WO2013100357A1 - 아세틸화 셀룰로오스 에테르의 제조방법, 및 그 방법에 의해 제조된 아세틸화 셀룰로오스 에테르 - Google Patents

아세틸화 셀룰로오스 에테르의 제조방법, 및 그 방법에 의해 제조된 아세틸화 셀룰로오스 에테르 Download PDF

Info

Publication number
WO2013100357A1
WO2013100357A1 PCT/KR2012/009735 KR2012009735W WO2013100357A1 WO 2013100357 A1 WO2013100357 A1 WO 2013100357A1 KR 2012009735 W KR2012009735 W KR 2012009735W WO 2013100357 A1 WO2013100357 A1 WO 2013100357A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose ether
acetylated cellulose
acetylated
mixture
prepared
Prior art date
Application number
PCT/KR2012/009735
Other languages
English (en)
French (fr)
Inventor
송민주
손병희
Original Assignee
삼성정밀화학(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성정밀화학(주) filed Critical 삼성정밀화학(주)
Priority to US14/363,991 priority Critical patent/US9469694B2/en
Priority to JP2014549960A priority patent/JP2015503650A/ja
Publication of WO2013100357A1 publication Critical patent/WO2013100357A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B13/00Preparation of cellulose ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/08Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals with hydroxylated hydrocarbon radicals; Esters, ethers, or acetals thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/20Post-etherification treatments of chemical or physical type, e.g. mixed etherification in two steps, including purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/20Post-etherification treatments of chemical or physical type, e.g. mixed etherification in two steps, including purification
    • C08B11/22Isolation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/06Cellulose acetate, e.g. mono-acetate, di-acetate or tri-acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/32Cellulose ether-esters

