WO2013091372A1 - 一种具有微腔结构的有机发光二极管(oled)显示器 - Google Patents

一种具有微腔结构的有机发光二极管(oled)显示器 Download PDF

Info

Publication number
WO2013091372A1
WO2013091372A1 PCT/CN2012/078224 CN2012078224W WO2013091372A1 WO 2013091372 A1 WO2013091372 A1 WO 2013091372A1 CN 2012078224 W CN2012078224 W CN 2012078224W WO 2013091372 A1 WO2013091372 A1 WO 2013091372A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film layer
film
buffer
constitutes
Prior art date
Application number
PCT/CN2012/078224
Other languages
English (en)
French (fr)
Inventor
熊志勇
何为
牛晶华
Original Assignee
上海天马微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海天马微电子有限公司 filed Critical 上海天马微电子有限公司
Publication of WO2013091372A1 publication Critical patent/WO2013091372A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements

Definitions

  • the present invention relates to the field of organic light-emitting technologies, and in particular to an organic light-emitting diode (OLED) display having a micro-cavity.
  • OLED organic light-emitting diode
  • OLED organic light-emitting diode
  • FIG. 1 is a schematic structural view of an active organic light emitting diode display fabricated by a low temperature polysilicon (LTPS) process in the prior art.
  • the organic light emitting diode display is divided into a light emitting area 1 and a circuit area 2, as indicated by a broken line frame in FIG.
  • a lower mirror 11 located in the light emitting area is formed on a substrate 110 (the glass substrate), and the lower mirror 11 has an LTPS
  • a plurality of functional layer structures of the process structure including: a planarization layer 160 (PLN layer), a passivation layer 150 (passivation layer), a spacer layer 140 (ILD layer), and a gate insulating layer 130 (GI Layer), buffer layer 120 (Buffer layer).
  • PPN layer planarization layer 160
  • passivation layer passivation layer
  • ILD layer spacer layer 140
  • GI Layer gate insulating layer 130
  • Buffer layer buffer layer
  • each of the plurality of functional layers has different optical constants (ie, refractive index and dielectric constant) and thickness, the plurality of functional layer structures have severe interference with light, and the spectrum of the light is easily disordered, which seriously affects The efficiency and color purity of the entire organic light emitting diode display.
  • the technical problem to be solved by the present invention is to provide an organic light emitting diode (OLED) display having a micro-cavity structure, which can effectively improve the efficiency and color purity of the organic light emitting diode display.
  • This OLED display can be used for bottom emission active organic light emitting diode Tube display.
  • the present invention discloses an organic light emitting diode (OLED) display having a microcavity structure, wherein the microcavity structure is located on a lower mirror surface of the light emitting region, and has a plurality of functional layer structures formed on the substrate,
  • the functional layer structure comprises a L-type zone layer and a H-type zone layer which are alternately stacked alternately, wherein the refractive index of the L-type zone layer is smaller than the first threshold, and the refractive index of the H-type zone layer is greater than the second threshold, the first The second threshold is greater than or equal to the first threshold, and the thickness of the L-type region layer is equal to a quarter wavelength divided by the refractive index of the L-type region layer, and the thickness of the terpenoid region layer is equal to a quarter wavelength divided by The refractive index of the ruthenium layer.
  • the plurality of functional layer structures include at least one two-layer structure composed of a layer of a L-type zone layer and a ruthenium-type zone layer.
  • the wavelength is a center wavelength of blue light or a center wavelength of green light.
  • each of the plurality of functional layer structures is composed of at least one film layer; adjacent film layers having the same material together form a region layer, and adjacent film layers having different materials respectively constitute different regions.
  • the plurality of functional layer structures include a buffer layer, a gate insulating layer, a spacer layer, a passivation layer, and a planarization layer which are sequentially formed on the substrate, and the buffer layer sequentially includes a first film layer and a second film layer.
  • the spacer layer includes a third film layer and a fourth film layer in sequence, wherein a refractive index of the second film layer, the gate insulating layer, the fourth film layer of the spacer layer, and the planarization layer of the buffer layer are all smaller than the first threshold
  • the refractive index of the first film layer of the buffer layer, the third film layer of the spacer layer, and the passivation layer are both greater than a second threshold;
  • the first film layer of the buffer layer constitutes a ruthenium region layer, and the buffer layer
  • the second film layer and the gate insulating layer form a L-type region layer
  • the third film layer of the spacer layer constitutes a ruthenium-like region layer
  • the fourth film layer of the spacer layer constitutes a L-type region layer
  • the passivation layer constitutes a ruthenium region layer
  • the planarization layer constitutes a L-type zone layer.
  • the gate insulating layer is a silicon dioxide film layer
  • the planarization layer is an organic material film layer having a refractive index smaller than the first threshold
  • the passivation layer is a silicon nitride film layer
  • the buffer layer includes a silicon nitride film in this order.
  • the spacer layer sequentially comprises a silicon nitride film layer and a silicon dioxide film layer;
  • the silicon nitride film layer of the buffer layer constitutes a germanium type layer layer, a buffer layer silicon dioxide film layer and a gate insulating layer
  • the silicon dioxide film layer of the layer constitutes the L-type region layer
  • the silicon nitride film layer of the spacer layer constitutes the germanium-type region layer
  • the silicon dioxide film layer of the spacer layer constitutes the L-type region layer
  • the silicon nitride film layer of the passivation layer The organic material film layer constituting the ruthenium region layer and the planarization layer constitutes the L-type region layer.
  • the plurality of functional layer structures include a buffer layer, a spacer layer, which are sequentially formed on the substrate, a passivation layer and a planarization layer, wherein the buffer layer comprises a first film layer and a second film layer in sequence, and the spacer layer comprises a third film layer and a fourth film layer in sequence, wherein the second film layer and the spacer layer of the buffer layer
  • the refractive indices of the four film layers and the planarization layer are both smaller than the first threshold, and the refractive indices of the first film layer of the buffer layer, the third film layer of the spacer layer, and the passivation layer are both greater than the second threshold;
  • One film layer constitutes a H-type zone layer
  • the second film layer of the buffer layer constitutes a L-type zone layer
  • the third film layer of the spacer layer constitutes a H-type zone layer
  • the fourth film layer of the spacer layer constitutes a L-type zone layer, which is passivated
  • the layers constitute a H
  • the planarization layer is an organic material film layer having a refractive index smaller than the first threshold
  • the passivation layer is a silicon nitride film layer
  • the buffer layer includes a silicon nitride film layer and a silicon dioxide film layer in this order
  • the spacer layer includes nitrogen in sequence.
  • the silicon film layer and the silicon dioxide film layer; the silicon nitride film layer of the buffer layer constitutes a H-type region layer, the silicon dioxide film layer of the buffer layer constitutes a L-type region layer, and the silicon nitride film layer of the spacer layer constitutes a H-type layer
  • the silicon dioxide film layer of the spacer layer constitutes the L-type region layer
  • the silicon nitride film layer of the passivation layer constitutes the H-type region layer
  • the organic material film layer of the planarization layer constitutes the L-type region layer.
  • the plurality of functional layer structures include a buffer layer, a gate insulating layer, a passivation layer, and a planarization layer which are sequentially formed on the substrate, and the buffer layer sequentially includes a first film layer and a second film layer, wherein the buffer layer The refractive indices of the second film layer, the gate insulating layer and the planarization layer of the layer are all smaller than the first threshold, and the refractive indices of the first film layer and the passivation layer of the buffer layer are both greater than the second threshold; the first film of the buffer layer The layer constitutes a H-type region layer, the second film layer of the buffer layer and the gate insulating layer constitute a L-type region layer, the passivation layer constitutes a H-type region layer, and the planarization layer constitutes a L-type region layer.
  • the gate insulating layer is a silicon dioxide film layer
  • the passivation layer is a silicon nitride film layer
  • the buffer layer sequentially includes a silicon nitride film layer and a silicon dioxide film layer
  • the planarization layer has a refractive index smaller than the first threshold
  • the organic material film layer; the silicon nitride film layer of the buffer layer constitutes the H-type region layer, the silicon dioxide film layer of the buffer layer and the silicon dioxide film layer of the gate insulating layer constitute the L-type region layer, the nitrogen of the passivation layer
  • the silicon film layer constitutes a H-type layer layer
  • the organic material film layer of the planarization layer constitutes a L-type layer layer.
  • the plurality of functional layer structures include a buffer layer, a gate insulating layer, a spacer layer, and a planarization layer which are sequentially formed on the substrate, and the buffer layer sequentially includes a first film layer and a second film layer, and the spacer layer includes a third film layer and a fourth film layer, wherein the planarization layer has the same refractive index as the fourth film layer of the spacer layer, wherein the second film layer of the buffer layer, the gate insulating layer, the fourth film layer of the spacer layer, and the planarization layer
  • the refractive index of the layer is less than the first threshold, and the refractive index of the first film layer of the buffer layer and the third film layer of the spacer layer are both greater than the second threshold;
  • the first film layer of the buffer layer constitutes the H-type layer layer, buffering Second film layer and gate insulating layer
  • the L-type zone layer is formed, and the third film layer of the spacer layer constitutes the H-type zone layer, and the fourth film layer
  • the gate insulating layer is a silicon dioxide film layer
  • the planarization layer is an organic material film layer having the same refractive index as the silicon dioxide film layer
  • the buffer layer sequentially includes a silicon nitride film layer and a silicon dioxide film layer, and the interval
  • the layer includes a silicon nitride film layer and a silicon dioxide film layer in sequence;
  • the silicon nitride film layer of the buffer layer constitutes a H-type region layer, and the silicon dioxide film layer of the buffer layer and the silicon dioxide film layer of the gate insulating layer constitute L
  • the silicon nitride film layer of the spacer layer constitutes the H-type zone layer, and the silicon dioxide film layer of the spacer layer and the organic material film layer of the planarization layer constitute the L-type zone layer.
  • the plurality of functional layer structures include a buffer layer, a spacer layer, and a planarization layer which are sequentially formed on the substrate, and the buffer layer sequentially includes a first film layer and a second film layer, and the spacer layer sequentially includes a third film layer and The fourth film layer has the same refractive index as the fourth film layer of the spacer layer, wherein the second film layer of the buffer layer, the fourth film layer of the spacer layer, and the planarization layer have lower refractive indexes than the first film layer.
  • a threshold, a refractive index of the first film layer of the buffer layer and the third film layer of the spacer layer are both greater than a second threshold;
  • the first film layer of the buffer layer constitutes a H-type layer layer
  • the second layer of the buffer layer The film layer constitutes a L-type zone layer
  • the third film layer of the spacer layer constitutes a H-type zone layer
  • the fourth film layer of the spacer layer and the planarization layer constitute a L-type zone layer.
  • the planarization layer is an organic material film layer having a refractive index equal to a silicon dioxide film layer
  • the buffer layer sequentially includes a silicon nitride film layer and a silicon dioxide film layer
  • the spacer layer includes a silicon nitride film layer and silicon dioxide in this order.
  • the silicon nitride film layer of the buffer layer constitutes a H-type layer layer
  • the silicon dioxide film layer of the buffer layer constitutes a L-type layer layer
  • the silicon nitride film layer of the spacer layer constitutes a H-type layer layer
  • the spacer layer is oxidized.
  • the organic film layer of the silicon film layer and the planarization layer constitutes a L-type layer layer.
  • the plurality of functional layer structures include a buffer layer, a passivation layer, and a planarization layer which are sequentially formed on the substrate, and the buffer layer sequentially includes a first film layer and a second film layer, wherein the buffer layer is The refractive indices of the two film layers and the planarization layer are both smaller than the first threshold, and the refractive indices of the first film layer and the passivation layer of the buffer layer are both greater than the second threshold; the first film layer of the buffer layer constitutes the H-type layer The second film layer of the buffer layer constitutes a L-type region layer, the passivation layer constitutes a H-type region layer, and the planarization layer constitutes a L-type region layer.
  • the planarization layer is an organic material film layer having a refractive index smaller than the first threshold
  • the passivation layer is a silicon nitride film layer
  • the buffer layer includes a silicon nitride film layer and a silicon dioxide film layer in sequence; nitridation of the buffer layer
