WO2013097536A1 - 生物质合成气冷却、洗涤工艺及系统 - Google Patents

生物质合成气冷却、洗涤工艺及系统 Download PDF

Info

Publication number
WO2013097536A1
WO2013097536A1 PCT/CN2012/083597 CN2012083597W WO2013097536A1 WO 2013097536 A1 WO2013097536 A1 WO 2013097536A1 CN 2012083597 W CN2012083597 W CN 2012083597W WO 2013097536 A1 WO2013097536 A1 WO 2013097536A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
cooling
syngas
cooled
biomass
Prior art date
Application number
PCT/CN2012/083597
Other languages
English (en)
French (fr)
Inventor
张岩丰
刘文焱
夏明贵
张亮
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112014016324A priority Critical patent/BR112014016324A2/pt
Priority to AU2012362087A priority patent/AU2012362087B2/en
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Priority to AP2014007832A priority patent/AP2014007832A0/xx
Priority to ES12862504.3T priority patent/ES2630311T3/es
Priority to CA 2862767 priority patent/CA2862767A1/en
Priority to SG11201403674QA priority patent/SG11201403674QA/en
Priority to KR1020147021061A priority patent/KR101616527B1/ko
Priority to EP12862504.3A priority patent/EP2799524B1/en
Priority to IN1471MUN2014 priority patent/IN2014MN01471A/en
Priority to DK12862504.3T priority patent/DK2799524T3/en
Priority to RU2014131241/05A priority patent/RU2588223C2/ru
Priority to JP2014549320A priority patent/JP5829343B2/ja
Priority to MX2014007945A priority patent/MX353763B/es
Publication of WO2013097536A1 publication Critical patent/WO2013097536A1/zh
Priority to US14/316,842 priority patent/US9410096B2/en
Priority to ZA2014/05496A priority patent/ZA201405496B/en
Priority to HRP20170979TT priority patent/HRP20170979T1/hr
Priority to CY20171100692T priority patent/CY1119032T1/el

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • C10J3/845Quench rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/86Other features combined with waste-heat boilers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/028Dust removal by electrostatic precipitation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • C10K1/046Reducing the tar content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • C10K1/06Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials combined with spraying with water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/101Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1693Integration of gasification processes with another plant or parts within the plant with storage facilities for intermediate, feed and/or product
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the invention relates to the utilization of biomass energy in the field of new energy, in particular to a biomass synthesis gas cooling, washing process and system.
  • biomass gas must undergo a purification process of cooling and washing.
  • biomass gasification methods there are many researches on biomass gasification methods, and a lot of achievements have been made.
  • there are few studies on the cooling and washing of biomass syngas and the old methods of cooling and washing with traditional coal gas are often used.
  • Coal-to-gas cooling is a combination of furnace, furnace or internal and external.
  • the structure of the gasifier is complicated, the size of the furnace body is large, the wall surface is easy to hang the slag, the water side is easy to scale, and there is a hidden danger of the explosion of the pipe or the perforation; when the furnace is air-cooled, the gas consumption is large, and the gas mixture is mixed.
  • the volume increases more, which in turn increases the size of the subsequent equipment, and the main process and the circulating coal gasification process have high power consumption.
  • the method of completely water chilling outside the furnace can directly reduce the temperature of the syngas to 200 ⁇ 300°C.
  • the complete water chilling method is only suitable for specific chemical synthesis, which has greater limitations.
  • the technical problem to be solved by the present invention is to provide a biomass synthesis gas cooling and washing process and system, which has a smooth process, a simple system, and low energy consumption and high efficiency.
  • the present invention provides a biomass syngas cooling and washing process for biomass syngas having a temperature of 1000 to 1100 ° C, a dust content of less than 20 g/Nm 3 and a tar content of less than 3 g /Nm 3 .
  • Processing process which includes the following steps:
  • the temperature of the synthesis gas after chilling by the chilling tower is 780 to 820 °C.
  • the synthesis gas is initially cooled by a water-cooled flue device and sent to a chilling tower.
  • Step 2 of the above technical solution the waste heat recovery is divided into two sections: high temperature section and low temperature section; the high temperature section uses a water pipe type waste heat boiler, and the temperature of the outlet syngas is controlled. 400 ⁇ 450°C; the low temperature section adopts a heat pipe type waste heat boiler, and the temperature of the outlet syngas is controlled below 200 °C.
  • the residual heat steam pressure of the high temperature section is 1.6 MPa or more; the residual heat steam pressure of the low temperature section is 0.5 ⁇ 1.6MPa.
  • the chilling tower adopts a water-cooled chilling tower, and the syngas is initially cooled by the water-cooled flue device.
  • the water-cooled chilling tower is sent; the waste heat recovered by the water-cooled flue device and the water-cooled chiller is sent to the heat pipe type waste heat boiler, and after the steam-water separation, the water is recycled.
  • the washing and cooling tower cools the syngas to 40 to 45 °C.
  • the invention provides a biomass syngas cooling and washing system, comprising a chilling tower connected to a high temperature pyrolysis biomass gasification furnace, wherein the chilling tower is connected to the waste heat boiler, the washing cooling tower and the electric precipitator through the syngas pipeline in turn. .
  • the high temperature pyrolysis biomass gasification furnace and the chilling tower are connected by a water-cooled flue device.
  • the water-cooled flue device comprises a water-cooled flue and a heat-receiving pipe;
  • the water-cooled flue comprises an inlet water-cooled flue, an upper elbow water-cooled flue, a straight water-cooled flue, a lower-bend water-cooled flue, and an outlet water-cooled flue.
  • the air-cooled pipes are arranged in a circumferential direction, and the adjacent heat-receiving pipes are seamlessly connected by steel strips to form an annular water-cooling wall, and the annular water-cooling wall inner cavity constitutes each of the above-mentioned flue pipes.
  • the inlet water-cooled flue is composed of an inlet annular collecting box and an inlet annular water-cooling wall, wherein the inlet annular water-cooling wall is connected with the upper elbow water-cooled flue; and the inlet annular collecting box is provided with a cooling medium inlet pipe.
  • the inlet annular collecting box is further provided with a plurality of connecting pipes, and the connecting pipe is connected with the heated pipe;
  • the outlet water-cooled flue has the same structure as the imported water-cooled flue;
  • the inner pipe wall of the water-cooled flue is Set 60 ⁇ 80mm thick refractory layer.
  • the chilling tower is a water-cooled chilling tower.
  • the water-cooled chilling tower comprises a sealed water-cooled cylinder body, the water-cooled cylinder body is enclosed by a heat-receiving tube arranged in a ring shape, and the adjacent heat-receiving pipes are sealed and connected, and the lower ends of all the heat-receiving pipes are connected with the inlet header.
  • the upper end of all heated pipes is connected with the outlet header for discharging cooling water;
  • the upper wall of the water-cooled cylinder is provided with an inlet joint for introducing the syngas to be treated, and the water-cooling cylinder
  • the lower cylinder wall is provided with an outlet joint for deriving the treated syngas;
  • the lower part of the water-cooled cylinder has an inverted cone shape, and the bottom of the cone is provided with a slag discharge port.
  • the water spray pipe pipeline system of the water spray pipe comprises a surge tank and an atomization nozzle, and a water spray pipe is connected between the surge tank and the atomization nozzle; the water outlet of the surge tank is connected to the water spray pipe through the water outlet valve.
  • the inlet of the surge tank is connected with an inlet valve; the surge tank is also provided with an inlet port and an outlet port, and the intake port is connected with an intake valve, and the outlet port of the surge tank is connected with an outlet valve.
  • the waste heat boiler includes a water pipe type waste heat boiler and a heat pipe type waste heat boiler which are sequentially connected.
  • the water tube type waste heat boiler comprises a drum and a furnace body disposed under the drum, the furnace body is of a horizontal structure, the inlet joint and the outlet joint are located at horizontal ends of the furnace body;
  • the furnace body comprises a furnace wall and a plurality of longitudinally arranged heated tubes, the top ends of all the heated tubes are connected to the upper header through the upper connecting tubes, and the bottom ends of all the heated tubes are communicated with the lower header through the lower connecting tubes;
  • the upper header passes through the steam extracting tubes and the drum Connected for recycling water vapor;
  • the lower header communicates with the bottom end of the drum through a downcomer for providing cooling water;
  • the two side walls of the furnace body are a membrane wall tube screen, and the membrane wall tube screen
  • the upper and lower ends are also in communication with the upper header and the lower header, respectively.
  • the heat pipe waste heat boiler comprises a heat pipe, a drum and a heat preservation wall
  • the heat pipe adopts a heat pipe
  • the heat release section of the heat pipe is inserted into the drum
  • the heat absorption section of the heat pipe is placed in the heat preservation wall
  • the heat preservation wall An inlet joint and an outlet joint are also welded, and a dust hopper is welded to the lower end of the heat insulating wall.
  • the chilling tower is a water-cooled chilling tower, and the high-temperature pyrolysis biomass gasification furnace and the water-cooled chilling tower are connected by a water-cooled flue device, and the water pipe of the heat pipe type waste heat boiler is sequentially cooled with water.
  • the water conduits of the flue device and the water-cooled chiller are connected in series to form a water circulation system.
  • the washing and cooling tower is a packed washing and cooling tower.
  • the electrostatic precipitator is a wet electrostatic precipitator.
  • the air outlet of the electric precipitator is respectively connected to the gas cabinet and the fire torch through the fan.
  • the invention adopts a partial water spray chilling method outside the furnace, has no interference to the gasification operation, and achieves the cooling condensate effect and the system by controlling the chilling degree.
  • Heat utilization efficiency; the setting of two-stage and double-pressure waste heat boiler realizes centralized collection and treatment of heavy tar, reuse of residual heat step, improves the thermal efficiency of the system; dedusting and decoking of washing cooling tower and electrostatic precipitator, realizing synthesis
  • the gas is purified step by step, the whole process is smooth, and the system structure is simple.
  • FIG. 1 is a schematic structural view of an embodiment of a biomass synthesis gas cooling and washing system of the present invention, and illustrates a process flow
  • FIG. 2 is a schematic structural view of an embodiment of the water-cooled flue device of FIG. 1;
  • Figure 3 is a plan view of the direction A of Figure 2;
  • Figure 4 is an enlarged view of the B-B section of Figure 2;
  • Figure 5 is a schematic structural view of an embodiment of the water-cooled chilling tower of Figure 1;
  • Figure 6 is a cross-sectional view taken along line C-C of Figure 5;
  • Figure 7 is an enlarged view of the structure of Part I in Figure 6;
  • Figure 8 is a piping system diagram of the water spray pipe of Figure 5;
  • FIG. 9 is a schematic structural view of an embodiment of the water tube type waste heat boiler of FIG. 1;
  • Figure 10 is a cross-sectional view taken along line D-D of Figure 9;
  • FIG 11 is a schematic structural view of an embodiment of the heat pipe type waste heat boiler of Figure 1;
  • Figure 12 is a cross-sectional view taken along line E-E of Figure 11;
  • a biomass syngas cooling and washing system of the present invention comprises a water-cooled flue device 1 Water-cooled chilling tower connected to high-temperature pyrolysis biomass gasifier 10, water-cooled chilling tower 2, connecting water-tube waste heat boiler through syngas pipeline in turn 3, heat pipe type waste heat boiler 4, washing and cooling tower 5 And electric precipitator 6 .
  • the water pipe of the heat pipe type waste heat boiler 4 is sequentially connected with the water pipe of the water-cooled flue device 1 and the water-cooled chilling tower 2 to form a water circulation system, so that the water-cooled flue device 1
  • the residual heat recovered by the water-cooled chiller tower 2 is used in the heat pipe type waste heat boiler 4.
  • the air outlet of the electrostatic precipitator 6 passes through the fan 7 and the gas cabinet 8 and the ignition torch 9 respectively.
  • the washing and cooling tower 5 is a packed type washing and cooling tower
  • the electric precipitator 6 is a wet type electric precipitator
  • the gas cabinet 8 is a wet type gas cabinet.
  • a water-cooled flue device 1 is connected to a high-temperature pyrolysis biomass gasifier 10 and a water-cooled chiller 2 in order to avoid
  • the conventional flue gas connection flue only has the problem of connecting the flue gas and not cooling the flue gas.
  • the conventional flue gas connection flue is a tubular structure made of steel plate or made of a large-diameter steel pipe, and a 200-300 mm refractory castable is poured on the inner wall of the steel plate cylinder or the large-diameter pipe.
  • the structure is an adiabatic flue, causing huge cooling pressure to subsequent cooling equipment; on the other hand, due to 200
  • the presence of ⁇ 300mm refractory castables makes the flue quality high, and the refractory material is easy to fall off, which leads to the burning of the flue cylinder and the leakage of flue gas, which may cause fire or even explosion.
  • Water-cooled flue device 1 including water-cooled flue and its heated pipe 1.7 . Water-cooled flue from imported water-cooled flue 1.1, upper elbow water-cooled flue 1.2, straight-water cold flue 1.3, lower elbow water-cooled flue 1.4 And the outlet water-cooled flue 1.5 is composed of sequential sealing connections.
  • the above-mentioned imported water-cooled flue 1.1 consists of an imported annular header and an inlet annular water-cooled wall, wherein the inlet annular water wall and the upper elbow water-cooled flue 1.2 Connected; the inlet ring header is provided with a cooling medium inlet pipe for introducing the cooling medium.
  • the cooling medium is a heat pipe type waste heat boiler 4
  • the circulating water sent out, the inlet annular header box is also provided with a plurality of nozzles, and the connecting tube is connected with the heat receiving tube 1.7.
  • the outlet water-cooled flue 1.5 has the same structure as the imported water-cooled flue 1.1.
  • the inner side wall of the water-cooled flue is provided 60 ⁇ 80mm thick refractory layer 1.6, preferably 70mm, to improve its high temperature and wear resistance and prolong its service life.
  • the cooling water sent from the heat pipe type waste heat boiler 4 enters the inlet water-cooled flue.
  • the inlet ring-shaped header of 1.1 is then uniformly passed through the pipe to enter the heated pipe 1.7 which constitutes each section of the water-cooled flue, and is collected into the outlet water-cooled flue.
  • the exit ring is in the box and finally flows into the chiller tower.
  • the cooling water continuously absorbs the heat of the biomass synthesis gas, the water temperature continuously rises, and the temperature of the biomass synthesis gas continuously decreases, thereby achieving heat exchange between the two.
  • Water-cooled flue device 1 It can not only connect the flue gas, but also cool the flue gas, so that the inner wall temperature of the flue is low, and the tar is not easy to solidify, which effectively prevents the coke from clogging caused by the coagulation of the tar, ensuring long-term operation of the equipment.
  • the stability of the flue gas does not require a thick refractory layer, which avoids the problem of the burning and leakage of the cylinder caused by the rupture and slumping of the refractory castable which is easy to occur in the conventional flue, and ensures the long-term operation of the equipment. Security.
  • the technical solution of the present invention can also be implemented by using a conventional flue, but the effect is poor.
  • a water-cooled chiller 2 of the present invention comprises a sealed water-cooled cylinder 2.1
  • the water-cooled cylinder 2.1 is a membrane structure, which is enclosed by a circularly arranged heat-receiving tube 2.9.
  • the upper end of the water-cooled cylinder 2.1 is uniformly bent by the heated tube 2.9 to form a cone, and the adjacent heat-receiving tube 2.9 Sealed with steel strips 2.10.
  • the lower end of all heated tubes 2.9 is connected to the inlet header 2.7, the upper end is connected to the outlet header 2.3, and the cooling water is sequentially passed through the inlet header 2.7. 2.9 and the outlet header 2.3 to absorb the residual heat of the syngas to cool the syngas.
  • the upper wall of the water-cooled cylinder 2.1 is provided with an inlet joint 2.4 for introducing the syngas to be treated, and the water-cooled cylinder 2.1
  • the lower wall of the cylinder is provided with an outlet joint 2.6 for the delivery of the treated syngas, the inlet joint 2.4 and the outlet joint 2.6 can be made of steel plate flanges.
  • Water-cooled cylinder 2.1 The lower part has an inverted cone shape, and the bottom of the cone has a slag discharge port 2.8.
  • the additional heat-receiving structure 2.5 in this embodiment is a plurality of U-shaped heat pipes disposed on the top wall of the water-cooled cylinder 2.1, as shown in FIG.
  • Water-cooled cylinder 2.1 A sprinkler pipe 2.2 can also be provided at the top, and the number of sprinkler pipes 2.2 can be determined as needed.
  • the inner wall of the inverted tapered portion of the water-cooled cylinder 2.1 may be provided with a refractory layer of 50-60 mm thick.
  • Insulation layer of thermal insulation cotton can also be applied to the outer surface of the water-cooled cylinder 2.1 2.11, its thermal insulation performance is good and the density is small, so that the outer surface temperature of the water-cooled chilling tower does not exceed 40 °C without increasing the weight of the whole equipment.
  • a sprinkler pipe may be used 2.2
  • the invention relates to a water pipe pipe system thereof 12
  • An embodiment is preferred.
  • the conventional water spray atomization method is divided into pneumatic atomization and mechanical atomization. With pneumatic atomization, the water spray flow rate and effect are easier to control stably, but since the compressed gas used for atomization enters the environment where water spray is required, the atomization method has certain use limitations; mechanical atomization is adopted. At present, since the water pressure in the conventional water pipe often fluctuates within a certain range, it is difficult to keep the water pressure relatively stable.
  • a sprinkler pipe system 12 of the present invention includes a surge tank 12.1, an adjustment controller 12.5, an inlet valve 12.2, an intake valve 12.3, and an outlet valve 12.6. , atomizing nozzle 12.10, etc.
  • Regulator tank 12.1 is a sealed tank made of steel. The regulator tank 12.1 has compressed gas in the upper part and water in the lower part.
  • Regulator tank 12.1 The water inlet, the water outlet, the air inlet and the air outlet are arranged on the upper side, and are respectively connected with the inlet valve 12.2, the outlet valve 12.6, the intake valve 12.3, and the outlet valve 12.4.
  • Inlet valve 12.2 Installed in the lower part of the regulator tank 12.1, externally connected to the external water source, water supply from a certain pressure in the plant area or directly water pump.
  • water flows from the above-mentioned water-cooled flue device 1 into the surge tank 12.1; 12.2 Installed at the bottom of the regulator tank 12.1, and then connect several groups of water spray branches.
  • the water spray branch pipe is connected to the orifice plate 12.7, shut-off valve 12.8, pressure gauge 12.9, atomizing nozzle 12.10 ;
  • Intake valve 12.3 Installed in the upper part of the surge tank 12.1, externally connected to the compressed gas source in the plant; outlet valve 12.4 installed in the surge tank 12.1 The top is directly connected to the external environment.
  • the adjustment controller 12.5 is a control module that controls the intake valve 12.3 and the outlet valve 12.4 according to the pressure and operating procedures in the regulator tank 12.1.
  • the opening and closing of the regulator tank 12.1 regulates the pressure of the compressed gas, thereby controlling and regulating the water pressure in the piping system.
  • the external water source passes through the inlet valve 12.2 In the regulator tank 12.1, the water in the regulator tank 12.1 passes through the outlet valve 12.6, and then distributes into the water spray branch.
  • the water in each spray branch flows through the orifice plate. 12.7.
  • Shut-off valve 12.8 Finally, the atomizing nozzle 12.10 is atomized and sprayed into the environment of the desired water spray.
  • the water spray environment in this embodiment is a chilling tower. Throttle plate 12.7 It is used to balance the pressure between the spray branches to ensure the same effect of water spray between the branches; the shut-off valve 12.8 can determine whether any spray branch is involved in the work; pressure gauge 12.9 Used to display accurate atomization pressure.
  • the pressure in the sprinkler pipe system 12 is regulated by the surge tank 12.1 Compressed gas control within the system, the system is adjusted accurately, the adjustment speed is fast, and the compressed gas source has a wide selection range; the mechanical atomization method is adopted, the compressed gas does not enter the water spray environment, and the application range is wide; by the adjustment controller 12.5 Control the entire process and achieve full automation.
  • the pipeline system adopting the conventional pneumatic atomization or mechanical atomization method can also realize the technical scheme of the present invention, but the above defects are present, and the water spray effect is poor.
  • the water tube type waste heat boiler 3 in this embodiment is shown in Fig. 9 and Fig. 10, and includes a drum 3.7 and is disposed in the drum 3.7
  • the furnace body below.
  • the furnace body has a horizontal structure, the inlet joint 3.12 and the outlet joint 3.13 are located at the horizontal ends of the furnace body, and the high-temperature syngas flows horizontally in the furnace.
  • the furnace body comprises a furnace wall and a plurality of longitudinally arranged heat pipes 3.1, the two side walls of the furnace body is a membrane wall tube screen 3.2, which absorbs heat and seals.
  • the high temperature syngas flows between several heated pipes 3.1, the heat pipe 3.1 and the membrane wall pipe screen 3.2
  • the cooling water inside absorbs the residual heat of the syngas to lower the syngas temperature.
  • top and bottom ends of all heated tubes 3.1 are welded to upper tube 3.3 and lower tube 3.5, upper tube 3.3 and lower tube 3.5, respectively. Then welded with the upper header 3.4 and the lower header 3.6 respectively, and the upper and lower ends of the membrane wall panel 3.2 are also welded to the upper header 3.4 and the lower header 3.6, respectively.
  • Upper header 3.4 through steam extraction tube 3.8 Connected to the drum 3.7, and the interface is located above the liquid level in the drum 3.7. It is used to recover the water vapor generated by the cooling water after absorbing the residual heat of the syngas.
  • the water vapor can be from the drum 3.7
  • the upper part is exported for use in other processes; the lower header 3.6 is connected to the bottom end of the drum 3.7 through the down pipe 3.9, and the cooling water in the drum 3.7 is passed through the down pipe 3.9 and the lower header 3.6
  • the lower pipe 3.5 enters the heat pipe 3.1 and the membrane wall pipe screen 3.2.
  • the drum 3.7 is formed with the heat pipe 3.1 and the membrane wall panel 2 Natural water circulation between.
  • the tar is in a liquid state. Since the heat pipe 3.1 and the membrane wall pipe screen 3.2 are longitudinally arranged, the tar will follow the heat pipe under the action of gravity 3.1 And the membrane wall tube screen 3.2 flows downward, and drops into the ash hopper 3.10 provided on the lower bottom surface of the furnace body and is discharged from the outlet. Inlet connector 3.12 and outlet connector 3.13 A tapered structure may be adopted, and the inner wall may be coated with a refractory layer composed of a refractory castable, or a water-cooled coil may be laid inside the refractory castable according to requirements. In addition, the membrane wall panel 3.2 of the furnace body and the outer surface of the top wall are provided with a thermal insulation layer.
  • the insulation cotton material with good insulation performance and low density is preferred, so that the weight of the equipment is significantly reduced compared with the traditional waste heat boiler.
  • the heat pipe type waste heat boiler 4 in this embodiment adopts a horizontal structure as a whole, and the syngas flows horizontally, including a heat pipe (heat pipe) 4.1 , a number of heated pipes 4.1 longitudinally arranged in parallel, high-temperature syngas flows laterally between the lower sections of the heated pipe 4.1, the lower section of the heated pipe 4.1 is the light pipe structure; the upper end of the heated pipe 4.1 is inserted into the drum 4.2
  • the sealing tube is arranged at the joint of the heat pipe 4.1 and the drum 4.2.
  • Drum 4.2 A cooling water inlet and a hot water (or steam) outlet are arranged on the upper.
  • the heat pipe 4.1 is composed of a heat insulating wall 4.7, the heat insulating wall 4.7
  • the contact surface with the syngas is insulated brick, and the outer joint is welded with the steel plate to ensure the overall sealing of the furnace body.
  • the insulating cotton can be arranged between the insulating brick and the sealing steel plate according to the design requirements.
  • Syngas inlet joint of heat pipe type waste heat boiler 4 4.5 ⁇ , export joints 4.6 tapered joint interface with steel plate rolled, imported joints 4.5 inner wall cast insulation or refractory castable, inlet joint 4.5, outlet joint 4.6 and insulation wall 4.7
  • the outer sealing steel plate is sealed and welded.
  • Heated pipe 4.1 The lower part is arranged with a steel plate rolled round-shaped ash hopper 4.4, the ash hopper 4.4 is also insulated with the wall 4.7 The outer sealing steel plate is sealed and welded.
  • the lower part of the heat pipe 4.1 is an endothermic section, and the upper end is an exothermic section.
  • Heat pipe 4.1 The lower part absorbs the heat energy in the syngas and reduces the temperature of the syngas; the cooling water in the drum 4.2 absorbs the heat generated by the upper end of the heat pipe 4.1 into hot water or steam, and the hot water or steam is removed from the drum.
  • the recovered hot water is supplied to the cold flue device 1 and the water-cooled chilling tower 2, and is recycled.
  • a heat pipe type waste heat boiler 4 The flowing syngas continuously condenses out of tar during the temperature drop process, and the lower section of the heated pipe 4.1 does not directly contact the cooling water in the drum 4.2, so the heated pipe 4.1
  • the lower surface can maintain a higher metal temperature, which at the same time increases the temperature of the tar adhering to the surface, and the temperature increase can reduce the flow viscosity of the tar while the heat pipe 4.1
  • the lower section is a vertically downward light pipe structure without any attachments that increase the tar flow resistance, which allows the adhesion, especially the tar adhering to the surface of the heat pipe 4.1, to flow down to the ash hopper under gravity 4.4 Inside to discharge. Clean heated tube 4.1 Surface is necessary to improve the heat transfer efficiency of the heat pipe type waste heat boiler 4, and the heated tube in contact with the syngas 4.1 Maintaining a relatively high
  • the ordinary waste heat boiler is used instead of the above-mentioned water pipe type waste heat boiler 3, and the heat pipe type waste heat boiler 4
  • the structure can also realize the function of the whole system, but the effects of heat exchange efficiency and waste heat recovery are poor.
  • the biomass synthesis gas produced by the high temperature pyrolysis biomass gasification furnace 10 has a temperature of 1000-1100 ° C, a dust content of less than 20 g/Nm 3 , and a tar content of less than 3 g /Nm 3 , and the synthesis gas is initially passed through a water-cooled flue device 1 After cooling, it enters the water-cooled chilling tower 2, water-cooled or water-cooled and sprayed with water to chill to about 780 ⁇ 820 °C.
  • the condensed slag is discharged from the bottom of the tower to avoid contamination of the heated surface slag of the waste heat boiler in the subsequent procedure.
  • the heat exchange performance of the waste heat boiler is stable;
  • the waste heat boiler of this embodiment is divided into two sections: a high temperature section and a low temperature section.
  • the high temperature section adopts a water tube type waste heat boiler 3, and the temperature of the outlet syngas is controlled at 400 ⁇ 450 °C. That is, control above the freezing point of heavy tar to avoid heavy tar condensation in this section.
  • the steam pressure of the waste heat boiler designed in this section is 1.6MPa.
  • the low temperature section uses a heat pipe type waste heat boiler 4 to improve heat transfer efficiency, the temperature of the outlet syngas is controlled at 200 °C
  • the heavy tar is condensed in this section and collected by the tank.
  • the steam pressure of the waste heat boiler designed in this section is designed to be 0.5 ⁇ 1.6MPa, and the generated low-pressure steam can be used for purging the dust-removing equipment.
  • Water-cooled flue device 1 and the water-cooled chilling tower 2 The recovered waste heat enters the heat pipe type waste heat boiler 4, and after the steam-water separation, the furnace water is recycled;
  • the biomass and syngas have low dust and tar content, and coarse dust removal does not require a cyclone or venturi dust collector. Therefore, the syngas from the outlet of the heat pipe type waste heat boiler 4 is directly fed into the packed washing and cooling tower. It can not only remove the harmful gases such as H 2 S, NH 3 and HCN in the syngas, but also reduce the system resistance and save the power consumption of the fan 7 . About 40 ⁇ 45 °C;
  • the syngas is sent to the wet electrostatic precipitator for deep dust removal and tar removal to ensure that the syngas reaches dust and tar content below 10mg/Nm 3 and the temperature is lower than 45 °C, which fully meets the gas consumption of the follow-up section. Requirements; at the same time, the sensible heat recovery rate is greater than 80%.
  • Qualified syngas is pumped through the blower 7 to the wet gas cabinet for storage or for downstream sections; the torch is placed in parallel with the wet gas cabinet 9 It can burn the exhaust gas when the system starts or the syngas composition exceeds the standard.
  • the core of the invention is to achieve biomass energy with low energy consumption and high efficiency by setting chilling tower chilling, waste heat boiler cooling and waste heat recycling and recovery of heavy tar, washing cooling tower and electrostatic precipitator for dust removal and decoking step by step. Cooling and washing of the syngas. Therefore, the scope of protection is not limited to the above embodiment. It is apparent that those skilled in the art can make various modifications and variations to the present invention without departing from the scope and spirit of the invention. For example, the water-cooled flue device is not limited to the specific structure described in the embodiment. 1.
  • Water-cooled chiller tower 2, water pipe type waste heat boiler 3 and heat pipe type waste heat boiler 4 The technical scheme of the present invention can also be implemented by using a conventional flue, a chilling tower, and a waste heat boiler; the structure of each device in the system is not limited to the specific structure in the embodiment, and equivalent modifications and deformations are also feasible; Waste heat boiler 4 The water-cooled flue device 1 and the water-cooled chilling tower 2 are not limited to the form constituting the water circulation in the embodiment, and the water-cooled flue device 1 and the water-cooled chilling tower 2 are separately supplied with water, and the heat pipe type waste heat boiler 4 The recovery of waste heat for use in other process sections is also feasible; the temperature, pressure and other parameters in each step can be reasonably adjusted according to the temperature, dust content and tar content of the syngas before treatment. It is intended that the present invention cover the modifications and variations of the invention, and the scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chimneys And Flues (AREA)
  • Processing Of Solid Wastes (AREA)
  • Industrial Gases (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

提供了一种生物质合成气冷却、洗涤工艺和系统。该工艺针对温度为1000-1100°C、粉尘含量小于20g/Nm3、焦油含量小于3g/Nm3的生物质合成气,包括如下步骤:1)将合成气送入激冷塔(2)激冷凝渣;2)将激冷凝渣后的合成气送入余热锅炉进行余热回收利用,并使合成气中的重质焦油凝结;3)经余热锅炉后的合成气送入洗涤冷却塔(5)进行除尘、降温;4)经洗涤冷却塔(5)除尘、降温后的合成气送入电除尘器(6)进行深度除尘、除焦油。所述系统包括与高温热解生物质气化炉相连的激冷塔(2),激冷塔(2)依次通过合成气管道连接余热锅炉、洗涤冷却塔(5)和电除尘器(6)。该工艺流畅、系统结构简单、热利用效率高、合成气处理效果好。

Description

生物质合成气冷却、洗涤工艺及系统 技术领域
本发明涉及新能源领域中生物质能的利用,具体地指一种生物质合成气冷却、洗涤工艺及系统。
背景技术
随着化石燃料的逐渐枯竭,生物质可再生清洁能源的开发利用受到普遍关注,并处于快速发展之中。生物质制气、制油是新能源开发领域的重要研究课题。
同煤制气一样,生物质制气也须经历冷却、洗涤的净化过程。现阶段,有关生物质气化方法的研究较多,并取得了大量成果,但是关于生物质合成气冷却、洗涤方面的研究较少,多沿用传统煤制气冷却、洗涤的老办法。
煤制气冷却不外乎炉内、炉外或内外组合的方式。
炉内水冷时,气化炉结构复杂,炉体尺寸大,壁面易挂渣,水侧易结垢,存在爆管或穿孔漏水的隐患;炉内气冷时,用气量大,且混合气的体积增大较多,进而增大了后续设备的尺寸,主流程及循环煤制气流程电耗高。
炉外完全水激冷的方式,能够直接将合成气的温度降至 200~300℃ ,但完全水激冷方式仅适于特定的化工合成用,有较大的局限性。
采用辐射式余热锅炉来冷却高温合成气,要求该余热锅炉有较大的凝渣受热面,并需配备特别的清灰装置,会增加设备投资。
煤制气除尘、除焦的方法也有很多,如沉降、过滤、旋风除尘、电除尘、水洗或文丘里除尘等。不同的方式,除尘效果和阻力消耗差别也较大。
同样地,不同的原料及气化工艺,合成气的特性也不尽相同,要达到先进的净化指标和经济指标,应采用有针对性的工艺方法和系统配置。而传统煤制气的处理方法,其系统复杂、流程长、能耗高、效率低、稳定性和经济性差,对于生物质合成气的净化处理,并不实用。
技术问题
本发明所要解决的技术问题就是提供一种生物质合成气冷却、洗涤工艺及系统,其工艺流畅、系统简捷,而能耗低、效率高。
技术解决方案
为解决上述技术问题,本发明提供的一种生物质合成气冷却、洗涤工艺,是针对温度为 1000~1100℃、粉尘含量小于20g/Nm3 、焦油含量小于 3g /Nm3 的生物质合成气的处理工艺,它包括如下步骤:
1 )将合成气送入激冷塔激冷凝渣;
2 )将激冷凝渣后的合成气送入余热锅炉进行余热回收利用,并使合成气中的重质焦油凝结;
3 )经余热锅炉后的合成气送入洗涤冷却塔进行除尘、降温;
4 )经洗涤冷却塔除尘、降温后的合成气送入电除尘器进行深度除尘、除焦油。
上述技术方案的所述步骤 1 )中,经 激冷塔激冷后的 合成气温度为 780~820℃ 。
上述技术方案的所述步骤 1 )中,合成气通过水冷烟道装置 进行初步冷却后 送入激冷塔。
上述技术方案的所述步骤 2 )中,余热回收利用分为高温段和低温段两段进行;高温段采用水管式余热锅炉,出口合成气温度控制在 400~450℃;低温段采用热管式余热锅炉,出口合成气温度控制在200℃以下。
进一步地,所述高温段的余热蒸汽压力为 1.6MPa 以上;所述低温段的余热蒸汽压力为 0.5~1.6MPa 。
更进一步地,所述步骤 1 )中,激冷塔采用水冷式激冷塔,合成气通过水冷烟道装置 进行初步冷却后 送入水冷式激冷塔;所述水冷烟道装置和水冷式激冷塔回收的余热送入热管式余热锅炉,进行汽水分离后,水循环使用。
上述技术方案的所述步骤 3 )中,洗涤冷却塔将合成气降温至 40~45℃。
本发明提供的一种生物质合成气冷却、洗涤系统,包括与高温热解生物质气化炉相连的激冷塔,激冷塔依次通过合成气管道连接余热锅炉、洗涤冷却塔和电除尘器。
上述技术方案中,所述高温热解生物质气化炉与激冷塔通过水冷烟道装置连接。
进一步地,所述水冷烟道装置包括水冷烟道及其受热管;水冷烟道由进口水冷烟道、上弯头水冷烟道、直水冷烟道、下弯头水冷烟道和出口水冷烟道顺次密封连接构成;受热管周向排列,相邻的受热管之间通过钢板条无缝连接构成环形水冷壁,环形水冷壁内腔构成上述的各段烟道。
更进一步地,所述的进口水冷烟道由进口环形集箱、进口环形水冷壁构成,其中进口环形水冷壁与所述上弯头水冷烟道连通;进口环形集箱上设有冷却介质进口管,用于导入冷却介质,进口环形集箱还设有多个接管,接管与所述受热管连通;所述出口水冷烟道与进口水冷烟道结构相同;所述水冷烟道的内侧管壁上设有 60~80mm 厚的耐火层。
上述技术方案中,所述激冷塔为水冷式激冷塔。
进一步地,所述水冷式激冷塔包括密封的水冷筒体,水冷筒体由环形排列的受热管围合而成,相邻受热管之间密封连接,全部受热管的下端与进口集箱连通,用于通入冷却用水,全部受热管的上端与出口集箱连通,用于导出冷却用水;水冷筒体的上部筒壁设有进口接头,用于通入待处理的合成气,水冷筒体的下部筒壁设有出口接头,用于导出处理后的合成气;水冷筒体的下部呈倒锥形,锥形底部设有排渣口。
更进一步地,所述水冷筒体的顶部布置有若干喷水管。所述喷水管的喷水管管路系统包括稳压罐和雾化喷嘴,稳压罐和雾化喷嘴之间接有喷水管道;稳压罐的出水口通过出水阀接至喷水管道,稳压罐的入水口接有进水阀;稳压罐上还设有进气口和出气口,进气口接有进气阀,稳压罐的出气口接有出气阀。
上述技术方案中,所述余热锅炉包括依次连接的水管式余热锅炉和热管式余热锅炉。
进一步地,所述水管式余热锅炉包括锅筒和设置于锅筒下方的炉体,所述炉体为卧式结构,进口接头和出口接头位于炉体的水平两端;炉体包括炉壁和若干纵向布置的受热管,全部受热管的顶端通过上连管与上集箱连通,全部受热管的底端通过下连管与下集箱连通;上集箱通过蒸汽引出管与所述锅筒连通,用于回收水蒸气;下集箱通过下降管与所述锅筒的底端连通,用于提供冷却水;所述炉体的两侧壁为膜式壁管屏,膜式壁管屏的上端和下端也分别与上集箱和下集箱连通。
进一步地,所述热管式余热锅炉包括受热管、锅筒和保温墙,受热管采用热管,受热管的放热段插入锅筒内,受热管的吸热段安置在保温墙内,保温墙上还焊接有进口接头和出口接头,保温墙的下端焊接有落灰斗。
进一步地,所述激冷塔为水冷式激冷塔,所述高温热解生物质气化炉与水冷式激冷塔通过水冷烟道装置连接,所述热管式余热锅炉的水管道依次与水冷烟道装置和水冷式激冷塔的水管道串联构成水循环系统。
上述技术方案中,所述洗涤冷却塔为填料式洗涤冷却塔。
上述技术方案中,所述电除尘器为湿式电除尘器。
上述技术方案中,所述电除尘器的出气口通过风机分别与气柜和燃放火炬连接。
有益效果
与现有采用煤制气的净化处理方式相比,本发明采用了炉外部分喷水激冷方式,对气化操作无干扰,且通过控制激冷程度,兼顾了冷却凝渣效果和系统的热利用效率;两级、双压余热锅炉的设置,实现了重质焦油的集中收集处理,余热梯级回用,提高了系统的热效率;洗涤冷却塔和电除尘器除尘、除焦,实现了合成气的逐级净化,整个工艺流畅、系统结构简单。
附图说明
图 1 为本发明生物质合成气冷却、洗涤系统一个实施例的结构示意图,并示意了工艺流程;
图 2 为图 1 中水冷烟道装置一种实施方式的结构示意图;
图 3 为图 2 的 A 向俯视图;
图 4 为图 2 的 B-B 剖面放大图;
图 5 为图 1 中水冷式激冷塔一种实施方式的结构示意图;
图 6 为图 5 的 C-C 剖面图;
图 7 为图 6 中 I 部结构放大图;
图 8 为图 5 中喷水管的一种管路系统图;
图 9 为图 1 中水管式余热锅炉一种实施方式的结构示意图;
图 10 为图 9 的 D-D 剖视图;
图 11 为图 1 中热管式余热锅炉一种实施方式的结构示意图;
图 12 为图 11 的 E-E 剖视图;
图中: 1- 水冷烟道装置(其中: 1.1 -进口水冷烟道、 1.2 -上弯头水冷烟道、 1.3 -直水冷烟道、 1.4 -下弯头冷烟道、 1.5 -出口水冷烟道、 1.6 -耐火层、 1.7 -受热管、 1.8 -钢板条), 2- 水冷式激冷塔(其中: 2.1 -水冷筒体、 2.2 -喷水管、 2.3 -出口集箱、 2.4 -进口接头、 2.5 -附加受热结构、 2.6 -出口接头、 2.7 -进口集箱、 2.8 -排渣口、 2.9 -受热管、 2.10 -钢板条、 2.11 -隔热层、 2.12 -耐火层), 3- 水管式余热锅炉(其中: 3..1 -受热管、 3.2 -膜式壁管屏、 3.3 -上连管、 3.4 -上集箱、 3.5 -下连管、 3.6 -下集箱、 3.7 -锅筒、 3.8 -蒸汽引出管、 3.9 -下降管、 3.10 -落灰斗、 3.11 -隔热层、 3.12 -进口接头、 3.13 -出口接头), 4- 热管式余热锅炉(其中: 4.1 -受热管、 4.2 -锅筒、 4.3 -密封套管、 4.4 -落灰斗、 4.5 -进口接头、 4.6 -出口接头、 4.7 -保温墙), 5- 洗涤冷却塔, 6- 电除尘器, 7- 风机, 8- 气柜, 9- 燃放火炬, 10- 高温热解生物质气化炉, 11 -钢板式绝热烟道, 12 -喷水管管路系统(其中: 12.1 -稳压罐、 12.2 -进水阀、 12.3 -进气阀、 12.4 -出气阀、 12.5 -调节控制器、 12.6 -出水阀、 12.7 -节流孔板、 12.8 -切断阀、 12.9 -压力表、 12.10 -雾化喷嘴)。
本发明的最佳实施方式
以下结合附图对本发明的具体实施例作进一步的详细描述:
如图 1 所示,本发明的一种生物质合成气冷却、洗涤系统,包括通过水冷烟道装置 1 与高温热解生物质气化炉 10 相连的水冷式激冷塔 2 ,水冷式激冷塔 2 依次通过合成气管道连接水管式余热锅炉 3 、热管式余热锅炉 4 、洗涤冷却塔 5 和电除尘器 6 。为便于热量的回收利用,热管式余热锅炉 4 的水管道依次与水冷烟道装置 1 和水冷式激冷塔 2 的水管道串联构成水循环系统,使水冷烟道装置 1 和水冷式激冷塔 2 回收的余热在热管式余热锅炉 4 内得到应用。此外,电除尘器 6 的出气口通过风机 7 分别与气柜 8 和燃放火炬 9 连接。本实施例中,洗涤冷却塔 5 采用填料式洗涤冷却塔,电除尘器 6 采用湿式电除尘器,气柜 8 采用湿式气柜。
本实施例优选了水冷烟道装置 1 连接高温热解生物质气化炉 10 和水冷式激冷塔 2 ,是为了避免 常规烟气连接烟道只起烟气连接作用、不能给烟气降温等问题。常规烟气连接烟道为由钢板卷成的或由大直径钢管制成的筒式结构,在钢板圆筒或大直径管道内壁浇注200~300mm耐火浇注料。该结构为绝热烟道,给后续冷却设备造成了巨大的冷却压力;另一方面,由于200 ~ 300mm 耐火浇注料的存在,使烟道质量大,且耐火材料容易脱落,从而导致烟道筒体烧穿、烟气外泄而引发火灾甚至爆炸的危险。如图2至图4所示,本发明中的一种 水冷烟道装置 1 ,包括水冷烟道及其受热管 1.7 。水冷烟道由进口水冷烟道 1.1 、上弯头水冷烟道 1.2 、直水冷烟道 1.3 、下弯头水冷烟道 1.4 和出口水冷烟道 1.5 顺次密封连接构成。受热管 1.7 周向排列,相邻的受热管 1.7 之间通过钢板条 1.8 无缝连接构成环形水冷壁,环形水冷壁内腔构成上述的各段烟道。上述进口水冷烟道 1.1 由进口环形集箱、进口环形水冷壁构成,其中进口环形水冷壁与上弯头水冷烟道 1.2 连通;进口环形集箱上设有冷却介质进口管,用于导入冷却介质,本实施例中冷却介质为热管式余热锅炉 4 送出的循环水,进口环形集箱还设有多个接管,接管与受热管 1.7 连通。出口水冷烟道 1.5 与进口水冷烟道 1.1 结构相同。水冷烟道的内侧管壁上设有 60~80mm 厚的耐火层 1.6 ,优选 70mm ,以提高其抗高温和抗磨损的性能,延长其使用寿命。这样,热管式余热锅炉 4 送出的冷却水进入进口水冷烟道 1.1 的进口环形集箱,然后均匀地通过接管进入组成各段水冷烟道的受热管 1.7 ,汇集到出口水冷烟道 1.5 的出口环形集箱中,最后流入激冷塔。冷却水在上述流动过程中,不断吸收生物质合成气的热量,水温不断上升,生物质合成气的温度不断降低,从而实现两者的热交换。水冷烟道装置 1 既能起到烟气的连接作用,又能给烟气降温,使得烟道内壁贴壁温度低,焦油不易凝固,有效防止了由于焦油凝固而造成的挂焦堵灰现象,保证了设备长期运行的稳定性,且烟道无需很厚的耐火层,避免了常规烟道易出现的耐火浇注料的破裂和塌落从而导致的筒体烧穿、烟气外泄的问题,保证了设备长期运行的安全性。当然,采用常规烟道也能够实现本发明技术方案,但效果较差。
本实施例还优选了水冷式激冷塔 2 ,以解决常规激冷塔质量大、启动和停止慢、较厚的耐火浇注料易脱落等问题。如图 5 至图 7 所示,本发明中的一种水冷式激冷塔 2 ,包括密封的水冷筒体 2.1 ,水冷筒体 2.1 为膜式结构,即由环形排列的受热管 2.9 围合而成,水冷筒体 2.1 的上端由受热管 2.9 统一弯曲形成锥形,相邻受热管 2.9 之间用钢板条 2.10 密封焊接。全部受热管 2.9 的下端与进口集箱 2.7 连通、上端与出口集箱 2.3 连通,冷却水依次经进口集箱 2.7 、受热管 2.9 和出口集箱 2.3 ,以吸收合成气余热,使合成气降温。水冷筒体 2.1 的上部筒壁设有进口接头 2.4 ,用于通入待处理的合成气,水冷筒体 2.1 的下部筒壁设有出口接头 2.6 ,用于导出处理后的合成气,进口接头 2.4 和出口接头 2.6 可由钢板法兰制成。水冷筒体 2.1 的下部呈倒锥形,锥形底部设有排渣口 2.8 。此外,水冷筒体 2.1 内可按工艺和设计要求布置适当的附加受热结构 2.5 ,以加强合成气余热的吸收,本实施例中的附加受热结构 2.5 为设置于水冷筒体 2.1 顶壁的若干 U 型受热管,如图 6 所示。水冷筒体 2.1 的顶部还可设置喷水管 2.2 ,喷水管 2.2 的数量可根据需要确定。水冷筒体 2.1 的倒锥形部分的内壁可设有 50~60mm 厚的耐火层 2.12 ,以使该倒锥形部分的筒面保持一定温度,以利于合成气降温过程中形成的凝渣和焦油经排渣口 2.8 顺利排出。在水冷筒体 2.1 的外表面还可敷设保温棉材质的隔热层 2.11 ,其保温性能好、密度小,从而使本水冷式激冷塔的外表面温度不超过 40 ℃ ,而又不会增大整个设备的重量。该设备中的喷水管 2.2 在运行时可以与受热管 2.9 同时工作或关闭,而由受热管 2.9 单独对合成气进行冷却,从而改变了传统的喷水冷却方式,具有结构简单、重量轻、安装和维护方便,还可部分回收合成气的余热等优势。当然,采用常规激冷塔也能够实现本发明技术方案,只是效果较差。
当采用常规激冷塔或者上述优选的水冷式激冷塔 2 时,可能用到喷水管 2.2 ,本发明对其喷水管管路系统 12 优选了一种实施方案。常规喷水雾化方式分为气力雾化和机械雾化。采用气力雾化,其喷水流量和效果较易稳定控制,但由于有用于雾化的压缩气体进入需要喷水的环境内,使得此种雾化方式有一定的使用局限性;采用机械雾化时,由于常规水管道内的水压经常是在一定幅度内波动的,所以保持水压的相对稳定较难,当需要进行水压变动调节时,水压的调整也较难准确,而且调节至设定值时周期长、系统能耗大。如图 8 所示,本发明中的一种喷水管管路系统 12 ,包括稳压罐 12.1 、调节控制器 12.5 、进水阀 12.2 、进气阀 12.3 、出水阀 12.6 、雾化喷嘴 12.10 等。稳压罐 12.1 为钢制的密封罐体,稳压罐 12.1 上部储有压缩气体,下部为水。稳压罐 12.1 上布置有进水口、出水口、进气口、出气口,分别与进水阀 12.2 、出水阀 12.6 、进气阀 12.3 、出气阀 12.4 相连。进水阀 12.2 安装在稳压罐 12.1 下部,外连接外部水源,由厂区内有一定压力的水管道或直接用水泵供水,本实施例中水从上述水冷烟道装置 1 流入稳压罐 12.1 ;出水阀 12.2 安装在稳压罐 12.1 底部,再连接若干组喷水支路,喷水支管依次连接节流孔板 12.7 、切断阀 12.8 、压力表 12.9 、雾化喷嘴 12.10 ;进气阀 12.3 安装在稳压罐 12.1 上部,外连接厂区内的压缩气体源;出气阀 12.4 安装在稳压罐 12.1 顶部,可直接连通外部环境。调节控制器 12.5 为控制模块,可根据稳压罐 12.1 内的压力和操作程序控制进气阀 12.3 和出气阀 12.4 的开启和关闭,调节稳压罐 12.1 内压缩气体的压力,进而控制和调节管路系统内的喷水压力。该喷水管管路系统 12 运行时,外部水源通过进水阀 12.2 进入稳压罐 12.1 内,稳压罐 12.1 内的水通过出水阀 12.6 ,再分配流入个喷水支路,每路喷水支路内的水流经节流孔板 12.7 、切断阀 12.8 ,最后通过雾化喷嘴 12.10 雾化后喷到所需喷水的环境内,本实施例中的喷水环境即为激冷塔。节流孔板 12.7 用于平衡各喷水支路间的压力,可保证各支路之间喷水效果相等;切断阀 12.8 可决定任一喷水支路是否参与工作;压力表 12.9 用于显示准确的雾化压力。本喷水管管路系统 12 内的压力由稳压罐 12.1 内的压缩气体控制,系统调节准确、调节速度快,且压缩气体气源选择范围广;采用了机械雾化方式,压缩气体不进入喷水环境内,适用范围广;由调节控制器 12.5 控制整个过程,实现了全自动化操作。当然,采用常规气力雾化或机械雾化方式的管路系统也能够实现本发明技术方案,只是存在上述缺陷,喷水效果较差。
本实施例中的水管式余热锅炉 3 如图 9 和图 10 所示,包括锅筒 3.7 和设置于锅筒 3.7 下方的炉体。该炉体为卧式结构,进口接头 3.12 和出口接头 3.13 位于炉体的水平两端,高温合成气在炉内水平流动。炉体包括炉壁和若干纵向布置的受热管 3.1 ,炉体的两侧壁为膜式壁管屏 3.2 ,起吸热和密封作用。高温合成气在若干受热管 3.1 间流动时,受热管 3.1 和膜式壁管屏 3.2 内的冷却水吸收合成气余热以降低合成气温度。全部受热管 3.1 的顶端和底端分别与上连管 3.3 和下连管 3.5 焊接,上连管 3.3 和下连管 3.5 则分别与上集箱 3.4 和下集箱 3.6 焊接,膜式壁管屏 3.2 的上、下端也分别与上集箱 3.4 和下集箱 3.6 焊接。上集箱 3.4 通过蒸汽引出管 3.8 与锅筒 3.7 连通,且接口位于锅筒 3.7 内的液面上方,用于回收冷却水吸收合成气余热后产生的水蒸气,水蒸气可由锅筒 3.7 上部导出供其它工艺使用;下集箱 3.6 通过下降管 3.9 与锅筒 3.7 的底端连通,锅筒 3.7 内的冷却水依次经下降管 3.9 、下集箱 3.6 、下连管 3.5 进入受热管 3.1 和膜式壁管屏 3.2 内。这样,利用水蒸汽和冷却水的之间的密度差,形成了锅筒 3.7 与受热管 3.1 和膜式壁管屏 2 之间自然水循环。生物质合成气在若干受热管 3.1 间流动时,随着热量不断被冷却水吸走,温度不断下降,合成气里含有的焦油也会不断的凝结出并粘附在受热管 3.1 和膜式壁管屏 3.2 的表面上,此时焦油处于液态。由于,受热管 3.1 和膜式壁管屏 3.2 是纵向布置的,所以在重力作用下,焦油会沿受热管 3.1 和膜式壁管屏 3.2 向下流动,滴入炉体下底面设置的落灰斗 3.10 内而从出口排出。进口接头 3.12 和出口接头 3.13 可采用锥形结构,其内壁可敷设耐火浇注料构成的耐火层,也可根据需求在耐火浇注料内部敷设水冷盘管。此外,炉体的膜式壁管屏 3.2 和顶壁外表面敷设有隔热层 3.11 ,隔热层 3.11 优选保温性能好且密度小的保温棉材质,使设备的重量较传统余热锅炉显著减轻。该水管式余热锅炉 3 处于合成气温度较高的工艺段,其换热效率高,回收的高压水蒸气可供其它工艺段使用,自身重量轻。
本实施例中的热管式余热锅炉 4 整体采用卧式结构,合成气水平流动,包括受热管(热管) 4.1 ,若干受热管 4.1 纵向顺列布置,高温合成气在受热管 4.1 下段间横向流动,受热管 4.1 下段为光管结构;受热管 4.1 上端插入锅筒 4.2 内,为避免因出现较大温度差造成金属热应力,受热管 4.1 和锅筒 4.2 连接处布置有密封套管 4.3 。锅筒 4.2 上布置有冷却水进口和热水(或蒸汽)出口。受热管 4.1 组成的管束两侧设有保温墙 4.7 ,保温墙 4.7 与合成气接触面为保温砖,外侧整体密封焊接钢板,保证炉体的整体密封性,保温砖和密封钢板之间可按设计需要布置保温棉。热管式余热锅炉 4 的合成气进口接头 4.5 、出口接头 4.6 采用钢板卷制的方圆接的锥形结构接口,进口接头 4.5 内壁浇注保温或耐火浇注料,进口接头 4.5 、出口接头 4.6 均与保温墙 4.7 外侧的密封钢板密封焊接。受热管 4.1 下部布置有钢板卷制方圆接型落灰斗 4.4 ,落灰斗 4.4 也与保温墙 4.7 外侧的密封钢板密封焊接。该热管式余热锅炉 4 运行时,受热管 4.1 下段为吸热段,上端为放热段。受热管 4.1 下段吸收合成气中的热能,降低合成气的温度;锅筒 4.2 内的冷却水吸收受热管 4.1 上端放出的热能变成热水或水蒸汽,热水或水蒸汽再从锅筒 4.2 内引出,可提供工艺或生活使用,本实施例为提高热利用效率,将回收的热水供水冷烟道装置 1 、水冷式激冷塔 2 ,并循环使用。在热管式余热锅炉 4 中流动的合成气在温度下降过程中不断凝结出焦油,受热管 4.1 下段不与锅筒 4.2 内冷却水直接接触,因此受热管 4.1 下段表面可以保持较高金属温度,这同时就提高了粘附在其表面的焦油的温度,温度的提高可以减小焦油的流动黏度,同时受热管 4.1 下段为垂直向下的光管结构,没有任何增加焦油流动阻力的附件,这就可使粘附、特别是贴紧受热管 4.1 表面的焦油得以在重力作用下流落到落灰斗 4.4 内以排出。清洁的受热管 4.1 表面对提高热管式余热锅炉 4 的换热效率是非常必要的,与合成气接触处的受热管 4.1 表面保持较高温度对减轻合成气对金属的腐蚀也极为有利。
当然,采用普通余热锅炉而非上述水管式余热锅炉 3 、热管式余热锅炉 4 的结构也能够实现整个系统的功能,只是换热效率和余热回收等效果较差。
结合上述生物质合成气冷却、洗涤系统,进行生物质合成气冷却、洗涤的工艺过程如下:
1 )高温热解生物质气化炉 10 产生的生物质合成气温度在 1000~1100℃、粉尘含量小于20g/Nm3 、焦油含量小于 3g /Nm3 ,该合成气经水冷烟道装置 1 初步冷却后进入 水冷式激冷塔 2 ,水冷或者水冷并喷水激冷至约 780~820℃ ,凝出的熔渣,从塔底排出,避免后续程序中的余热锅炉受热面结渣污染,保证了余热锅炉的换热性能稳定;
2 ) 水冷式激冷塔 2 激冷凝渣后的合成气进入余热锅炉,本实施例的余热锅炉分为高温段和低温段两段设置,高温段采用水管式余热锅炉 3 ,出口合成气温度控制在 400~450℃ ,即控制在重质焦油的凝点以上,避免重质焦油在此段凝结,同时,设计该段的余热锅炉蒸汽压力在 1.6MPa 以上,以提高蒸汽温度品质,满足相应化工用汽需求;低温段采用热管式余热锅炉 4 以提高换热功效,出口合成气温度控制在 200 ℃ 以下,以使重质焦油在此段凝结,并通过槽斗收集处理,同时,设计该段的余热锅炉蒸汽压力为 0.5~1.6MPa ,产生的低压蒸汽可供电除尘设备吹扫用。水冷烟道装置 1 和水冷式激冷塔 2 回收的余热进入热管式余热锅炉 4 ,进行汽水分离后,炉水循环使用;
3 )与煤制气不同,生物质合成气的粉尘、焦油含量较低,粗除尘无需配置旋风或文丘里除尘器,所以热管式余热锅炉 4 出口的合成气直接通入了填料式洗涤冷却塔,既达到除尘、降温的目的,又能洗去合成气中的 H2S 、 NH3 和 HCN 等有害气体,还能减小系统阻力,节省风机 7 电耗,洗涤后的合成气温度降至约 40~45℃ ;
4 )最后,合成气送入湿式电除尘器进行深度除尘、除焦油,确保合成气达到粉尘和焦油含量均低于 10mg/Nm3 ,温度低于 45 ℃ 的要求,完全满足后续工段的用气要求;同时,显热回收率大于 80% 。
合格的合成气经风机 7 抽吸至湿式气柜储存或者供下游工段使用;与湿式气柜并联的 燃放火炬 9 ,能够在系统启动或合成气成分超标时,对废气进行燃烧处理。
本发明的核心在于通过设置激冷塔激冷、余热锅炉冷却并余热回用和回收重质焦油、洗涤冷却塔和电除尘器逐级除尘、除焦,以低能耗、高效率的实现生物质合成气的冷却和洗涤。所以,其保护范围并不限于上述实施例。显然,本领域的技术人员可以对本发明进行各种改动和变形而不脱离本发明的范围和精神,例如:不限于实施例所述具体结构的水冷烟道装置 1 、水冷式激冷塔 2 、水管式余热锅炉 3 和热管式余热锅炉 4 ,采用常规烟道、激冷塔、余热锅炉也能够实施本发明技术方案;系统中各设备的结构也不限于实施例中的具体结构,其等同的改动和变形也都是可行的;热管式余热锅炉 4 、水冷烟道装置 1 、水冷式激冷塔 2 也不限于实施例中构成水循环的形式,采用水冷烟道装置 1 和水冷式激冷塔 2 单独供水,而热管式余热锅炉 4 的回收余热供其它工艺段使用等也是可行的;各步骤中的温度、压力等参数可以根据处理前合成气的温度、粉尘含量和焦油含量合理调整等。倘若这些改动和变形属于本发明权利要求及其等同技术的范围内,则本发明也意图包含这些改动和变形在内。

Claims (24)

1 .一种生物质合成气冷却、洗涤工艺,是针对温度为 1000~1100 ℃、粉尘含量小于 20g/Nm3 、焦油含量小于 3g/Nm3 的生物质合成气的处理工艺,其特征在于,它包括如下步骤:
1 )将 合成气送入激冷塔激冷凝渣;
2 )将激冷凝渣后的合成气送入余热锅炉进行余热回收利用,并使合成气中的重质焦油凝结;
3 )经余热锅炉后的合成气送入洗涤冷却塔进行除尘、降温;
4 )经洗涤冷却塔除尘、降温后的合成气送入电除尘器进行深度除尘、除焦油。
2 .根据权利要求 1 所述的 生物质合成气冷却、洗涤工艺,其特征在于:所述步骤 1 )中,经 激冷塔激冷后的 合成气温度为 780~820 ℃。
3 .根据权利要求 1 或 2 所述的 生物质合成气冷却、洗涤工艺,其特征在于:所述步骤 1 )中, 合成气通过水冷烟道装置进行初步冷却后送入激冷塔。
4 . 根据权利要求 1 所述的 生物质合成气冷却、洗涤工艺,其特征在于:所述步骤 2 )中, 余热回收利用分为高温段和低温段两段进行;高温段采用水管式余热锅炉,出口合成气温度控制在 400~450 ℃;低温段采用热管式余热锅炉, 出口合成气温度控制在 200 ℃以下。
5 .根据权利要求 4 所述的 生物质合成气冷却、洗涤工艺,其特征在于:所述高温段的余热蒸汽压力为 1.6MPa 以上。
6 .根据权利要求 4 所述的 生物质合成气冷却、洗涤工艺,其特征在于:所述低温段的余热蒸汽压力为 0.5~1.6MPa 。
7 . 根据权利要求 4 至 6 中任一权利要求 所述的 生物质合成气冷却、洗涤工艺,其特征在于:所述步骤 1 )中, 激冷塔采用水冷式激冷塔,合成气通过水冷烟道装置进行初步冷却后送入水冷式激冷塔;所述水冷烟道装置和水冷式激冷塔 回收的余热送入热管式余热锅炉,进行汽水分离后,水 循环使用。
8 .根据 权利要求 1 所述的 生物质合成气冷却、洗涤工艺,其特征在于:所述步骤 3 )中, 洗涤冷却塔将合成气降温至 40~45 ℃。
9 .一种生物质合成气冷却、洗涤系统,其特征在于:它包括与高温热解生物质气化炉( 10 )相连的激冷塔,激冷塔依次通过合成气管道连接余热锅炉、洗涤冷却塔( 5 )和电除尘器( 6 )。
10 .根据权利要求 9 所述的生物质合成气冷却、洗涤系统,其特征在于:所述高温热解生物质气化炉( 10 )与激冷塔通过水冷烟道装置( 1 )连接。
11 .根据权利要求 10 所述的生物质合成气冷却、洗涤系统,其特征在于:所述水冷烟道装置( 1 )包括水冷烟道及其受热管( 1.7 );水冷烟道由进口水冷烟道( 1.1 )、上弯头水冷烟道( 1.2 )、直水冷烟道( 1.3 )、下弯头水冷烟道( 1.4 )和出口水冷烟道( 1.5 )顺次密封连接构成;受热管( 1.7 )周向排列,相邻的受热管( 1.7 )之间通过钢板条( 1.8 )无缝连接构成环形水冷壁,环形水冷壁内腔构成上述的各段烟道。
12 .根据权利要求 11 所述的生物质合成气冷却、洗涤系统,其特征在于:所述的进口水冷烟道( 1.1 )由进口环形集箱、进口环形水冷壁构成,其中进口环形水冷壁与所述上弯头水冷烟道( 1.2 )连通;进口环形集箱上设有冷却介质进口管,用于导入冷却介质,进口环形集箱还设有多个接管,接管与所述受热管( 1.7 )连通;所述出口水冷烟道( 1.5 )与进口水冷烟道( 1.1 )结构相同。
13 .根据权利要求 11 所述的生物质合成气冷却、洗涤系统,其特征在于:所述水冷烟道的内侧管壁上设有 60~80mm 厚的耐火层( 1.6 )。
14 .根据权利要求 9 所述的生物质合成气冷却、洗涤系统,其特征在于:所述激冷塔为水冷式激冷塔( 2 )。
15 .根据权利要求 14 所述的生物质合成气冷却、洗涤系统,其特征在于:所述水冷式激冷塔( 2 )包括密封的水冷筒体( 2.1 ),水冷筒体( 2.1 )由环形排列的受热管( 2.9 )围合而成,相邻受热管( 2.9 )之间密封连接,全部受热管( 2.9 )的下端与进口集箱( 2.7 )连通,用于通入冷却用水,全部受热管( 2.9 )的上端与出口集箱( 2.3 )连通,用于导出冷却用水;水冷筒体( 2.1 )的上部筒壁设有进口接头( 2.4 ),用于通入待处理的合成气,水冷筒体( 2.1 )的下部筒壁设有出口接头( 2.6 ),用于导出处理后的合成气;水冷筒体( 2.1 )的下部呈倒锥形,锥形底部设有排渣口( 2.8 )。
16 .根据权利要求 15 所示的生物质合成气冷却、洗涤系统,其特征在于:所述水冷筒体( 2.1 )的顶部布置有若干喷水管( 2.2 )。
17 .根据权利要求 16 所述的生物质合成气冷却、洗涤系统,其特征在于:所述喷水管( 2.2 )的喷水管管路系统( 12 )包括稳压罐( 12.1 )和雾化喷嘴( 12.10 ),稳压罐( 12.1 )和雾化喷嘴( 12.10 )之间接有喷水管道;稳压罐( 12.1 )的出水口通过出水阀( 12.6 )接至喷水管道,稳压罐( 12.1 )的入水口接有进水阀( 12.2 );稳压罐( 12.1 )上还设有进气口和出气口,进气口接有进气阀( 12.3 ),稳压罐( 12.1 )的出气口接有出气阀( 12.4 )。
18 .根据权利要求 9 所述的生物质合成气冷却、洗涤系统,其特征在于:所述余热锅炉包括依次连接的水管式余热锅炉( 3 )和热管式余热锅炉( 4 )。
19 .根据权利要求 18 所述的生物质合成气冷却、洗涤系统,其特征在于:所述水管式余热锅炉( 3 )包括锅筒( 3.7 )和设置于锅筒( 3.7 )下方的炉体,所述炉体为卧式结构,进口接头( 3.12 )和出口接头( 3.13 )位于炉体的水平两端;炉体包括炉壁和若干纵向布置的受热管( 3.1 ),全部受热管( 3.1 )的顶端通过上连管( 3.3 )与上集箱( 3.4 )连通,全部受热管( 3.1 )的底端通过下连管( 3.5 )与下集箱( 3.6 )连通;上集箱( 3.4 )通过蒸汽引出管( 3.8 )与所述锅筒( 3.7 )连通,用于回收水蒸气;下集箱( 3.6 )通过下降管( 3.9 )与所述锅筒( 3.7 )的底端连通,用于提供冷却水;所述炉体的两侧壁为膜式壁管屏( 3.2 ),膜式壁管屏( 3.2 )的上端和下端也分别与上集箱( 3.4 )和下集箱( 3.6 )连通。
20 .根据权利要求 18 所述的生物质合成气冷却、洗涤系统,其特征在于:所述热管式余热锅炉( 4 )包括受热管( 4.1 )、锅筒( 4.2 )和保温墙( 4.7 ),受热管( 4.1 )采用热管,受热管( 4.1 )的放热段插入锅筒( 4.2 )内,受热管( 4.1 )的吸热段安置在保温墙( 4.7 )内,保温墙( 4.7 )上还焊接有进口接头( 4.5 )和出口接头( 4.6 ),保温墙( 4.7 )的下端焊接有落灰斗( 4.4 )。
21 .根据权利要求 18 所述的生物质合成气冷却、洗涤系统,其特征在于:所述激冷塔为水冷式激冷塔( 2 ),所述高温热解生物质气化炉( 10 )与水冷式激冷塔( 2 )通过水冷烟道装置( 1 )连接,所述热管式余热锅炉( 4 )的水管道依次与水冷烟道装置( 1 )和水冷式激冷塔( 2 )的水管道串联构成水循环系统。
22 .根据权利要求 9 至 21 中任一权利要求所述的生物质合成气冷却、洗涤系统,其特征在于:所述洗涤冷却塔( 5 )为填料式洗涤冷却塔。
23 .根据权利要求 9 至 21 中任一权利要求所述的生物质合成气冷却、洗涤系统,其特征在于:所述电除尘器( 6 )为湿式电除尘器。
24 .根据权利要求 9 至 21 中任一权利要求所述的生物质合成气冷却、洗涤系统,其特征在于:所述电除尘器( 6 )的出气口通过风机( 7 )分别与气柜( 8 )和燃放火炬( 9 )连接。
PCT/CN2012/083597 2011-12-29 2012-10-26 生物质合成气冷却、洗涤工艺及系统 WO2013097536A1 (zh)

Priority Applications (17)

Application Number Priority Date Filing Date Title
MX2014007945A MX353763B (es) 2011-12-29 2012-10-26 Proceso para enfriar y lavar gas de sintesis de biomasa y sistema para ello.
EP12862504.3A EP2799524B1 (en) 2011-12-29 2012-10-26 Process for cooling and washing biomass syngas and system thereof
AP2014007832A AP2014007832A0 (en) 2011-12-29 2012-10-26 Process for cooling and washing biomass syngas andsystem thereof
ES12862504.3T ES2630311T3 (es) 2011-12-29 2012-10-26 Procedimiento de enfriamiento y lavado de gas de síntesis de biomasa y sistema del mismo
CA 2862767 CA2862767A1 (en) 2011-12-29 2012-10-26 Process for cooling and washing biomass syngas and system thereof
SG11201403674QA SG11201403674QA (en) 2011-12-29 2012-10-26 Process for cooling and washing biomass syngas and system thereof
KR1020147021061A KR101616527B1 (ko) 2011-12-29 2012-10-26 바이오매스 합성가스 냉각 및 세정 방법 및 그 시스템
BR112014016324A BR112014016324A2 (pt) 2011-12-29 2012-10-26 processo de arrefecimento e lavagem de gás de síntese de biomassa e sistema do mesmo
IN1471MUN2014 IN2014MN01471A (zh) 2011-12-29 2012-10-26
RU2014131241/05A RU2588223C2 (ru) 2011-12-29 2012-10-26 Способ охлаждения и промывки синтез-газа из биомассы и система, предназначенная для реализации данного способа
DK12862504.3T DK2799524T3 (en) 2011-12-29 2012-10-26 Process for cooling and washing biomass synthesis gas and its system
JP2014549320A JP5829343B2 (ja) 2011-12-29 2012-10-26 バイオマス合成ガスの冷却・洗浄方法およびそのシステム
AU2012362087A AU2012362087B2 (en) 2011-12-29 2012-10-26 Process for cooling and washing biomass syngas and system thereof
US14/316,842 US9410096B2 (en) 2011-12-29 2014-06-27 Method and system for cooling and washing biomass syngas
ZA2014/05496A ZA201405496B (en) 2011-12-29 2014-07-25 Process for cooling and washing biomass syngas and system thereof
HRP20170979TT HRP20170979T1 (hr) 2011-12-29 2017-06-28 Postupak za hlađenje i ispiranje sintetskog plina iz biomase i odgovarajući sustav
CY20171100692T CY1119032T1 (el) 2011-12-29 2017-06-29 Διαδικασια για ψυξη και πλυση αεριου συνθεσης απο βιομαζα και αντιστοιχο συστημα

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110449513.7 2011-12-29
CN201110449513.7A CN102559289B (zh) 2011-12-29 2011-12-29 生物质合成气冷却、洗涤工艺及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/316,842 Continuation-In-Part US9410096B2 (en) 2011-12-29 2014-06-27 Method and system for cooling and washing biomass syngas

Publications (1)

Publication Number Publication Date
WO2013097536A1 true WO2013097536A1 (zh) 2013-07-04

Family

ID=46405909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083597 WO2013097536A1 (zh) 2011-12-29 2012-10-26 生物质合成气冷却、洗涤工艺及系统

Country Status (21)

Country Link
US (1) US9410096B2 (zh)
EP (1) EP2799524B1 (zh)
JP (1) JP5829343B2 (zh)
KR (1) KR101616527B1 (zh)
CN (1) CN102559289B (zh)
AP (1) AP2014007832A0 (zh)
AU (1) AU2012362087B2 (zh)
BR (1) BR112014016324A2 (zh)
CA (1) CA2862767A1 (zh)
CY (1) CY1119032T1 (zh)
DK (1) DK2799524T3 (zh)
ES (1) ES2630311T3 (zh)
HR (1) HRP20170979T1 (zh)
HU (1) HUE033002T2 (zh)
IN (1) IN2014MN01471A (zh)
MX (1) MX353763B (zh)
MY (1) MY170638A (zh)
PL (1) PL2799524T3 (zh)
SG (1) SG11201403674QA (zh)
WO (1) WO2013097536A1 (zh)
ZA (1) ZA201405496B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210075357A (ko) * 2019-12-13 2021-06-23 윤기백 바이오 가스 정제 시스템