Definitions

  • a method for producing an acetylated cellulose ether, and an acetylated cellulose ether produced by the method are disclosed. More specifically, a method for preparing acetylated cellulose ether with improved turbidity, and an acetylated cellulose ether prepared by the method are disclosed.
  • Cellulose has three hydroxyl groups (-OH) per anhydroglucose unit, and these hydroxyl groups form regular hydrogen bonds in the molecule to form a strong crystal structure. Therefore, cellulose has a stable structure which does not dissolve in water or an organic solvent.
  • the substituted cellulose When some of the hydrogen bonds in such cellulose are substituted with an alkyl group, the substituted cellulose is weakened in crystalline structure compared with the unsubstituted cellulose and is converted into cellulose ether which is a water-soluble polymer.
  • Korean Patent Publication No. 2011-0089662 An acetylated cellulose ether prepared by introducing an acetyl group is disclosed.
  • the acetylated cellulose ether thus prepared has a problem that the turbidity is low and commercial use is limited.
  • One embodiment of the present invention provides a method for preparing acetylated cellulose ether.
  • Another embodiment of the present invention is prepared by the method for preparing acetylated cellulose ether, to provide an acetylated cellulose ether with improved turbidity.
  • It provides a method for producing an acetylated cellulose ether having a turbidity of less than 40 FTU, comprising the step of adding the mixture to water to precipitate the acetylated cellulose ether.
  • the organic solvent may include at least one compound selected from the group consisting of methanol, acetic acid, acetone, dimethylformamide, dimethyl sulfoxide and 1-methoxy-2-propanol.
  • Removing insoluble components from the mixture may be carried out by at least one method of filtration and centrifugation.
  • the method for preparing acetylated cellulose ether may further include washing and drying the precipitated acetylated cellulose ether.
  • the acetylated cellulose ether may have 1 to 2 alkyl group substitution degree (DS), 0 to 1 hydroxyalkyl group substitution degree (MS) and 1 to 2 acetyl group substitution degree (DS).
  • the acetylated cellulose ether may be formed by acetylation of at least one cellulose ether selected from the group consisting of methyl cellulose, hydroxypropyl methyl cellulose and hydroxyethyl methyl cellulose.
  • a high-strength transparent film, a metal paste binder which should be low in impurities, a water treatment membrane, and a separator prepared by using an organic solvent may be used.
  • Acetylated cellulose ethers can be obtained.
  • the acetylated cellulose ether prepared by the manufacturing method has a melting point, it can be used as a case of home appliances and home appliances that require transparency through injection molding.
  • hydroxy ethers of cellulose are etherified to produce cellulose ethers. That is, by etherification of cellulose, a cellulose ether is formed by blocking a part of hydroxyl groups in a cellulose structure, or substituting hydrogen in the said hydroxyl group with another substituent (for example, R ⁇ 1> -R ⁇ 5> etc. mentioned later). At this time, the main chain of cellulose is maintained without being cut, but a high molecular weight water-soluble cellulose ether is obtained because the hydrogen bond in the cellulose is broken and the cellulose is converted into an amorphous structure.
  • the water-soluble cellulose ether prepared in the first step may include at least one selected from the group consisting of methyl cellulose, hydroxypropyl methyl cellulose and hydroxyethyl methyl cellulose.
  • the water-soluble cellulose ether prepared in the first step may have an alkyl group substitution degree (DS) of 1 to 2 and a hydroxyalkyl group substitution degree (MS) of 0 to 1.
  • the alkyl group may have 1 to 16 carbon atoms.
  • a water - insoluble acetylated cellulose ether is prepared by substituting a hydrogen atom in the hydroxyl group included in the prepared water-soluble cellulose ether with an acetyl group (CH 3 CO ⁇ ) (this substitution reaction is called acetylation).
  • anhydroglucose which is a basic repeating unit of cellulose, is sequentially etherified and acetylated to convert a basic repeating unit of an acetylated cellulose ether.
  • Formula 1 shows a process in which cellulose is etherified to be converted into hydroxyalkylalkyl cellulose, and then the hydroxyalkylalkyl cellulose is acetylated to be converted to acetylated cellulose ether. After conversion to alkyl cellulose, the alkyl cellulose is acetylated to show the process of conversion to acetylated cellulose ether.
  • R 1 and R 2 may be, independently of each other, H, CH 3 , CH 2 CH 2 OH or CH 2 CH (CH 3 ) OH, and R 3 may be H or CH 3 .
  • R 4 and R 5 are each H or CH 3 , and at least one of R 4 and R 5 is CH 3 .
  • the degree of substitution means an average number of hydroxyl groups substituted with an alkyl group per anhydroglucose unit. Since there are up to three hydroxyl groups per anhydroglucose unit, the theoretical maximum substitution degree (DS) is 3 when substituted with monofunctional substituents. However, since the polyfunctional or polymerizable substituent reacts not only with hydrogen of the hydroxyl group contained in the anhydroglucose unit but also with itself, the degree of substitution (DS) is not limited to three.
  • degree of molar substitution refers to the number of moles of the polyfunctional or polymerizable substituent per anhydroglucose unit. There is no theoretical maximum of this degree of substitution MS.
  • the acetylated cellulose ether prepared in the second step may be one in which hydrogen in most of the hydroxyl groups present in the cellulose ether is substituted with an acetyl group which is a hydrophobic group. Therefore, the acetylated cellulose ether is insoluble in water but has a property of dissolving in an organic solvent.
  • the acetylated cellulose ether prepared in the second step includes an alkyl group substitution degree (DS) of 1 to 2, a hydroxyalkyl group substitution degree (MS) of 0 to 1, and an acetyl group substitution degree (DS) of 1 to 2; And turbidity of at least 40 FTU (Formazin turbidity units).
  • turbidity of acetylated cellulose ether refers to the turbidity of an acetylated cellulose ether solution having a concentration of 5% by weight dissolved in dimethylformamide (DMF).
  • cellulose as described above may be used as a starting material in the preparation of the acetylated cellulose ether, but the degree of substitution (alkyl group substitution degree (DS) of 1-2) and hydroxyalkyl group substitution degree (MS) of 0-1 Cellulose ethers with a range of)) may also be used directly.
  • Acetylating the cellulose ether having the alkyl group substitution degree (DS) range and the hydroxyalkyl group substitution degree (MS) range is well dissolved in an organic solvent such as acetone without being dissolved in water, and has high molecular weight and thus mechanical strength. Excellent acetylated cellulose ether can be obtained. This will be described later.
  • the acetylated cellulose ether having a turbidity of 40 FTU or more is dissolved in an organic solvent to obtain a mixture comprising an acetylated cellulose ether solution.
  • the organic solvent may include at least one compound selected from the group consisting of methanol, acetic acid, acetone, dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and 1-methoxy-2-propanol (MP). .
  • insoluble components that are insoluble in the organic solvent are removed from the mixture.
  • Such insoluble components are also referred to as hazy components, and serve to increase the turbidity of the mixture.
  • the insoluble component may include unreacted cellulose ethers, dust and / or salts.
  • Removing insoluble components from the mixture may be carried out by at least one method of filtration and centrifugation.
  • the filtration may be performed using a filter system equipped with a filter of 300 to 800 mesh, for example, and the centrifugation may be performed at a rotational speed of, for example, 3,000 to 7,000 rpm.
  • a mixture (at least filtrate in the case of filtration and a supernatant in the case of centrifugation) from which at least a part of the insoluble component is removed is added to excess water to precipitate acetylated cellulose ether.
  • the excess water means that the amount of water used is 3,000 parts by weight or more, for example, 3,000 to 10,000 parts by weight based on 100 parts by weight of the mixture.
  • the precipitated acetylated cellulose ether has a turbidity of less than 40 FTU.
  • the precipitated acetylated cellulose ether is washed and dried.
  • the washing may be performed using an excess of water as the washing liquid, and the drying may be performed at 60 to 100 ° C. for 30 minutes to 10 hours.
  • the acetylated cellulose ether may be substituted with 1 to 2 alkyl group substitution degree (DS), 0 to 1 hydroxyalkyl group substitution degree (MS) and 1 to 2 acetyl group substitution degree (DS); And turbidity of less than 40 FTU (eg, 3-39 FTU). Since the acetylated cellulose ether has a low turbidity as described above, it may be used for applications such as home appliances and cases in which transparency is required.
  • the viscosity of the solution in which the acetylated cellulose ether was dissolved in acetone was measured in a Brookfield viscometer at 5 ° C. and 20 rpm under 5-100,000 cps. Can be. If the viscosity is within the above range, the mechanical strength of the acetylated cellulose ether is excellent.
  • the acetylated cellulose ether may have a melting point of 180 ⁇ 250 °C. When the melting point is within the above range, the acetylated cellulose ether may be applied to melt processing such as injection.
  • one embodiment of the present invention provides an article comprising the acetylated cellulose ether.
  • Such articles can be, for example, metal pastes, materials for separators (such as membranes for water treatment, gas separators or battery separators), packaging materials or consumer electronics cases.
  • cellulose ether products manufactured by Samsung Fine Chemicals
  • 900 g of acetic anhydride and 200 g of pyridine were added, and the contents of the reactor were reacted at 90 ° C. for 4 hours while stirring at 300 rpm to obtain acetylated cellulose ether.
  • the reactor contents were then coagulated by spraying into a coagulating bath filled with 1,300 g of water, washed five times with clean water, and dried to obtain acetylated cellulose ether.
  • the molar ratios are shown in Table 1 below.
  • Each acetylated cellulose ether prepared in Preparation Examples 1 to 6 was dissolved in an organic solvent (DMF) to prepare a mixture including an acetylated cellulose ether solution and an insoluble component.
  • the prepared mixture was then passed through a filter system (self-made) equipped with filters of various mesh sizes as shown in Table 2 below to remove the insoluble components. Subsequently, the mixture passed through the filter system was introduced into excess water (the content of water used here was 3,000 parts by weight based on 100 parts by weight of the mixture) to precipitate acetylated cellulose ether. Subsequently, the precipitated acetylated cellulose ether was washed with water and dried at 80 ° C.
  • the acetylated cellulose ether prepared in Examples 1 to 6 was found to have a turbidity of 3 to 39.
  • Each acetylated cellulose ether prepared in Preparation Examples 1 to 6 was dissolved in an organic solvent (DMF) to prepare a mixture including an acetylated cellulose ether solution and an insoluble component. Thereafter, the prepared mixture was introduced into a centrifuge (Vision Science, SUPRA 22K), and then the centrifuge was rotated at a rotational speed as shown in Table 3 to precipitate the insoluble component. Subsequently, only the supernatant (ie, unprecipitated portion) in the mixture passed through the centrifuge was separated, and the supernatant was added to excess water (the amount of water used here was 3,000 parts by weight based on 100 parts by weight of the mixture).
  • DMF organic solvent
  • the acetylated cellulose ether prepared in Comparative Examples 1 to 6 was found to have a turbidity of 48 to 63 and an acetyl group substitution degree of 1.13 to 1.35.
  • the acetylated cellulose ethers prepared in Examples 1 to 12 have different turbidity compared to the acetylated cellulose ethers prepared in Comparative Examples 1 to 6, but have the same degree of acetyl group substitution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

아세틸화 셀룰로오스 에테르의 제조방법, 및 그 방법에 의해 제조된 아세틸화 셀룰로오스 에테르가 개시된다. 개시된 아세틸화 셀룰로오스 에테르의 제조방법은 아세틸화 셀룰로오스 에테르를 유기용매에 용해시켜 아세틸화 셀룰로오스 에테르 용액을 포함하는 혼합물을 얻는 단계, 상기 혼합물로부터 상기 유기 용매에 녹지 않는 불용 성분을 제거하는 단계, 및 상기 혼합물을 물에 투입하여 아세틸화 셀룰로오스 에테르를 석출하는 단계를 포함하며, 이 방법에 의해 제조된 아세틸화 셀룰로오스 에테르는 40FTU 미만의 탁도를 갖는다.

Description

아세틸화 셀룰로오스 에테르의 제조방법, 및 그 방법에 의해 제조된 아세틸화 셀룰로오스 에테르
아세틸화 셀룰로오스 에테르의 제조방법, 및 그 방법에 의해 제조된 아세틸화 셀룰로오스 에테르가 개시된다. 보다 상세하게는, 탁도가 개선된 아세틸화 셀룰로오스 에테르의 제조방법, 및 그 방법에 의해 제조된 아세틸화 셀룰로오스 에테르가 개시된다.
셀룰로오스는 무수글루코오스 단위당 3개의 수산기(-OH)를 가지고 있으며, 이러한 수산기들이 분자내에서 규칙적인 수소결합을 형성하여 강력한 결정구조를 형성하게 된다. 따라서, 셀룰로오스는 물이나 유기용매에 녹지 않는 안정된 구조를 가진다.
이러한 셀룰로오스에서 수소결합 중의 일부가 알킬기로 치환되면, 치환된 셀룰로오스는 비치환된 셀룰로오스에 비해 결정구조가 약화되어 수용성 고분자인 셀룰로스 에테르로 전환된다.
상기와 같은 수용성 고분자인 셀룰로스 에테르의 유기용매에 대한 용해성을 향상시켜 유기용매에 녹는 증점제, 바인더, 수처리용 멤브레인 등의 막소재로 활용하기 위하여, 한국공개특허 제2011-0089662호는 상기 셀룰로오스 에테르에 아세틸기를 도입하여 제조한 아세틸화 셀룰로오스 에테르를 개시하고 있다. 그러나, 이렇게 제조된 아세틸화 셀룰로오스 에테르는 탁도가 낮아 상업적인 사용이 제한되는 문제점이 있다.
본 발명의 일 구현예는 아세틸화 셀룰로오스 에테르의 제조방법을 제공한다.
본 발명의 다른 구현예는 상기 아세틸화 셀룰로오스 에테르의 제조방법에 의해 제조된 것으로, 탁도가 개선된 아세틸화 셀룰로오스 에테르를 제공한다.
본 발명의 일 측면은,
아세틸화 셀룰로오스 에테르를 유기용매에 용해시켜 아세틸화 셀룰로오스 에테르 용액을 포함하는 혼합물을 얻는 단계;
상기 혼합물로부터 상기 유기 용매에 녹지 않는 불용 성분을 제거하는 단계; 및
상기 혼합물을 물에 투입하여 아세틸화 셀룰로오스 에테르를 석출하는 단계를 포함하는, 40FTU 미만의 탁도를 갖는 아세틸화 셀룰로오스 에테르의 제조방법을 제공한다.
상기 유기용매는 메탄올, 아세트산, 아세톤, 디메틸포름아미드, 디메틸 설폭사이드 및 1-메톡시-2-프로판올로 이루어진 군으로부터 선택된 적어도 1종의 화합물을 포함할 수 있다.
상기 혼합물로부터 불용 성분을 제거하는 단계는 여과 및 원심분리 중 적어도 한가지 방법에 의해 수행될 수 있다.
상기 아세틸화 셀룰로오스 에테르의 제조방법은 상기 석출된 아세틸화 셀룰로오스 에테르를 세정 및 건조하는 단계를 더 포함할 수 있다.
상기 아세틸화 셀룰로오스 에테르는 1~2의 알킬기 치환도(DS), 0~1의 히드록시알킬기 치환도(MS) 및 1~2의 아세틸기 치환도(DS)를 가질 수 있다.
상기 아세틸화 셀룰로오스 에테르는 메틸셀룰로오스, 히드록시프로필메틸셀룰로오스 및 히드록시에틸메틸셀룰로오스로 이루어진 군으로부터 선택된 적어도 1종의 셀룰로오스 에테르가 아세틸화되어 형성된 것일 수 있다.
본 발명의 다른 측면은,
상기 제조방법에 의해 제조된 것으로, 40FTU 미만의 탁도를 갖는 아세틸화 셀룰로오스 에테르를 제공한다.
본 발명의 일 구현예에 따른 아세틸화 셀룰로오스 에테르의 제조방법에 의하면, 고강도의 투명 필름, 불순물이 적어야 하는 메탈 페이스트 바인더, 정수처리막, 및 유기용매를 사용하여 제조되는 분리막의 소재 등으로 활용될 수 있는 아세틸화 셀룰로오스 에테르를 얻을 수 있다. 또한, 상기 제조방법에 의해 제조된 아세틸화 셀룰로오스 에테르는 용융점을 가지므로 사출성형을 통하여 투명성이 요구되는 가전제품 및 가전제품의 케이스 용도로 활용될 수 있다.
이하에서는 본 발명의 일 구현예에 따른 아세틸화 셀룰로오스 에테르(acetylated cellulose ether)의 제조방법, 및 그 방법에 의해 제조된 아세틸화 셀룰로오스 에테르를 상세히 설명한다.
먼저, 본 발명의 일 구현예에 따른 아세틸화 셀룰로오스 에테르의 제조방법을 상세히 설명한다.
첫번째 단계로서, 셀룰로오스의 수산기를 에테르화하여 셀룰로오스 에테르를 제조한다. 즉, 셀룰로오스의 에테르화 반응에 의해서, 셀룰로오스 구조내의 수산기 중 일부를 blocking하거나, 상기 수산기 중의 수소를 다른 치환체(예를 들어, 후술하는 R1~R5 등)로 치환함으로써 셀룰로오스 에테르를 형성한다. 이때, 셀룰로오스의 주쇄는 절단되지 않고 유지되지만, 셀룰로오스 내의 수소결합이 파괴되어 상기 셀룰로오스가 비결정 구조로 변환되기 때문에 고분자량의 수용성 셀룰로오스 에테르가 얻어진다.
상기 첫번째 단계에서 제조된 수용성 셀룰로오스 에테르는 메틸셀룰로오스, 히드록시프로필메틸셀룰로오스 및 히드록시에틸메틸셀룰로오스로 이루어진 군으로부터 선택된 적어도 1종을 포함할 수 있다.
또한, 상기 첫번째 단계에서 제조된 수용성 셀룰로오스 에테르는 1~2의 알킬기 치환도(DS) 및 0~1의 히드록시알킬기 치환도(MS)를 가질 수 있다. 여기서, 알킬기는 1~16의 탄소수를 가질 수 있다.
두번째 단계로서, 상기 제조된 수용성 셀룰로오스 에테르에 포함된 수산기 중의 수소원자를 아세틸기(CH3CO-)로 치환하여(이 치환 반응을 아세틸화라고 함) 수불용성 아세틸화 셀룰로오스 에테르를 제조한다. 하기 화학식 1 및 2에 셀룰로오스의 기본 반복단위인 무수글루코오스(anhydroglucose)가 차례로 에테르화 및 아세틸화되어 아세틸화 셀룰로오스 에테르의 기본 반복단위로 전환되는 과정을 나타내었다.
[규칙 제26조에 의한 보정 04.12.2012] 
화학식 1
Figure WO-DOC-FIGURE-25
[규칙 제26조에 의한 보정 04.12.2012] 
화학식 2
Figure WO-DOC-FIGURE-26
상기 화학식 1은 셀룰로오스가 에테르화되어 히드록시알킬알킬셀룰로오스로 전환된 후, 상기 히드록시알킬알킬셀룰로오스가 아세틸화되어 아세틸화 셀룰로오스 에테르로 전환되는 과정을 나타낸 것이고, 상기 화학식 2는 셀룰로오스가 에테르화되어 알킬셀룰로오스로 전환된 후, 상기 알킬셀룰로오스가 아세틸화되어 아세틸화 셀룰로오스 에테르로 전환되는 과정을 나타낸 것이다.
상기 화학식 1에서, R1 및 R2는, 서로 독립적으로, H, CH3, CH2CH2OH 또는 CH2CH(CH3)OH일 수 있고, R3는 H 또는 CH3일 수 있다.
상기 화학식 2에서, R4 및 R5는 각각 H 또는 CH3이고, 상기 R4 및 R5 중 적어도 하나는 CH3이다.
본 명세서에서, 치환도(DS: degree of substitution)란 무수글루코오스 단위당 알킬기로 치환된 수산기의 평균 개수를 의미한다. 무수글루코오스 단위당 최대 3개의 수산기가 존재하므로, 단관능성 치환체로 치환될 경우에는 이론적인 최대 치환도(DS)는 3이다. 그러나, 다관능성 또는 중합성 치환체는 무수글루코오스 단위에 포함된 수산기의 수소와 반응할 뿐만 아니라 자기 자신들과도 반응하므로, 치환도(DS)가 3으로 한정되지 않는다. 또한 본 명세서에서, 치환도(MS: degree of molar substitution)란 무수글루코오스 단위당 다관능성 또는 중합성 치환체의 몰수를 의미한다. 이러한 치환도(MS)의 이론적인 최대값은 존재하지 않는다.
상기 두번째 단계에서 제조된 아세틸화 셀룰로오스 에테르는 셀룰로오스 에테르에 존재하는 대부분의 수산기 중의 수소가 소수성기인 아세틸기로 치환된 것일 수 있다. 따라서, 상기 아세틸화 셀룰로오스 에테르는 물에는 용해되지 않지만, 유기용매에는 용해되는 성질을 갖는다.
상기 두번째 단계에서 제조된 아세틸화 셀룰로오스 에테르는 1~2의 알킬기 치환도(DS), 0~1의 히드록시알킬기 치환도(MS) 및 1~2의 아세틸기 치환도(DS); 및 40FTU(Formazin turbidity units) 이상의 탁도를 가질 수 있다. 본 명세서에서, “아세틸화 셀룰로오스 에테르의 탁도”란 디메틸포름아미드(DMF)에 용해된 5중량%의 농도를 갖는 아세틸화 셀룰로오스 에테르 용액의 탁도를 의미한다.
상기 두번째 단계에서 아세틸화 셀룰로오스 에테르의 제조시 출발물질로서 전술한 바와 같은 셀룰로오스가 사용될 수도 있지만, 상기 치환도(1~2의 알킬기 치환도(DS) 및 0~1의 히드록시알킬기 치환도(MS)) 범위를 갖는 셀룰로오스 에테르가 직접 사용될 수도 있다. 상기 알킬기 치환도(DS) 범위 및 상기 히드록시알킬기 치환도(MS) 범위를 갖는 셀룰로오스 에테르를 아세틸화하면, 물에는 용해되지 않으면서도 아세톤과 같은 유기용매에는 잘 용해되며, 고분자량을 가져서 기계적 강도가 우수한 아세틸화 셀룰로오스 에테르를 얻을 수 있다. 이에 대하여는 후술하기로 한다.
세번째 단계로서, 40FTU 이상의 탁도를 갖는 상기 아세틸화 셀룰로오스 에테르를 유기용매에 용해시켜 아세틸화 셀룰로오스 에테르 용액을 포함하는 혼합물을 얻는다.
상기 유기용매는 메탄올, 아세트산, 아세톤, 디메틸포름아미드(DMF), 디메틸 설폭사이드(DMSO) 및 1-메톡시-2-프로판올(MP)로 이루어진 군으로부터 선택된 적어도 1종의 화합물을 포함할 수 있다.
네번째 단계로서, 상기 혼합물로부터 상기 유기 용매에 녹지 않는 불용 성분을 제거한다. 이러한 불용 성분은 헤이지(hazy) 성분으로도 지칭되는 것으로, 상기 혼합물의 탁도를 증가시키는 역할을 수행한다. 상기 불용 성분은 미반응 셀룰로오스 에테르, 먼지 및/또는 염을 포함할 수 있다. 상기 혼합물로부터 불용 성분을 제거하는 단계는 여과 및 원심분리 중 적어도 한가지 방법에 의해 수행될 수 있다. 상기 여과는, 예를 들어, 300~800 메쉬의 필터를 장착한 필터 시스템을 사용하여 수행될 수 있고, 상기 원심분리는, 예를 들어, 3,000~7,000rpm의 회전속도로 수행될 수 있다.
다섯번째 단계로서, 상기 불용 성분의 적어도 일부가 제거된 혼합물(여과의 경우는 여과액, 원심분리의 경우는 상층액)을 과량의 물에 투입하여 아세틸화 셀룰로오스 에테르를 석출한다. 여기서, 과량의 물이란 사용된 물의 함량이 상기 혼합물 100중량부에 대하여 3,000중량부 이상, 예를 들어, 3,000~10,000중량부임을 의미한다. 상기 석출된 아세틸화 셀룰로오스 에테르는 40FTU 미만의 탁도를 갖는다.
여섯번째 단계로서, 상기 석출된 아세틸화 셀룰로오스 에테르를 세정 및 건조한다. 상기 세정은, 예를 들어, 과량의 물을 세정액으로 사용하여 실시될 수 있으며, 상기 건조는 60~100℃에서 30분~10시간 동안 진행될 수 있다.
이하, 상기 첫번째 단계 내지 여섯번째 단계를 거쳐 최종적으로 제조된 아세틸화 셀룰로오스 에테르를 상세히 설명한다.
상기 아세틸화 셀룰로오스 에테르는 1~2의 알킬기 치환도(DS), 0~1의 히드록시알킬기 치환도(MS) 및 1~2의 아세틸기 치환도(DS); 및 40FTU 미만 (예를 들어, 3~39 FTU)의 탁도를 가질 수 있다. 상기 아세틸화 셀룰로오스 에테르는 상기와 같이 낮은 탁도를 갖기 때문에, 투명성이 요구되는 가전제품 및 가전제품의 케이스의 용도 등으로 활용될 수 있다.
또한, 상기 아세틸화 셀룰로오스 에테르를 아세톤에 용해시킨 용액(아세틸화 셀룰로오스 에테르의 농도: 2중량%)의 점도는, 브룩필드 점도계로 측정할 때, 20℃ 및 20rpm의 조건에서, 5~100,000cps일 수 있다. 상기 점도가 상기 범위이내이면, 상기 아세틸화 셀룰로오스 에테르의 기계적 강도가 우수하다.
상기 아세틸화 셀룰로오스 에테르는 180~250℃의 용융점을 가질 수 있다. 상기 용융점이 상기 범위이내이면, 상기 아세틸화 셀룰로오스 에테르는 사출과 같은 용융가공에 적용될 수 있다.
한편, 본 발명의 일 구현예는 상기 아세틸화 셀룰로오스 에테르를 포함하는 물품을 제공한다. 이러한 물품은, 예를 들어, 메탈 페이스트, 분리막(수처리용 멤브레인, 기체 분리막 또는 전지 분리막 등)용 소재, 포장재 또는 가전제품 케이스일 수 있다.
이하, 실시예들을 들어 본 발명에 관하여 더욱 상세히 설명하지만, 본 발명이 이러한 실시예들에 한정되는 것은 아니다.
실시예
제조예 1~7: 아세틸화 셀룰로오스 에테르의 제조
교반기가 장착된 3L 반응기에, 셀룰로오스 에테르 제품(삼성정밀화학 제조) 50g, 아세트산 무수물 900g 및 피리딘 200g을 투입한 후, 반응기 내용물을 300rpm으로 교반하면서 90℃에서 4시간 동안 반응시켜 아세틸화 셀룰로오스 에테르를 제조하였다. 이어서, 상기 반응기 내용물을 1,300g의 물이 채워진 응고욕(coagulating bath)에 분사하여 응고시킨 후 깨끗한 물로 5회 세척한 후 건조하여 아세틸화 셀룰로오스 에테르를 얻었다. 각 실시예에서 사용된 셀룰로오스 에테르 제품의 메틸기 치환도(DS), 히드록시프로필기 치환도(MS), 히드록시에틸기 치환도(MS) 및 각 셀룰로오스 에테르에 포함된 무수글루코오스 단위당 사용된 아세트산 무수물의 몰비를 하기 표 1에 나타내었다.
표 1
셀룰로오스 에테르 제품 아세트산 무수물/무수글루코오스 단위(몰비)
메틸기 치환도(DS) 히드록시프로필기 치환도(MS) 히드록시에틸기 치환도(MS)
제조예 1 1.76 0.18 - 34.75
제조예 2 1.45 0.20 - 34.19
제조예 3 1.85 - - 33.13
제조예 4 1.35 - 0.22 34.15
제조예 5 1.58 - 0.21 34.61
제조예 6 1.68 - 0.24 35.17
실시예 1~6: 아세틸화 셀룰로오스 에테르의 후처리(여과)
상기 제조예 1~6에서 제조된 각 아세틸화 셀룰로오스 에테르를 유기용매(DMF)에 녹여 아세틸화 셀룰로오스 에테르 용액 및 불용 성분을 포함하는 혼합물을 제조하였다. 이후, 상기 제조된 혼합물을 하기 표 2에 표시된 것과 같은 다양한 메쉬 크기의 필터를 장착한 필터 시스템(자체 제작)에 통과시켜 상기 불용 성분을 제거하였다. 이어서, 상기 필터 시스템을 통과한 혼합물을 과량의 물(여기서 사용된 물의 함량은 상기 혼합물 100중량부에 대하여 3,000중량부임)에 투입하여 아세틸화 셀룰로오스 에테르를 석출하였다. 이어서, 상기 석출된 아세틸화 셀룰로오스 에테르를 물로 세정하고, 80℃에서 6시간 동안 건조하여 아세틸화 셀룰로오스 에테르를 얻었다. 상기 건조된 석출된 아세틸화 셀룰로오스 에테르를 DMF에 용해시켜 5중량%의 아세틸화 셀룰로오스 에테르 용액을 제조한 다음, 상기 용액의 탁도를 탁도 측정기(HACH DR/2000 Direct reading spectrophotometer)를 사용하여 각각 측정하여, 그 결과를 하기 표 2에 나타내었다.
표 2
탁도(FTU)
필터의 메쉬 크기 300 450 600 800
실시예 1 35 33 25 6
실시예 2 29 28 21 5
실시예 3 37 35 22 7
실시예 4 39 34 23 9
실시예 5 28 27 19 6
실시예 6 25 24 17 3
상기 표 2를 참조하면, 실시예 1~6에서 제조된 아세틸화 셀룰로오스 에테르는 3~39의 탁도를 갖는 것으로 나타났다.
실시예 7~12: 아세틸화 셀룰로오스 에테르의 후처리(원심분리)
상기 제조예 1~6에서 제조된 각 아세틸화 셀룰로오스 에테르를 유기용매(DMF)에 녹여 아세틸화 셀룰로오스 에테르 용액 및 불용 성분을 포함하는 혼합물을 제조하였다. 이후, 상기 제조된 혼합물을 원심분리기(Vision 과학, SUPRA 22K)에 투입한 다음, 상기 원심분리기를 하기 표 3에 표시된 것과 같은 회전속도로 회전시켜 상기 불용 성분을 침전시켰다. 이어서, 상기 원심분리기를 거친 상기 혼합물 중의 상층액(즉, 침전되지 않은 부분)만을 분리하여, 상기 상층액을 과량의 물(여기서 사용된 물의 함량은 상기 혼합물 100중량부에 대하여 3,000중량부임)에 투입하여 아세틸화 셀룰로오스 에테르를 석출하였다. 이어서, 상기 석출된 아세틸화 셀룰로오스 에테르를 물로 세정하고, 80℃에서 6시간 동안 건조하여 아세틸화 셀룰로오스 에테르를 얻었다. 이후, 상기 건조된 석출된 아세틸화 셀룰로오스 에테르를 DMF에 용해시켜 5중량%의 아세틸화 셀룰로오스 에테르 용액을 제조한 다음, 상기 용액의 탁도를 탁도 측정기(HACH DR/2000 Direct reading spectrophotometer)를 사용하여 각각 측정하여, 그 결과를 하기 표 3에 나타내었다.
표 3
탁도(FTU)
회전속도(rpm) 3,000 4,000 5,000 7,000
실시예 7 20 16 10 5
실시예 8 18 14 9 5
실시예 9 17 14 10 4
실시예 10 19 15 10 6
실시예 11 18 16 11 4
실시예 12 16 12 8 3
상기 표 3을 참조하면, 실시예 7~12에서 제조된 아세틸화 셀룰로오스 에테르는 3~20의 탁도를 갖는 것으로 나타났다.
비교예 1~6: 후처리되지 않은 아세틸화 셀룰로오스 에테르
상기 제조예 1~6에서 제조된 각 아세틸화 셀룰로오스 에테르를 후처리 하지 않은 상태에서, 탁도 및 아세틸기 치환도를 측정하여 그 결과를 하기 표 4에 나타내었다.
표 4
비교예 1 비교예 2 비교예 3 비교예 4 비교예 5 비교예 6
탁도(FTU) 53 50 60 63 52 48
아세틸기 치환도(DS)* 1.18 1.29 1.13 1.35 1.27 1.24
* 아세틸기 치환도의 측정방법: 상기 각 아세틸화 셀룰로오스 에테르의 비누화 반응에 의해 형성되는 유리 아세트산을 알칼리로 적정하여, 상기 각 아세틸화 셀룰로오스 에테르의 아세틸기 치환도(DS)를 측정하였다(ASTM D871-96).
상기 표 4를 참조하면, 비교예 1~6(즉, 제조예 1~6)에서 제조된 아세틸화 셀룰로오스 에테르는 48~63의 탁도 및 1.13~1.35의 아세틸기 치환도를 갖는 것으로 나타났다.
참고로, 상기 실시예 1~12에서 제조된 아세틸화 셀룰로오스 에테르는 상기 비교예 1~6에서 제조된 아세틸화 셀룰로오스 에테르 대비 탁도는 서로 상이하지만, 동일한 아세틸기 치환도를 갖는다.
본 발명은 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (7)

  1. 아세틸화 셀룰로오스 에테르를 유기용매에 용해시켜 아세틸화 셀룰로오스 에테르 용액을 포함하는 혼합물을 얻는 단계;
    상기 혼합물로부터 상기 유기 용매에 녹지 않는 불용 성분을 제거하는 단계; 및
    상기 혼합물을 물에 투입하여 아세틸화 셀룰로오스 에테르를 석출하는 단계를 포함하는, 40FTU 미만의 탁도를 갖는 아세틸화 셀룰로오스 에테르의 제조방법.
  2. 제1항에 있어서,
    상기 유기용매는 메탄올, 아세트산, 아세톤, 디메틸포름아미드, 디메틸 설폭사이드 및 1-메톡시-2-프로판올로 이루어진 군으로부터 선택된 적어도 1종의 화합물을 포함하는 아세틸화 셀룰로오스 에테르의 제조방법.
  3. 제1항에 있어서,
    상기 혼합물로부터 불용 성분을 제거하는 단계는 여과 및 원심분리 중 적어도 한가지 방법에 의해 수행되는 아세틸화 셀룰로오스 에테르의 제조방법.
  4. 제1항에 있어서,
    상기 석출된 아세틸화 셀룰로오스 에테르를 세정 및 건조하는 단계를 더 포함하는 아세틸화 셀룰로오스 에테르의 제조방법.
  5. 제1항에 있어서, 상기 아세틸화 셀룰로오스 에테르는 1~2의 알킬기 치환도(DS), 0~1의 히드록시알킬기 치환도(MS) 및 1~2의 아세틸기 치환도(DS)를 갖는 아세틸화 셀룰로오스 에테르의 제조방법
  6. 제1항에 있어서,
    상기 아세틸화 셀룰로오스 에테르는 메틸셀룰로오스, 히드록시프로필메틸셀룰로오스 및 히드록시에틸메틸셀룰로오스로 이루어진 군으로부터 선택된 적어도 1종의 셀룰로오스 에테르가 아세틸화되어 형성된 것인 아세틸화 셀룰로오스 에테르의 제조방법
  7. 제1항 내지 제6항 중 어느 한 항에 따른 제조방법에 의해 제조된 것으로, 40FTU 미만의 탁도를 갖는 아세틸화 셀룰로오스 에테르.
PCT/KR2012/009735 2011-12-30 2012-11-16 아세틸화 셀룰로오스 에테르의 제조방법, 및 그 방법에 의해 제조된 아세틸화 셀룰로오스 에테르 WO2013100357A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/363,991 US9469694B2 (en) 2011-12-30 2012-11-16 Preparation method of acetylated cellulose ether, and acetylated cellulose ether prepared thereby
JP2014549960A JP2015503650A (ja) 2011-12-30 2012-11-16 アセチル化セルロースエーテルの製造方法、及び該方法によって製造されたアセチル化セルロースエーテル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110147429A KR101837635B1 (ko) 2011-12-30 2011-12-30 아세틸화 셀룰로오스 에테르의 제조방법, 및 그 방법에 의해 제조된 아세틸화 셀룰로오스 에테르
KR10-2011-0147429 2011-12-30

Publications (1)

Publication Number Publication Date
WO2013100357A1 true WO2013100357A1 (ko) 2013-07-04

Family

ID=48697772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009735 WO2013100357A1 (ko) 2011-12-30 2012-11-16 아세틸화 셀룰로오스 에테르의 제조방법, 및 그 방법에 의해 제조된 아세틸화 셀룰로오스 에테르

Country Status (4)

Country Link
US (1) US9469694B2 (ko)
JP (1) JP2015503650A (ko)
KR (1) KR101837635B1 (ko)
WO (1) WO2013100357A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122835A1 (ko) * 2016-01-11 2017-07-20 롯데정밀화학 주식회사 아세틸화 셀룰로오스 에테르의 제조방법
JP6965491B2 (ja) * 2017-11-07 2021-11-10 エルジー・ケム・リミテッド 気体分離膜の製造方法およびこれにより製造された気体分離膜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129201A (ja) * 1988-11-08 1990-05-17 Kanegafuchi Chem Ind Co Ltd 長鎖アルキル基を有する酢酸セルロースエーテルの製法
JPH0647603B2 (ja) * 1984-04-06 1994-06-22 ダイセル化学工業株式会社 高置換度セルロ−スエ−テルの製法
JPH08337601A (ja) * 1995-03-31 1996-12-24 Daicel Chem Ind Ltd 成形性の高い酢酸セルロースおよびその製造法
JP2005283997A (ja) * 2004-03-30 2005-10-13 Daicel Chem Ind Ltd セルロースエーテルアセテート光学フィルム
KR20110089662A (ko) * 2010-02-01 2011-08-09 삼성정밀화학 주식회사 아세틸화 셀룰로오스 에테르 및 이를 포함하는 물품

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2977351A (en) * 1956-06-28 1961-03-28 Phillips Petroleum Co Process for recovery of polyolefin by precipitation in water
JP2001213901A (ja) * 2000-02-01 2001-08-07 Fuji Photo Film Co Ltd 酢酸セルロースの製造方法
EP2178518A2 (en) 2007-07-13 2010-04-28 Bend Research, Inc Nanoparticles comprising ionizable, poorly water soluble cellulosic polymers
JP2009114397A (ja) * 2007-11-09 2009-05-28 Fujifilm Corp セルロース誘導体、フィルム、及びその用途
JP5757681B2 (ja) * 2009-08-12 2015-07-29 富士フイルム株式会社 セルロース誘導体、樹脂組成物、成形体及びその製造方法並びに電気電子機器用筐体
JP5470032B2 (ja) * 2009-08-12 2014-04-16 富士フイルム株式会社 セルロース誘導体、熱成形材料、成形体及びその製造方法並びに電気電子機器用筐体
KR101132731B1 (ko) * 2009-12-24 2012-06-21 한국화학연구원 아세틸화 메틸 셀룰로스, 이를 이용하여 제조한 수처리용 분리막 및 이들의 제조방법
JP5514598B2 (ja) * 2010-03-23 2014-06-04 富士フイルム株式会社 セルロース誘導体、及びセルロース誘導体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647603B2 (ja) * 1984-04-06 1994-06-22 ダイセル化学工業株式会社 高置換度セルロ−スエ−テルの製法
JPH02129201A (ja) * 1988-11-08 1990-05-17 Kanegafuchi Chem Ind Co Ltd 長鎖アルキル基を有する酢酸セルロースエーテルの製法
JPH08337601A (ja) * 1995-03-31 1996-12-24 Daicel Chem Ind Ltd 成形性の高い酢酸セルロースおよびその製造法
JP2005283997A (ja) * 2004-03-30 2005-10-13 Daicel Chem Ind Ltd セルロースエーテルアセテート光学フィルム
KR20110089662A (ko) * 2010-02-01 2011-08-09 삼성정밀화학 주식회사 아세틸화 셀룰로오스 에테르 및 이를 포함하는 물품

Also Published As

Publication number Publication date
KR101837635B1 (ko) 2018-03-13
US20140343272A1 (en) 2014-11-20
KR20130078469A (ko) 2013-07-10
US9469694B2 (en) 2016-10-18
JP2015503650A (ja) 2015-02-02

Similar Documents

Publication Publication Date Title
Kondo The relationship between intramolecular hydrogen bonds and certain physical properties of regioselectively substituted cellulose derivatives
WO2011093573A1 (en) Acetylated cellulose ether and articles comprising the same
EP1550688B1 (en) Organopolysiloxane-modified polysaccharide and process for producing the same
WO2013094883A1 (ko) 아세틸화 셀룰로오스 에테르와 그의 제조방법, 및 상기 아세틸화 셀룰로오스 에테르를 포함하는 물품
EP2692738A1 (en) Ester compound of cellulose derivative and manufacturing method for same
JP2622666B2 (ja) 炭水化物シリル化方法
CN108822258B (zh) 一种改性羧甲基纤维素的制备方法及应用
Zhou et al. Homogeneous hydroxyethylation of cellulose in NaOH/urea aqueous solution
KR20140077153A (ko) 아민기를 함유하는 올리고당류의 제조
WO2013100357A1 (ko) 아세틸화 셀룰로오스 에테르의 제조방법, 및 그 방법에 의해 제조된 아세틸화 셀룰로오스 에테르
CN105597821A (zh) 一种半纤维素-壳聚糖-钯催化剂及其制备方法与应用
WO2012091298A1 (en) Method for preparing hydroxyalkyl starch
WO2012077860A1 (ko) 아세틸화 셀룰로오스 에테르 및 이를 포함하는 물품
WO2014088154A1 (ko) 내오염성이 개선된 아세틸화 셀룰로오스 에테르의 제조방법 및 이로부터 얻은 아세틸화 셀룰로오스 에테르
Vigo et al. Deoxycelluloses and related structures
JP5808756B2 (ja) 多糖またはオリゴ糖の塩素化方法
KR102213220B1 (ko) 아세틸화 셀룰로오스 에테르 마이크로섬유를 포함하는 필름
WO2017122835A1 (ko) 아세틸화 셀룰로오스 에테르의 제조방법
GB2070612A (en) Method of producing O-trimethylsilyl celluloses
WO1991016356A1 (en) Preparation of low molecular weight cellulose esters
Qin et al. Synthesis and Characterization of Alkylated Bacterial Cellulose in an Ionic Liquid.
CN117343202A (zh) 一种定向疏水改性纤维素的制备方法
JPS59122501A (ja) 酸型カルボキシメチルセルロ−ス
JPS6035361B2 (ja) 耐塩水性に優れたカルボキシメチルセルロ−ズの製造方法
JP2678776B2 (ja) ポリ−(p−フエニレンビニレン)ジアルキルスルホニウム塩の濃縮精製方法及びポリ−p―フエニレンビニレンフイルムの製造用原液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862605

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14363991

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014549960

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862605

Country of ref document: EP

Kind code of ref document: A1