2次電池用電解液封入セパレータ
KR20020025302A (ko) * 2000-09-28 2002-04-04 오길록 캡슐화된 전해액을 포함하는 건고분자 전해질막 및 그형성 방법과 그를 이용한 리튬고분자 전지 제조 방법
JP2003272707A (ja) * 2002-03-13 2003-09-26 Fuji Photo Film Co Ltd マイクロカプセル、固体電解質、及び化学電池
KR20100120952A (ko) * 2009-05-07 2010-11-17 주식회사 엘지화학 다공성 코팅층이 코팅된 세퍼레이터의 제조방법
KR20110016416A (ko) * 2009-08-10 2011-02-17 주식회사 엘지화학 리튬 이차전지

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2311712B2 (de) * 1973-03-09 1978-08-10 Bayer Ag, 5090 Leverkusen Verfahren zur Hersteilung von Mikrokapseln
DE10151830B4 (de) * 2001-10-20 2014-11-20 Dilo Trading Ag Verfahren zur Herstellung von Lithium-Sekundär-Batterien, vorzugsweise von Lithium-Polymer-Batterien, und Lithium-Polymer-Batterie
US20080044733A1 (en) 2004-05-14 2008-02-21 Tsumoru Ohata Lithium Ion Secondary Battery and Method for Producing the Same
US20090202891A1 (en) * 2004-11-05 2009-08-13 Mel Morganstein Inertially activated battery
CN101213703B (zh) * 2005-07-13 2010-06-09 株式会社Lg化学 含有用于控释添加剂的胶囊的锂二次电池
JP2010027553A (ja) * 2008-07-24 2010-02-04 Hitachi Chem Co Ltd 電気化学素子用セパレータ、およびそれを用いたリチウムイオン電池
JP2010086728A (ja) * 2008-09-30 2010-04-15 Toyota Motor Corp リチウムイオン電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185219A (ja) * 1999-12-22 2001-07-06 Toyota Motor Corp リチウムイオン2次電池用電解液封入セパレータ
KR20020025302A (ko) * 2000-09-28 2002-04-04 오길록 캡슐화된 전해액을 포함하는 건고분자 전해질막 및 그형성 방법과 그를 이용한 리튬고분자 전지 제조 방법
JP2003272707A (ja) * 2002-03-13 2003-09-26 Fuji Photo Film Co Ltd マイクロカプセル、固体電解質、及び化学電池
KR20100120952A (ko) * 2009-05-07 2010-11-17 주식회사 엘지화학 다공성 코팅층이 코팅된 세퍼레이터의 제조방법
KR20110016416A (ko) * 2009-08-10 2011-02-17 주식회사 엘지화학 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2800196A4 *

Also Published As

Publication number Publication date
KR20130075709A (ko) 2013-07-05
US20130316221A1 (en) 2013-11-28
CN104011925A (zh) 2014-08-27
US20150188181A1 (en) 2015-07-02
US8999554B2 (en) 2015-04-07
EP2800196B1 (en) 2018-09-26
JP5978314B2 (ja) 2016-08-24
KR20150013102A (ko) 2015-02-04
JP2015506550A (ja) 2015-03-02
EP2800196A1 (en) 2014-11-05
EP2800196A4 (en) 2015-07-29
US9711821B2 (en) 2017-07-18
KR101502501B1 (ko) 2015-03-13
KR101573000B1 (ko) 2015-12-11
PL2800196T3 (pl) 2019-05-31

Similar Documents

Publication Publication Date Title
WO2013100653A1 (ko) 리튬 이차전지 및 그 제조방법
WO2010076989A2 (ko) 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
WO2014182095A1 (ko) 절연층을 포함한 전극 구조체, 그 제조방법 및 상기 전극을 포함하는 전기화학소자
WO2011019187A2 (ko) 리튬 이차전지
WO2011105866A2 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
WO2014073937A1 (ko) 세퍼레이터의 제조방법, 그에 의해 제조된 세퍼레이터 및 그를 포함하는 전기화학소자
WO2016093589A1 (ko) 안전성이 향상된 전극조립체, 그의 제조방법 및 상기 전극조립체를 포함하는 전기화학소자
WO2013070031A1 (ko) 세퍼레이터 및 이를 구비한 전기화학소자
WO2009096671A2 (en) Separator for progressing united force to electrode and electrochemical containing the same
WO2013157902A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2011062460A2 (ko) 다공성 코팅층을 구비한 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자
WO2010117195A2 (ko) 다공성 코팅층을 포함하는 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
WO2009110726A2 (en) Separator having porous coating layer and electrochemical device containing the same
WO2012046966A2 (ko) 사이클 특성이 개선된 전기화학소자
WO2014046521A1 (ko) 리튬 이차전지용 세퍼레이터의 제조방법, 그 방법에 의해 제조된 세퍼레이터, 및 이를 포함하는 리튬 이차전지
WO2013058421A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 구비한 전기화학소자
KR100739337B1 (ko) 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자
WO2011105865A2 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법
WO2012150838A2 (ko) 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
WO2012074300A2 (ko) 리튬 이차전지
KR101465173B1 (ko) 다공성 코팅층을 포함하는 세퍼레이터 및 그를 포함하는 전기화학소자
WO2015072753A1 (ko) 젤리-롤형 전극 조립체 및 이를 구비한 이차전지
KR20130127201A (ko) 다공성 코팅층을 포함하는 세퍼레이터 및 그를 포함하는 전기화학소자
WO2015065116A1 (ko) 유기-무기 복합 다공성 막, 이를 포함하는 세퍼레이터 및 전극 구조체
WO2014200214A1 (ko) 내진동 특성이 향상된 전기화학소자 및 전지 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863830

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012863830

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014550019

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE