WO2015120761A1 - 炭及碳化合物直接气化方法及其装置 - Google Patents

炭及碳化合物直接气化方法及其装置 Download PDF

Info

Publication number
WO2015120761A1
WO2015120761A1 PCT/CN2015/070641 CN2015070641W WO2015120761A1 WO 2015120761 A1 WO2015120761 A1 WO 2015120761A1 CN 2015070641 W CN2015070641 W CN 2015070641W WO 2015120761 A1 WO2015120761 A1 WO 2015120761A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
recovery chamber
gas
section
direct gasification
Prior art date
Application number
PCT/CN2015/070641
Other languages
English (en)
French (fr)
Inventor
杜峰
Original Assignee
杜峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杜峰 filed Critical 杜峰
Publication of WO2015120761A1 publication Critical patent/WO2015120761A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/002Horizontal gasifiers, e.g. belt-type gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/154Pushing devices, e.g. pistons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0966Hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating

Definitions

  • the invention relates to the technical field of carbon gasification, in particular to a carbon and carbon compound direct gasification method and a device thereof.
  • coal domestic natural gas coal gasification conversion technology
  • coal oil production method coal liquefaction technology
  • direct liquefaction of coal refers to the process by which coal is converted to liquid fuel by hydrocracking under the action of hydrogen and a catalyst. Cracking is a reaction process that splits a hydrocarbon molecule into several smaller molecules. Since the direct liquefaction process of coal mainly adopts hydrogenation means, it is also called hydrogenation liquefaction method of coal; the indirect liquefaction of coal uses coal as raw material, first gasification to make synthesis gas, and then converts synthesis gas into electricity by catalyst action. Processes for hydrocarbon fuels, alcohol fuels and chemicals.
  • the coal gasification conversion technology can be divided into a relatively traditional two-step methanation process, and a one-step methanation process in which a gas conversion unit and a methanation unit are combined into one part.
  • the one-step methanation process mainly includes a catalytic gasification process and a hydrogenation process.
  • the catalytic gasification process is a technology for synthesizing coal-based natural gas in a pressurized fluidized gasification furnace by using a catalyst; the hydrogenation process is to uniformly mix pulverized coal and hydrogen and heat to directly produce hydrogen-rich gas.
  • the invention aims to provide a direct gasification method for carbon and carbon compounds, and aims to solve the problem of long process, complicated production, high energy consumption, high water consumption, pollution and economic benefit of the carbon and carbon compound gasification technology in the prior art. Not a high problem.
  • the present invention is achieved by a method for directly vaporizing carbon and carbon compounds, providing a closed cavity, placing carbon and a carbon compound in a front portion of the cavity, mixing with water or hydrogen, and heating to 800 ° C or higher. High temperature and high pressure are formed in the cavity to thermally decompose carbon and carbon compounds with water or hydrogen into single element atoms or small molecules, and recombined into low-molecule-based high calorific value gas;
  • a recovery chamber is disposed in the rear of the chamber for collecting the high calorific value gas and solid.
  • the present invention also provides a direct gasification apparatus for carbon and carbon compounds, comprising a flow tube having a closed cavity therein; and a front end of the flow tube is connected with carbon And a feeding structure for feeding the carbon compound into the cavity, the rear end of which is connected with a recovery chamber for collecting gas and solid;
  • the flow tube includes heating to a temperature above 800 ° C to form a high temperature and high pressure to make carbon and carbon compounds and water or hydrogen Thermally cracking into a heating section of a single element atom or a small molecule and recombining the components into a low molecular weight high calorific value gas, and the preheating section high temperature heating section is sequentially arranged along the front end to the rear end of the flow tube
  • An injection port for injecting water or hydrogen into the flow tube is provided in the heating section.
  • the whole process is carried out in a closed cavity, and finally recovered by a recovery chamber communicating with the front end, which does not need to be discharged outward.
  • a recovery chamber communicating with the front end, which does not need to be discharged outward.
  • FIG. 1 is a schematic flow chart of a carbon and carbon compound direct gasification apparatus according to an embodiment of the present invention.
  • the carbon and carbon compound direct gasification method provided in this embodiment can be used for direct gasification of carbon, and any carbon compound, such as coal, which is one of carbon compounds.
  • the above unitary atom or small molecule is recombined into a low-molecule (or small molecule)-based high calorific value gas, such as a small amount of carbon monoxide mainly composed of methane;
  • a recovery chamber 14 is disposed at the rear end of the chamber for recovering the above-described high calorific value gas and solid.
  • the direct gasification method of carbon and carbon compound it is carried out in a closed and air-free chamber, so that it is not necessary to provide a chimney outlet to completely eliminate air pollution; and the process of heating in a high temperature section of the cavity
  • the temperature is heated to above 800 °C, the internal pressure reaches 10 kg/cm 2 or more, and the high temperature and high pressure are formed in the cavity.
  • the substances in the cavity are sequentially subjected to initial thermal cracking, continuous thermal cracking and atomic recombination, and the temperature and pressure in the cavity.
  • the present embodiment provides a carbon and carbon compound direct gasification device 1 comprising a flow tube 12 having a closed and air-free chamber therein.
  • the "sealing" here is not It means that the entire flow tube 12 is in a completely sealed state, and it can still be circulated with the external device, so that the external device can be injected into the cavity of the flow tube 12 to inject the required substance, which means that the flow tube 12 does not and the outside. Air is connected to avoid air circulation.
  • a feed structure 11 for transporting carbon and carbon compounds into the cavity of the flow tube 12 is connected; at the end of the flow tube 12, a recovery chamber 14 is connected for recycling the flow tube
  • a gas collection port 144 is disposed at an upper end of the recovery chamber 14 for gas, solids, and the like outputted in the interior of the recovery chamber 14.
  • the flow tube 12 includes a heating section extending along the front end to the rear end of the flow tube 12, and a heating structure is disposed outside, using high frequency induction heating or ultra high frequency induction heating, and an injection port is disposed thereon.
  • the injection port is used for injecting water or hydrogen into the heating section, so that the heating structure can be used to heat the temperature in the heating section to above 800 ° C, so that when carbon and carbon compounds flow to the heating section, they are combined with water. Or hydrogen mixing, under the action of the heating structure, the chamber is formed into high temperature and high pressure, and the carbon and carbon compounds and water or hydrogen will be thermally cracked, which is decomposed into single element atoms or small molecules.
  • a unitary atom or a small molecule formed after thermal cracking it can be recombined into a low-molecule-based high calorific value gas, such as a small amount of carbon monoxide mainly composed of methane.
  • the gas entering the recovery chamber 14 from the rear portion of the flow tube 12 is recovered through the gas collection port 144, and a small amount of carbon monoxide or the like mainly composed of methane can be collected and utilized.
  • the above-mentioned carbon and carbon compound direct gasification device 1 has a simple process as a whole, and the entire gasification process can be arranged in a production line to realize production of the production line, and the entire device is finally provided with a gas collection port 144 for recovering high calorific value gas. There is no need to discharge any gas to avoid polluting the environment, and the energy absorption and release of energy by thermal cracking and oxidation greatly reduce the energy consumption of the direct gasification process.
  • the feeding structure 11 includes a storage tank 111.
  • the storage tank 111 is connected to the front end of the flow tube 12 through a feeding screw 114.
  • the feeding screw 114 communicates with the storage box 111 and the cavity of the flow tube 12, respectively.
  • the feed screw 114 is connected to the motor 112.
  • the feed screw 114 can feed the carbon and carbon compounds in the storage tank 111 into the front section of the flow tube 12, and the feeding mode can make The cavity is isolated from the outside air to form a closed cavity.
  • an inlet hopper 113 is provided at the upper end of the storage tank 111, and the external charcoal and carbon compound can be directly placed in the storage tank 111 through the hopper 113.
  • the feed screw 114 is mainly used to ensure the airtightness of the flow tube 12.
  • it can also be fed by other structures, depending on the actual situation.
  • the heating section of the flow tube 12 includes a preheating section 121 and a high temperature section 122.
  • the preheating tube 15 and the high temperature section 122 are arranged in sequence along the front end to the rear end of the flow tube 12, and the heating structure is disposed in the preheating section 121 and Outside the high temperature section 122, the injection port is disposed on the high temperature section 122 such that char and carbon compounds enter the flow tube After 12, preheating is carried out through the preheating section 121, and enters the high temperature section 122, mixed with water or hydrogen, and heated to above 800 ° C, forming a high temperature and high pressure in the cavity, and thermal cracking occurs.
  • the junction between the preheating section 121 and the high temperature section 122 forms a slanted transition stage, and the above injection port is disposed in the transition stage, so that water or hydrogen gas and the carbon entering the high temperature section 122 can be ensured in time. And carbon compounds are mixed.
  • the injection port is connected with an injection pipe 125 which is directly connected to an external injection device, and the injection pipe 125 is obliquely arranged forward in the direction from the front end to the rear end of the flow pipe 12.
  • the arrangement of the injection tube 125 can also be in various other ways, which can be differently arranged according to different external injection devices, and is not limited to the embodiment.
  • the heating structure adopts high frequency induction heating or ultra high frequency induction heating, so that the temperature in the heating section is increased, space is saved, and heating efficiency is improved.
  • an outer box body 123 is disposed outside the heating section, and the outer box body 123 is provided with a first display screen 124, which is connected to the heating tube 15 through the control element electrical appliance.
  • a first display screen 124 which is connected to the heating tube 15 through the control element electrical appliance.
  • two first display screens 124 are respectively disposed on the outer box body 123 for respectively displaying the temperatures of the preheating section 121 and the high temperature section 122.
  • the rear end of the flow tube 12 is placed in the recovery chamber 14, and the upper side thereof is inclined downward, and the lower side is horizontal.
  • the flow tube 12 has a high temperature and high pressure shape, and the rear end is in the shape of a neck. Gas and solids can be better placed into the recovery chamber 14; and the underside is horizontal to facilitate solids falling from the flow tube 12 into the recovery chamber 14.
  • the recovery chamber 14 is arranged in a tower shape, and a solid recovery chamber 142 and a gas recovery chamber are disposed therein. 141, and the gas recovery chamber 141 is located above the solid recovery chamber 142, the gas collection port 144 is disposed at the upper end of the gas recovery chamber 141, and the end of the flow tube 12 is connected to the gas recovery chamber 141, such that the flow tube
  • the gas flowing out at the end of 12 and the solid directly enter the recovery chamber 14, and the low molecular high calorific value gas can be discharged through the gas collection port 144 and collected; the solid (unreconstituted carbon black and solid mineral) enters
  • the solid recovery chamber 142 is collected.
  • a pressure gauge 143 is disposed outside the recovery chamber 14 for monitoring the pressure in the gas recovery chamber 141 to avoid excessive pressure and damage to the recovery chamber 14.
  • isolation valves 146 are provided, which can isolate the gas recovery chamber 141 from the solid recovery chamber 142. Of course, when the solid needs to fall into the solid recovery chamber 142. The isolation valve 146 is then opened.
  • the recovery chamber 14 is further connected with an exhaust pipe 145, which is connected to the inside of the recovery chamber 14, and is located between the two isolation valves 146, so that when the device 1 is discharging solids, the vacuum is directly utilized.
  • the air in the recovery chamber 14 can be drawn to the outside; and, when the air is extracted, the gas in the gas recovery chamber 141 is not extracted due to the isolation by the isolation valve 146.
  • the gas recovery chamber 14 is provided with a cooling structure, so that the cooling structure can be low molecular.
  • the high calorific value gas and the solid are cooled, and the cooled high calorific value gas passes through the gas collection port 144, and the solid falls into the solid recovery chamber 142.
  • the above cooling structure includes a cooling pipe 147 disposed in the gas recovery chamber 14, the cooling pipe 147 is arranged in a meandering manner in the gas recovery chamber 14 and has an inlet and an outlet extending outside the recovery chamber 14, so that when cooling is required, circulating water or oil can be injected into the cooling tube 147. In this way, the temperature of the gas recovery chamber 14 is lowered, thereby lowering the temperature of the molecules of the high calorific value gas and the solid.
  • cooling pipe 147 Since the cooling pipe 147 is in a meandering shape, it is more effective to increase its path in the gas recovery chamber 14, which is more advantageous for the cooling effect.
  • the side wall of the solid recovery chamber 14 is convex, so that the entire recovery chamber 14 has a small and large shape, and even if it is disposed, it is convenient to collect solids and discharge high calorific value gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种炭及碳化合物直接气化的方法及装置,该方法是将炭及碳化合物置于密闭腔体的前段,与水或氢气混合后,加热至800℃以上,腔体内形成高温高压,制得小分子在为主的高热值气体,腔体后段布置回收室,用于收集所述高热值气体和一些固体。该气化装置包括具有密闭腔体的流通管(12)、与流通管(12)前端连接的送料结构(11)、加热段,该加热段沿所述流通管前端至后端的方向延伸布置,所述加热段中设有用于往所述流通管内注入水或氢气的注入口。整个气化过程在密闭的腔体内进行,最后由回收室回收,完全杜绝空气污染,同时具有能耗小、经济效益佳、工艺简约、在实际生产中可以完全在密闭式的生产线中实现流水线生产。

Description

炭及碳化合物直接气化方法及其装置 技术领域
本发明涉及炭气化的技术领域,尤其涉及炭及碳化合物直接气化方法及其装置。
背景技术
我国属于富煤炭、贫油少气的能源格局,炭及碳化合物在我们生活、工业以及商业等中占据能源供给主导地位,能源供给主要以煤炭为主。
2012年我国煤炭占能源消费总量比重约为66.5%,但煤炭是以碳元素为主的复杂有机的高分子化合物,其在直接燃烧使用中,会出现燃烧不完全、有烟以及多灰尘的现象,并且伴随着煤炭伴生物硫,主要以二氧化硫为主,造成能源浪费以及环境污染等问题,目前,中国雾霾生成的主因之一也就是这个问题。 为了有效解决炭及碳化合物在使用中存在浪费以及污染等问题,目前,国内外采用煤炭制天然气(煤气化转化技术)及煤炭制油法(煤的液化技术),具体如下:
其中,煤的液化技术主要分为煤的直接液化和煤的间接液化两大类。煤的直接液化指的是煤在氢气和催化剂作用下,通过加氢裂化转变为液体燃料的过程。裂化是一种使烃类分子分裂为几个较小分子的反应过程。因煤的直接液化过程主要采用加氢手段,故又称煤的加氢液化法;煤的间接液化是以煤为原料,先气化制成合成气,然后,通过催化剂作用将合成气转化成烃类燃料、醇类燃料和化学品的过程。
煤气化转化技术可分为较为传统的两步法甲烷化工艺,以及将气体转换单元与甲烷化单元合并为一个部分同时进行的一步法甲烷化工艺。其中,一步法甲烷化工艺主要有催化气化工艺和加氢气化工艺。催化气化工艺是一种利用催化剂在加压流化气化炉中一步合成煤基天然气的技术;加氢化工艺是将煤粉和氢气均匀混合后加热,直接生产富氢气体。
由于现有技术中的将炭及碳化合物气化的技术(如煤气化转化技术),其工艺冗长、复杂,并且,其在转换过程中,能耗高,并伴随一些污染,经济效益不高。
技术问题
本发明的目的在于提供炭及碳化合物直接气化方法,旨在解决现有技术中的炭及碳化合物气化技术存在工艺冗长、复杂生产、能耗高、水耗高、有污染以及经济效益不高的问题。
技术解决方案
本发明是这样实现的,炭及碳化合物直接气化方法,提供一密闭的腔体,将炭及碳化合物置于所述腔体的前段,与水或氢气混合后,加热至800℃以上,腔体内形成高温高压,以使炭及碳化合物与水或氢气热裂解为单元素原子或小分子,重新组合为低分子为主的高热值气体;
于所述腔体后段布置回收室,用于收集所述高热值气体及固体。
根据上述的炭及碳化合物直接气化方法,本发明还提供了炭及碳化合物直接气化装置,包括流通管,所述流通管内具有密闭的腔体;所述流通管的前端连接有将炭及碳化合物送至腔体内的送料结构,其后端连接有用于收集气体及固体的回收室;所述流通管包括温度加热至800℃以上,形成高温高压以使炭及碳化合物与水或氢气热裂解为单元素原子或小分子的加热段及使所述成分重新组合为低分子为主的高热值气体,所述预加热段高温加热段沿所述流通管前端至后端的方向依序布置,所述加热段中设有用于往所述流通管内注入水或氢气的注入口。
有益效果
与现有技术相比,本发明提供的炭及碳化合物直接气化方法中,其整个过程都在密闭的腔体内进行,并且最后由与前端连通的回收室回收,其不需要向外排放,完全杜绝空气污染;在气化过中,直接利用炭及碳化合物与水或氢气热裂解和原子重组释放能量,吸收能量,能量互补,使其能耗较低,经济效益较佳,并且工艺简约,在实际生产中,可以完全在密闭式的生产线中实现流水线生产。
附图说明
图1是本发明实施例提供的炭及碳化合物直接气化装置的流程示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下结合具体实施例对本发明的实现进行详细的描述。
如图1所示,为本发明提供的一较佳实施例。
本实施例提供的炭及碳化合物直接气化方法,其可用于对炭,以及任何碳化合物进行直接气化,如煤则属于碳化合物中的一种。
上述的炭及碳化合物直接气化方法如下:
提供一密闭且无空气流通的腔体,将炭及碳化合物置于腔体的前段,与水或氢气混合后进行加热至至少800℃以上,形成高温高压以使炭及碳化合物与水或氢气热裂解为单元素原子或小分子等;
上述的单元素原子或小分子重新组合为低分子(或称小分子)为主的高热值气体,如以甲烷为主的少量一氧化碳等;
在腔体的后端布置回收室14,用于回收上述的高热值气体以及固体。
在上述的炭及碳化合物直接气化方法中,其采用在密闭且无空气流通的腔体内进行,这样,不需要设置烟囱出口,完全杜绝空气污染;且在腔体的高温段进行加热的过程中,瞬间将温度加热至800℃以上,内压达到10kg/cm2 以上,腔体内形成高温高压,腔体内的物质分别依序经过初始热裂解、持续热裂解以及原子重组,腔体内温度与气压可持续升高,使得炭及碳化合物与水或氢气充分并且容易热裂解为单元素原子或小分子等,能耗较低,可以实现较高的经济效益;该方法的工艺简约,效果较高,可以采用密闭式腔体实现流水线生产。
根据上述的方法,本实施例提供了炭及碳化合物直接气化装置1,其包括流通管12,该流通管12内具有密闭且无空气流通的腔体,当然,此处的“密闭”并非指整个流通管12处于完全密封的状态,其上还是可以与外部的设备流通,这样,保证外部设备可以流通管12的腔体内注入需要的物质,其指的是流通管12上不会与外部空气连通,从而避免其内出现空气流通的现象。
在流通管12的前端,连接有送料结构11,其用于向流通管12的腔体内输送炭及碳化合物;在流通管12的末端,其连接有回收室14,其用于回收从流通管12内输出的气体及固体等,该回收室14上端设置有气体收集口144。
上述的流通管12包括加热段,该加热段沿流通管12前端至后端的方向延伸布置,外设置有加热结构,采用高频感应加热或超高频感应加热,且其上设置有注入口,该注入口用于往加热段内注入水或氢气,这样,利用加热结构,可以将加热段内的温度加热至800℃以上,这样,当炭及碳化合物流至该加热段时,其与水或氢气混合,在加热结构的作用下,腔体内行成高温高压,炭及碳化合物与水或氢气则会发生热裂解,其分解为单元素原子或小分子等.
当热裂解后形成的单元素原子或小分子,可以重新组合为低分子为主的高热值气体,如以甲烷为主的少量一氧化碳等.
从流通管12后段进入回收室14中的气体则会通过气体收集口144被回收,也就是以甲烷为主的少量一氧化碳等气体则可以被收集利用。
上述的炭及碳化合物直接气化装置1,其整体的工艺简约,整个气化过程可以生产线布置,实现生产线生产,并且,整个装置最后只设置了气体收集口144,用于回收高热值气体,不需要向外排放任何气体,避免污染环境,且利用热裂解与氧化的吸收能量和释放能量的效应,大大降低直接气化过程的能耗。
本实施例中,送料结构11包括储料箱111,该储料箱111通过送料螺杆114与流通管12的前端连接,当然,该送料螺杆114分别连通储料箱111及流通管12的腔体,且送料螺杆114连接有马达112,这样,在马达112的作用下,送料螺杆114可以将储料箱111中的炭及碳化合物送入流通管12的前段中,.此送料方式,可以使得腔体与外界空气隔绝,形成密闭腔体。
当然,在储料箱111的上端设置有入料斗113,通过该入料斗113,可以将外部的炭及碳化合物直接置于储料箱111中。上述采用送料螺杆114,主要为了保证流通管12的密闭性,当然,根据实际需要,其也可以通过其它结构来进行送料,具体可视实际情况而定。
流通管12的加热段包括预加热段121及高温段122,沿流通管12前端至后端的方向,预加热管15及高温段122依序布置,上述的加热结构设置在该预加热段121及高温段122外,注入口设置在高温段122上,这样,炭及碳化合物进入流通管 12后,经由预加热段121进行预加热,并进入高温段122中,与水或氢气混合,并被加热至800℃以上,腔体内形成高温高压,发生热裂解.
本实施例中,预加热段121与高温段122的连接处形成倾斜状的过渡台,上述的注入口则设置在过渡台中,这样,可以保证水或氢气等及时与进入高温段122内的炭及碳化合物进行混合。
为了便于水或氢气的注入,该注入口连接有注入管125,该注入管125直接与外部的注入设备连接,且沿流通管12前端至后端的方向,注入管125朝前倾斜布置。
当然,注入管125的布置方式还可以其它多种方式,其可以根据外部的注入设备的不同而作不同布置,不仅限制于本实施例。
本实施例中,加热结构采用高频感应加热或超高频感应加热,使得加热段内的温度升高,节约空间,且提高加热效率。
为了便于对流通管12加热段的温度控制,本实施例中,加热段外设置有外箱体123,该外箱体123上设置有第一显示屏124,其通过控制元件电器连接加热管15,这样,即便于对加热管15的温度进行控制,且便于用户通过第一显示屏124查看加热温度。
当然,为了进一步精化温度控制,分别在外箱体123上分别设置有两个第一显示屏124,分别用于显示预加热段121及高温段122的温度。
本实施例中,流通管12的后端置于回收室14内,其上侧朝下倾斜,下侧呈水平状,这样,流通管12内呈高温高压状,且后端呈缩口状,可以使得气体以及固体更好进入回收室14内;并且,其下侧呈水平状,可以便于固体从该流通管12内落入回收室14中。
本实施例中,回收室14呈塔状布置,其内设有固体回收腔142以及气体回收腔 141,并且,气体回收腔141位于固体回收腔142的上方,气体收集口144设置在气体回收腔141的上端,流通管12的末端连通气体回收腔141,这样,由流通管 12末端流出的气体以及固体直接进入回收室14中,并且,低分子的高热值气体可以经由气体收集口144排出,并被收集;固体(未被重组完的碳黑以及固体矿物质)则进入固体回收腔142中,被收集起来。
上述的回收室14外设置有压力表143,用于监测气体回收腔141内的压力,避免发生压力过大,导致回收室14损坏的现象。
在上述的气体回收腔141与固体回收腔142之间还设置有两隔离阀门146,其可以将气体回收腔141与固体回收腔142之间隔离,当然,当固体需要落入固体回收腔142中时,隔离阀门146则被打开。
本实施例中,回收室14上还连接有抽气管145,该抽气管145连通回收室14内部,并且位于两隔离阀门146之间,这样,当该装置1在排固体时,直接利用抽真空机,可以将回收室14内的空气抽至外部;并且,在抽取空气时,由于由隔离阀门146的隔离作用,则不会将气体回收腔141中的气体抽出。
当低分子的高热值气体及固体进入回收室14内后,为了对其进行进一步的降温冷却,本实施例中,气体回收室14内设有冷却结构,这样,该冷却结构可以将低分子的高热值气体及固体冷却,冷却后的高热值气体通由气体收集口144出去,固体则落入固体回收腔142中。
具体地,上述的冷却结构包括设置在气体回收室14内的冷却管147,该冷却管 147在气体回收室14内呈迂回状布置,且具有进口及出口,该进口及出口延伸至回收室14外,这样,当需要进行冷却时,可以往冷却管147内注入循环流动的水或油等,这样,使得气体回收室14的温度降低,进而降低分子的高热值气体及固体的温度。
由于冷却管147呈迂回状,这样,更加有效的增加其在气体回收室14内的路径,更加有利于降温效果。
本实施例中,固体回收室14的侧壁呈外凸状,这样,使得整个回收室14呈上小下大的形状,即便于其安置,也便于收集固体,以及将高热值气体排出。
为了使得上述炭及碳化合物直接气化装置1的自动化控制,以及达到较佳的精度控制,上述整个炭及碳化合物的运作都在控制元件的控制下进行。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 炭及碳化合物直接气化方法,其特征在于,提供一密闭的腔体,将炭及碳化合物置于所述腔体的前段,与水或氢气混合后,加热至800℃以上,腔体内形成高温高压,以使炭及碳化合物与水或氢气热裂解为单元素原子或小分子,并重新组合为小分子为主的高热值气体;
    于所述腔体后段布置回收室,用于收集所述高热值气体及固体。
  2. 炭及碳化合物直接气化装置,其特征在于,包括流通管,所述流通管内具有密闭的腔体;所述流通管的前端连接有将炭及碳化合物送至腔体内的送料结构,其后端连接有用于收集气体及固体的回收室;所述流通管包括温度加热至800℃以上以使炭及碳化合物与水或氢气热裂解为单元素原子或小分子的加热段,所述加热段沿所述流通管前端至后端的方向延伸布置,所述加热段中设有用于往所述流通管内注入水或氢气的注入口。
  3. 如权利要求2所述的炭及碳化合物直接气化装置,其特征在于,所述送料结构包括用于放置炭及碳化合物的储料箱,所述储料箱与所述腔体的前端之间连接有将炭及碳化合物送至腔体前段内的送料螺杆。
  4. 如权利要求2所述的炭及碳化合物直接气化装置,其特征在于,所述加热段包括预加热段以及温度加热至800℃以上的高温段,所述预加热段及高温段沿所述流通管前端至后端的方向依序布置,所述注入口设于所述高温段上。
  5. 如权利要求4所述的炭及碳化合物直接气化装置,其特征在于,所述预加热段与高温段之间的过渡处呈扩口状,形成倾斜状的过渡台。
  6. 如权利要求5所述的炭及碳化合物直接气化装置,其特征在于,所述注入口设于所述过渡台上。
  7. 如权利要求6所述的炭及碳化合物直接气化装置,其特征在于,所述注入口上连接有朝前倾斜布置的注入管。
  8. 如权利要求2至7任一项所述的炭及碳化合物直接气化装置,其特征在于,所述回收室包括固体回收腔及置于所述固体回收腔上方的气体回收腔,所述气体收集口设于所述气体回收腔上。
  9. 如权利要求8所述的炭及碳化合物直接气化装置,其特征在于,所述气体回收腔与固体回收腔之间设有两隔离阀门,两所述隔离阀门之间设有用于将固体回收腔内气体抽出的抽气管。
  10. 如权利要求8所述的炭及碳化合物直接气化装置,其特征在于,所述气体回收腔中设有冷却管,所述冷却管呈迂回状布置,且所述冷气管具有延伸至所述气体回收腔外的进口及出口。
PCT/CN2015/070641 2014-02-12 2015-01-13 炭及碳化合物直接气化方法及其装置 WO2015120761A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410048992.5 2014-02-12
CN201410048992.5A CN104789265A (zh) 2014-02-12 2014-02-12 炭及碳化合物直接气化方法及其装置

Publications (1)

Publication Number Publication Date
WO2015120761A1 true WO2015120761A1 (zh) 2015-08-20

Family

ID=53554461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070641 WO2015120761A1 (zh) 2014-02-12 2015-01-13 炭及碳化合物直接气化方法及其装置

Country Status (2)

Country Link
CN (1) CN104789265A (zh)
WO (1) WO2015120761A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110032A1 (de) * 2006-03-22 2007-10-04 Universität Kassel Biomassevergaser
CN101812328A (zh) * 2010-04-21 2010-08-25 冯益安 把水葫芦变成能源的一种方法
CN102226092A (zh) * 2011-05-30 2011-10-26 南京师范大学 连续式生物质低温热解炭化方法及其炭化炉
CN102268295A (zh) * 2011-07-13 2011-12-07 中国林业科学研究院林产化学工业研究所 一种生物质高温水蒸气气化制取富氢燃气的方法及其装置
CN102533290A (zh) * 2010-12-30 2012-07-04 吴钦华 生物弃料综合利用增值装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1230498C (zh) * 2004-01-18 2005-12-07 江苏大学 一种生物质与煤混合流化床气化方法及其装置
WO2011143718A1 (en) * 2010-05-21 2011-11-24 Errol John Smith Biochar-coke produced in an energy efficient manner
CN204111695U (zh) * 2014-02-12 2015-01-21 杜峰 炭及碳化合物直接气化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110032A1 (de) * 2006-03-22 2007-10-04 Universität Kassel Biomassevergaser
CN101812328A (zh) * 2010-04-21 2010-08-25 冯益安 把水葫芦变成能源的一种方法
CN102533290A (zh) * 2010-12-30 2012-07-04 吴钦华 生物弃料综合利用增值装置
CN102226092A (zh) * 2011-05-30 2011-10-26 南京师范大学 连续式生物质低温热解炭化方法及其炭化炉
CN102268295A (zh) * 2011-07-13 2011-12-07 中国林业科学研究院林产化学工业研究所 一种生物质高温水蒸气气化制取富氢燃气的方法及其装置

Also Published As

Publication number Publication date
CN104789265A (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
WO2013097536A1 (zh) 生物质合成气冷却、洗涤工艺及系统
WO2012022058A1 (zh) 煤物质单燃烧器分解设备
CN101984018B (zh) 内煤外热式煤粉分解设备
CN204237743U (zh) 一种新型煤干馏炉
CN107083249A (zh) 一种粉煤制备富含甲烷热解气的气流床热解炉、系统及方法
CN104531222A (zh) 利用喷动床反应器的煤热解系统及方法
CN107723031A (zh) 一种粉煤高压气化热解一体化装置
CN107267176A (zh) 一种高效生物质处理焦油多联产热解炉
WO2015120761A1 (zh) 炭及碳化合物直接气化方法及其装置
CN206902071U (zh) 一种制备富含甲烷热解气的气流床热解炉及系统
CN203513601U (zh) 生物质气化热解反应器
CN104830350A (zh) 一种生物质有机炭制备装置
CN201729799U (zh) 煤物质横插燃气管立式分解设备
CN201825920U (zh) 内煤外热式煤物质分解设备
CN201737904U (zh) 蒸汽混合空气介质生物质气化炉
CN101885988B (zh) 蒸汽混合空气介质生物质气化炉
CN103708417B (zh) 一种利用高温水蒸气气化生物质制取氢气的方法及装置
CN201890871U (zh) 生物质固定床气化发电系统
CN105694984A (zh) 一种生物质气化装置
CN102295939A (zh) 碎煤、粉煤的分解设备
CN201770660U (zh) 煤物质横插管立式分解设备
CN206278916U (zh) 一种无害化处理废弃物的系统
CN205974389U (zh) 一种蓄热式移动床热解和裂解反应器
CN219136697U (zh) 生物质氢与一氧化碳提取装置
CN204625546U (zh) 一种生物质有机炭制备装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15748523

Country of ref document: EP

Kind code of ref document: A1