  • the silicon film layer constitutes a H-type region layer
  • the silicon dioxide film layer of the buffer layer constitutes a L-type region layer
  • the silicon nitride film layer of the passivation layer constitutes a H-type region layer
  • the organic material film layer of the planarization layer constitutes a L-type region layer Floor.
  • each of the L-type regions has the same refractive index and is smaller than the first threshold
  • each of the H-type regions has the same refractive index and is larger than the second threshold.
  • the present invention provides an organic light emitting diode (OLED) display having a microcavity structure (Micro-cavity) by utilizing various functional layers existing in the circuit region to form a microcavity structure (Micro-cavity).
  • the mirror surface makes the lower mirror surface have a QWS structure, which improves the color purity and efficiency of the organic light emitting diode (OLED) display, and also avoids the common disordered spectrum affected by interference of multiple functional layers.
  • the functional layer structure and material change of the circuit area can be flexibly adjusted by increasing or decreasing the QWS logarithm to maintain the microcavity effect.
  • FIG. 1 is a schematic structural view of an active organic light emitting diode display fabricated by a low temperature polysilicon (LTPS) process in the prior art;
  • LTPS low temperature polysilicon
  • FIG. 2 is a schematic diagram showing the relationship between the EL Intensity of the organic light emitting diode display having a microcavity structure and the reflectances R and ⁇ ;
  • FIG. 3 is a schematic view showing a periodic alternately stacked arrangement of layers having a high refractive index and a high overlap;
  • Figure 4 is a schematic diagram showing the relationship between the reflectance of the mirror and the wavelength under the QWS structure
  • FIG. 5 is a schematic structural view of an organic light emitting diode display having a microcavity structure with a mirror surface under a QWS structure according to an embodiment of the present invention
  • FIG. 6 is a schematic view showing a first mode of modifying a multifunctional layer structure according to an embodiment of the present invention.
  • FIG. 7 is a schematic view showing a second mode of modifying a multifunctional layer structure according to an embodiment of the present invention.
  • the core of the invention is: forming a QWS structure by using a plurality of functional layer structures mirrored under the microcavity structure of the light emitting diode (OLED) display illumination region to improve the reflectivity of the lower mirror surface, thereby enhancing the microscopic Luminous intensity and color purity of cavity-structured organic light-emitting diode displays Degree.
  • the plurality of functional layers of the mirror under the micro-cavity structure are realized by the existing functional layers of the circuit area, and are compatible with the existing structure.
  • is the luminous intensity of the organic light emitting diode display having a microcavity structure
  • L is the effective distance between the upper mirror and the lower mirror
  • X is the center of the illumination to the upper mirror
  • the effective distance is the reflectance of the lower mirror
  • R 2 is the reflectance of the upper mirror, which is the wavelength of the transmitted light.
  • the illuminating intensity of the OLED display having the microcavity structure is largely related to the structure of the plurality of functional layers on the mirror surface and the mirror surface.
  • the relationship between the luminous intensity and the reflectance, ⁇ of the organic light emitting diode display having the microcavity structure can be obtained, as shown in FIG.
  • appropriately increasing the reflectance R 2 of the functional layers of the upper and lower mirrors can enhance the microcavity effect, resulting in optimized color purity and luminous efficiency.
  • the layers with high refractive index overlap are periodically alternately stacked to form a stack of layers, and the layers of the high and low refractive index are periodically alternately stacked and arranged as QWS (Quarter Wave Stack quarter-wave film).
  • Layer stack structure as shown in Fig. 3, L represents a film layer of low refractive index, and H represents a film layer of high refractive index, as long as they are alternately arranged, such as HLHL... or LHLH... QWS structure.
  • the more pairs of film layers forming the QWS arrangement the greater the band resistance of the entire film layer stacking, and the corresponding reflectivity of the entire film layer stacking. Further scientific calculations show that when the QWS array is formed with more than 2 pairs, the reflectivity can occur. Significantly increase, the more the layer pairs, the more obvious the increase effect. Referring to Figure 4, the horizontal axis is the wavelength and the vertical axis is the reflectance.
  • the refractive index of the film layer having a high refractive index is the refractive index of the film layer having a low refractive index, which is the wavelength of transmitted light.
  • greater than the second threshold is less than the first threshold, and the values of the first threshold and the second threshold are selected according to design needs or design experience.
  • the film with high refractive index can be selected from a silicon nitride film layer, and the refractive index is generally about 1.97.
  • the film with low refractive index can be selected from a silicon dioxide film layer.
  • the refractive index is generally about 1.48, which is an example, and the present invention is not limited thereto.
  • a light-emitting area 1 of a conventional OLED display mainly includes a lower mirror surface 11 , an organic light-emitting layer 12 , and an upper mirror surface 13 .
  • the lower mirror surface of the light-emitting area has a plurality of functional layer structures formed on the substrate, which are sequentially formed on the substrate.
  • Buffer layer 120 Buffer layer
  • gate insulating layer 130 GI layer
  • spacer layer 140 ILD layer
  • passivation layer 150 passivation layer
  • planarization layer 160 PPN
  • the function of the Buffer layer is to prevent contamination of impurities such as sodium ions in the glass substrate to the active layer; the function of the GI layer is mainly to isolate the active layer 21 from the gate electrode 22 (gate electrode).
  • the role of the ILD layer is as an insulating layer between the gate 22 and the source/drain 23 (S/D electrode); the function of the Passivation layer is to protect the source/drain 23 while the source/drain 23 Separated from the indium tin oxide semiconductor transparent conductive film 24 (ITO); the role of the PLN layer is to reduce the unevenness of the ITO surface.
  • the PLN layer is usually a film of an organic material having a small refractive index (less than the first threshold), and the organic material film layer can be used in a practical production, such as a polyimine material produced by Toray Corporation of Japan. Its refractive index is about 1.5, and the Passivation layer is usually a silicon nitride (SiN3) film layer, ILD.
  • the layer can usually be obtained by laminating a silicon dioxide film layer and a silicon nitride film layer, and the GI layer is usually a silicon dioxide film layer, and the Buffer layer can usually be obtained by laminating a silicon dioxide film layer and a silicon nitride film layer, see Table 1. .
  • the refractive index of silicon dioxide is lower than that of silicon nitride, and the plurality of functional layer structures on the existing lower substrate form a periodic overlapping arrangement of layers with high refractive index overlap, which satisfies the material parameters of the QWS structure.
  • the existing PDL Mask (Pixel Definition Layer Mask) on the lower mirror 11 is used to locate the light-emitting area 1 in the LTPS process.
  • the multiple functional layer structures of the lower mirror 11 are modified so that the thickness of the film layer satisfies the QWS structure. As shown in FIG. 5, it is apparent that the new structure is compatible with the existing structure, including the light-emitting area 1, the circuit area 2, and the lower mirror surface. 11.
  • the present invention provides an organic light emitting diode (OLED) display having a microcavity structure, the lower mirror surface of the light emitting region of the microcavity structure having a plurality of functional layer structures formed on the substrate, the plurality of functional layer structures
  • the L-type zone layer and the H-type zone layer are arranged alternately and periodically, wherein the refractive index of the L-type zone layer is smaller than the first threshold, the refractive index of the H-type zone layer is greater than the second threshold, and the second threshold is greater than or equal to The first threshold, and the thickness of the L-type region layer is equal to a quarter wavelength divided by the refractive index of the L-type region layer, and the thickness of the H-type region layer is equal to a quarter wavelength divided by the H-type region The refractive index of the layer.
  • the plurality of functional layer structures include at least a two-layer structure composed of a layer L layer and a class H layer layer, that is, the double layer structure includes a class L zone layer and a class H zone layer located above the class L zone layer , or a class H zone and an L-type zone layer located above the zone H zone, the more the structure of the L-type zone layer and the H-type zone layer are laminated, the better the microcavity effect, the color purity and the luminous efficiency More optimized.
  • the Buffer layer, the GI layer, and the like in FIG. 1 are functional layers of the lower mirror surface of the microcavity structure.
  • Each functional layer is composed of at least one film layer, for example, the Buffer layer in FIG. 1 is a two-layer structure, which is obtained by compounding a silicon dioxide film layer and a silicon nitride film layer; the GI layer is a single layer structure and is made of silicon dioxide.
  • the GI layer is the silicon dioxide film layer, see Table 1.
  • the layer is re-organized according to the adjacency of the film layer, including: 1) adjacent layers of the same material form a layer, for example, one functional layer only includes a silicon dioxide layer, and the other The adjacent functional layers also include only the silicon dioxide film layer, so the two silicon dioxide film layers constitute a L-type layer; 2) the adjacent film layers of different materials constitute different regions, see Table 1, for example, PLN.
  • the Passivation layer comprises a silicon nitride material layer
  • the PLN layer is adjacent to the Passivation layer, so the PLN layer constitutes a L-type layer layer, and the silicon nitride film layer of the Passivation layer constitutes a layer H-type zone layer; Because both the PLN layer and the Passivation layer are single-layer structures, it can also be called a PLN layer to form a L-type zone layer, and the Passivation layer constitutes a class H zone layer.
  • the above two logical divisions may also include two extension methods: 3) adjacent membrane layers of the same material layer respectively belong to a different layer, for example, the GI layer includes a silicon dioxide layer, and the Buffer layer includes a dioxide layer.
  • the silicon film layer and the silicon nitride film layer, the GI layer is adjacent to the silicon dioxide film layer of the Buffer layer, so the silicon dioxide film layer of the GI layer and the silicon dioxide film layer of the Buffer layer constitute a L-type layer;
  • the adjacent layers of different materials belonging to the same functional layer respectively form different regions, for example: the ILD layer includes a silicon dioxide film layer and a silicon nitride film layer, which respectively constitute a L-type layer layer and a H-type layer layer. .
  • Each L-type zone layer can use the same material and thus have the same refractive index.
  • Each H-type zone layer can also use the same material and thus have the same refractive index, and the L-type zone layer has a refractive index smaller than that of the H-type zone. The refractive index of the layer.
  • the silicon dioxide film layer and the GI layer of the Buffer layer constitute a L-type region layer
  • the silicon dioxide film layer of the ILD layer constitutes a L-type region layer
  • these L-type regions are all made of silicon dioxide, thus having
  • the PLN layer can also be made of the same organic material film layer as the silicon dioxide film layer; for example, the silicon nitride film layer of the Buffer layer constitutes the H-type region layer, and the silicon nitride film of the ILD layer
  • the layers constitute a H-type zone layer, and the Passivation layer constitutes a H-type zone layer.
  • These H-type zone layers all use silicon nitride and thus have the same refractive index; the silica material has a refractive index smaller than that of silicon nitride.
  • the silicon dioxide film layer and the GI layer of the Buffer layer constitute a L-type region layer
  • the silicon dioxide film layer of the ILD layer constitutes a L-type region layer
  • the refractive index of the organic material film layer used by the PLN may not be equal to
  • the refractive index of silica is based on other materials having a refractive index close to that of silica.
  • the PLN layer still constitutes a L-type region layer, and the refractive index of the PLN layer is still smaller than that of silicon nitride.
  • Within the refractive index interval required by the layer that is, less than the first threshold;
  • the silicon nitride film layer of the Buffer layer constitutes a H-type region layer
  • the silicon nitride film layer of the ILD layer constitutes
  • the Passivation layer can be made of silicon nitride instead, and other materials having a refractive index close to that of silicon nitride are used.
  • the Passivation layer still forms a H-type layer, and the refractive index of the Passivation layer remains.
  • the refractive index greater than that of the silica is within the refractive index range required for the H-type zone layer, that is, greater than the second threshold.
  • the first threshold and the second threshold are selected empirically, and the main purpose thereof is to ensure that even if different materials are used, the refractive index of each L-type region layer is smaller than that of each H-type region layer, thereby ensuring that the QWS structure is satisfied.
  • the wavelength may be the center wavelength of the color that needs to be compensated most in the transmitted light of various colors.