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102559289B (zh) * 2011-12-29 2014-01-15 武汉凯迪工程技术研究总院有限公司 生物质合成气冷却、洗涤工艺及系统
CN102923657B (zh) * 2012-11-16 2015-02-25 华东理工大学 一种热量可回收的气态烃非催化部分氧化制合成气的方法
CN103343021B (zh) * 2013-07-17 2015-06-24 王建伟 一种生物质气化燃气的余热回收与净化装置及其净化方法
CN104419469A (zh) * 2013-08-27 2015-03-18 大连明佳金属制品有限公司 生物质下吸固定床气化炉供热系统
CN104359326A (zh) * 2014-11-21 2015-02-18 孙慕文 一种电弧炉炼钢烟气余热高效回收系统
CN110005846B (zh) * 2019-04-09 2024-04-30 北京石油化工工程有限公司 水封罐
CN111947481B (zh) 2019-05-14 2023-03-24 斗山重工业建设有限公司 冷却塔用集尘装置及包含该集尘装置的冷却塔
CN111637778A (zh) * 2020-06-04 2020-09-08 北京清创晋华科技有限公司 一种合成气显热回收组件
CN112961702A (zh) * 2021-02-05 2021-06-15 华能(天津)煤气化发电有限公司 一种用于控制igcc气化炉堵灰的操作方法
CN113714246B (zh) * 2021-08-03 2022-12-23 武汉武锅能源工程有限公司 一种垃圾焚烧飞灰处理系统及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1258712A (zh) * 1998-12-30 2000-07-05 中国科学院广州能源研究所 生物质循环流化床气化净化系统
CN1446880A (zh) * 2002-03-23 2003-10-08 合肥天焱绿色能源开发有限公司 一种负压燃烧的生物质气化方法和装置
CN2680671Y (zh) * 2004-02-20 2005-02-23 云南电力建设工程服务有限公司 一种经济适用的热解生物质燃气的净化及冷却设备
GB2455869A (en) * 2007-12-20 2009-06-24 O Gen Uk Ltd Gasification of biomass
CN101709228A (zh) * 2009-11-26 2010-05-19 中节环(北京)能源技术有限公司 带余热利用的生物质三段式气流床气化技术
CN201508115U (zh) * 2009-09-14 2010-06-16 长沙锅炉厂有限责任公司 膜式壁密封的炼钢电炉气化冷却烟道
CN202011860U (zh) * 2011-04-28 2011-10-19 武汉天颖环境工程有限公司 一种生物质热解气的净化系统
CN102559289A (zh) * 2011-12-29 2012-07-11 武汉凯迪工程技术研究总院有限公司 生物质合成气冷却、洗涤工艺及系统
CN202390399U (zh) * 2011-12-29 2012-08-22 武汉凯迪工程技术研究总院有限公司 用于生物质燃料气化合成气冷却系统的热管式换热器
CN202390400U (zh) * 2011-12-29 2012-08-22 武汉凯迪工程技术研究总院有限公司 生物质合成气冷却用水管式余热锅炉
CN202390403U (zh) * 2011-12-29 2012-08-22 武汉凯迪工程技术研究总院有限公司 生物质合成气冷却、洗涤系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102906A (en) * 1977-02-21 1978-09-07 Mitsubishi Heavy Ind Ltd Cooling of gracked gas
GB2199842A (en) * 1986-12-30 1988-07-20 Us Energy Power generating system and method utilizing hydropyrolysis
JPH1121565A (ja) * 1997-06-30 1999-01-26 N K K Plant Kensetsu Kk 可燃性ガス中のタール除去方法
US6312505B1 (en) * 1999-11-19 2001-11-06 Energy Process Technologies, Inc. Particulate and aerosol remover
JP2005029728A (ja) * 2003-07-09 2005-02-03 Babcock Hitachi Kk ガス化装置
CN1288386C (zh) * 2005-02-04 2006-12-06 大连理工大学 废液焚烧余热锅炉
JP4561481B2 (ja) * 2005-05-31 2010-10-13 Jfeエンジニアリング株式会社 ガス精製装置
DE102005042640A1 (de) * 2005-09-07 2007-03-29 Future Energy Gmbh Verfahren und Vorrichtung zur Erzeugung von Synthesegasen durch Partialoxidation von aus aschehaltigen Brennstoffen erzeugten Slurries mit Teilquenchung und Abhitzegewinnung
TR200702772T1 (tr) * 2005-09-28 2007-06-21 Gep Yeşi̇l Enerji̇ Üreti̇m Teknoloji̇leri̇ Li̇mi̇ted Şi̇rketi̇ Atık maddelerden yakıt elde edilmesi için bir sistem ve method
CN101432400B (zh) * 2006-05-01 2012-11-14 国际壳牌研究有限公司 气化反应器及其应用
US7722690B2 (en) * 2006-09-29 2010-05-25 Kellogg Brown & Root Llc Methods for producing synthesis gas
CN201077830Y (zh) * 2007-03-23 2008-06-25 周泽宇 生物质热解气除尘—洗涤—分馏—脱焦净化—贮存装置
US8038746B2 (en) * 2007-05-04 2011-10-18 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for liquid fuel production
TR200705430A2 (tr) * 2007-08-03 2008-12-22 Detes Maden Enerji̇ Ve Çevre Teknoloji̇si̇ Si̇stemleri̇ Li̇mi̇ted Şi̇rketi̇ Katı yakıt gazlaştırma ve gaz temizleme sistemi.
JP5130459B2 (ja) * 2007-11-12 2013-01-30 新日鉄住金エンジニアリング株式会社 石炭熱分解ガス化炉の操業方法
CN101302445A (zh) * 2008-05-27 2008-11-12 综合能源有限公司 一种流化床煤气化用余热锅炉
CN201371030Y (zh) * 2009-01-20 2009-12-30 娄爱娟 一种改进的烟气顺流洗涤塔
CN201793535U (zh) * 2010-02-05 2011-04-13 刘金成 一种气流床高温粗煤气余热回收装置
US8604088B2 (en) * 2010-02-08 2013-12-10 Fulcrum Bioenergy, Inc. Processes for recovering waste heat from gasification systems for converting municipal solid waste into ethanol
BR112012022816B1 (pt) * 2010-03-11 2019-04-09 Timo Schneider Processo para produção de gás de síntese com a produção de gases de pirólise e de produto e dispositivo
EP2576002A1 (en) * 2010-05-24 2013-04-10 Air Products and Chemicals, Inc. Process and system for syngas treatment
US8992736B2 (en) * 2010-06-24 2015-03-31 Iowa State University Research Foundation, Inc. Selective temperature quench and electrostatic recovery of bio-oil fractions
CN101967407B (zh) * 2010-11-11 2013-08-14 常州大学 用于生物质气化可燃气体脱除焦油的分离方法和装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1258712A (zh) * 1998-12-30 2000-07-05 中国科学院广州能源研究所 生物质循环流化床气化净化系统
CN1446880A (zh) * 2002-03-23 2003-10-08 合肥天焱绿色能源开发有限公司 一种负压燃烧的生物质气化方法和装置
CN2680671Y (zh) * 2004-02-20 2005-02-23 云南电力建设工程服务有限公司 一种经济适用的热解生物质燃气的净化及冷却设备
GB2455869A (en) * 2007-12-20 2009-06-24 O Gen Uk Ltd Gasification of biomass
CN201508115U (zh) * 2009-09-14 2010-06-16 长沙锅炉厂有限责任公司 膜式壁密封的炼钢电炉气化冷却烟道
CN101709228A (zh) * 2009-11-26 2010-05-19 中节环(北京)能源技术有限公司 带余热利用的生物质三段式气流床气化技术
CN202011860U (zh) * 2011-04-28 2011-10-19 武汉天颖环境工程有限公司 一种生物质热解气的净化系统
CN102559289A (zh) * 2011-12-29 2012-07-11 武汉凯迪工程技术研究总院有限公司 生物质合成气冷却、洗涤工艺及系统
CN202390399U (zh) * 2011-12-29 2012-08-22 武汉凯迪工程技术研究总院有限公司 用于生物质燃料气化合成气冷却系统的热管式换热器
CN202390400U (zh) * 2011-12-29 2012-08-22 武汉凯迪工程技术研究总院有限公司 生物质合成气冷却用水管式余热锅炉
CN202390403U (zh) * 2011-12-29 2012-08-22 武汉凯迪工程技术研究总院有限公司 生物质合成气冷却、洗涤系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2799524A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210075357A (ko) * 2019-12-13 2021-06-23 윤기백 바이오 가스 정제 시스템
KR102311399B1 (ko) 2019-12-13 2021-10-13 윤기백 바이오 가스 정제 시스템

Also Published As

Publication number Publication date
MX2014007945A (es) 2015-03-05
JP5829343B2 (ja) 2015-12-09
CY1119032T1 (el) 2018-01-10
IN2014MN01471A (zh) 2015-04-17
EP2799524A1 (en) 2014-11-05
DK2799524T3 (en) 2017-07-24
ES2630311T3 (es) 2017-08-21
AU2012362087B2 (en) 2016-08-25
SG11201403674QA (en) 2014-10-30
CN102559289A (zh) 2012-07-11
US9410096B2 (en) 2016-08-09
MY170638A (en) 2019-08-21
EP2799524B1 (en) 2017-04-05
RU2014131241A (ru) 2016-02-20
PL2799524T3 (pl) 2017-11-30
CN102559289B (zh) 2014-01-15
US20140305044A1 (en) 2014-10-16
JP2015503642A (ja) 2015-02-02
HRP20170979T1 (hr) 2017-09-22
ZA201405496B (en) 2015-11-25
AU2012362087A1 (en) 2014-08-21
KR20140111308A (ko) 2014-09-18
BR112014016324A2 (pt) 2017-07-04
MX353763B (es) 2018-01-26
AP2014007832A0 (en) 2014-07-31
CA2862767A1 (en) 2013-07-04
EP2799524A4 (en) 2015-10-28
HUE033002T2 (hu) 2017-11-28
KR101616527B1 (ko) 2016-04-28

Similar Documents

Publication Publication Date Title
WO2013097536A1 (zh) 生物质合成气冷却、洗涤工艺及系统
CN102618330B (zh) 一种高温常压生物质气化岛工艺
WO2013097531A1 (zh) 用于制油的生物质合成气负压净化工艺方法和系统配置
CN101701703B (zh) 焦炉荒煤气余热利用方法
CN203174051U (zh) 废锅流程的水煤浆水冷壁气化炉
EP2799526B1 (en) Biomass syngas purification process under positive pressure for producing oil
WO2014101710A1 (zh) 罐式煅烧炉高温煅后焦余热利用汽水循环系统
CN107384482B (zh) 一种用于集体供燃气的节能环保气化炉
CN102827993B (zh) 注入燃气式转炉煤气及转炉烟气显热的回收方法
CN202390403U (zh) 生物质合成气冷却、洗涤系统
CN2167094Y (zh) 上下鼓风正压煤气发生炉
CN209210718U (zh) 一种焦油分离单元及焦油分离系统
CN207659402U (zh) 一种生物质气化炉发电系统
CN208166933U (zh) 一种利用城市废弃物、生物质制燃气的装置
CN207452022U (zh) 废旧轮胎常压连续热裂解系统
CN201890871U (zh) 生物质固定床气化发电系统
CN206069793U (zh) 梯级模块化气流床煤气制备系统
CN207376011U (zh) 一种用于集体供燃气的节能环保气化炉
CN207760291U (zh) 一种分体式激冷对流废锅气化余热回收系统
CN107177368A (zh) 废旧轮胎常压连续热裂解系统
RU2588223C2 (ru) Способ охлаждения и промывки синтез-газа из биомассы и система, предназначенная для реализации данного способа
CN104263410A (zh) 一种煤气化余热回收系统
WO2015120761A1 (zh) 炭及碳化合物直接气化方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862504

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549320

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/007945

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2862767

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147021061

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012862504

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012862504

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014131241

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014016324

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2012362087

Country of ref document: AU

Date of ref document: 20121026

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112014016324

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140630