WO2013094838A1 - 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템 - Google Patents

단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템 Download PDF

Info

Publication number
WO2013094838A1
WO2013094838A1 PCT/KR2012/005901 KR2012005901W WO2013094838A1 WO 2013094838 A1 WO2013094838 A1 WO 2013094838A1 KR 2012005901 W KR2012005901 W KR 2012005901W WO 2013094838 A1 WO2013094838 A1 WO 2013094838A1
Authority
WO
WIPO (PCT)
Prior art keywords
tracking
solar cell
string
voltage
power generation
Prior art date
Application number
PCT/KR2012/005901
Other languages
English (en)
French (fr)
Inventor
박기주
권영복
이동준
Original Assignee
(주)케이디파워
주식회사 에너솔라
(주)케이디티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110137355A external-priority patent/KR101128386B1/ko
Priority claimed from KR1020110141511A external-priority patent/KR101132323B1/ko
Priority claimed from KR1020110141510A external-priority patent/KR101135386B1/ko
Application filed by (주)케이디파워, 주식회사 에너솔라, (주)케이디티 filed Critical (주)케이디파워
Priority to JP2014548642A priority Critical patent/JP2015502621A/ja
Priority to CN201280062644.2A priority patent/CN104040453B/zh
Publication of WO2013094838A1 publication Critical patent/WO2013094838A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a photovoltaic power generation system that converts direct current power generated in a solar cell into an alternating current power and supplies it to a power system, and in particular, performs individual maximum power point tracking for each string of solar cells, and generates the amount of power generated and power for each string of solar cells Regardless of the difference in voltage, the photovoltaic power generation system performs the maximum power point tracking for each unit group to maximize the conversion efficiency of the inverter by maintaining the same input voltage input to the inverter, thereby improving the photovoltaic efficiency. It is about.
  • PV module Photovoltaic module
  • One such solar cell module can be used for the operation power supply of street lamps and small electronic devices, but the size of the produced voltage is small and the amount of power is small to transmit power to a general commercial power system.
  • FIG. 1 is a configuration diagram schematically showing a photovoltaic device according to the prior art.
  • the conventional photovoltaic device is configured by connecting a plurality of photovoltaic modules (PVs) 10 in series to form one solar cell string 20, and several such solar cell strings 20. It is connected in parallel to configure one solar cell array (10A).
  • PVs photovoltaic modules
  • the output from the solar cell array 10A is converted into AC power by an inverter and supplied to the power system.
  • the output of a solar cell is greatly influenced by environmental factors, and the output value is greatly changed according to the change of environmental factors, making it difficult to obtain a constant output.
  • Solar cells are most affected by the amount of insolation among environmental factors, and temporary reduction in solar radiation caused by obstacles such as clouds also plays an important reason for lowering the output.
  • the solar cell module temperature is also a factor that reduces the output of the solar cell.
  • the decrease in output of the solar cell and the fluctuation of the output lead to a decrease in the efficiency of the inverter converting it into an AC power, and as a result, the power generation efficiency is significantly lowered at the time of power transmission to the power system.
  • MPPT maximum power point tracking
  • the conventional maximum power point tracking is based on comparing the voltages of the input terminal and the output terminal of the inverter, and performing the power tracking by adjusting the amount of power by adjusting the conversion ratio based on the comparison value. It is applied.
  • the conventional control algorithm for power tracking has the advantage of simplicity and ease of control in the case of simple control, but it is difficult to respond quickly when the output fluctuation is large, and it is difficult to control the environment. .
  • an object of the present invention is to perform the conversion of the inverter by maintaining the maximum power point tracking for each solar cell string and maintaining the same input voltage input to the inverter irrespective of the difference in the generation power amount and the generation voltage for each solar cell string. It is to provide a photovoltaic power generation system that maximizes the maximum power point tracking per unit group to maximize the efficiency of the photovoltaic power generation.
  • another object of the present invention is to provide a photovoltaic power generation system that performs the maximum power point tracking for each unit group to increase the maximum power production efficiency by easily performing power tracking by applying environmental factors to a simple control method. To provide.
  • another object of the present invention is to store and maintain the voltage and current values according to environmental factors and power tracking, and to make predictions through the following tracking to improve the following response speed, thereby increasing the power production efficiency
  • a photovoltaic power generation system performing a maximum power point tracking for each unit group includes a plurality of solar cell strings configured by connecting a plurality of solar cell modules; A string optima that converts power generation voltages of each of the plurality of solar cell strings into output voltages having the same magnitude and performs maximum power point tracking control for each of the solar cell strings for converting the power generation voltages; And an inverter configured to convert the output voltage from the string optima into an alternating voltage and supply the power voltage to a power system.
  • the string optimizer is connected to each of the plurality of solar cell strings to convert the power generation voltage into the output voltage and perform the maximum power point following control;
  • a detector configured to generate a detection value including an environmental element that changes the amount of power generation of the solar cell module, the generation voltage, and the output voltage;
  • a controller configured to generate a power following control signal for each of the string controllers using the sensed values.
  • the environmental element includes any one or more of the amount of sunshine, the temperature of the region in which the solar cell module is installed, the temperature of the solar cell module surface, the air volume, the wind speed, and the humidity.
  • the output voltage is variable.
  • the string controller includes a converter for boosting or reducing the input voltage from the solar cell string; A fuse connected between the solar cell string and the converter; A circuit breaker connected to an output terminal of the converter; And an MPP controller for generating a control signal for the boosting or depressurizing of the converter.
  • the control unit may include a tracking range calculator configured to calculate a tracking range value including a current or voltage range at which maximum power point tracking is to be performed based on the detected value; A control signal generation unit for generating a maximum power point following control time signal by the tracking range value, the input voltage, and the output voltage from the tracking range calculator; And a tracking history storage unit storing the tracking range value in correspondence with the detection value.
  • the following range calculating unit divides the daily power generation time of the solar cell module into a plurality of time sections, and calculates a basic following range of each of the time sections.
  • the following range calculating unit calculates the following range by reflecting an expected range of power generation change due to the environmental element detection value in the basic following range.
  • the following range calculating unit omits power tracking for the excess of the input voltage and the output voltage when the generation voltage and the output voltage temporarily exceed the maximum following range expected in the time section.
  • the solar cell string is a photovoltaic power generation system that performs the maximum power point tracking per unit group, characterized in that the fixed or tracking solar cell module.
  • the string optima and the inverter are integrally formed.
  • the photovoltaic power generation system performing the maximum power point tracking for each unit group according to the present invention performs the individual maximum power point tracking for each solar cell string, and the inverter regardless of the difference in the amount of power generated by the solar cell string, the generation voltage By maintaining the input voltage to be the same, it is possible to maximize the conversion efficiency of the inverter, thereby improving the photovoltaic power generation efficiency.
  • the photovoltaic power generation system that performs the maximum power point tracking for each unit group according to the present invention can increase the maximum power production efficiency by easily performing power tracking by applying environmental factors to a simple control method.
  • the photovoltaic power generation system performing the maximum power point tracking for each unit group according to the present invention stores and maintains the voltage and current values according to environmental factors and power following, and the following response by predicting and predicting the following in subsequent tracking. Speed can be improved, which can increase power production efficiency.
  • FIG. 1 is a schematic view showing a solar cell apparatus according to the prior art.
  • Figure 2 is a schematic diagram illustrating a configuration of a photovoltaic power generation system according to the present invention.
  • 3 is a configuration example showing the configuration of the string optima in more detail.
  • FIG. 4 is a diagram illustrating a configuration of a control unit of the string optima in more detail.
  • 5 is an exemplary view for explaining a tracking range calculation according to temperature and illuminance among environmental factors.
  • 6 is an exemplary diagram for describing power tracking over time.
  • FIG. 7 is an exemplary view for explaining a method of storing and using tracking history information.
  • FIG. 8 is an exemplary view showing the configuration of a photovoltaic power generation system according to another embodiment of the present invention.
  • FIG. 2 is a schematic view showing the configuration of a photovoltaic power generation system according to the present invention.
  • the solar power generation system includes a solar cell array 100, a string optima 200, and an inverter 300.
  • the string optima 200 includes a controller 210 and a string controller 220.
  • the solar cell array 100 generates electricity by solar light and supplies the generated power to the string optima 200.
  • the solar cell array 100 includes a plurality of solar cell strings 120, and each solar cell string 120 is individually connected to the string control device 220 of the string optimizer 200.
  • the solar cell string 120 is configured by connecting a plurality of solar cell modules 110 in series.
  • the solar cell string 120 is configured by connecting the solar cell module 110 in series in order to secure a power generation voltage of a predetermined level or more.
  • the number of solar cell modules 110 constituting the solar cell string 120 may vary depending on the input voltage of the string optimizer 200 or the input voltage of the inverter 300.
  • the string optimizer 200 converts the power supplied from each solar cell string 120 into DC-DC, converts the power supplied to a voltage corresponding to the input voltage of the inverter 300, and supplies the converted voltage. To this end, the string optimizer 200 performs DC-DC conversion by the maximum power point following control, and reflects the change in power generation amount in the environmental element at the maximum power point following control.
  • the string optima 200 is a string control device 220 and environmental elements and string control to perform DC-DC conversion and maximum power point tracking for the voltage of the generated power supplied from each solar cell string 120 And a controller 210 for generating a control signal for controlling the string controller 220 by using the input / output voltage to the device 220 as a sensed value.
  • the controller 210 generates a control signal for individually controlling the plurality of string controllers 220.
  • the controller 210 performs power tracking for each string based on each input voltage and output voltage transmitted to the string controller 220, and transfers the control signal generated by the string controller to the string controller 220. do.
  • the controller 210 performs power tracking according to environmental information transmitted from the sensor 130.
  • the controller 210 may apply different tracking ranges according to environmental information such as the solar radiation amount of a location where the solar cell module 110 or the solar cell string 120 is installed, the temperature of the installation location, the temperature of the panel, and the time. The power point is followed and a control signal is generated accordingly and transmitted to the string controller 220. This control method will be described in more detail with reference to the other drawings below.
  • the string controller 220 converts the current flow voltage supplied from the solar cell string 120 into an input DC voltage of the inverter 301, and performs the conversion under the control of the controller 210.
  • the string controller 220 transmits an input voltage input from the solar cell string 120 to the string controller 220 and an output voltage value output from the inverter after the change to the controller 210.
  • the string control device 220 Detailed configuration and operation of the string control device 220 will be described in more detail with reference to the drawings below.
  • the inverter 300 receives the generated power with uniform input voltage through the string optima 200, performs DC-AC conversion, and supplies the converted power to the power system 400.
  • An output terminal of the string controller 220 is connected in parallel to an input terminal of the inverter 300.
  • 3 is a diagram illustrating the configuration of the string optima in more detail.
  • the string optima 200 is relayed by the fuse 211 between the string controller 220 and the solar cell string 120.
  • the fuse 211 is automatically cut when the overvoltage, overcurrent of the solar cell string 120 serves to protect the circuit.
  • a circuit breaker 212 is installed at the output terminal of the string optima 200 to disconnect the inverter 300 from the string optima 200 when an abnormality occurs in the solar cell string 120 or the string optima 200. .
  • Each of the string controllers 220 is connected to the solar cell string 120 through a fuse 211, and converts a voltage of power supplied from the solar cell string 120 into an input voltage of the inverter 300.
  • the MPT controller 221 controls the converter 222 to output the maximum power according to the control signal of the converter 222 and the controller 210.
  • the control unit 21 of the string control device is connected to the mpp controller 221 of each string control device 220.
  • An input voltage input to each of the string controllers 220 and an output voltage output from each of the string controllers 220 are measured by the MPPT controller 221 and transmitted to the controller 210, or the controller 210 is each string.
  • the voltage value may be directly received from the voltage detector installed at the input / output terminal of the control device 220. However, this does not limit the present invention.
  • FIG. 4 is a diagram illustrating a configuration of the control unit of the string optima in more detail.
  • control unit includes a sensing unit 211, a following range calculation unit 310, a following history storage unit 320, and a control signal generator 330.
  • the sensing unit 211 detects information for generating a control signal and transmits the information to the following range calculating unit 310.
  • the detector 211 includes an input voltage detector 301, an output voltage detector 302, and a sensor 130.
  • the input voltage detector 301 detects a voltage of input power input to the string optima 220.
  • the output voltage detector 302 detects a voltage of power output from the string optima 220.
  • the input voltage detector 301 and the output voltage detector 302 detects the input voltage and the output voltage of each of the plurality of string control devices 220 in real time and transmits them to the following range calculator 310.
  • the sensor 130 detects environmental factors affecting the solar cell array 100 and transmits the detection result to the following range calculation unit 310.
  • Environmental elements sensed by the sensor 130 are the amount of light, illuminance of the sunlight irradiated to the solar cell array 100, the temperature, humidity of the region where the solar cell array 100 is installed, the surface temperature of each solar cell module 110 In addition, any factor that can cause a change in generation can be measured.
  • the following range calculator 310 selects a voltage and a current range to perform maximum power estimation according to the detection result of the detector 211, and transmits the selected range value to the control signal generator 330. That is, the tracking range calculation unit 310 determines the magnitude of the power supplied from the solar cell string 120 according to the input voltage and the output voltage from the detection unit 211 and the information detected by the sensor 130. In addition, the power generation value of the solar cell module 110 according to the current weather conditions to calculate the maximum voltage and current range.
  • the following range calculation unit 310 calculates the following range by reflecting the time information and the date or the seasonal information in the information previously input or accumulated according to the operation.
  • the following range calculating unit 310 transmits the input voltage and the output voltage to the control signal generator 330, and transmits the calculated tracking range information to the control signal generator 330 and the following history storage unit 320. Will be delivered to The following ranges generated by the following range calculation unit 310 are generated separately for each of the solar cell strings 120.
  • the tracking history storage unit 320 stores the tracking range information transmitted from the tracking range calculation unit 310 together with the environmental element information detected by the detection unit 211, and stored at the request of the tracking range calculation unit 310. Provide information.
  • the tracking history storage unit 320 records and maintains changes in input voltage, output voltage, and maximum power according to environmental factors for each time zone, season, and weather condition.
  • the control signal generator 330 controls a power conversion rate of the MPP controller 222 by using the input voltage and output voltage values and the calculated tracking range values transmitted through the tracking range calculator 310. It generates and delivers to the epitaxial controller 222.
  • 5 is an exemplary view for explaining a calculation of a tracking range according to temperature and illuminance among environmental factors.
  • (a) is a graph showing the output voltage and current relationship of the solar cell string according to the temperature
  • (b) is a graph showing the output voltage and current relationship of the solar cell string according to the illuminance.
  • (a) when the illuminance is constant, if the temperature is lowered, the magnitude of the voltage produced from the solar cell string becomes smaller, and thus, the overall production power becomes smaller.
  • (a) is a graph of voltage and current when C is at a lower temperature than A. Even if the current has a relatively constant value, the magnitude of the voltage is small and the maximum power is reduced.
  • the string optima 200 of the present invention in particular, the following range calculation unit 310 selects a voltage and a current range at which the maximum power point is to be formed according to an environmental element detected by the sensing unit 211, and selects the selected voltage and current.
  • the tracking range value calculated so that the maximum power point tracking can be controlled within the range is transmitted to the control signal generator 330.
  • the MPP controller 221 performs power tracking at a voltage and current value at which maximum power tracking can be achieved within a short time, thereby improving power generation efficiency by the solar cell.
  • the temperature in particular, the temperature of the surface of the solar cell module having a direct influence on power generation has a feature that changes slowly over time as long as there is no influence of other environmental factors.
  • the temperature of the surface of the solar cell module may be drastically reduced by the wind. That is, in FIG. 5A, the maximum power point may be formed in the range 1 (P1), and the temperature may drop rapidly, thereby forming the maximum power point in the range 2 (P2).
  • the conventional control apparatus performs the maximum power tracking to the range 2 (P2) by varying the voltage and current corresponding to the range 1 (P1), thereby increasing the time required.
  • the temperature recovers at a rapid rate after a temporary drop in temperature, disturbance occurs in following the maximum power, and it takes considerable time until the accurate follow.
  • the tracking range is selected according to the temperature change and power tracking is performed in the corresponding range as in the present invention, fast tracking becomes possible, thereby minimizing waste of generated power.
  • 6 is an exemplary diagram for describing power tracking over time.
  • FIG. 6 (a) is a diagram showing division of power generation time by time zone, and (b) shows a change in output voltage and output current of a solar cell string according to time division.
  • the most important factors in photovoltaic power generation are the presence and the amount of light for power generation. This amount of light does not remain constant until the sun rises and changes over time. In particular, in the case of winter, even when the maximum amount of light before and after noon it is often difficult to generate the maximum power. In particular, during winter, at the same time of winter, when the sun goes down, the amount of sunshine changes rapidly. As the graph of (a) proceeds clockwise, the voltage and current graph of (b) changes in the direction (x1) in which the output increases. In (a), the graph of (b) changes in the direction y1 where the output decreases after passing the sections b5 and b6 which are maximum output time points.
  • the generation time is divided (B1 to B10) for each time zone to approximate the maximum power following range, and the following range is selected for each range to generate a control signal for controlling the MPP controller 221. .
  • the tracking range is calculated by comparing the amount of sunshine and the predetermined division and the voltage and current range, and when the power tracking is performed within the calculated tracking range, the speed and efficiency of the maximum power point tracking can be improved. do.
  • the power generation reduction rate according to temperature and the power generation reduction rate according to insolation amount to the selected basic following range, recalculate the following range and perform maximum power point following accordingly.
  • Environmental factors can be applied to the power point following range.
  • the calculation of the power generation reduction rate is stored along with the weather conditions at the time of measurement, the amount of power generation, and the maximum power point information to be formed, and then used as a basis for speeding up the maximum power point following a similar environment. It becomes possible.
  • the maximum change in time can be achieved by applying a decrease in power generation efficiency and change in following range to climate change according to time zones.
  • the power point can be searched.
  • FIG. 7 is an exemplary view for explaining a method of storing and using tracking history information.
  • the solar cell string 120 may display an output graph as shown in FIG. 7A at a specific time.
  • the maximum output tracking range on the V-I graph is P11.
  • the tracking range calculating unit 310 selects a tracking range so that power tracking is performed near the voltage Vp and current Ip points when there is no change in the environmental element, and the control signal generator 330 converts the converter input into the selected tracking range.
  • the solar cell string 120 operates to produce maximum power.
  • the condition that the maximum power point tracking is performed, the voltage, current value, ambient temperature, panel temperature, sunshine amount, time, wind speed, and wind direction information of the maximum power following range are stored in the following history storage unit 330, and then power by similar conditions. It is used as information to confirm the following range when following.
  • the graph itself for the maximum power tracking may be changed.
  • the maximum power point tracking can be achieved through the graph of (a), but when a large temperature change occurs or the amount of sunshine changes,
  • the VI graph also changes significantly.
  • the maximum power point tracking can be controlled in a short time.
  • the following range can be selected by reflecting only the amount of sunshine and the changed temperature.
  • the environmental factors in the estimated range as in the present invention it is possible to follow the change in the V-I graph by predicting the temperature change of the panel according to the ambient temperature.
  • the temperature of the solar panel is changed according to the temperature and wind speed of the location where the solar cell is installed, and has a direct influence on the power production.
  • the expected tracking range may be approximated in advance by identifying and applying similar factors from previous tracking information stored in the tracking history storage unit 330, and the input and output voltages of the solar cell string 120 are changed. By applying the input and output voltage values to the expected tracking range, it is easy to find the voltage and current range for the maximum power point tracking.
  • the string optima 200 of the present invention divides the generation time into several steps and performs power tracking by reflecting the environmental elements and the converter input / output voltage in the following range represented by each time section. do.
  • the tracking is performed by a constantly changing voltage or current, and a large change in the temporary voltage or current may occur.
  • the efficiency is reduced in following after the temporary change is released.
  • you divide the time and limit the following range in consideration of the seasonal factors to which the time belongs, it will not follow large fluctuations in voltage and current that occur during a short time, thereby preventing power generation efficiency from falling. Will be.
  • it is easy to determine the following direction by estimating whether the voltage or the current rises or falls according to the time zone division, and reflects the environmental factors and the converter input / output voltage, thereby enabling the rapid response to the maximum power point tracking.
  • environmental factors involved in such development are sorted and approached according to time division and seasonal division according to time division, and used for selecting a range of tracking, which enables fast following by using algorithm that is not very complicated compared to the existing one.
  • FIG. 8 is an exemplary view showing the configuration of a photovoltaic power generation system according to another embodiment of the present invention.
  • the inverter 300 includes a string optima 200 and an inverter unit 390.
  • the difference in that the string optima 200 and the inverter 300 are configured as one in FIG. 2 is different. Therefore, a description of the separate operation and configuration will be omitted.
  • the present invention can increase the amount of power generated by improving the power generation efficiency compared to the photovoltaic system that performs the maximum power point tracking of the array unit by performing the maximum power point tracking of the solar cell unit connected in series.
  • the present invention can reuse the existing system by configuring the string optima and the inverter of the present invention by replacing the inverter of the conventional solar power generation system, thereby reconfiguring the existing solar power generation system into a high efficiency system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Dc-Dc Converters (AREA)

Abstract

본 발명은 태양전지 스트링별 개별적인 최대 전력점 추종을 수행하고, 태양전지 스트링별 발전 전력량, 발전 전압의 차이에 무관하게 인버터로 입력되는 입력전압을 동일하게 유지함으로써 인버터의 변환효율을 최대화하고, 이를 통해 태양광 발전 효율을 향상시키도록 한 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템에 관한 것이다. 본 발명에 따른 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템은 복수의 태양전지 모듈이 연결되어 구성되는 복수의 태양전지 스트링; 상기 복수의 태양전지 스트링 각각의 발전전압을 동일한 크기의 출력전압으로 변환하며, 상기 발전전압의 변환을 위한 상기 태양전지 스트링별 최대 전력점 추종 제어를 수행하는 스트링옵티마; 상기 스트링옵티마로부터의 상기 출력전압을 교류전압으로 변환하여 전력계통에 공급하는 인버터;를 포함하여 구성된다.

Description

단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템
본 발명은 태양전지에서 발전된 직류전력을 교류전력으로 변환하여 전력계통에 공급하는 태양광 발전 시스템에 관한 것으로, 특히 태양전지 스트링별 개별적인 최대 전력점 추종을 수행하고, 태양전지 스트링별 발전 전력량, 발전 전압의 차이에 무관하게 인버터로 입력되는 입력전압을 동일하게 유지함으로써 인버터의 변환효율을 최대화하고, 이를 통해 태양광 발전 효율을 향상시키도록 한 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템에 관한 것이다.
태양광 발전에 있어서 현재 사용되고 있는 태양전지(Solar cell)의 출력은 매우 작기 때문에 필요한 출력을 효율적으로 얻기 위해서는 여러 개의 태양전지를 직렬로 연결한 태양전지 모듈(PV module : Photovoltaic module)을 사용한다. 이와 같은 태양전지 모듈 하나는 가로등, 소형 전자장치의 동작 전원용으로 사용이 가능하지만, 일반 상용전력 계통에 발전 전력을 송전하기에는 생산되는 전압의 크기가 작고, 전력량이 작아 무리가 따른다.
이 때문에 전력 계통에 연결하여 발전 전력을 송전하고자 하는 경우 몇 개의 태양전지 모듈을 한 그룹으로 연결하거나, 또는 이러한 그룹을 여러 개 병렬로 연결하여 태양전지 어레이(PV array)를 구성하고, 이를 통해 변전 및 송전에 필요한 전압 및 전력을 생산하도록 하고 있다. 특히, 직류로 발전되는 전력의 교류 변환을 용이하게 하고, 인버터 등의 전력 설비 규격화, 간소화를 위해 하나의 그룹을 형성하는 태양전지 모듈을 직렬로 연결한 스트링을 구성하여 이용하는 것이 보편적이다.
도 1은 종래 기술에 의한 태양광 발전 장치를 개략적으로 나타낸 구성도이다.
도 1을 참조하면, 종래의 태양광 발전 장치는 복수의 태양광 모듈(PV, 10)을 직렬로 연결하여 하나의 태양전지 스트링(20)을 구성하고, 이러한 태양전지 스트링(20)을 여러 개 병렬로 연결하여 하나의 태양전지 어레이(10A)를 구성한다.
그리고, 태양전지 어레이(10A)로부터의 출력은 인버터에 의해 교류 전력으로 변환되어 전력계통에 공급된다.
이러한, 태양광 발전 장치는 태양전지의 출력이 환경 요소에 크게 영향을 받아, 환경 요소의 변화에 따라 출력값이 크게 변동되어 일정한 출력을 얻기 곤란하다. 태양전지의 경우 환경요소 중 일사량에 가장 큰 영향을 받으며, 구름과 같은 장애물에 의한 일시적인 일사량 감소도 출력을 저하시키는 중요한 이유로 작용한다. 또한, 주변의 온도가 전체적으로 낮아 태양전지 모듈의 온도가 저하되는 경우에도 태양전지의 출력이 저하되는 요인으로 작용한다.
이러한 태양전지의 출력저하, 출력의 변동은 이를 변환하여 교류전력화 하는 인버터의 효율 저하로 이어지고, 결과적으로 전력계통으로의 전력 송전 시점에서는 발전효율이 크게 낮아지게 된다.
이와 같은 태양전지의 출력을 최대한 안정적으로 유지하기 위해서 최대 전력점 추종(Maximum Power Point Tracking : MPPT) 제어에 의한 발전을 수행하며, 이에 대한 다양한 방식의 제어방법이 개발되어 이용되고 있다.
종래의 최대 전력점 추종은 인버터의 입력단과 출력단의 전압을 비교하고, 비교값에 의해 변환율을 조정함으로써 전력량을 조절하여 전력추종을 수행하는 것을 기본으로 하며, 이러한 변한율의 조정을 위해 다양한 알고리즘을 적용하고 있다.
하지만, 종래의 전력 추종을 위한 제어 알고리즘은 단순 제어의 경우, 제어시스템의 간소화와 제어가 용이한 장점은 있지만, 출력 변동이 큰 경우 빠른 대응이 어려우며, 환경요소에 대응한 제어는 곤란한 단점이 있었다.
또한, 퍼지 제어와 같은 복잡한 제어 알고리즘의 경우, 발전 효율의 향상이 가능한 장점은 있지만, 제어회로의 고성능화, 알로리즘의 복잡도 증가로 인한 적용이 용이하지 않은 문제점이 있었다.
따라서, 본 발명의 목적은 태양전지 스트링별 개별적인 최대 전력점 추종을 수행하고, 태양전지 스트링별 발전 전력량, 발전 전압의 차이에 무관하게 인버터로 입력되는 입력전압을 동일하게 유지함으로써 인버터의 변환효율을 최대화하고, 이를 통해 태양광 발전 효율을 향상시키도록 한 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템을 제공하는 것이다.
또한, 본 발명의 다른 목적은 단순 제어 방식에 환경적인 요인을 적용하여 용이하게 전력 추종을 수행함으로써 최대전력 생산 효율의 증가가 가능하도록 한 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템을 제공하는 것이다.
또한, 본 발명의 다른 목적은 환경요인 및 전력 추종에 따른 전압, 전류 값을 저장 유지하고, 이후의 추종에 있어 이를 통해 예측 추정을 함으로써 추종 응답 속도를 향상시키고, 이를 통해 전력 생산 효율을 증가시키도록 한 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템을 제공하는 것이다.
본 발명에 따른 단위 그룹별 최대 전력점 추종을 수행하는 태양광 발전 시스템은 복수의 태양전지 모듈이 연결되어 구성되는 복수의 태양전지 스트링; 상기 복수의 태양전지 스트링 각각의 발전전압을 동일한 크기의 출력전압으로 변환하며, 상기 발전전압의 변환을 위한 상기 태양전지 스트링별 최대 전력점 추종 제어를 수행하는 스트링옵티마; 상기 스트링옵티마로부터의 상기 출력전압을 교류전압으로 변환하여 전력계통에 공급하는 인버터;를 포함한다.
상기 스트링 옵티마는 상기 복수의 태양전지 스트링 각각과 연결되어 상기 발전전압을 상기 출력전압으로 변환하고 상기 최대 전력점 추종 제어를 수행하는 스트링 제어장치; 상기 태양전지 모듈의 발전량을 변화시키는 환경요소, 상기 발전전압 및 상기 출력전압을 포함하는 감지값을 생성하는 감지부; 및 상기 감지값을 이용하여 상기 스트링 제어장치 각각에 대한 전력 추종 제어신호를 생성하는 제어부;를 포함한다.
상기 환경요소는 일조량, 상기 태양전지 모듈이 설치된 지역의 온도, 상기 태양전지 모듈 표면의 온도, 풍량, 풍속 및 습도 중 어느 하나 이상을 포함한다.
상기 출력전압은 가변된다.
상기 스트링제어장치는 상기 태양전지 스트링으로부터의 상기 입력전압을 승압 또는 감압하는 컨버터; 상기 태양전지 스트링과 상기 컨버터사이에 연결되는 퓨즈; 상기 컨버터의 출력단에 연결되는 서킷브레이커; 상기 컨버터의 상기 승압 또는 감압을 위한 제어신호를 생성하는 엠피피티 제어기;를 포함한다.
상기 제어부는 상기 감지값에 의해 최대 전력점 추종이 수행될 전류 또는 전압 범위가 포함된 추종범위 값을 산출하는 추종범위 산출부; 상기 추종범위 산출부로부터의 상기 추종범위 값, 상기 입력전압 및 상기 출력접압에 의해 최대 전력점 추종 제어시호를 생성하는 제어신호 생성부; 및 상기 추종범위 값을 상기 감지값과 대응시켜 저장하는 추종이력 저장부;를 포함한다.
상기 추종범위 산출부는 상기 태양전지 모듈의 하루 발전 시간을 복수의 시간 구획으로 구분하고, 상기 시간 구획 각각의 기본 추종 범위를 산출한다.