  • the wavelength of the blue light is relatively short and the scattering phenomenon is serious. Therefore, it can be considered that the blue light needs to be compensated most, so the wavelength is selected to be blue light.
  • Center wavelength In addition, in practical experience, the wavelength may also select the center wavelength of the green light.
  • the change can be made by increasing or decreasing the QWS pair. Refer to the following examples.
  • the organic light emitting diode display having the microcavity structure of the present invention will be further described below in thirteenth embodiments.
  • the plurality of functional layer structures include a buffer layer sequentially formed on a substrate.
  • the buffer layer sequentially includes a first film layer and a second film layer (ie, the first film layer) The layer is closer to the substrate than the second film layer, and the spacer layer sequentially includes a third film layer and a fourth film layer (ie, the third film layer is closer to the substrate than the fourth film layer), wherein the second film of the buffer layer
  • the refractive index of the layer, the gate insulating layer, the fourth film layer of the spacer layer, and the planarization layer are all smaller than the first threshold, and the refraction of the first film layer of the buffer layer, the third film layer of the spacer layer, and the passivation layer
  • the rate is greater than the second threshold; the first film layer of the buffer layer constitutes a H-type layer layer, the second film layer of the buffer layer and the gate insulating layer constitute a L-type layer layer, and the third film layer of the spacer layer
  • the fourth film layer of the spacer layer constitutes the L-type zone layer
  • the passivation layer constitutes the H-type zone layer
  • the planarization layer constitutes the L-type zone layer, and has three pairs of stacked alternating structures.
  • the planarization layer is an organic material film layer with a lower refractive index, which is excellent in practical operation.
  • the plurality of functional layer structures include a buffer layer (Buffer), a spacer layer (ILD), a passivation layer (Passivation), and a planarization layer (PLN) which are sequentially formed on the substrate, and the buffer layer includes a first film layer and a second film layer, the spacer layer sequentially includes a third film layer and a fourth film layer, wherein the refractive index of the second film layer, the fourth film layer and the planarization layer are both smaller than the first threshold, the first The refractive index of the film layer, the third film layer and the passivation layer are both greater than a second threshold; the first film layer of the buffer layer constitutes a H-type region layer, and the second film layer of the buffer layer constitutes a L-type region layer, a spacer layer
  • the third film layer constitutes the H-type zone layer
  • the fourth film layer of the spacer layer constitutes the L-type zone layer
  • the passivation layer constitutes the H-type zone layer
  • the planarization layer constitute
  • planarization layer is an organic material film layer having a relatively low refractive index, and in practice, it is preferable to use an organic material film layer having the same or similar refractive index as the fourth film layer or the second film layer.
  • the functional layer structure includes a buffer layer (Buffer), a gate insulating layer (GI), a passivation layer, a planarization layer (PLN), and a buffer layer which are sequentially formed on the substrate.
  • the first film layer and the second film layer are sequentially included, wherein the second film layer, the gate insulating layer and the planarization layer of the buffer layer have refractive indexes smaller than the first threshold, and the first film layer and the passivation layer of the buffer layer
  • the refractive index is greater than the second threshold;
  • the first film layer of the buffer layer constitutes the H-type region layer
  • the second film layer of the buffer layer and the gate insulating layer constitute the L-type region layer, and the passivation layer constitutes the H-type region layer, which is flat
  • the layer constitutes a L-type zone layer and has two pairs of stacked alternating structures.
  • planarization layer is an organic material film layer with a lower refractive index, which is excellent in practical operation.
  • the plurality of functional layer structures include a buffer layer (Buffer), a gate insulating layer (GI), a spacer layer (ILD), a planarization layer (PLN), and a buffer layer sequentially formed on the substrate.
  • Buffer buffer layer
  • GI gate insulating layer
  • ILD spacer layer
  • PPN planarization layer
  • the first film layer and the second film layer are included, and the spacer layer includes a third film layer and a fourth film layer in sequence, and the planarization layer adopts an organic material film layer having the same refractive index as the fourth film layer of the spacer layer, wherein the buffer layer The refractive index of the second film layer, the gate insulating layer, the fourth film layer of the spacer layer, and the organic material film layer of the planarization layer are all smaller than the first threshold, the first film layer of the buffer layer and the third film of the spacer layer
  • the refractive index of the layer is greater than the second threshold;
  • the first film layer of the buffer layer constitutes a H-type layer layer
  • the second film layer of the buffer layer and the gate insulating layer constitute a L-type layer layer
  • the third film layer of the spacer layer The H-type zone layer is formed, and the fourth film layer of the spacer layer and the organic material film layer of the planarization layer constitute a L-type zone layer, and have two pairs of stacked alternating
  • the plurality of functional layer structures include a buffer layer (Buffer), a spacer layer (ILD), and a planarization layer (PLN) sequentially formed on the substrate, and the buffer layer includes the first film layer and the second layer in sequence.
  • Buffer buffer layer
  • ILD spacer layer
  • PPN planarization layer
  • the spacer layer sequentially includes a third film layer and a fourth film layer, wherein the planarization layer adopts an organic material film layer having the same refractive index as the fourth film layer of the spacer layer, wherein the second film layer of the buffer layer,
  • the refractive index of the fourth film layer of the spacer layer and the organic material film layer of the planarization layer are both smaller than the first threshold, and the refractive index of the first film layer of the buffer layer and the third film layer of the spacer layer are both greater than the second threshold
  • the first film layer of the buffer layer constitutes a H-type region layer
  • the second film layer of the buffer layer constitutes a L-type region layer
  • the third film layer of the spacer layer constitutes a H-type region layer
  • the fourth film layer and the organic material film layer of the planarization layer constitute a L-type layer layer, and have two pairs of stacked alternating structures.
  • the plurality of functional layer structures include a buffer layer (Buffer), a passivation layer (Passivation), and a planarization layer (PLN) which are sequentially formed on the substrate, and the buffer layer includes the first film layer and the first layer in sequence.
  • Buffer buffer layer
  • Passivation passivation layer
  • PPN planarization layer
  • a second film layer wherein a refractive index of the second film layer and the planarization layer of the buffer layer are both smaller than a first threshold, and a refractive index of the first film layer and the passivation layer of the buffer layer are both greater than a second threshold;
  • the first film layer of the buffer layer constitutes a H-type region layer
  • the second film layer of the buffer layer constitutes a passivation layer to form a H-type region layer
  • the planarization layer constitutes a L-type region layer, and has two pairs of stacked alternating structures.
  • planarization layer is an organic material film layer with a lower refractive index, which is excellent in practical operation.
  • the H-type zone layer is made of silicon nitride material
  • the L-type zone layer is made of silicon dioxide material or the same organic film with refractive index and silicon dioxide is used.
  • the refractive index of silicon nitride is used for calculation.
  • silica The refractive index is calculated.
  • the plurality of functional layer structures include a buffer layer (BB), a gate insulating layer (GI), a spacer layer (ILD), a passivation layer, and a planarization layer which are sequentially formed on the substrate.
  • BB buffer layer
  • GI gate insulating layer
  • ILD spacer layer
  • passivation layer passivation layer
  • planarization layer which are sequentially formed on the substrate.
  • the gate insulating layer is composed of a silicon dioxide film layer
  • the planarization layer is an organic film having a lower refractive index (in practice, an organic film having the same or similar refractive index as the silicon dioxide film layer is preferably used)
  • the passivation layer is composed of a silicon nitride film layer
  • the buffer layer includes a silicon nitride film layer and a silicon dioxide film layer in sequence (ie, the silicon nitride film layer of the buffer layer is closer to the substrate than the silicon dioxide film layer), and the spacer layer is in turn
  • the silicon nitride film layer and the silicon dioxide film layer ie, the silicon nitride film layer of the spacer layer is closer to the substrate than the silicon dioxide film layer
  • the silicon nitride film layer of the buffer layer constitutes the H-type layer layer
  • the buffer layer The silicon dioxide film layer of the silicon dioxide film layer and the gate insulating layer constitutes a L-type region layer, the silicon nitride film layer
  • the plurality of functional layer structures include a buffer layer (IBD), a spacer layer (ILD), a passivation layer (Passivation), and a planarization layer (PLN) which are sequentially formed on the substrate, and the planarization layer is An organic film having a lower refractive index (in an actual operation, an organic film having the same or similar refractive index as that of the silicon dioxide film layer is preferably used), the passivation layer is composed of a silicon nitride film layer, and the buffer layer includes a silicon nitride film layer in this order.
  • IBD buffer layer
  • ILD spacer layer
  • Passivation passivation
  • PPN planarization layer
  • the spacer layer comprises a silicon nitride film layer and a silicon dioxide film layer in sequence; a buffer layer
  • the silicon nitride film layer forms a silicon film layer of the H-type buffer layer to form a L-type region layer
  • the silicon nitride film layer of the spacer layer constitutes a silicon-type film layer of the H-type interlayer spacer layer to form a L-type region.
  • Layer, the silicon nitride film layer of the passivation layer constitutes an organic thin film of the H-type planarization layer to constitute a L-type region layer.
  • the plurality of functional layer structures include a buffer layer (Buffer), a gate insulating layer (GI), a passivation layer (Passivation), a planarization layer (PLN), and a gate sequentially formed on the substrate.
  • Buffer buffer layer
  • GI gate insulating layer
  • Passivation passivation layer
  • PPN planarization layer
  • the insulating layer is composed of a silicon dioxide film layer
  • the passivation layer is composed of a silicon nitride film layer
  • the buffer layer sequentially includes a silicon nitride film layer and a silicon dioxide film layer
  • the planarization layer is an organic film having a lower refractive index (in In practice, an organic film having the same or similar refractive index as that of the silicon dioxide film layer is preferably used; the silicon nitride film layer of the buffer layer constitutes a H-type region layer, and the silicon dioxide film layer of the buffer layer and the gate insulating layer are Silicon oxide film structure
  • the plurality of functional layer structures include a buffer layer (Buffer), a gate insulating layer (GI), a spacer layer (ILD), a planarization layer (PLN), and a gate insulating layer sequentially formed on the substrate.
  • the layer is composed of a silicon dioxide film layer
  • the planarization layer is an organic film having the same refractive index as the silicon dioxide film layer.
  • the buffer layer sequentially includes a silicon nitride film layer and a silicon dioxide film layer, and the spacer layer includes a silicon nitride film in this order.
  • a layer and a silicon dioxide film layer a silicon nitride film layer of the buffer layer constitutes a H-type region layer, a silicon dioxide film layer of the buffer layer and a silicon dioxide film layer of the gate insulating layer constitute a L-type layer layer, the spacer layer Silicon nitride film layer constitutes H
  • the plurality of functional layer structures include a buffer layer (IB), a spacer layer (ILD), and a planarization layer (PLN) which are sequentially formed on the substrate, and the planarization layer is a refractive index and a silicon dioxide film.
  • IB buffer layer
  • ILD spacer layer
  • PPN planarization layer
  • the buffer layer comprises a silicon nitride film layer and a silicon dioxide film layer in sequence
  • the spacer layer comprises a silicon nitride film layer and a silicon dioxide film layer in sequence
  • the silicon nitride film layer of the buffer layer constitutes a H-type region Layer
  • the silicon dioxide film layer of the buffer layer constitutes a L-type layer layer
  • the silicon nitride film layer of the spacer layer constitutes a H-type layer layer
  • the silicon dioxide film layer of the spacer layer and the organic thin film of the planarization layer constitute a L-type layer layer.
  • the plurality of functional layer structures include a buffer layer (Buffer), a passivation layer (Passivation), and a planarization layer (PLN) which are sequentially formed on the substrate, and the planarization layer is an organic layer having a lower refractive index.
  • the film in practice, an organic film having the same or similar refractive index as the silicon dioxide film layer is preferably used
  • the passivation layer is composed of a silicon nitride film layer
  • the buffer layer includes a silicon nitride film layer and a silicon dioxide film layer in this order.
  • the silicon nitride film layer of the buffer layer constitutes a H-type region layer
  • the silicon dioxide film layer of the buffer layer constitutes L type
  • the silicon nitride film layer of the passivation layer constitutes a H-type region layer
  • the organic thin film of the planarization layer constitutes L Class area

Abstract

一种具有微腔结构的有机发光二极管(OLED)显示器,微腔结构的发光区(1)的下镜面(11)具有形成于基板(110)上的多个功能层结构,多个功能层结构包括周期性交替层叠排布的L类区层与H类区层,其中L类区层的折射率小于第一门限,H类区层的折射率大于第二门限,第二门限大于等于第一门限,并且L类区层的厚度等于四分之一波长除以L类区层的折射率,H类区层的厚度等于四分之一波长除以H类区层的折射率。显示装置的色纯度和效率得以提高,常见的受多个功能层干涉影响的杂乱光谱得以避免。在电路区(2)的功能层构成和材料变更时,可以通过增减QWS对数的方式来灵活调配以保持微腔效果。

Description

一种具有微腔结构的有机发光二极管 (OLED )显示器 本申请要求 2011 年 12 月 18 日提交中国专利局、 申请号为 201110463090.4、 发明名称为"一种具有微腔结构的有机发光二极管 (OLED ) 显示器"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及有机发光技术领域, 具体涉及一种具有微腔结构 ( Micro-cavity ) 的有机发光二极管 (OLED )显示器。
背景技术
随着有机发光二极管 (OLED )显示器技术的不断改进, 其宽视角、 低成 本等优势越发明显,在显示领域里受到越来越多的平板显示器厂商的关注, 因 此 OLED显示器成为目前显示器产业的关注重点。
由于 OLED (有机发光二极管 )显示器的发光光谱比较宽, 因此提高色纯 度对于显示应用至关重要, 而利用微腔结构可以提高 OLED显示器发光的色 纯度, 并提高发光效率。 图 1 为现有技术中利用低温多晶硅(LTPS )工艺制 成的主动式有机发光二极管显示器的结构示意图。有机发光二极管显示器分为 发光区 1和电路区 2, 如图 1中虚线框所标出, 位于发光区的下镜面 11形成 于基板 110 ( Glass Substrate )之上, 所述下镜面 11具有由 LTPS工艺构造的多 个功能层结构, 此多个功能层结构包括: 平坦化层 160 ( PLN层)、 钝化层 150 ( Passivation层)、 间隔层 140 ( ILD层)、 栅极绝缘层 130 ( GI层)、 緩沖层 120 ( Buffer层)。 显示装置工作时, EL (电致发光)器件发光, 经由此多个功 能层结构出光(通常称之为 "底发射")。 由于此多个功能层中每层各自的光学 常数(即折射率与介电常数)和厚度不一样, 此多个功能层结构对光产生了严 重的干涉, 出光的光谱容易杂乱无章,严重影响了整个有机发光二极管显示器 发光的效率和色纯度。
发明内容
本发明所要解决的技术问题在于提供具有微腔结构 (Micro-cavity ) 的有 机发光二极管 (OLED )显示器, 可以有效地提高有机发光二极管显示器发光 的效率和色纯度。此有机发光二极管显示器可用于底发射主动式有机发光二极 管显示器。
为了解决上述问题, 本发明公开了一种具有微腔结构的有机发光二极管 ( OLED )显示器, 所述微腔结构位于发光区的下镜面具有形成于基板上的多 个功能层结构,所述多个功能层结构包括周期性交替层叠排布的 L类区层与 H 类区层,其中 L类区层的折射率小于第一门限, H类区层的折射率大于第二门 限,所述第二门限大于等于所述第一门限,并且 L类区层的厚度等于四分之一 波长除以所述 L类区层的折射率,Η类区层的厚度等于四分之一波长除以所述 Η类区层的折射率。
进一步地, 所述多个功能层结构至少包括一由 L类区层和 Η类区层层叠 构成的双层结构。
进一步地, 所述波长为蓝光的中心波长或者绿光的中心波长。
进一步地, 所述多个功能层结构中的每个功能层由至少一膜层构成; 材料 相同的相邻膜层共同构成一区层, 材料不同的相邻膜层分别构成不同区层。
进一步地, 所述多个功能层结构包括依次形成于基板上的緩沖层、栅极绝 缘层、 间隔层、 钝化层、 平坦化层, 緩沖层依次包括第一膜层和第二膜层, 间 隔层依次包括第三膜层和第四膜层, 其中, 所述緩沖层的第二膜层、 栅极绝缘 层、 间隔层的第四膜层和平坦化层的折射率均小于第一门限, 所述緩沖层的第 一膜层、 间隔层的第三膜层和钝化层的折射率均大于第二门限; 所述緩沖层的 第一膜层构成 Η类区层,所述緩沖层的第二膜层与栅极绝缘层构成 L类区层, 间隔层的第三膜层构成 Η类区层, 间隔层的第四膜层构成 L类区层, 钝化层 构成 Η类区层, 平坦化层构成 L类区层。
进一步地, 所述栅极绝缘层为二氧化硅膜层,平坦化层为折射率小于第一 门限的有机材料膜层,钝化层为氮化硅膜层,緩沖层依次包括氮化硅膜层和二 氧化硅膜层, 间隔层依次包括氮化硅膜层和二氧化硅膜层; 緩沖层的氮化硅膜 层构成 Η类区层,緩沖层的二氧化硅膜层和栅极绝缘层的二氧化硅膜层构成 L 类区层, 间隔层的氮化硅膜层构成 Η类区层, 间隔层的二氧化硅膜层构成 L 类区层,钝化层的氮化硅膜层构成 Η类区层,平坦化层的有机材料膜层构成 L 类区层。
进一步地,所述多个功能层结构包括依次形成于基板上的緩沖层、间隔层、 钝化层、 平坦化层, 緩沖层依次包括第一膜层和第二膜层, 间隔层依次包括第 三膜层和第四膜层, 其中, 緩沖层的第二膜层、 间隔层的第四膜层和平坦化层 的折射率均小于第一门限,緩沖层的第一膜层、 间隔层的第三膜层和钝化层的 折射率均大于第二门限; 所述緩沖层的第一膜层构成 H类区层, 緩沖层的第 二膜层构成 L类区层, 间隔层的第三膜层构成 H类区层, 间隔层的第四膜层 构成 L类区层, 钝化层构成 H类区层, 平坦化层构成 L类区层。
进一步地, 平坦化层为折射率小于第一门限的有机材料膜层,钝化层为氮 化硅膜层,緩沖层依次包括氮化硅膜层和二氧化硅膜层, 间隔层依次包括氮化 硅膜层和二氧化硅膜层; 緩沖层的氮化硅膜层构成 H类区层, 緩沖层的二氧 化硅膜层构成 L类区层, 间隔层的氮化硅膜层构成 H类区层, 间隔层的二氧 化硅膜层构成 L类区层, 钝化层的氮化硅膜层构成 H类区层, 平坦化层的有 机材料膜层构成 L类区层。
进一步地, 所述多个功能层结构包括依次形成于基板上的緩沖层、栅极绝 缘层、 钝化层、 平坦化层, 緩沖层依次包括第一膜层和第二膜层, 其中, 緩沖 层的第二膜层、栅极绝缘层和平坦化层的折射率均小于第一门限,緩沖层的第 一膜层和钝化层的折射率均大于第二门限; 緩沖层的第一膜层构成 H类区层, 緩沖层的第二膜层与栅极绝缘层构成 L类区层, 钝化层构成 H类区层, 平坦 化层构成 L类区层。
进一步地, 栅极绝缘层为二氧化硅膜层, 钝化层为氮化硅膜层, 緩沖层依 次包括氮化硅膜层和二氧化硅膜层,平坦化层为折射率小于第一门限的有机材 料膜层; 緩沖层的氮化硅膜层构成 H类区层, 緩沖层的二氧化硅膜层和栅极 绝缘层的二氧化硅膜层构成 L类区层, 钝化层的氮化硅膜层构成 H类区层, 平坦化层的有机材料膜层构成 L类区层。
进一步地, 所述多个功能层结构包括依次形成于基板上的緩沖层、栅极绝 缘层、 间隔层、 平坦化层, 緩沖层依次包括第一膜层和第二膜层, 间隔层依次 包括第三膜层和第四膜层, 平坦化层与间隔层的第四膜层折射率相同, 其中, 緩沖层的第二膜层、栅极绝缘层、 间隔层的第四膜层和平坦化层的折射率均小 于第一门限, 緩沖层的第一膜层和间隔层的第三膜层的折射率均大于第二门 限; 所述緩沖层的第一膜层构成 H类区层, 緩沖层的第二膜层与栅极绝缘层 构成 L类区层, 间隔层的第三膜层构成 H类区层, 间隔层的第四膜层与平坦 化层构成 L类区层。
进一步地,栅极绝缘层为二氧化硅膜层, 平坦化层为与二氧化硅膜层折射 率相同的有机材料膜层,緩沖层依次包括氮化硅膜层和二氧化硅膜层, 间隔层 依次包括氮化硅膜层和二氧化硅膜层; 緩沖层的氮化硅膜层构成 H类区层, 緩沖层的二氧化硅膜层和栅极绝缘层的二氧化硅膜层构成 L类区层,间隔层的 氮化硅膜层构成 H类区层, 间隔层的二氧化硅膜层和平坦化层的有机材料膜 层构成 L类区层。
进一步地,所述多个功能层结构包括依次形成于基板上的緩沖层、间隔层、 平坦化层, 緩沖层依次包括第一膜层和第二膜层, 间隔层依次包括第三膜层 和第四膜层, 平坦化层与间隔层的第四膜层折射率相同, 其中, 所述緩沖层的 第二膜层、 间隔层的第四膜层和平坦化层的折射率均小于第一门限, 所述緩沖 层的第一膜层和间隔层的第三膜层的折射率均大于第二门限;所述緩沖层的第 一膜层构成 H类区层, 所述緩沖层的第二膜层构成 L类区层, 所述间隔层的 第三膜层构成 H类区层, 所述间隔层的第四膜层与平坦化层构成 L类区层。