상기 추종범위 산출부는 상기 기본 추종 범위에 상기 환경요소 감지값에 의한 발전량 변화 예상 범위를 반영하여 상기 추종범위를 산출한다.
상기 추종범위 산출부는 상기 발전전압 및 상기 출력전압이 일시적으로 상기 시간 구획에서 예상되는 최대 추종범위를 초과하는 경우 상기 입력전압 및 상기 출력전압의 초과분에 대한 전력추종을 생략한다.
상기 태양전지 스트링은 고정형 또는 추적형 태양전지 모듈인 것을 특징으로 하는 단위그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템.
상기 스트링옵티마와 상기 인버터는 일체형으로 구성된다.
따라서, 본 발명에 따른 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템은 태양전지 스트링별 개별적인 최대 전력점 추종을 수행하고, 태양전지 스트링별 발전 전력량, 발전 전압의 차이에 무관하게 인버터로 입력되는 입력전압을 동일하게 유지함으로써 인버터의 변환효율을 최대화하고, 이를 통해 태양광 발전 효율을 향상시키는 것이 가능하다.
또한, 본 발명에 따른 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템은 단순 제어 방식에 환경적인 요인을 적용하여 용이하게 전력 추종을 수행함으로써 최대전력 생산 효율의 증가가 가능하다.
또한, 본 발명에 따른 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템은 환경요인 및 전력 추종에 따른 전압, 전류 값을 저장 유지하고, 이후의 추종에 있어 이를 통해 예측 추정을 함으로써 추종 응답 속도를 향상시키고, 이를 통해 전력 생산 효율을 증가시킬 수 있다.
도 1은 종래 기술에 의한 태양광 발전 장치를 개략적으로 나타낸 구성도.
도 2는 본 발명에 따른 태양광 발전 시스템의 구성을 간략하게 도시한 구성예시도.
도 3은 스트링옵티마의 구성을 좀더 상세히 도시한 구성 예시도.
도 4는 스트링옵티마의 제어부 구성을 좀더 상세히 도시한 구성 예시도.
도 5는 환경요소 중 온도 및 조도에 따른 추종범위 산출을 설명하기 위한 예시도.
도 6은 시간에 따른 전력 추종을 설명하기 위한 예시도.
도 7은 추종이력 정보의 저장 및 이용방법을 설명하기 위한 예시도.
도 8은 본 발명의 다른 실시예에 따른 태양광 발전시스템의 구성을 도시한 예시도.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 당해 분야의 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 설명하기로 한다. 첨부된 도면들에서 구성에 표기된 도면번호는 다른 도면에서도 동일한 구성을 표기할 때에 가능한 한 동일한 도면번호를 사용하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어 관련된 공지의 기능 또는 공지의 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고 도면에 제시된 어떤 특징들은 설명의 용이함을 위해 확대 또는 축소 또는 단순화된 것이고, 도면 및 그 구성요소들이 반드시 적절한 비율로 도시되어 있지는 않다. 그러나 당업자라면 이러한 상세 사항들을 쉽게 이해할 것이다.
도 2는 본 발명에 따른 태양광 발전 시스템의 구성을 간략하게 도시한 구성예시도이다.
도 2를 참조하면, 본 발명에 따른 태양광 발전 시스템은 태양전지 어레이(100), 스트링 옵티마(200) 및 인버터(300)를 포함하여 구성된다. 그리고, 스트링옵티마(200)는 제어부(210)와 스트링제어장치(220)를 포함하여 구성된다.
태양전지 어레이(100)는 태양광에 의해 발전전하고, 발전된 전력을 스트링옵티마(200)에 공급한다. 이를 위해 태양전지 어레이(100)는 복수의 태양전지 스트링(120)으로 구성되고, 각 태양전지 스트링(120)은 스트링 옵티마(200)의 스트링 제어장치(220)와 개별적으로 연결된다.
태양전지 스트링(120)은 복수의 태양전지 모듈(110)을 직렬로 연결하여 구성된다. 태양전지 스트링(120)은 일정 수준 이상의 발전 전압을 확보하기 위해 태양전지 모듈(110)을 직렬로 연결하여 구성된다. 태양전지 스트링(120)을 구성하는 태양전지 모듈(110)의 수는 스트링 옵티마(200)의 입력전압 또는 인버터(300)의 입력전압에 따라 달라질 수 있다.
스트링 옵티마(200)는 각각의 태양전지 스트링(120)으로부터 공급되는 전력을 DC-DC 변환하여, 인버터(300)의 입력전압에 부합하는 전압으로 변환하여 공급한다. 이를 위해 스트링 옵티마(200)는 최대 전력점 추종 제어에 의한 DC-DC 변환을 수행하고, 최대 전력점 추종 제어시 환경 요소에 발전량 변화를 반영한다.
이를 위해, 스트링 옵티마(200)는 각각의 태양전지 스트링(120)으로부터 공급되는 발전 전력의 전압에 대한 DC-DC 변환 및 최대 전력점 추종을 수행하는 스트링제어장치(220)와 환경요소 및 스트링제어장치(220)로의 입출력 전압을 감지값으로 하여 스트링제어장치(220)를 제어하기 위한 제어신호를 생성하는 제어부(210)를 포함하여 구성된다.
제어부(210)는 복수의 스트링제어장치(220)를 개별 제어하기 위한 제어신호를 생성한다. 특히, 제어부(210)는 스트링제어장치(220)로 전달되는 각각의 입력전압 및 출력전압에 의한 각 스트링별 전력추종을 수행하고, 이에 의해 생성된 제어신호를 해당 스트링제어장치(220)에 전달한다. 특히, 제어부(210)는 센서(130)에서 전달되는 환경정보에 따라 전력추종을 수행한다.
구체적으로 제어부(210)는 태양전지모듈(110) 또는 태양전지스트링(120)이 설치된 위치의 일사량, 설치 위치의 온도, 패널의 온도, 시간과 같은 환경정보에 따라 각각 다른 추종 범위를 적용하여 최대전력점을 추종하고 이에 따른 제어신호를 생성하여 스트링제어장치(220)에 전달한다. 이러한 제어방법에 대해서는 하기의 다른 도면을 참조하여 좀더 상세히 설명하기로 한다.
스트링제어장치(220)는 태양전지 스트링(120)으로부터 공급되는 진류 전압을 인버터(301)의 입력 직류전압으로 변환하여 공급하며, 이러한 변환을 제어부(210)의 제어하에 수행한다.
특히, 스트링제어장치(220)는 태양전지스트링(120)으로부터 스트링제어장치(220)로 입력되는 입력전압과, 변화 후 인버터로 출력되는 출력전압 값을 제어부(210)에 전달한다. 스트링제어장치(220)에 대한 상세한 구성 및 동작은 이하의 도면을 참조하여 좀더 상세히 설명하기로 한다.
인버터(300)는 스트링옵티마(200)를 통해 입력전압이 균일화된 발전전력을 공급받아 직류-교류 변환을 수행하고, 변환된 전력을 전력계통(400)에 공급한다. 이러한 인버터(300)의 입력단에는 스트링 제어장치(220)의 출력단이 병렬로 연결된다.
도 3은 스트링옵티마의 구성을 좀더 상세히 도시한 구성 예시도이다.
도 3을 참조하면, 스트링옵티마(200)는 스트링제어장치(220)와 태양전지 스트링(120) 사이에 퓨즈(211)에 의해 중계 연결된다. 퓨즈(211)는 태양전지 스트링(120)의 과전압, 과전류 발생시 자동으로 절단되어 회로를 보호하는 역할을 한다. 또한, 스트링옵티마(200)의 출력단에는 서킷브레이커(212)가 설치되어 태양전지 스트링(120) 또는 스트링옵티마(200)의 이상 발생시 인버터(300)와 스트링옵티마(200) 간의 연결을 끊는 역할을 한다.
스트링제어장치(220) 각각은 퓨즈(211)를 통해 태양전지스트링(120)에 연결되어, 태양전지스트링(120)으로부터 공급되는 전력의 전압을 인버터(300)의 입력전압으로 변환하는 DC-DC 컨버터(222)와 제어부(210)의 제어신호에 따라 컨버터(222)가 최대전력을 출력하도록 제어하는 MPPT 제어기(221)를 포함하여 구성된다. 이를 위해, 스트링 제어장치의 제어부(21)는 각 스트링제어장치(220)의 엠피피티 제어기(221)와 연결된다.
스트링제어장치(220) 각각으로 입력되는 입력전압 및 스트링제어장치(220) 각각으로부터 출력되는 출력전압은 MPPT 제어기(221)에 의해 측정되어 제어부(210)에 전달되거나, 제어부(210)가 각 스트링제어장치(220)의 입출력단에 설치된 전압검출기로부터 직접 전압값을 전달받을 수 있다. 하지만, 이로써 본 발명을 한정하는 것은 아니다.
도 4는 스트링옵티마의 제어부 구성을 좀더 상세히 도시한 구성 예시도이다.
도 4를 참조하면, 제어부는 감지부(211), 추종범위산출부(310), 추종이력저장부(320) 및 제어신호 생성부(330)를 포함하여 구성된다.
감지부(211)는 제어신호의 생성을 위한 정보를 감지하여 추종범위산출부(310)에 전달한다. 이를 위해 감지부(211)는 입력전압검출부(301), 출력전압검출부(302) 및 센서(130)를 포함하여 구성된다. 입력전압검출부(301)는 스트링옵티마(220)로 입력되는 입력전력의 전압을 검출한다. 출력전압검출부(302)는 스트링옵티마(220)로부터 출력되는 전력의 전압을 검출한다. 이러한 입력전압검출부(301)와 출력전압검출부(302)는 복수의 스트링제어장치(220) 각각의 입력전압과 출력전압을 실시간으로 감지하여 추종범위산출부(310)에 전달한다. 센서(130)는 태양전지 어레이(100)에 영향을 끼치는 환경요소를 감지하고, 감지결과를 추종범위산출부(310)에 전달한다. 센서(130)에 의해 감지되는 환경요소는 태양전지 어레이(100)에 조사되는 태양광의 광량, 조도, 태양전지 어레이(100)가 설치된 지역의 온도, 습도, 태양전지 모듈(110) 각각의 표면온도 일 수 있으며, 이외에 발전량에 변화를 야기할 수 있는 요소이면 어떤 것이든 측정이 가능하다.
추종범위산출부(310)는 감지부(211)의 감지결과에 따라 최대전력 추정을 수행할 전압, 전류 범위를 선택하고, 선택된 범위 값을 제어신호 생성부(330)에 전달한다. 즉, 추종범위산출부(310)는 감지부(211)로부터의 입력전압과 출력전압 그리고 센서(130)에서 감지되는 정보에 따라 태양전지 스트링(120)으로부터 공급되는 전력의 크기를 파악함과 아울러, 현재 기상상태에 따른 태양전지 모듈(110)의 전력 생산치가 최대가 될 수 있는 전압과 전류 범위를 산출한다.
특히, 이러한 산출에 있어서 추종범위산출부(310)는 미리 입력되거나 운행에 따라 누적된 정보에 시각정보와 일자 또는 계절 정보를 반영하여 추종범위를 산출한다. 그리고, 추종범위산출부(310)는 입력전압과 출력전압을 제어신호 생성부(330)에 전달함과 아울러 산출된 추종범위 정보를 제어신호 생성부(330) 및 및 추종이력저장부(320)에 전달하게 된다. 이러한 추종범위산출부(310)에서 생성되는 추종범위는 태양전지 스트링(120) 각각에 대해 개별적으로 생성된다.
이러한 추종범위산출부(310) 및 이를 가지는 스트링옵티마(200)의 동작은 도 5 및 이후의 도면을 참조하여 좀더 상세히 설명하기로 한다.
추종이력저장부(320)는 추종범위산출부(310)로부터 전달된 추종범위 정보를 감지부(211)에서 감지된 환경요소정보와 함께 저장하고, 추종범위산출부(310)의 요청에 따라 저장된 정보를 제공한다. 특히, 추종이력저장부(320)는 일자별 시간대, 계절별 또한 기상상태별 환경요소에 따른 입력전압, 출력전압 및 최대전력의 변화를 기록하여 유지하게 된다.
제어신호 생성부(330)는 추종범위산출부(310)를 통해 전달되는 입력전압 및 출력전압 값과 산출된 추종범위 값을 이용하여 엠피피티 제어기(222)의 전력변환율을 제어하기 위한 제어신호를 생성하고, 해당 에피피티 제어기(222)에 전달한다.
도 5는 환경요소 중 온도 및 조도에 따른 추종범위 산출을 설명하기 위한 예시도이다.
도 5를 참조하면, (a)는 온도에 따른 태양전지 스트링의 출력 전압전류 관계를 나타낸 그래프이고, (b)는 조도에 따른 태양전지 스트링의 출력 전압전류 관계를 나타낸 그래프이다.
(a)에서 조도가 일정할 때 온도가 낮아지면 태양전지 스트링으로부터 생산되는 전압의 크기가 작아져 전체적인 생산 전력이 작아진다. (a)에서는 A에 비해 C가 낮은 온도일 때의 전압전류 그래프이고, 전류가 비교적 일정한 값을 가지더라도 전압의 크기가 작아져 최대전력이 작아지게 된다.
마찬가지로 (b)에서 다른 조건이 일정할 때 조도가 변화되면 A' 내지 C'을 통해 알 수 있는 바와 같이 출력전압(V : Va 내지 Vc)과 출력전류(I : Ia 내지 Ic)의 값이 변화되어 최대전력이 변화한다.
때문에 본 발명의 스트링옵티마(200) 특히, 추종범위산출부(310)는 감지부(211)를 통해 감지되는 환경요소에 따라 최대전력점이 형성될 전압, 전류 범위를 선정하고, 선정된 전압, 전류 범위 내에서 최대전력점 추종이 제어될 수 있도록 산출된 추종범위 값을 제어신호 생성부(330)에 전달하게 된다. 이를 통해, 엠피피티제어기(221)는 빠른 시간 내에 최대 전력 추종이 이루어질 수 있는 전압, 전류 값에서 전력 추종을 수행하게 되고 이를 통해 태양전지에 의한 발전 효율을 향상시킬 수 있게 된다.
구체적으로, 온도 특히, 발전에 직접적인 영향을 가지는 태양전지 모듈 표면의 온도는 다른 환경요소의 영향이 없는 한 시간에 따라 천천히 변화하는 특징을 가진다. 하지만, 겨울철과 같은 경우 바람에 의해 태양전지 모듈 표면의 온도가 급격하게 저하될 수 있다. 즉 도 5의 (a)에서 범위1(P1)에서 최대 전력점이 형성되다가 온도가 급격히 저하되어 범위2(P2)에서 최대 전력점이 형성될 수 있다. 이 경우 종래의 제어장치는 범위1(P1)에 해당되는 전압, 전류를 가변하여 범위2(P2)까지 최대전력 추종을 수행하게 되고, 이를 통해 소요되는 시간이 많아지게 된다. 특히, 일시적인 온도 저하 이후 온도가 빠른 속도로 회복되는 경우에는 최대전력 추종에 교란이 발생하며 정확한 추종까지 상당한 시간이 소요된다.
하지만, 본 발명에서와 같이 온도 변화에 따라 추종 범위를 선정하여 해당 범위에서 전력추종을 수행하도록 하면 빠른 추종이 가능해지고 그에 따라 발전 전력의 낭비를 최소화 하는 것이 가능해진다.
도 6은 시간에 따른 전력 추종을 설명하기 위한 예시도이다.
도 6의 (a)는 발전 시간을 시간대별로 구획한 것을 표현한 도면이고, (b)는 시간 구획에 따른 태양전지 스트링의 출력전압 및 출력전류의 변화를 그래프로 나타낸 것이다.
도 6을 참조하면, 태양광 발전에 있어서 가장 중요한 요소는 발전을 위한 광의 유무와 광량이다. 이러한 광량은 해가 떠서 지기까지 일정하게 유지되지 않고 시간대에 따라 변화하게 된다. 특히, 겨울철의 경우 정오 전후의 최대 광량 하에서도 최대 전력의 발전이 곤란해지는 경우가 빈번하게 발생된다. 특히, 겨울철의 경우와 동이 틀 무렵, 해가 질 무렵의 경우 일조량의 변화가 급격하게 발생한다. (a)의 그래프가 시계방향으로 진행함에 따라 (b)의 전압 전류 그래프는 출력이 증가하는 방향(x1)으로 변화하게 된다. 그리고 (a)에서 최대 출력 시점인 b5, b6 구간을 지나면 (b)의 그래프는 출력이 감소하는 방향(y1)으로 변화하게 된다.
이러한 시간대와 계절에 단순히 출력전압 및 입력전압에 의해 전력추종을 수행하는 경우 최대전력 추종을 수행하더라도 최대전력을 생산하기 어려워진다. 특히, 겨울철 또는 장마철과 같이 기상 및 온도가 비교적 급격히 변화하는 경우 더더욱 최대전력의 추종이 어려워지며 이는 곧 발전량의 손실로 이어지게 된다.
때문에 본 발명에서는 최대전력 추종 범위를 근사화 할 수 있는 시간대별로 발전시간을 구획(B1 내지 B10)하고, 각 범위별로 추종범위를 선정하여 엠피피티 제어기(221)의 제어를 위한 제어신호를 생성하게 된다.
구체적으로 (a)가 겨울철의 발전 가능 시간대를 구획한 것이라 가정하면 제1구획(b1), 제2구획(b2) 및 제9구획(b9), 제10구획(b10)에서는 일조량이 급격히 변화하여 빠른 최대전력 추종이 곤란해진다. 하지만, 이러한 시간에 일조량과 미리 정해진 구획 및 그에 따른 전압 전류 범위를 대조하여 추종범위를 산출하고, 산출된 추종범위 내에서 전력 추종을 수행하는 경우 최대 전력점 추종의 속도 및 효율을 향상시킬 수 있게 된다. 특히, 각 시간대별 기본 추종 범위를 선정하고, 선정된 기본 추종 범위에 온도에 따른 발전저하율, 일사량에 따른 발전저하율을 적용하여 추종 범위를 다시 산출하고, 이에 따른 최대 전력점 추종을 수행함으로써 용이하게 환경요소를 전력점 추종 범위에 적용할 수 있게 된다.
또한, 이러한 발전저하율의 계산은 계측 당시의 기상 상황, 발전량, 형성되는 최대 전력점 정보와 함께 저장하여, 이후 유사 환경이 조성되는 경우 최대 전력점 추종을 더 빠르게 할 수 있는 근거 자료로 활용하는 것이 가능해진다.
즉, (b)에서와 같이 시간 대에 따라 출력 전압 및 출력 전류가 달라지면, 변화되기 이전의 최대 전력점으로부터 추종을 진행하는 것이 아니라, 해당 시간대에 해당하는 구획의 추종 범위 중 이전의 최대 전력점과 가까운 추종 범위에서 최대 전력점 추종을 수행하게 되고, 이를 통해 최대 전력점 추종에 소요되는 시간을 절약할 수 있게 됨으로써, 발전효율을 종래에 비해 높은 수준으로 유지할 수 있게 된다.
(b)와 같이 시간대별로 변화하는 추종 값을 가지는 경우 일시적인 온도 변화, 기후 변화가 발생하더라도, 시간대별로 변화하는 추종 값에 기후 변화에 따른 발전효율 저하 및 추종 범위의 변동을 적용함으로써 빠른 시간내에 최대 전력점의 탐색이 가능해지게 된다.
도 7은 추종이력 정보의 저장 및 이용방법을 설명하기 위한 예시도이다.
도 7을 참조하면, 태양전지 스트링(120)은 특정 시간에 도 7의 (a)와 같은 출력 그래프를 나타낼 수 있다. 이때 V-I 그래프 상에서 최대 출력 추종 범위는 P11이 된다. 추종범위 산출부(310)은 환경요소의 변동이 없는 경우 전압 Vp, 전류 Ip 지점 부근에서 전력 추종이 이루어지도록 추종범위를 선정하고, 제어신호 생성부(330)는 선정된 추종범위에 컨버터 입력 및 출력전압을 반영하여 전력추종을 수행함으로써 태양전지 스트링(120)이 최대전력을 생산하도록 동작하게 된다. 또한, 최대 전력점 추종이 이루어지는 조건 최대 전력 추종 범위의 전압, 전류값, 주변온도, 패널 온도, 일조량, 시간, 풍속 및 풍향 정보는 추종이력 저장부(330)에 저장되어 이후 유사 조건에 의한 전력 추종시 추종 범위를 확정하기 위한 정보로 이용된다.
이와 같이 (a) 그래프에 의해 최대전력 추종을 수행하던 중 환경요소가 변화하면 최대전력 추종을 위한 그래프 자체가 변화될 수 있다. 예를 들어, 작은 범위의 온도 변화, 일조량 변화의 경우 (a)의 그래프를 통해 최대 전력점 추종이 이루어질 수 있지만, 큰 폭의 온도 변화가 발생하거나, 일조량이 변화하게 되면 최대 전력점 추종을 위한 V-I 그래프도 값이 크게 변화하게 된다.
이러한 경우 전술한 바와 같이 입출력 전압의 피드백만을 가지고 최대 출력점 추종을 수행하면 소요시간이 오래 걸리고, 안정적인 추종 및 최대 전력 생산이 이루어지기까지 발전 시스템의 효율 저하를 가져오게 된다.
때문에 본 발명에서 이러한 요소에 환경 요소를 부가하여 최대 전력점 추종이 빠른 시간 내에 이루어질 수 있도록 제어하게 된다.
이와 같은 상태가 (b)에 도시되어 있다. (b)의 경우 (a)의 그래프에 의해 전력 추종이 이루어지던 태양전지 스트링(120)의 온도와 일조량이 변화하여 V-I 그래프가 변화된 경우이다. 이 경우 최대 전력점은 P11의 범위에서 형성되던 것이 P12의 범위로 변경된다. 이러한 V-I 그래프의 변화는 종래와 같이 입력전압 및 출력전압에 의해 추종하는 것도 가능하다. 하지만, 본 발명에서와 같이 환경요소의 변화와 그에 따른 출력률의 변화 또는 V-I 그래프의 변화를 적용하면 좀더 빠른 응답을 기대할 수 있다.
예를 들어 (b)의 그래프에서처럼 일조량과 온도가 변화한 경우 통상적으로 일조량과 변화된 온도만을 반영하여 추종범위를 선택할 수 있다. 하지만, 본 발명에서와 같이 환경요소를 추정범위에 반영하는 경우 주변 온도에 따라 패널의 온도변화를 예측하여 V-I그래프의 변화를 추종할 수 있다. 더욱이 겨울철과 같은 경우 태양광에 의해 태양전지 모듈이 가열되더라도 태양전지가 설치된 위치의 온도, 풍속에 따라 태양전지 패널의 온도는 달라지게 되며, 전력 생산에 있어서 직접적인 영향을 끼치게 된다. 이러한 경우, 추종 이력 저장부(330)에 저장된 이전의 추종 정보에서 유사 요인을 확인하여 적용함으로써 예상되는 추종범위를 미리 근사화할 수 있고, 태양전지 스트링(120)의 입력 및 출력전압이 변동되는 경우 예상된 추종범위에 입력 및 출력전압의 값을 적용하여 최대전력점 추종을 위한 전압 및 전류 범위를 손쉽게 찾아낼 수 있게 된다.
더욱이 도 6에 대한 설명에 언급한 바와 같이 본 발명의 스트링옵티마(200)는 발전 시간을 여러 단계로 구획하고 각 시간 구획 별로 대표되는 추종 범위에 환경 요소 및 컨버터 입출력 전압을 반영하여 전력 추종을 수행한다.
이러한 시각 구획별 기본 추종 범위를 이용한 추종은 누적된 발전시간대와 온도와 같은 환경요소를 통해 발전이 진행중인 시점의 계절, 기후적 요소를 예측할 수 있으며, 이를 통해 추종범위의 변화를 예측, 추종하는 것이 용이해진다. 더욱이 겨울과 같이 계절에 따른 환경요소가 발전에 큰 영향을 미치는 경우 이러한 시간대별 구획에 의한 추종은 최대전력점 추종에 유리하게 작용한다.
최대 전력점 추종의 경우 지속적으로 변하는 전압 또는 전류에 의해 추종을 수행하게 되는데 일시적인 전압 또는 전류의 큰 변동이 발생할 수 있다. 이러한 경우 전압 또는 전류의 변동을 따라 추종을 수행하는 경우 일시적인 변동이 해제된 후의 추종에 있어서 효율이 저하되게 된다. 하지만, 시간을 구획하고 해당 시간이 속하는 계절적인 요소를 고려하여 추종 범위를 제한하게 되면 짧은 순간 동안 발생하는 전압, 전류의 큰 변동은 추종하지 않게 되며, 이를 통해 발전효율이 저하되는 것을 방지할 수 있게 된다. 또한, 시간대별 구획에 따라 전압 또는 전류가 상승할지 또는 하강할지 예측하고 이에 대해 환경요소 및 컨버터 입출력 전압을 반영함으로써 추종 방향을 결정하기 용이해지고, 빠른 응답의 최대 전력점 추종이 가능해진다. 더욱이 이러한 발전에 관여하는 환경적 요소들을 시간 구획 및 시간 구획에 따른 계절 구분에 따라 정렬 및 접근하여 추종 범위 선정에 이용함으로써 기존에 비해 크게 복잡하지 않은 알고리즘을 이용하여 빠른 추종이 가능해진다.
도 8은 본 발명의 다른 실시예에 따른 태양광 발전시스템의 구성을 도시한 예시도이다.
도 8을 참조하면, 본 발명의 다른 실시예에 따른 태양광 발전시스템에서는 인버터(300)가 스트링옵티마(200)와 인버터부(390)로 구성된다.
즉, 본 발명의 다른 실시예의 태양광 발전시스템에서는 전술한 도 2에서 스트링옵티마(200)와 인버터(300)가 하나로 구성되는 것이 차이점이며, 이외의 구성 및 작용은 전술한 실시예와 동일하다. 때문에, 별도의 동작 및 구성에 대한 설명은 생략하기로 한다.
이상에서 본 발명의 기술적 사상을 예시하기 위해 구체적인 실시 예로 도시하고 설명하였으나, 본 발명은 상기와 같이 구체적인 실시 예와 동일한 구성 및 작용에만 국한되지 않고, 여러가지 변형이 본 발명의 범위를 벗어나지 않는 한도 내에서 실시될 수 있다. 따라서, 그와 같은 변형도 본 발명의 범위에 속하는 것으로 간주해야 하며, 본 발명의 범위는 후술하는 특허청구범위에 의해 결정되어야 한다.
본 발명은 직렬 연결된 태양전지 단위의 최대 전력점 추종을 수행함으로써 어레이 단위의 최대 전력점 추종을 수행하는 태양광 발전 시스템에 비해 발전 효율을 향상시켜 발전전력량을 증대시킬 수 있다. 또한, 본 발명의 각각의 태양전지 스트링으로부터 발전된 최대 발전전력을 하나의 인버터에 의해 교류변환하며, 인버터로 입력되는 각 태양전지 스트링의 전압을 동일한 전압으로 변환함으로서 인버터의 동작 효율을 향상시킬 수 있다.
더욱이 본 발명은 기존의 태양광 발전 시스템의 인버터를 대체하여 스트링옵티마와 본 발명의 인버터를 구성함으로써 기존 시스템을 재이용할 수 있으며, 이를 통해 기존 태양광 발전 시스템을 고효율 시스템으로 재구성하는 것이 가능해진다.

Claims (11)

  1. 복수의 태양전지 모듈이 연결되어 구성되는 복수의 태양전지 스트링;
    상기 복수의 태양전지 스트링 각각의 발전전압을 동일한 크기의 출력전압으로 변환하며, 상기 발전전압의 변환을 위한 상기 태양전지 스트링별 최대 전력점 추종 제어를 수행하는 스트링옵티마;
    상기 스트링옵티마로부터의 상기 출력전압을 교류전압으로 변환하여 전력계통에 공급하는 인버터;를 포함하여 구성되는 것을 특징으로 하는 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템.
  2. 제 1 항에 있어서,
    상기 스트링 옵티마는
    상기 복수의 태양전지 스트링 각각과 연결되어 상기 발전전압을 상기 출력전압으로 변환하고 상기 최대 전력점 추종 제어를 수행하는 스트링 제어장치;
    상기 태양전지 모듈의 발전량을 변화시키는 환경요소, 상기 발전전압 및 상기 출력전압을 포함하는 감지값을 생성하는 감지부; 및
    상기 감지값을 이용하여 상기 스트링 제어장치 각각에 대한 전력 추종 제어신호를 생성하는 제어부;를 포함하여 구성되는 것을 특징으로 하는 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템.
  3. 제 2 항에 있어서,
    상기 환경요소는
    일조량, 상기 태양전지 모듈이 설치된 지역의 온도, 상기 태양전지 모듈 표면의 온도, 풍량, 풍속 및 습도 중 어느 하나 이상을 포함하는 것을 특징으로 하는 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템.
  4. 제 3 항에 있어서,
    상기 출력전압은 가변되는 것을 특징으로 하는 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템.
  5. 제 4 항에 있어서,
    상기 스트링제어장치는
    상기 태양전지 스트링으로부터의 상기 입력전압을 승압 또는 감압하는 컨버터;
    상기 태양전지 스트링과 상기 컨버터사이에 연결되는 퓨즈;
    상기 컨버터의 출력단에 연결되는 서킷브레이커; 및
    상기 컨버터의 상기 승압 또는 감압을 위한 제어신호를 생성하는 엠피피티 제어기;를 포함하여 구성되는 것을 특징으로 하는 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템.
  6. 제 5 항에 있어서,
    상기 제어부는
    상기 감지값에 의해 최대 전력점 추종이 수행될 전류 또는 전압 범위가 포함된 추종범위 값을 산출하는 추종범위 산출부;
    상기 추종범위 산출부로부터의 상기 추종범위 값, 상기 입력전압 및 상기 출력접압에 의해 최대 전력점 추종 제어시호를 생성하는 제어신호 생성부; 및
    상기 추종범위 값을 상기 감지값과 대응시켜 저장하는 추종이력 저장부;를 포함하여 구성되는 것을 특징으로 하는 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템.
  7. 제 6 항에 있어서,
    상기 추종범위 산출부는
    상기 태양전지 모듈의 하루 발전 시간을 복수의 시간 구획으로 구분하고, 상기 복수의 시간 구획 각각의 기본 추종 범위를 산출하는 것을 특징으로 하는 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템.
  8. 제 7 항에 있어서,
    상기 추종범위 산출부는
    상기 기본 추종 범위에 상기 환경요소 감지값에 의한 발전량 변화 예상 범위를 반영하여 상기 추종범위를 산출하는 것을 특징으로 하는 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템.
  9. 제 6 항에 있어서,
    상기 추종범위 산출부는
    상기 발전전압 및 상기 출력전압이 일시적으로 상기 시간 구획에서 예상되는 최대 추종범위를 초과하는 경우 상기 발전전압 및 상기 출력전압의 초과분에 대한 전력추종을 생략하는 것을 특징으로 하는 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템.
  10. 제 8 항에 있어서,
    상기 태양전지 스트링은
    고정형 또는 추적형 태양전지 모듈인 것을 특징으로 하는 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템.
  11. 제 1 항에 있어서,
    상기 스트링옵티마와 상기 인버터는 일체형으로 구성되는 것을 특징으로 하는 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템.
PCT/KR2012/005901 2011-12-19 2012-07-24 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템 WO2013094838A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014548642A JP2015502621A (ja) 2011-12-19 2012-07-24 単位グループ別に最大電力点追従を行う太陽光発電システム
CN201280062644.2A CN104040453B (zh) 2011-12-19 2012-07-24 对每个单元组执行最大功率点跟踪的光伏发电系统