进一步地, 平坦化层为折射率等于二氧化硅膜层的有机材料膜层,緩沖层 依次包括氮化硅膜层和二氧化硅膜层,间隔层依次包括氮化硅膜层和二氧化硅 膜层; 緩沖层的氮化硅膜层构成 H类区层, 緩沖层的二氧化硅膜层构成 L类 区层, 间隔层的氮化硅膜层构成 H类区层, 间隔层的二氧化硅膜层和平坦化 层的有机材料膜层构成 L类区层。
进一步地,所述多个功能层结构包括依次形成于基板上的緩沖层、钝化层、 平坦化层, 緩沖层依次包括第一膜层和第二膜层, 其中, 所述緩沖层的第二膜 层和平坦化层的折射率均小于第一门限,緩沖层的第一膜层和钝化层的折射率 均大于第二门限; 所述緩沖层的第一膜层构成 H类区层, 所述緩沖层的第二 膜层构成 L类区层, 钝化层构成 H类区层, 平坦化层构成 L类区层。
进一步地,平坦化层为折射率小于第一门限的有机材料膜层,钝化层为氮 化硅膜层,緩沖层依次包括氮化硅膜层和二氧化硅膜层; 緩沖层的氮化硅膜层 构成 H类区层, 緩沖层的二氧化硅膜层构成 L类区层, 钝化层的氮化硅膜层 构成 H类区层, 平坦化层的有机材料膜层构成 L类区层。 进一步地, 各 L类区层的折射率相同且小于第一门限, 各 H类区层的折 射率相同且大于第二门限。
与现有技术相比, 本发明提供的具有微腔结构 (Micro-cavity ) 的有机发 光二极管 (OLED )显示器通过利用电路区已有的各个功能层来构成微腔结构 ( Micro-cavity )的下镜面, 使得该下镜面具有 QWS结构, 提高了有机发光二 极管 (OLED )显示器的色纯度和效率, 同时也避免了常见的受多个功能层干 涉影响的杂乱光谱。在电路区的功能层构成和材料变更时,可以通过增减 QWS 对数的方式来灵活调配以保持微腔效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不 当限定。 在附图中:
图 1是现有技术中利用低温多晶硅(LTPS ) 工艺制成的主动式有机发光 二极管显示器的结构示意图;
图 2是具有微腔结构的有机发光二极管显示器的发光强度( EL Intensity ) 与反射率 R、 ^的关系示意图;
图 3是折射率高低交叠的膜层周期性交替层叠排布的示意图;
图 4是 QWS结构下镜面的反射率与波长的关系示意图;
图 5是本发明实施例的具有 QWS结构下镜面的微腔结构的有机发光二极 管显示器结构示意图;
图 6是本发明实施例的修饰多功能层结构的第一方式示意图;
图 7是本发明实施例的修饰多功能层结构的第二方式示意图。
具体实施方式
以下将配合附图及实施例来详细说明本发明的实施方式,藉此对本发明如 何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据 以实施。
本发明的核心在于: 将位于机发光二极管 (OLED )显示器发光区的微腔 结构(Micro-cavity )下镜面的多个功能层结构形成 QWS结构, 以提高下镜面 的反射率,从而增强具有微腔结构的有机发光二极管显示器的发光强度和色纯 度。 并且该微腔结构 (Micro-cavity ) 下镜面的多个功能层利用电路区的已有 功能层实现, 与现有结构兼容。 以下描述下本发明的设计原理和应用场景
i. 微腔效果增强的关键因素——上、 下镜面反射率
具有微腔结构的有机发光二极管显示器的发光强度与非微腔结构的有机 发光二极管显示器的发光强度的关系可以表述如下:
Figure imgf000008_0001
其中, 。ν为具有微腔结构的有机发光二极管显示器的发光强度, 为非 微腔结构的有机发光二极管显示器的发光强度, L为上镜面与下镜面之间的有 效距离, X是发光中心到上镜面的有效距离, 是下镜面的反射率, R2是上镜 面的反射率, 为透射光的波长。
如(1 ) 式可知, 具有微腔结构的有机发光二极管显示器的发光强度与其 上镜面、 下镜面的多个功能层结构有很大关系。 根据(1 ) 式可以得到具有微 腔结构的有机发光二极管显示器的发光强度与反射率 、 ^的关系, 如图 2 所示。 显然, 在具有微腔结构的有机发光二极管显示器中, 适当增大上、 下镜 面的功能层的反射率 R2可以增强微腔效果, 得到优化的色纯度和发光效 率。
ii. 利用 QWS结构增大反射率
折射率高低交叠的膜层周期性交替层叠排布从而构成膜层堆垛,这种折射 率高低交叠的膜层周期性交替层叠排布称为 QWS( Quarter Wave Stack四分之 一波长膜层堆)结构, 如图 3所示, L代表低折射率的膜层, H代表高折射率 的膜层, 只要交替排列即可, 形如 H-L-H-L...或者 L-H-L-H...均可称为 QWS 结构。
在这种 QWS结构排布下的膜层结构中, 形成 QWS排列的膜层对越多, 整个膜层堆垛的带阻就越大,相应的整个膜层堆垛的反射率就越大。进一步通 过科学计算发现, 形成 QWS排列的膜层对大于 2对时, 可以使得反射率发生 显著增大, 膜层对越多, 增大效果越明显, 参见图 4, 横轴为波长, 纵轴为反 射率。
同时, QWS结构要求折射率高的膜层的厚度 tMcknesshigh和折射率低的膜 层的厚度 thicknesslow分别如下: th ickness, . , = ~~ -—— th inkn essSaw = ~
( 2 )
其中, 为折射率高的膜层的折射率, 《/。^为折射率低的膜层的折射率, 为透射光的波长。 一般认为, 大于第二门限, 《/。^小于第一门限, 第一门 限和第二门限的取值根据设计需要或者设计经验选取。
假设取第一门限为 1.6 , 第二门限为 1.9 , 因此折射率高的膜层可以选用氮 化硅膜层, 其折射率一般在 1.97左右; 折射率低的膜层可以选用二氧化硅膜 层, 其折射率一般在 1.48左右, 此为示例, 本发明并不限于此。 在微腔结构的有机发光二极管显示器中实现 QWS
参考图 1 , 现有 OLED显示器的发光区 1主要包括下镜面 11、 有机发光 层 12和上镜面 13 , 其中位于发光区的下镜面具有形成于基板上的多个功能层 结构,依次包括形成于基板 110 (例如玻璃基板)上的緩沖层 120 ( Buffer层)、 栅极绝缘层 130 ( GI层)、 间隔层 140 ( ILD层)、 钝化层 150 ( Passivation层)、 平坦化层 160 ( PLN层)。 Buffer层的作用是防止玻璃基板 ( Glass substrate ) 中的钠离子等杂质向有源层的扩散而带来污染; GI层的作用主要是将有源层 21和栅极 22 ( Gate电极 ) 隔离开; ILD层的作用是作为栅极 22和源极 /漏极 23 ( S/D 电极)之间的绝缘层; Passivation层的作用是保护源极 /漏极 23 , 同 时将源极 /漏极 23与铟锡氧化物半导体透明导电膜 24 ( ITO )隔离开; PLN层 的作用是降低 ITO表面的不平整度。
PLN层通常是一种折射率较小 (小于第一门限) 的有机材料膜层, 这种 有机材料膜层在实际生产中可以使用如日本东丽公司(Toray)生产的聚酖亚胺 材料, 其折射率在 1.5左右, Passivation层通常为氮化硅(SiN3 )膜层, ILD 层通常可以由二氧化硅膜层和氮化硅膜层层叠得到, GI层通常为二氧化硅膜 层, Buffer层通常可以由二氧化硅膜层和氮化硅膜层层叠得到, 参见表 1。 而 二氧化硅的折射率相对氮化硅较低,则现有下基板上的多个功能层结构形成了 折射率高低交叠的膜层周期性交替层叠排布, 满足了 QWS结构的材料参数的
Figure imgf000010_0001
此时不需要增添任何的新材料, 也不需要新的 Mask (掩膜), 利用现有的 位于下镜面 11上的 PDL Mask (像素定义层的掩模)在 LTPS工艺中对位于发 光区 1 的下镜面 11 的多个功能层结构进行修饰, 使其膜层的厚度满足 QWS 结构, 如图 5所示, 显然其新结构与现有结构兼容, 包括发光区 1、 电路区 2、 下镜面 11、 有机发光层 12、 上镜面 13、 源层 21、 栅极 22、 源极 /漏极 23与铟 锡氧化物半导体透明导电膜 24。
这里可以通过两种方式实现:
1 )如图 6所示, 第一步, 依据所述 OLED的电路区所需的当前膜层的厚 度在整个 OLED上沉积当前的一个膜层; 第二步, 再利用 PDL Mask, 在所述 OLED的发光区将当前的膜层刻蚀至目标厚度,所述目标厚度使当前膜层所形 成的 QWS结构满足式 2的厚度要求; 然后重复步骤, 继续开始沉积下一个膜 层, 之后再刻蚀至目标厚度, 直至完成所有膜层; 例如, 如图 6所示的实施例 就是先对 Buffer层开始在整个 OLED上沉积, 然后将发光区部分 Buffer层刻 蚀至目标厚度, 然后再以相同的方式始沉积 GI层, 直至完成所有膜层。 2 )如图 7所示, 第一步, 在所述 0LED的电路区沉积当前膜层, 所沉积 的厚度为所述 OLED的电路区所需的当前膜层的厚度减去目标厚度; 第二步, 再在整个 OLED 上沉积目标厚度, 所述目标厚度使发光区的当前膜层所形成 的 QWS结构满足式 2的厚度要求, 然后重复步骤, 继续开始以电路区所需的 下一个膜层的厚度减去目标厚度所得到的厚度来沉积下一个膜层, 再在整个 OLED上沉积目标厚度, 直至完成所有膜层。 本发明的具有微腔结构的有机发光二极管显示器结构
i. 总体结构
由以上内容, 本发明提出了具有微腔结构的有机发光二极管 (OLED )显 示器, 其微腔结构的发光区的下镜面具有形成于基板上的多个功能层结构, 所 述多个功能层结构包括周期性交替层叠排布的 L类区层与 H类区层, 其中 L 类区层的折射率小于第一门限, H类区层的折射率大于第二门限, 所述第二门 限大于等于所述第一门限,并且 L类区层的厚度等于四分之一波长除以所述 L 类区层的折射率, H类区层的厚度等于四分之一波长除以所述 H类区层的折 射率。
所述多个功能层结构至少包括一由 L类区层和 H类区层层叠构成的双层 结构, 即该双层结构包括 L类区层和位于 L类区层之上的 H类区层, 或者 H 类区层和位于 H类区层之上的 L类区层, 所述 L类区层和 H类区层层叠构成 的结构越多, 微腔效果越好, 色纯度和发光效率会更加优化。
ii. 区层的划分
例如图 1中的 Buffer层、 GI层等等, 为微腔结构的下镜面的功能层。 每 个功能层由至少一个膜层构成,例如图 1中的 Buffer层是双层结构, 由二氧化 硅膜层和氮化硅膜层复合得到; GI层是单层结构且由二氧化硅制成, 因而 GI 层就是二氧化硅膜层, 参见表 1。
区层则是根据膜层的邻接关系重新进行了一种逻辑划分, 包括: 1 )材料 相同的相邻膜层共同构成一区层, 例如, 一个功能层仅包括二氧化硅膜层, 另 一个相邻的功能层也仅包括二氧化硅膜层, 因此两个二氧化硅膜层构成一 L 类区层; 2 )材料不同的相邻膜层分别构成不同区层, 参见表 1 , 例如 PLN层 为折射率小于第一门限的有机材料膜层, Passivation层包括氮化硅材料层, PLN 层与 Passivation层相邻, 因此 PLN层构成一 L类区层, Passivation层的氮化 硅膜层构成一 H类区层; 因为 PLN层与 Passivation层都为单层结构, 也可称 为 PLN层构成一 L类区层, Passivation层构成一 H类区层。
上述两种逻辑划分还可以包括两种扩展方式: 3 )分别隶属于不同功能层 的材料相同的相邻膜层共同构成一区层,例如 GI层包括二氧化硅膜层, Buffer 层包括二氧化硅膜层和氮化硅膜层, GI层与 Buffer层的二氧化硅膜层相邻, 因此 GI层的二氧化硅膜层与 Buffer层的二氧化硅膜层构成一 L类区层; 4 ) 隶属于同一功能层的材料不同的相邻膜层分别构成不同区层, 例如: ILD层包 括二氧化硅膜层和氮化硅膜层, 两者分别构成 L类区层和 H类区层。
iii. 材料、 折射率的选择
1 )各个 L类区层可以采用相同的材料, 因而具有相同的折射率, 各个 H 类区层也可以采用相同的材料, 因而具有相同的折射率, L类区层的折射率小 于 H类区层的折射率。
参见表 1 , 例如, Buffer层的二氧化硅膜层和 GI层构成 L类区层, ILD 层的二氧化硅膜层构成 L类区层, 这些 L类区层都采用二氧化硅, 因而具有 相同的折射率, PLN层也可以采用与二氧化硅膜层折射率相同的有机材料膜 层的; 又例如, Buffer层的氮化硅膜层构成 H类区层, ILD层的氮化硅膜层构 成 H类区层, Passivation层构成 H类区层, 这些 H类区层都采用氮化硅, 因 而具有相同的折射率; 二氧化硅材料的折射率小于氮化硅的折射率。
2 )各个 L类区层也可以采用不同的材料, 但是这些材料的折射率与 H类 区层的折射率相比都较小; 各个 H类区层也可以采用不同的材料, 但是这些 材料的折射率与 L类区层的折射率相比都较大;
参见表 1 , 例如, Buffer层的二氧化硅膜层和 GI层构成 L类区层, ILD 层的二氧化硅膜层构成 L类区层, PLN使用的有机材料膜层的折射率可以不 等于二氧化硅的折射率, 而是使用与二氧化硅具有相近折射率的其他材料, 此 时 PLN层仍然构成 L类区层, PLN层的折射率依然小于氮化硅的折射率, 处 于 L类区层所要求的折射率区间内, 即小于第一门限;
又例如, Buffer层的氮化硅膜层构成 H类区层, ILD层的氮化硅膜层构成 H类区层, Passivation层可以不再采用氮化硅制成, 转而采用了与氮化硅具有 相近折射率的其他材料, 此时 Passivation层仍然构成 H类区层, Passivation 层的折射率依然大于二氧化硅的折射率, 处于 H类区层所要求的折射率区间 内, 即大于第二门限。
所述第一门限与第二门限根据经验选取,其主要目的是保证即使使用不同 材料, 各 L类区层的折射率也小于各 H类区层的折射率, 从而保证满足 QWS 结构。
iv. 波长的选取
所述波长可以为各种颜色的透射光中最需要补偿的颜色的中心波长,一般 来说蓝光的波长相对较短而散射现象严重, 因此可以认为蓝光最需补偿, 所以 所述波长选择蓝光的中心波长; 另外, 在实践经验中, 所述波长也可以选择绿 光的中心波长。 若干实施例与应用实例
如果电路区所需要的功能层数量或者材料变更, 可以通过增减 QWS对的 方式来对应变化, 参照以下实施例。
下面以十三个实施例对本发明的具有微腔结构的有机发光二极管显示器 作进一步说明。
实施例一
参见表 1-1 , 所述多个功能层结构包括依次形成于基板上的緩沖层
( Buffer ) 、 栅极绝缘层(GI ) 、 间隔层( ILD ) 、 钝化层(Passivation ) 、 平 坦化层(PLN ) , 緩沖层依次包括第一膜层和第二膜层(即第一膜层比第二膜 层离基板近), 间隔层依次包括第三膜层和第四膜层(即第三膜层比第四膜层 离基板近), 其中, 所述緩沖层的第二膜层、 栅极绝缘层、 间隔层的第四膜层 和平坦化层的折射率均小于第一门限, 所述緩沖层的第一膜层、 间隔层的第三 膜层和钝化层的折射率均大于第二门限; 所述緩沖层的第一膜层构成 H类区 层,所述緩沖层的第二膜层与栅极绝缘层构成 L类区层, 间隔层的第三膜层构 成 H类区层, 间隔层的第四膜层构成 L类区层, 钝化层构成 H类区层, 平坦 化层构成 L类区层, 具有三对层叠交替结构。 需要说明的是,平坦化层为折射率较低的有机材料膜层,在实际操作中优
Figure imgf000014_0001
表 1-1
实施例二
参见表 1-2 , 所述多个功能层结构包括依次形成于基板上的緩沖层 ( Buffer ) 、 间隔层(ILD ) 、 钝化层(Passivation ) 、 平坦化层(PLN ) , 緩 沖层依次包括第一膜层和第二膜层, 间隔层依次包括第三膜层和第四膜层, 其 中, 第二膜层、 第四膜层和平坦化层的折射率均小于第一门限, 第一膜层、 第 三膜层和钝化层的折射率均大于第二门限; 所述緩沖层的第一膜层构成 H类 区层, 緩沖层的第二膜层构成 L类区层, 间隔层的第三膜层构成 H类区层, 间隔层的第四膜层构成 L类区层, 钝化层构成 H类区层, 平坦化层构成 L类 区层, 具有三对层叠交替结构。
需要说明的是,平坦化层为折射率较低的有机材料膜层,在实际操作中优 选采用与第四膜层或第二膜层折射率相同或相近的有机材料膜层。
Figure imgf000015_0001
表 1-2
实施例三
参考表 1-3 , 所述. 个功能层结构包括依次形成于基板上的緩沖层 ( Buffer ) 、 栅极绝缘层(GI ) 、 钝化层(Passivation ) 、 平坦化层(PLN ) , 緩沖层依次包括第一膜层和第二膜层, 其中, 緩沖层的第二膜层、 栅极绝缘层 和平坦化层的折射率均小于第一门限,緩沖层的第一膜层和钝化层的折射率均 大于第二门限; 緩沖层的第一膜层构成 H类区层, 緩沖层的第二膜层与栅极 绝缘层构成 L类区层, 钝化层构成 H类区层, 平坦化层构成 L类区层, 具有 两对层叠交替结构。
需要说明的是,平坦化层为折射率较低的有机材料膜层,在实际操作中优
Figure imgf000015_0002
表 1-3 实施例四
参考表 1—4 , 所述多个功能层结构包括依次形成于基板上的緩沖层 ( Buffer ) 、 栅极绝缘层(GI ) 、 间隔层 ( ILD ) 、 平坦化层( PLN ) , 緩沖 层依次包括第一膜层和第二膜层, 间隔层依次包括第三膜层和第四膜层, 平坦 化层采用与间隔层的第四膜层折射率相同的有机材料膜层, 其中,緩沖层的第 二膜层、栅极绝缘层、 间隔层的第四膜层和平坦化层的有机材料膜层的折射率 均小于第一门限,緩沖层的第一膜层和间隔层的第三膜层的折射率均大于第二 门限; 所述緩沖层的第一膜层构成 H类区层, 緩沖层的第二膜层与栅极绝缘 层构成 L类区层, 间隔层的第三膜层构成 H类区层, 间隔层的第四膜层与平 坦化层的有机材料膜层构成 L类区层, 具有两对层叠交替结构。
Figure imgf000016_0001
表 1-4
实施例五
参考表 1-10 , 所述多个功能层结构包括依次形成于基板上的緩沖层 ( Buffer ) 、 间隔层(ILD ) 、 平坦化层( PLN ) , 緩沖层依次包括第一膜层 和第二膜层, 间隔层依次包括第三膜层和第四膜层, 平坦化层采用与间隔层的 第四膜层折射率相同的有机材料膜层, 其中, 所述緩沖层的第二膜层、 间隔层 的第四膜层和平坦化层的有机材料膜层的折射率均小于第一门限,所述緩沖层 的第一膜层和间隔层的第三膜层的折射率均大于第二门限;所述緩沖层的第一 膜层构成 H类区层, 所述緩沖层的第二膜层构成 L类区层, 所述间隔层的第 三膜层构成 H类区层, 所述间隔层的第四膜层与平坦化层的有机材料膜层构 成 L类区层, 具有两对层叠交替结构。 膜层 有机材料膜层 第四膜层 第三膜层 第二膜层
第一膜层 表 1-5
实施例六
参考表 1-11 , 所述多个功能层结构包括依次形成于基板上的緩沖层 ( Buffer ) 、 钝化层(Passivation ) 、 平坦化层( PLN ) , 緩沖层依次包括第一 膜层和第二膜层,其中, 所述緩沖层的第二膜层和平坦化层的折射率均小于第 一门限,緩沖层的第一膜层和钝化层的折射率均大于第二门限; 所述緩沖层的 第一膜层构成 H类区层, 所述緩沖层的第二膜层构成 钝化层构成 H类区层, 平坦化层构成 L类区层, 具有两对层叠交替结构。
需要说明的是,平坦化层为折射率较低的有机材料膜层,在实际操作中优
Figure imgf000017_0001
表 1-6
对应上述六个实施例,下面再以六个应用实例对本发明的具有敖腔结构的 有机发光二极管显示器作进一步说明。 H类区层采用氮化硅材料, L类区层采 用二氧化硅材料或采用折射率与二氧化硅相同的有机薄膜, 设置 H类区层厚 度时,使用氮化硅的折射率进行计算, 设置 L类区层厚度时,使用二氧化硅的 折射率进行计算。
应用实例一
参见表 2-1 , 所述多个功能层结构包括依次形成于基板上的緩沖层 ( Buffer ) 、 栅极绝缘层( GI ) 、 间隔层( ILD ) 、 钝化层( Passivation ) 、 平 坦化层(PLN ) , 栅极绝缘层由二氧化硅膜层构成, 平坦化层为折射率较低的 有机薄膜(在实际操作中优选采用与二氧化硅膜层折射率相同或相近的有机薄 膜), 钝化层由氮化硅膜层构成, 緩沖层依次包括氮化硅膜层和二氧化硅膜层 (即緩沖层的氮化硅膜层比二氧化硅膜层离基板近), 间隔层依次包括氮化硅 膜层和二氧化硅膜层(即间隔层的氮化硅膜层比二氧化硅膜层离基板近); 緩 沖层的氮化硅膜层构成 H类区层, 緩沖层的二氧化硅膜层和栅极绝缘层的二 氧化硅膜层构成 L类区层, 间隔层的氮化硅膜层构成 H类区层, 间隔层的二 氧化硅膜层构成 L类区层, 钝化层的氮化硅膜层构成 H类区层, 平坦化层的
Figure imgf000018_0001
表 2-1
应用实例二
参见表 2-2 , 所述多个功能层结构包括依次形成于基板上的緩沖层 ( Buffer ) 、 间隔层(ILD ) 、 钝化层(Passivation ) 、 平坦化层(PLN ) , 平 坦化层为折射率较低的有机薄膜(在实际操作中优选采用与二氧化硅膜层折射 率相同或相近的有机薄膜), 钝化层由氮化硅膜层构成, 緩沖层依次包括氮化 硅膜层和二氧化硅膜层, 间隔层依次包括氮化硅膜层和二氧化硅膜层; 緩沖层 的氮化硅膜层构成 H类区层 緩沖层的二氧化硅膜层构成 L类区层, 间隔层 的氮化硅膜层构成 H类区层 间隔层的二氧化硅膜层构成 L类区层, 钝化层 的氮化硅膜层构成 H类区层 平坦化层的有机薄膜构成 L类区层。
Figure imgf000019_0001
表 2-2
应用实例三
参考表 2-3 , 所述多个功能层结构包括依次形成于基板上的緩沖层 ( Buffer ) 、 栅极绝缘层(GI ) 、 钝化层(Passivation ) 、 平坦化层(PLN ) , 栅极绝缘层由二氧化硅膜层构成,钝化层由氮化硅膜层构成,緩沖层依次包括 氮化硅膜层和二氧化硅膜层, 平坦化层为折射率较低的有机薄膜(在实际操作 中优选采用与二氧化硅膜层折射率相同或相近的有机薄膜); 緩沖层的氮化硅 膜层构成 H类区层, 緩沖层的二氧化硅膜层和栅极绝缘层的二氧化硅膜层构
Figure imgf000019_0002
表 2-3 应用实例四
参考表 2-4 , 所述多个功能层结构包括依次形成于基板上的緩沖层 ( Buffer ) 、 栅极绝缘层(GI ) 、 间隔层 ( ILD ) 、 平坦化层( PLN ) , 栅极 绝缘层由二氧化硅膜层构成,平坦化层为折射率与二氧化硅膜层相同的有机薄 膜,緩沖层依次包括氮化硅膜层和二氧化硅膜层, 间隔层依次包括氮化硅膜层 和二氧化硅膜层; 緩沖层的氮化硅膜层构成 H类区层, 緩沖层的二氧化硅膜 层和栅极绝缘层的二氧化硅膜层构成 L类区层, 间隔层的氮化硅膜层构成 H
Figure imgf000020_0001
表 2-4
应用实例五
参考表 2-5 , 所述多个功能层结构包括依次形成于基板上的緩沖层 ( Buffer ) 、 间隔层(ILD ) 、 平坦化层( PLN ) , 平坦化层为折射率与二氧 化硅膜层相同的有机薄膜,緩沖层依次包括氮化硅膜层和二氧化硅膜层, 间隔 层依次包括氮化硅膜层和二氧化硅膜层; 緩沖层的氮化硅膜层构成 H类区层, 緩沖层的二氧化硅膜层构成 L类区层, 间隔层的氮化硅膜层构成 H类区层, 间隔层的二氧化硅膜层和平坦化层的有机薄膜构成 L类区层。
Figure imgf000021_0001
表 2-5
应用实例六
参考表 2-6 , 所述多个功能层结构包括依次形成于基板上的緩沖层 ( Buffer ) 、 钝化层(Passivation ) 、 平坦化层( PLN ) , 平坦化层为折射率较 低的有机薄膜(在实际操作中优选采用与二氧化硅膜层折射率相同或相近的有 机薄膜), 钝化层由氮化硅膜层构成, 緩沖层依次包括氮化硅膜层和二氧化硅 膜层; 緩沖层的氮化硅膜层构成 H类区层, 緩沖层的二氧化硅膜层构成 L类 , 钝化层的氮化硅膜层构成 H类区层, 平坦化层的有机薄膜构成 L类区
Figure imgf000021_0002
表 2-6
需要说明的是, 在本说明书中出现的"依次形成"、 "依次包括"定义为延远 离基板的方向依次形成\包括, 权利要求书中对于"依次"的解释遵循此定义。
上述说明示出并描述了本发明的若干优选实施例,但如前所述,应当理解 本发明并非局限于本文所披露的形式, 不应看作是对其他实施例的排除, 而可 用于各种其他组合、 修改和环境, 并能够在本文所述发明构想范围内, 通过上 述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化 不脱离本发明的精神和范围, 则都应在本发明所附权利要求的保护范围内。