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020110137355A KR101128386B1 (ko) 2011-12-19 2011-12-19 태양광 발전 시스템
KR10-2011-0137355 2011-12-19
KR1020110141511A KR101132323B1 (ko) 2011-12-23 2011-12-23 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템
KR10-2011-0141511 2011-12-23
KR10-2011-0141510 2011-12-23
KR1020110141510A KR101135386B1 (ko) 2011-12-23 2011-12-23 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템

Publications (1)

Publication Number Publication Date
WO2013094838A1 true WO2013094838A1 (ko) 2013-06-27

Family

ID=48668694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005901 WO2013094838A1 (ko) 2011-12-19 2012-07-24 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템

Country Status (3)

Country Link
JP (1) JP2015502621A (ko)
CN (1) CN104040453B (ko)
WO (1) WO2013094838A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050933A (ja) * 2013-09-02 2015-03-16 エルエス産電株式会社Lsis Co., Ltd. 太陽光インバータ
TWI697791B (zh) * 2019-03-20 2020-07-01 龍華科技大學 一種具遮蔭情況下之太陽能電池最大功率追蹤方法
CN112462176A (zh) * 2020-11-13 2021-03-09 丰郅(上海)新能源科技有限公司 支持检测光伏系统直流电弧故障的装置及方法
CN112782495A (zh) * 2019-11-06 2021-05-11 成都鼎桥通信技术有限公司 一种光伏电站的组串异常识别方法
CN112817341A (zh) * 2021-02-03 2021-05-18 阳光电源股份有限公司 光伏跟踪支架控制方法、光伏跟踪控制器及光伏跟踪系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101543768B1 (ko) * 2014-04-02 2015-08-11 동양이엔피 주식회사 3입력 태양광 인버터 장치
CN104779909B (zh) * 2015-04-28 2017-01-25 北京铂阳顶荣光伏科技有限公司 一种太阳能光伏电站的工作状态监测方法及系统
CN108336753B (zh) * 2017-01-20 2023-01-06 丰郅(上海)新能源科技有限公司 实现输出功率最大化的光伏发电系统及方法
CN112925377B (zh) * 2021-02-01 2022-07-29 浙江晶科能源有限公司 光伏系统及光伏系统的最大功率跟踪方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070033395A (ko) * 2007-02-21 2007-03-26 주식회사기영미다스 스트링기준 태양광발전용 전력제어장치
KR101006100B1 (ko) * 2010-03-03 2011-01-07 인타스(주) 일사량에 따른 섭동 및 관측 방법을 이용하여 최대 전력을 추정하는 태양광 발전 제어 시스템 및 방법
KR20110124190A (ko) * 2011-10-31 2011-11-16 강병관 광역 멀티 스트링 태양광 발전 시스템을 위한 트랜스포머 결합형 병렬 인버터

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479816A (en) * 1987-09-21 1989-03-24 Technology Network Inc Automatic sun tracking type solar generator
JPH11103538A (ja) * 1997-09-27 1999-04-13 My Way Giken Kk 光発電システム
JP2000112545A (ja) * 1998-09-30 2000-04-21 Daihen Corp 太陽光発電システム
JP2000181555A (ja) * 1998-12-11 2000-06-30 Ntt Power & Building Facilities Inc 太陽光発電システムおよびその制御方法
JP2001238465A (ja) * 2000-02-25 2001-08-31 Sharp Corp インバータ装置
JP2005151662A (ja) * 2003-11-13 2005-06-09 Sharp Corp インバータ装置および分散電源システム
US20070164612A1 (en) * 2004-01-09 2007-07-19 Koninkijke Phillips Electronics N.V. Decentralized power generation system
JP2006012920A (ja) * 2004-06-22 2006-01-12 Kyocera Corp 太陽光発電装置
KR100633996B1 (ko) * 2005-01-31 2006-10-13 엘지전자 주식회사 태양광 발전시스템의 최대전력 추종장치 및 그 방법
JP5291896B2 (ja) * 2007-06-01 2013-09-18 Jx日鉱日石エネルギー株式会社 太陽光発電用パワーコンディショナ、太陽光発電システム及び太陽光発電システムの出力電力制御方法
CN100578420C (zh) * 2008-02-28 2010-01-06 上海交通大学 适应天气状况的变电压光伏系统最大功率跟踪控制方法
US8810068B2 (en) * 2009-04-17 2014-08-19 National Semiconductor Corporation System and method for over-voltage protection of a photovoltaic system with distributed maximum power point tracking
CN101599724B (zh) * 2009-07-24 2011-03-23 中环光伏系统有限公司 一种用于太阳能光伏发电系统的mppt控制装置及方法
JP5581965B2 (ja) * 2010-01-19 2014-09-03 オムロン株式会社 Mppt制御器、太陽電池制御装置、太陽光発電システム、mppt制御プログラム、およびmppt制御器の制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070033395A (ko) * 2007-02-21 2007-03-26 주식회사기영미다스 스트링기준 태양광발전용 전력제어장치
KR101006100B1 (ko) * 2010-03-03 2011-01-07 인타스(주) 일사량에 따른 섭동 및 관측 방법을 이용하여 최대 전력을 추정하는 태양광 발전 제어 시스템 및 방법
KR20110124190A (ko) * 2011-10-31 2011-11-16 강병관 광역 멀티 스트링 태양광 발전 시스템을 위한 트랜스포머 결합형 병렬 인버터

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050933A (ja) * 2013-09-02 2015-03-16 エルエス産電株式会社Lsis Co., Ltd. 太陽光インバータ
US9882381B2 (en) 2013-09-02 2018-01-30 Lsis Co., Ltd. Photovoltaic inverter
TWI697791B (zh) * 2019-03-20 2020-07-01 龍華科技大學 一種具遮蔭情況下之太陽能電池最大功率追蹤方法
CN112782495A (zh) * 2019-11-06 2021-05-11 成都鼎桥通信技术有限公司 一种光伏电站的组串异常识别方法
CN112462176A (zh) * 2020-11-13 2021-03-09 丰郅(上海)新能源科技有限公司 支持检测光伏系统直流电弧故障的装置及方法
CN112817341A (zh) * 2021-02-03 2021-05-18 阳光电源股份有限公司 光伏跟踪支架控制方法、光伏跟踪控制器及光伏跟踪系统
CN112817341B (zh) * 2021-02-03 2023-09-29 阳光电源股份有限公司 光伏跟踪支架控制方法、光伏跟踪控制器及光伏跟踪系统

Also Published As

Publication number Publication date
CN104040453B (zh) 2016-02-24
JP2015502621A (ja) 2015-01-22
CN104040453A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2013094838A1 (ko) 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템
WO2013094839A1 (ko) 멀티인버터 태양광 발전시스템
KR101135386B1 (ko) 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템
KR101132323B1 (ko) 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템
US11476799B2 (en) Distributed power harvesting systems using DC power sources
US12107417B2 (en) Distributed power harvesting systems using DC power sources
WO2022145907A1 (ko) 스트링 단위로 균등 전압을 추종하는 스트링 옵티마, 및 이를 적용한 태양광 발전 시스템
US10848099B2 (en) Power generation abnormality detection method and system thereof for photovoltaic panels
WO2011087342A2 (ko) 최대전력점 추종 방법
WO2021002539A1 (ko) 머신러닝 기반의 mppt 동작전압 최적화를 위한 태양광 모듈 직병렬 변환시스템
KR20120138866A (ko) 태양광발전 시스템의 고장 인식 장치 및 이의 진단 방법
KR101408855B1 (ko) 태양광 모듈용 마이크로 컨버터 장치 및 그 제어방법
CN102812610A (zh) 控制装置和控制方法
WO2019027079A1 (ko) 군집 태양광 트래커들의 제어 방법 및 시스템
WO2015163583A1 (ko) 태양광발전 시스템
JP2017063591A (ja) 太陽光発電システム、太陽光発電ユニットの診断方法および診断プログラム
KR20210125834A (ko) 다수개의 태양광 모듈이 직렬 연결된 태양광 발전 시스템의 성능 향상을 위한 차동 전력변환기 및 그것을 이용한 전력제어장치
WO2022102857A1 (ko) 태양전지 모듈용 정션박스 일체형 출력보상 장치
KR101857916B1 (ko) 전압 인가 제어 시스템을 이용한 태양광 발전장치의 스트링별 발전전력 제어 모니터링 시스템
CN117424275A (zh) 光伏系统及其控制方法、控制系统及存储介质
US11855231B2 (en) Distributed power harvesting systems using DC power sources
KR101128386B1 (ko) 태양광 발전 시스템
KR101386528B1 (ko) 다단 스위치를 이용한 태양광 발전 시스템 및 그 구동 방법
KR20220131462A (ko) 태양광 발전 시스템의 패널편차에 의한 크리스마스 트리 라이트 이펙트 현상 규명을 위한 테스트 장치
WO2021132759A1 (ko) 이종 분산 자원과 연계된 에너지 저장 장치의 지능형 운전 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280062644.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014548642

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858954

Country of ref document: EP

Kind code of ref document: A1