Claims

1、 一种具有微腔结构的有机发光二极管 (OLED )显示器, 其特征在于, 所述微腔结构位于发光区的下镜面具有形成于基板上的多个功能层结构, 所述多个功能层结构包括周期性交替层叠排布的 L类区层与 H类区层,其中 L 类区层的折射率小于第一门限, H类区层的折射率大于第二门限, 所述第二门 限大于等于所述第一门限,并且 L类区层的厚度等于四分之一波长除以所述 L 类区层的折射率, H类区层的厚度等于四分之一波长除以所述 H类区层的折 射率。
2、 如权利要求 1所述的有机发光二极管显示器, 其特征在于,
所述多个功能层结构至少包括一由 L类区层和 H类区层层叠构成的双层 结构。
3、 如权利要求 1所述的有机发光二极管显示器, 其特征在于,
所述波长为蓝光的中心波长或者绿光的中心波长。
4、 如权利要求 1所述的有机发光二极管显示器, 其特征在于,
所述多个功能层结构中的每个功能层由至少一膜层构成;材料相同的相邻 膜层共同构成一区层, 材料不同的相邻膜层分别构成不同区层。
5、 如权利要求 1所述的有机发光二极管显示器, 其特征在于,
所述多个功能层结构包括依次形成于基板上的緩沖层、栅极绝缘层、 间隔 层、 钝化层、 平坦化层, 緩沖层依次包括第一膜层和第二膜层, 间隔层依次包 括第三膜层和第四膜层, 其中, 所述緩沖层的第二膜层、 栅极绝缘层、 间隔层 的第四膜层和平坦化层的折射率均小于第一门限, 所述緩沖层的第一膜层、 间 隔层的第三膜层和钝化层的折射率均大于第二门限;
所述緩沖层的第一膜层构成 H类区层, 所述緩沖层的第二膜层与栅极绝 缘层构成 L类区层, 间隔层的第三膜层构成 H类区层, 间隔层的第四膜层构 成 L类区层, 钝化层构成 H类区层, 平坦化层构成 L类区层。
6、 如权利要求 5所述的有机发光二极管显示器, 其特征在于,
所述栅极绝缘层为二氧化硅膜层,平坦化层为折射率小于第一门限的有机 材料膜层,钝化层为氮化硅膜层,緩沖层依次包括氮化硅膜层和二氧化硅膜层, 间隔层依次包括氮化硅膜层和二氧化硅膜层; 緩沖层的氮化硅膜层构成 H类区层, 緩沖层的二氧化硅膜层和栅极绝缘 层的二氧化硅膜层构成 L类区层, 间隔层的氮化硅膜层构成 H类区层, 间隔 层的二氧化硅膜层构成 L类区层, 钝化层的氮化硅膜层构成 H类区层, 平坦 化层的有机材料膜层构成 L类区层。
7、 如权利要求 1所述的有机发光二极管显示器, 其特征在于,
所述多个功能层结构包括依次形成于基板上的緩沖层、 间隔层、 钝化层、 平坦化层,緩沖层依次包括第一膜层和第二膜层, 间隔层依次包括第三膜层和 第四膜层, 其中, 緩沖层的第二膜层、 间隔层的第四膜层和平坦化层的折射率 均小于第一门限,緩沖层的第一膜层、 间隔层的第三膜层和钝化层的折射率均 大于第二门限;
所述緩沖层的第一膜层构成 H类区层,緩沖层的第二膜层构成 L类区层, 间隔层的第三膜层构成 H类区层, 间隔层的第四膜层构成 L类区层, 钝化层 构成 H类区层, 平坦化层构成 L类区层。
8、 如权利要求 7所述的有机发光二极管显示器, 其特征在于,
平坦化层为折射率小于第一门限的有机材料膜层, 钝化层为氮化硅膜层, 緩沖层依次包括氮化硅膜层和二氧化硅膜层,间隔层依次包括氮化硅膜层和二 氧化硅膜层;
緩沖层的氮化硅膜层构成 H类区层, 緩沖层的二氧化硅膜层构成 L类区 层, 间隔层的氮化硅膜层构成 H类区层, 间隔层的二氧化硅膜层构成 L类区 层, 钝化层的氮化硅膜层构成 H类区层, 平坦化层的有机材料膜层构成 L类 区层。
9、 如权利要求 1所述的有机发光二极管显示器, 其特征在于,
所述多个功能层结构包括依次形成于基板上的緩沖层、栅极绝缘层、钝化 层、 平坦化层, 緩沖层依次包括第一膜层和第二膜层, 其中, 緩沖层的第二膜 层、栅极绝缘层和平坦化层的折射率均小于第一门限,緩沖层的第一膜层和钝 化层的折射率均大于第二门限;
緩沖层的第一膜层构成 H类区层,緩沖层的第二膜层与栅极绝缘层构成 L 类区层, 钝化层构成 H类区层, 平坦化层构成 L类区层。
10、 如权利要求 9所述的有机发光二极管显示器, 其特征在于, 栅极绝缘层为二氧化硅膜层,钝化层为氮化硅膜层,緩沖层依次包括氮化 硅膜层和二氧化硅膜层, 平坦化层为折射率小于第一门限的有机材料膜层; 緩沖层的氮化硅膜层构成 H类区层, 緩沖层的二氧化硅膜层和栅极绝缘 层的二氧化硅膜层构成 L类区层, 钝化层的氮化硅膜层构成 H类区层, 平坦 化层的有机材料膜层构成 L类区层。
11、 如权利要求 1所述的有机发光二极管显示器, 其特征在于, 所述多个功能层结构包括依次形成于基板上的緩沖层、栅极绝缘层、 间隔 层、 平坦化层, 緩沖层依次包括第一膜层和第二膜层, 间隔层依次包括第三膜 层和第四膜层, 平坦化层与间隔层的第四膜层折射率相同, 其中, 緩沖层的第 二膜层、栅极绝缘层、间隔层的第四膜层和平坦化层的折射率均小于第一门限, 緩沖层的第一膜层和间隔层的第三膜层的折射率均大于第二门限;
所述緩沖层的第一膜层构成 H类区层, 緩沖层的第二膜层与栅极绝缘层 构成 L类区层, 间隔层的第三膜层构成 H类区层, 间隔层的第四膜层与平坦 化层构成 L类区层。
12、 如权利要求 11所述的有机发光二极管显示器, 其特征在于, 栅极绝缘层为二氧化硅膜层,平坦化层为与二氧化硅膜层折射率相同的有 机材料膜层,緩沖层依次包括氮化硅膜层和二氧化硅膜层, 间隔层依次包括氮 化硅膜层和二氧化硅膜层;
緩沖层的氮化硅膜层构成 H类区层, 緩沖层的二氧化硅膜层和栅极绝缘 层的二氧化硅膜层构成 L类区层, 间隔层的氮化硅膜层构成 H类区层, 间隔 层的二氧化硅膜层和平坦化层的有机材料膜层构成 L类区层。
13、 如权利要求 1所述的有机发光二极管显示器, 其特征在于, 所述多个功能层结构包括依次形成于基板上的緩沖层、间隔层、平坦化层, 緩沖层依次包括第一膜层和第二膜层, 间隔层依次包括第三膜层和第四膜层, 平坦化层与间隔层的第四膜层折射率相同, 其中, 所述緩沖层的第二膜层、 间 隔层的第四膜层和平坦化层的折射率均小于第一门限,所述緩沖层的第一膜层 和间隔层的第三膜层的折射率均大于第二门限;
所述緩沖层的第一膜层构成 H类区层, 所述緩沖层的第二膜层构成 L类 区层, 所述间隔层的第三膜层构成 H类区层, 所述间隔层的第四膜层与平坦 化层构成 L类区层。
14、 如权利要求 13所述的有机发光二极管显示器, 其特征在于, 平坦化层为折射率等于二氧化硅膜层的有机材料膜层,緩沖层依次包括氮 化硅膜层和二氧化硅膜层, 间隔层依次包括氮化硅膜层和二氧化硅膜层; 緩沖层的氮化硅膜层构成 H类区层, 緩沖层的二氧化硅膜层构成 L类区 层, 间隔层的氮化硅膜层构成 H类区层, 间隔层的二氧化硅膜层和平坦化层 的有机材料膜层构成 L类区层。
15、 如权利要求 1所述的有机发光二极管显示器, 其特征在于, 所述多个功能层结构包括依次形成于基板上的緩沖层、 钝化层、 平坦化层, 緩 沖层依次包括第一膜层和第二膜层, 其中, 所述緩沖层的第二膜层和平坦化层 的折射率均小于第一门限,緩沖层的第一膜层和钝化层的折射率均大于第二门 限;
所述緩沖层的第一膜层构成 H类区层, 所述緩沖层的第二膜层构成 L类 区层, 钝化层构成 H类区层, 平坦化层构成 L类区层。
16、 如权利要求 15所述的有机发光二极管显示器, 其特征在于, 平坦化层为折射率小于第一门限的有机材料膜层, 钝化层为氮化硅膜层, 緩沖层依次包括氮化硅膜层和二氧化硅膜层;
緩沖层的氮化硅膜层构成 H类区层, 緩沖层的二氧化硅膜层构成 L类区 层, 钝化层的氮化硅膜层构成 H类区层, 平坦化层的有机材料膜层构成 L类 区层。
17、 如权利要求 1所述的有机发光二极管显示器, 其特征在于, 各 L类区层的折射率相同且小于第一门限, 各 H类区层的折射率相同且 大于第二门限。
PCT/CN2012/078224 2011-12-18 2012-07-05 一种具有微腔结构的有机发光二极管(oled)显示器 WO2013091372A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110463090.4A CN103165640B (zh) 2011-12-18 2011-12-18 一种具有微腔结构的有机发光二极管(oled)显示器
CN201110463090.4 2011-12-18

Publications (1)

Publication Number Publication Date
WO2013091372A1 true WO2013091372A1 (zh) 2013-06-27

Family

ID=48588582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078224 WO2013091372A1 (zh) 2011-12-18 2012-07-05 一种具有微腔结构的有机发光二极管(oled)显示器

Country Status (2)

Country Link
CN (1) CN103165640B (zh)
WO (1) WO2013091372A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102111974B1 (ko) * 2013-07-03 2020-05-19 삼성디스플레이 주식회사 유기발광 표시 장치 및 이의 제조 방법
CN112310308B (zh) * 2020-10-22 2022-04-26 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
CN114267704A (zh) * 2021-12-14 2022-04-01 深圳市华星光电半导体显示技术有限公司 显示面板以及移动终端
CN115172432A (zh) * 2022-08-09 2022-10-11 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147270A (ja) * 2004-11-18 2006-06-08 Seiko Epson Corp 発光装置、発光装置の製造方法、及び電子機器
JP2006269326A (ja) * 2005-03-25 2006-10-05 Seiko Epson Corp 発光装置及びその製造方法、並びに電子機器
JP2007250306A (ja) * 2006-03-15 2007-09-27 Seiko Epson Corp 発光装置および電子機器
CN101764146A (zh) * 2009-12-31 2010-06-30 四川虹视显示技术有限公司 一种amoled显示器件
CN201638819U (zh) * 2009-12-31 2010-11-17 四川虹视显示技术有限公司 一种amoled显示器件
JP2011210677A (ja) * 2010-03-30 2011-10-20 Fujifilm Corp 有機電界発光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147270A (ja) * 2004-11-18 2006-06-08 Seiko Epson Corp 発光装置、発光装置の製造方法、及び電子機器
JP2006269326A (ja) * 2005-03-25 2006-10-05 Seiko Epson Corp 発光装置及びその製造方法、並びに電子機器
JP2007250306A (ja) * 2006-03-15 2007-09-27 Seiko Epson Corp 発光装置および電子機器
CN101764146A (zh) * 2009-12-31 2010-06-30 四川虹视显示技术有限公司 一种amoled显示器件
CN201638819U (zh) * 2009-12-31 2010-11-17 四川虹视显示技术有限公司 一种amoled显示器件
JP2011210677A (ja) * 2010-03-30 2011-10-20 Fujifilm Corp 有機電界発光装置

Also Published As

Publication number Publication date
CN103165640A (zh) 2013-06-19
CN103165640B (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
TWI279016B (en) Display
US10074698B2 (en) Display substrate, display device thereof, and manufacturing method therefor
CN100472839C (zh) 层叠结构及其制造方法及显示元件和显示单元
US8482195B2 (en) Display apparatus
US8736161B2 (en) Light-emitting device, illumination apparatus, and display apparatus
US8587191B2 (en) Organic light emitting device and color display apparatus using the same
US8860302B2 (en) Light-emitting apparatus, illumination apparatus, and display apparatus
CN108123048B (zh) 发光装置、显示装置和照明装置
TW200541397A (en) Green light-emitting microcavity oled
JP2012038555A (ja) 有機el表示装置
JP2008059791A (ja) 有機el素子アレイ
KR20070008215A (ko) 평판 디스플레이 장치 및 그 제조방법
US20130082246A1 (en) Display unit
US8227976B2 (en) Display apparatus
US11309513B2 (en) Anode, light emitting device, display substrate and method of manufacturing the same, and display device
WO2013091372A1 (zh) 一种具有微腔结构的有机发光二极管(oled)显示器
CN107634084A (zh) 顶发射白光oled显示装置
CN105742521A (zh) 一种微腔oled器件
JP2013051155A (ja) 有機el素子
WO2024032395A1 (zh) 显示面板及其制备方法、显示装置
KR102042534B1 (ko) 유기 전계 발광 표시 패널 및 그 제조 방법
US10797268B2 (en) Light-emitting device
JP2013058446A (ja) 表示装置
KR102469294B1 (ko) 유기 발광 표시 장치
KR102231631B1 (ko) 유기 발광 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860747

Country of ref document: EP

Kind code of ref document: A1